
Towards a Simpler Account of Modules and Generativity:
Abstract Types have Open Existential Types.

Revised version, March 2008

Benoı̂t Montagu
INRIA

Benoit.Montagu@inria.fr

Didier Rémy
INRIA

Didier.Remy@inria.fr

Abstract

We present a variant of the explicitly-typed second-
order polymorphic λ-calculus with primitive open existen-
tial types, i.e. a collection of more atomic constructs for
introduction and elimination of existential types. We equip
the language with a call-by-value small-step reduction se-
mantics that enjoys the subject reduction property. Tradi-
tional closed existential types can be defined as syntactic
sugar. Conversely, programs with no free existential types
can be rearranged to only use closed existential types, but
the translation is not compositional. We argue that open ex-
istential types model abstract types and modules with gen-
erativity. We also introduce a new notion of paths at the
level of types instead of terms that allows for writing type
annotations more concisely and modularly.

Introduction
Modularity has always been the key to robust, manage-

able, and maintainable large software. Modular program-
ming requires good discipline from programmers but also
good support from programming languages. Unsurpris-
ingly, module systems and type systems for modules have
been an area of intensive research in the programming lan-
guage community for more than two decades.

The module system for the language ML first proposed
by MacQueen [12] in the mid 80’s and independently im-
proved and simplified in the mid 90’s by Harper and Lil-
libridge [6] and by Leroy [9] is still the one in use in all
dialects of ML, with relatively minor differences. Abstract
types, higher-order functors, and sharing a posteriori, are
key ingredients of its expressiveness and success.

However, there is still a discrepancy between the sim-
plicity of the concepts necessary to understand and write
simple modular programs on the one hand and on the other
hand the complexity of the theoretical systems that have

been proposed to give them a meaning and the heaviness
of their use in some larger scale but realistic situations.

Furthermore, previous works have highlighted the diffi-
culty to define a reduction semantics at the level of modules
and circumvented the problem by giving a semantics via a
non-trivial elaboration into an internal language, thus break-
ing the close correspondence between programs and logic.

In this paper, we present F. (read F-zip), a variant
of System F with primitive open existential types, along
with a call-by-value operational semantics, that allows to
write programs more modularly, enjoys the subject reduc-
tion property, and whose underlying concepts are strongly
and directly related to logic. More precisely, we decompose
constructs for existentials into more atomic ones. We argue
that this is the key to model abstract types and generativity.

Thus, we claim that the notion of path is useless in the
sole purpose of type abstraction. However, we also claim
that paths are useful to write compact programs. For this
purpose, we introduce a new notion of path at the level of
types, whereas it was usually defined at the level of terms.

Our present goal is not to increase the expressiveness of
the module language, but instead to simplify the underly-
ing concepts and to bridge the gap between the complexity
of the state-of-the-art meta-theory of modules and the in-
tuitive simplicity of the underlying mechanisms. We think
this is a necessary step towards the design of a language
with first-class modules that is conceptually economical yet
more expressive and flexible.

The rest of the paper is organized as follows. We review
previous approaches to abstract types in the next section.
We present open existential types in §2 and formal results
in §3 and §4. We describe our notion of paths in §5. We
discuss related works in §6 before concluding remarks.

1. Previous approaches
Existing works on modules and type abstraction can be

sorted in two categories. In earlier works, abstract types

Benoit.Montagu@inria.fr
Didier.Remy@inria.fr

were usually identified with existential types. However, it
has been realized in the mid 80’s that existential types do
not adequately model type abstraction. Since then, abstract
types have been considered as types whose definition has
been forgotten and that are accessible through a path, i.e.
modeled by strong sums and dependent types.

Our argument is that dependent types are actually too
strong for modeling abstract types, making the meta-theory
of modules unnecessarily involved. We instead argue that
we can use existential types, once we “opened” them up.

We now review both approaches. For pedagogical pur-
poses, we do not follow the chronological order.

1.1. Paths-based module systems

Paths are at the foundation of the majority of recent mod-
ule systems [10, 18, 15]. They arise when a type is made
abstract. Since the definition of the type has been forgot-
ten, one cannot refer to it by how it is defined, instead one
designates it by where it is defined: an abstract type is re-
ferred to as a projection path from a value variable, which
makes types depend on values. In fact, types only depend
on value variables, and therefore only require a decidable
fragment of dependent types. However, this fragment is not
stable under term substitution. This is a serious problem for
the definition of a small-step reduction semantics. Different
solutions have been proposed in the literature. Yet, none of
them is quite satisfactory. A quick review follows.

Courant [2] designed a module system for the Coq proof
assistant, together with a substitution semantics. To achieve
this, he used the full power of dependent types along with
the strong normalization property of Coq terms. This ap-
proach is not applicable to general purpose languages that
allow non terminating programs.

Lillibridge [11] designed a module calculus in which
paths are extended so that they are stable under value substi-
tution. He managed to define a substitution semantics and
to prove the soundness of his system, but at the expense of
a substantial technical complexity.

Leroy [9] designed a module system and implemented it
in the Objective Caml compiler [10], but did not give a di-
rect semantics. Instead he only gave a translation semantics
of his system, using an untyped λ-calculus with records as
the target, and proved the soundness of his system.

In the context of the definition of a formal specification
for SML [18], Dreyer et al [4] defined a module type sys-
tem along with a typed internal language. They defined an
indirect semantics of their module system through a global
non trivial elaboration phase towards their internal language
and proved the soundness of the internal language.

1.2. Abstract types as existential types

Much earlier, Mitchell and Plotkin [14] had shown that
abstract types could be understood as existential types.

However, they also noticed that existential types do not ac-
curately model type abstraction in modules, especially the
notion of generativity, and lack some modular properties.

In System F, existential types are introduced by the pack
construct. Provided the term M has some type τ ′ [α← τ],
the expression pack 〈τ,M〉 as ∃α. τ ′ hides the type infor-
mation τ , called the witness of the existential, from the type
of M so that the resulting type is ∃α. τ ′.

PACK
Γ ` M : τ ′ [α← τ]

Γ ` pack 〈τ,M〉 as ∃α. τ ′ : ∃α. τ ′

Existential types are eliminated by the unpack con-
struct: provided M has type ∃α. τ , the expression
unpack M as α, x in M ′ binds the type variable α to
the witness of the existential and the value variable x to the
unpacked term M in the body of M ′. The resulting type is
the one of M ′, in which α must not appear free. The rea-
son for this restriction is that otherwise α, which is bound
in M ′, would escape its scope.
UNPACK
Γ ` M : ∃α. τ Γ, α, x : τ ` M ′ : τ ′ α /∈ ftv(τ ′)

Γ ` unpack M as α, x in M ′ : τ ′

From now on we will consider System F is equipped
with the above constructs, as they can be recovered as a
well-known syntactic sugar.

2. Open existential types

Both of the pack and unpack constructs have modular-
ity problems, but in different ways.

The problem with pack is verbosity: it requires to com-
pletely specify the resulting type, thus duplicating type in-
formation in the parts that have not been abstracted away.
This duplication happens, for instance, when hiding the type
of a single field of a large record, or maybe worse, when
hiding some type information deeply inside a record. It is
caused by the lack of separation between the introduction of
an existential quantifier, and the description of which parts
of the type must be made hidden.

The problem with unpack is non-locality: it imposes the
same scope to the type variable α and the value variable x,
which is emphasized by the non escaping condition on α.
As a result, all uses of the unpacked term must be antici-
pated. In other words, the only way to make the variable
α available in the whole program is to put unpack early
enough in the program, which is a non local, hence non
modular, program transformation. Again, the reason for it
is that unpack is doing too many things at the same time.

In both cases, the lack of modularity is related to the
lack of atomicity of the constructs. Therefore, we propose
to split both of them into more atomic constructs, recover-
ing modularity while preserving expressiveness of existen-

tial types.

2.1. Atomic constructs for existential types

To achieve the decomposition of existential types into
more atomic constructs, we first need to enrich the context
of typing judgments.

Richer contexts for typing judgments. The contexts of
typing judgments in System F are sequences of items. An
item is either a binding x : τ from a value variable to a
type, which is introduced while typing functions, or a uni-
versal type variable ∀α, which is introduced while typing
polymorphic expressions.

We augment typing environments with two new items:
existential type variables to keep track of the scope of
(open) abstract types, and type definitions α = τ to more
concisely mediate between the abstract and concrete views
of types. That is, typing environments are as follows:

Γ ::= ε | Γ, b (Environments)
θ ::= α
b ::= x : τ | ∀θ | θ = τ | ∃θ (Bindings)

Notice that θ is a binding occurrence in type-definitions, as
∀- and ∃-bindings. Wellformedness of typing environments
will ensure that no variable is ever bound twice.

We shall see below that existential variables have to be
treated linearly. The syntactic category θ is introduced to
facilitate the extension of F. with paths in §5.

Splitting pack. We replace pack with two orthogonal
constructs: existential introduction, which creates an exis-
tential type, and coercion, which determines which parts of
types are to be hidden.

The existential introduction ∃(α = τ)M introduces an
existential type variable α with witness τ (more precisely,
the definition α = τ) in the environment while typing M ,
and makes α existentially bound in the resulting type.

EXISTS
Γ, α = τ ` M : τ ′

Γ ` ∃(α = τ)M : ∃α. τ ′

The coercion (M : τ) replaces the type of M with some
compatible type τ . The compatibility relation ≈ is the
smallest congruence that contains all type-definitions occur-
ring in the environment. A coercion is typically employed
to specify where some abstract types should be used instead
of their witnesses in the typing of M .

COERCE
Γ ` M : τ ′ Γ ` τ ′ ≈ τ

Γ ` (M : τ) : τ

The expressiveness of pack is retained, since it can be
provided as the following syntactic sugar:

pack 〈τ,M〉 as ∃α. τ ′ , ∃(α = τ) (M : τ ′)

However, the description of what is being hidden can now
be separated from the action of hiding, which avoids repe-
tition of type information. Hence it makes the creation of
existential values, shorter, thus easier, and more maintain-
able. Examples can be found in Appendix §A.1.

Splitting unpack. We also replace unpack with two or-
thogonal constructs, opening and restriction, that imple-
ment scopeless unpacking of existential values and scope
restriction of abstract types, respectively.

The opening openα M expects M to have an existential
type ∃α. τ and opens it under the name α, which is tracked
in the typing environment by the existential item ∃α. The
rule can also be read bottom-up, treating the item ∃α as a
linear resource that is consumed by the opening.

OPEN
Γ ` M : ∃α. τ α /∈ dom Γ

Γ,∃α ` openα M : τ

The restriction να.M implements the non-escaping
condition of Rule UNPACK. First, it requires α not to ap-
pear free in the type of M , thus enforcing a limited scope.
Second, it provides an existential resource ∃α in the envi-
ronment, that ought to be consumed by some openα M ′

expression occurring within M .
NU
Γ,∃α ` M : τ α /∈ ftv(τ)

Γ ` να.M : τ

Here again, we may provide unpack as syntactic sugar:

unpack M as α, x in M ′ , να. (let x = openα M in M ′)

This makes explicit all the simultaneous operations per-
formed by unpack: first, it defines a scope for the name
α of the witness of the existential type of M ; then, it opens
M under the name α; finally, it binds the resulting value to
x in the remaining expression M ′.

The main flaw of unpack, i.e. the scope restriction for
the abstract name, is essentially captured by the restriction
construct. However, since the scope restriction has been
separated from the unpack, it need not (always) be used
anymore. The abstract type α may now be introduced at
the outermost level or given by the typing context and be
freely made available to the whole program. Interestingly,
this closely models type abstraction in modules: the fol-
lowing program, written in an ML-like syntax, defines an
abstract module of integers.

module X : sig type t val z : t val s : t→ t end=
struct

type t = int val z = 0 val s = λ(x : int)x+1
end

It provides the zero constant z and the successor function s.
The typeX.t is abstract and available in the whole program.

Its counterpart in F. is defined hereafter:

openβ ∃(α = int) ({z = 0 ; s = λ(x : int)x+1} :
{z : α ; s : α→ α})

The two pieces of code look similar, except for the fact that
the signature ascription has been replaced with the open-
ing of an existential value. The counterpart of the signature
is the type in the coercion. Note that no type component,
hence no name for the module, is needed: the counterpart
of X.t is the abstract type β, which is present in the typing
context. It is available in the whole program and does not
refer to a value variable.

Linearity to control openings. As openings use abstract
names given by the environment, one must be careful to
avoid “abstraction capture”, as in the following (ill-typed)
example.

let f = openα ∃(β = int) (λ(z : int) z + 1 : β → β) in
let x = openα ∃(β = bool) (true : β) in f x

Here, f and x result from two different openings under the
same name α. Hence, f and x are assigned types α → α
and α, respectively, using the same abstract name α. How-
ever, each branch uses a different witness for α (int in the
case of f and bool in the case of x). This yields to the
unsound application f x, which evaluates to 1 + true.

To prevent abstraction capture, it suffices that every name
α be used in exactly one opening under α. This may be
achieved by treating the existential items of the typing en-
vironment in a linear way. Linearity can easily be enforced
in typing rules by a zipping operation that describes how
typing environments of the premises must be combined to
form the one of the conclusion. Zipping is a binary oper-
ation (· . ·) that proceeds by zipping individual bindings
pointwise. For all items but existential type variables, zip-
ping requires the two facing items to be identical, as usual.
The interesting case is when one of the two items is an ex-
istential variable ∃α: the (not final) intuition is that, in this
case, the other item must be the universal variable ∀α, hence
the zipper image. This ensures that an existential variable in
the conclusion can only be used up in one of the premises.
Zipping can also be explained in terms of internal and ex-
ternal choice: the side that makes use of ∃α will make an
internal choice by giving internally the witness. Therefore
the other side must consider the choice of the witness as
external. This is why it is given the item ∀α.

The above idea is unfortunately too generous: it makes
recursive types appear naturally, as will be explained in
the next paragraph. The presence of two zipping operators
(· . ·) and (· �q ·) will also be justified hereafter.

Avoiding the birth of recursive types. The decomposi-
tion of unpack into opening and restriction opens up the
way to recursive types, because it allows to use an abstract
type variable before its witness has been defined. Recur-

sive types can appear through openings, i.e. through type
abstraction, in two ways.

We call internal recursivity the first one. It is highlighted
by the following example:

let x = ∃(α = β → β)M in openβ x

The abstract type variable β is used in a witness to define x
which is then opened under the name β. By reducing this
expression we get:

openβ ∃(α = β → β)M

This leads us to the recursive equation β = β → β. We
prevent this misuse by making the zipping non-symmetric
(· �q ·) for the let construct (see last case of Fig. 1): if an ex-
istential resource goes in the second branch of the let then
the corresponding type variable cannot appear in the first
one. This avoids the premature use of an abstract type vari-
able in a let-binding.

We call external recursivity the second way, which is
hereafter exemplified:

{`1 = openβ1 ∃(α1 = β2 → β2)M1 ;
`2 = openβ2 ∃(α2 = β1 → β1)M2}

The above code is a pair whose components have been ab-
stracted away and the witnesses are mutually defined. If we
remove the type abstractions we get the recursive equation
system β1 = β2 → β2 and β2 = β1 → β1. Here again
we also could make the zipping non-symmetric, but this
would enforce a non-symmetric reduction strategy. Instead,
we keep it symmetric (see of Fig. 1): if an existential re-
source goes in one branch then the corresponding type vari-
able cannot appear in the other. Although this might look
over-restrictive, it has the advantage of keeping the system
independent from evaluation order. Moreover the system
remains at least as expressive as System F:

να.C2[let x = C1[openα M1] in M2]

If we consider this program as an unpack, then the contexts
C1 and C2 are empty. Consequently, α cannot occur free in
C1 or C2. This is almost what our restriction implements:
α cannot occur in C1 thanks to the restriction on external
recursivity; α cannot occur in C2 thanks to the restriction
on internal recursivity, unless openα M1 is itself bound by
a let.

A less restrictive system is currently being studied.

2.2. Syntax of F.

The language F. is based on the explicitly typed version
of System F with records and is extended with constructs
of §2.1. Types and terms are described in Fig. 2.

As open existentials do not introduce new forms of types,
types of F. are type variables, arrow types, record types,
universal types, and existential types. The notation (`i :
τi)i∈1..n stands for a sequence of n pairs, each composed of

ε . ε = ε
(Γ1, b) . (Γ2, b) = (Γ1 . Γ2) , b if b 6= ∃α
(Γ1,∃α) . Γ2 = (Γ1 . Γ2) ,∃α if α /∈ dom Γ2

Γ1 . (Γ2,∃α) = (Γ1 . Γ2) ,∃α if α /∈ dom Γ1

ε �q ε = ε
(Γ1, b) �q (Γ2, b) = (Γ1 �q Γ2) , b if b 6= ∃α
(Γ1,∃α) �q Γ2 = (Γ1 �q Γ2) ,∃α if α /∈ dom Γ2

Γ1 �q (Γ2,∃α) = (Γ1 �q Γ2) ,∃α if α /∈ dom Γ1

(Γ1,∃α) �q (Γ2,∀α) = (Γ1 �q Γ2) ,∃α
Figure 1. Zippings of two contexts.

τ ::= α | τ → τ | {(`i : τi)i∈1..n}
| ∀θ. τ | ∃θ. τ

M ::= x | λ(x :τ)M | M M
| let x = M in M | Λθ.M | M [τ]
| ∃(θ = τ)M | (M : τ) | νθ.M
| openα M | {r} | M.`

r ::= ε | ` = M ; r | ` : τ = M ; r

Figure 2. Types and terms.

a label and a type. Type and environment wellformedness
are defined as usual (see Fig. 13 in the Appendix).

Terms of F. are variables, functions (whose arguments
are explicitly typed), applications, let-bindings, type gen-
eralizations and applications, introductions and projections
of records, and the four constructs for open existentials de-
scribed before.

Record fields are pairs ` = M of a label name ` and
a term M . The label name is used to access the field ex-
ternally, as usual with records. In addition, we provide an
optional type annotation on record fields, that behaves as a
coercion. This construct1 is theoretically unimportant, but
practically quite useful on real large examples.

For conciseness, we also use the following syntactic
sugar in technical developments:

Σβ(α = τ)M , openβ ∃(α = τ)M

This can be understood as the creation of an abstract type
without seeing the intermediate existential type—which is
a common programming pattern in modular programs.

2.3. Typing rules

Typing rules for open existentials have already been pre-
sented in §2.1. A few more selected typing rules are given
on Fig. 3. The full type system can be found in Appendix.

1In fact, this construct is slightly more general than coercion: express-
ing {`1 : τ1=M1 ;`2=M2} in terms of coercions requires the knowledge
of the type of M2. Conversely, the coercion (M :τ) can be replaced with
{`:τ=M}.`. The latter actually reduces to the former. Though coercions
need not be exposed to the user, they must remain in the syntax of terms.

VAR
Γ ` wf Γ pure
Γ ` x : Γ (x)

APP
Γ1 ` M1 : τ2 → τ Γ2 ` M2 : τ2

Γ1 . Γ2 ` M1 M2 : τ

LET
Γ1 ` M1 : τ1 Γ2, x : τ1 ` M2 : τ2

Γ1 �q Γ2 ` let x = M1 in M2 : τ2
SHIFT
Γ′ ` M : τ Γ Γ′

Γ ` M : τ

Figure 3. More typing rules.

Rule SHIFT states that if a term is typable in an environ-
ment Γ then it is also typable in every stronger environment
Γ′, i.e. Γ′ Γ. Environment entailment is the smallest
pre-order satisfying the following commutation:

α /∈ ftv(b)
Γ1,∃α, b,Γ2 Γ1, b,∃α,Γ2

The raison d’être of Rule SHIFT is to shift existential items
to the right of the environment (whenever this is sound):
indeed Rule OPEN needs the resource it consumes to be
the right-most item of the environment. Soundness of en-
tailment is ensured by the natural interpretation of environ-
ments as logical formulæ.

The remaining typing rules are as in System F with two
small differences described.

First, as mentioned above, typing rules with several typ-
ing judgments as premises use zipping instead of equality
to relate their typing environments. This is exemplified by
Rule APP for the symmetric zipping and by Rule LET for
the non-symmetric one.

Typing rules must also ensure that values can be substi-
tuted without breaking linearity, which is the case when the
typing environment does not contain any existential items.
When Γ is such an environment, we say that Γ is pure
and write Γ pure. This condition appears as an additional
premise of typing rules of expressions that are also values
as exemplified by Rule VAR. Purity will be used and ex-
plained in more details in §2.4.

We consider now the typing derivation of term Σβ(α =
τ)M : this term abstracts (the type definition for) α away
in two steps: first, the equation is forgotten returning the
existential value ∃(α = τ)M of type ∃α. τ ′, which is then
opened under the name β. In a nutshell, type abstraction is
the composition of information erasure and generativity.

OPEN

EXISTS
Γ, α = τ ` M : τ ′

Γ ` ∃(α = τ)M : ∃α. τ ′

Γ,∃β ` openβ ∃(α = τ)M : τ ′ [α← β]

v ::= u | (u : τ) (Values)
u ::= x | λ(x :τ)M (Pre-values)
| Λα.M | ∃(α = τ) v | {rv}

rv ::= ε | ` : τ ? = v ; rv (Value-fields)
w ::= v | Σβ(α = τ)w (Results)
E ::= [] | let x = E in M | E M (Contexts)

| w E | E.` | ∃(α = τ)E
| openα E | (E : τ) | να.E

Figure 4. Values, results, evaluation contexts.

2.4. Semantics

The language F. is equipped with a small-step call-by-
value reduction semantics. We begin with important re-
marks about substitutability, then define and explain values,
and finally describe the reduction steps.

Substitution and purity. Some terms cannot be safely
substituted, since substitution may violate the linear treat-
ment of openings. It turns out that pure terms, i.e. terms
that are typable in a pure environment, behave well with
respect to substitution:

Lemma 1 (Substitution lemma). If Γ ` M : τ and Γ′, x :
τ,Γ′′ ` M ′ : τ ′, where Γ is pure and Γ�q Γ′ is well defined,
then (Γ . Γ′) ,Γ′′ ` M ′ [x←M] : τ ′.

Therefore, values are substitutable if we restrict them to
pure terms . Conversely, is every irreducible term also a
pure term?

Results and values. Results are well-behaved irreducible
terms. Results include values. In System F (as in
many other languages) results actually coincide with val-
ues. However, this need not be the case. In F., results also
include terms such as Σβ(α = τ)λ(x :α)x, which are well-
behaved and cannot be further reduced, but are not values,
as they are not pure and thus not substitutable.

More precisely, values are defined in Fig. 4. They are
either pre-values or coerced pre-values, where pre-values
are variables, functions, generalizations, existential values
or records of values. In particular, nested coercions are not
values—they must be further reduced. Notice that no evalu-
ation takes place under λ’s or Λ’s. Finally, results are values
preceded by a (possibly empty) sequence of Σ’s.

The purity premises in some of the typing rules ensure
that values are pure, hence by Lemma 1 substitutable.

Lemma 2 (Purity of values). If Γ ` v : τ , then Γ pure.

Extrusions. Values are substitutable, but some results are
not values, namely a sequence of Σ’s prefixing a value. How
can we handle these results, when they ought to be substi-
tuted, without breaking linearity? Our solution is to extrude

letx=Σβ(α= int)(1 :α) in{`1 =x ; `2 =(λ(y :β)y) x}
1
 Σβ(α = int)

let x = (1 : α) in {`1 = x ; `2 = (λ(y :α) y) x}
1
 Σβ(α = int) {`1 = (1 : α) ; `2 = (λ(y :α) y) (1 : α)}
1
 Σβ(α = int) {`1 = (1 : α) ; `2 = (1 : α)}

Figure 5. Example of extrusion.

{` = M ; r} ↑ ` = M
{` : τ = M ; r} ↑ ` = (M : τ)
{`′ : τ ? = M ; r} ↑ ` = {r} ↑ ` if ` 6= `′

Figure 6. Projection of a record.

the Σ’s just enough to expose and perform the next reduc-
tions step.

For example, consider the reduction steps on Fig. 5.
The initial expression is a let-binding of the form let x =
w in M where w is the result form Σβ(α = int) (1 : α).
Hence, the next expected reduction step is the substitution
of w for x in M . However, since x occurs twice in M , this
would duplicate the opening appearing in w breaking the
linear use of β. The solution is to first extrude the Σ binding
outside of the let-binding, so that the expression bound to x
becomes the substitutable value form (1 : α). However, by
enlarging the scope of Σ, we have put M in its scope, and
as a consequence all occurrences of the external view β in
M should be replaced with the internal view α. Then,
we may perform let-reduction safely and further reduce the
β-redex that has been created.

More generally, the reduction semantics will be set so
that Σ can always be extruded out of redex forms.

Reduction. The semantics of F. is given by a call-by-
value reduction strategy, described by a small-step reduc-
tion relation. We fix a left-to-right evaluation order so that
the semantics is deterministic, although we could have left
the order unspecified. By contrast having a call-by-value
strategy and a weak-reduction is essential.

Evaluation contexts are described in Fig. 4. A one-step
reduction is the application of a reduction rule in some eval-
uation context. The reduction relation is the transitive clo-
sure of the one-step reduction relation. Due to lack of space,
we only describe a representative subset of the reduction
rules in Fig. 7. The whole definition is available in the Ap-
pendix (Fig. 15). Reduction steps are sorted in three groups.

The main group of rules describe the contraction of re-
dexes. The β-reduction and the reduction of type applica-
tions are as usual. Record projection (Rule REDEX-PROJ)
is as usual, except type annotations must be kept during
projection, as described in the definition of the projection
function in Fig. 6. The last form of this group is the con-
traction of abstract types described by rules NU-SIGMA1
and NU-SIGMA2, which is used to simplify terms of the

(λ(x :τ)M) v let x = v in M (REDEX-APP)
let x = v in M M [x← v] (REDEX-LET)

{rv}.` {rv} ↑ ` (REDEX-PROJ)

νβ.Σβ(α = τ) v νβ.Σβ(α = τ) v [α← τ] if α ∈ ftv(v) (NU-SIGMA1)
νβ.Σβ(α = τ) v v if α /∈ ftv(v) (NU-SIGMA2)

(Σβ(α = τ)w1) w2 Σβ(α = τ) (w1 (w2 [β ← α])) if α /∈ ftv(w2) (SIGMA-APP-LEFT)

(λ(x :τ)M : τ1 → τ2) v ((λ(x :τ)M) (v : τ) : τ2) (COERCE-APP)
((u : τ) : τ ′) (u : τ ′) (COERCE-COERCE)

Figure 7. Reduction steps (selected rules).

form νβ.Σβ(α = τ)M by substituting the witness τ for α
inside M . This is similar to the usual rule for contracting
unpack-ing of pack’s where the same substitution occurs.

The next group of rules implement the extrusion of Σ’s,
in all cases where a Σ comes up against a redex, as illus-
trated by rule SIGMA-APP-LEFT. As explained above, the
internal view α must be substituted for the external one β in
terms that become in scope of α during the extrusion.

The last group of reduction rules keep track of coercions
during reduction, as exemplified by Rule COERCE-APP.
Notice that nested coercions are ignored, the outer one tak-
ing priority (Rule COERCE-COERCE).

3. Type soundness
Type soundness results from the combination of the sub-

ject reduction and progress properties.
The subject reduction proof is, as usual, mainly built on

the substitution lemma (Lemma 1). The proof itself is not
really informative, but it is particularly interesting that the
proof is absolutely standard and almost straightforward, as
this is not usually the case for other approaches to modules.

Proposition 1 (Subject reduction). If Γ ` M : τ and
M M ′, then Γ ` M ′ : τ .

This property is proved by induction on the reduction. In
order to simplify case analysis, we first show that typing
derivations can be put in a canonical form, where successive
applications of Rule SHIFT have been fused.

Proposition 2 (Progress). If Γ ` M : τ and Γ does not
contain value variable bindings, then either M is a result,
or it is reducible.

Progress is proved by induction on the typing derivation.
The side condition that Γ does not contain any value vari-
able is as usual. However, we cannot require the more
restrictive hypothesis that Γ be empty as evaluation takes
place under existential quantifiers. Moreover, this allows to
consider the reduction of open programs, i.e. programs with
free type variables. This is the case for programs with ab-
stract types, which come from unrestricted openings. This

closely corresponds to ML programs composed of modules
with abstract types.

4. Translations from and to System F

We propose a translation from System F to F. and, con-
versely, from a subset of F. to System F. Although the first
one is compositional, the latter is not. This embodies the
fact that F. is superior to system F in terms of modularity.

From F to F.. The syntactic sugar for pack and unpack
provides the translation from F to F., which is obviously
compositional and both type and semantic preserving.

From pure F. to F. The inverse translation merits closer
examination. Hereafter, we define a non-compositional
transformation from pure terms to terms of System F that is
both type and semantics preserving in the following sense:
the type-erasure2 of the translation of M is not equal but
let-reduces to the type-erasure of M . This remark already
supplies some piece of information about modularity of F.

compared to F: the translation involves code shifting. As-
suming that the translation is “optimal”, this means that F.

brings more freedom, hence modularity, to write programs,
whereas F requires a stricter definition discipline—imposed
by the unpack construct, indeed. The translation is the
composition of two sub-transformations: the first one takes
care of pack’s, and the second one copes with unpack’s.

The pack constructs are recovered from the typing
derivation. The transformation is specified by a judgment
of the form Γ ` M : τ ′ . M ′ where M ′ is the trans-
lation of M . The main cases are given on Fig. 8: on the
one hand, coercions are erased, whether they are attached
to record fields or not; on the other hand, existential con-
structs are translated into pack’s, where the witness substi-
tution, which is pushed into the context, is applied to the
subterm being packed.

The recovering of unpack’s requires more care, as it
does not preserve the structure of terms. It is defined
through a rewriting system. Selected rules are given by
Fig. 9. It is based on the following property: if να.M is

2Type erasure is defined as usual—See Fig. 17 in the Appendix.

Γ, α = τ ` M : τ ′ . M ′

Γ ` ∃(α = τ)M : ∃α. τ ′ . pack 〈τ,M ′ [α← τ]〉 as ∃α. τ ′
Γ ` M : τ ′ . M ′ Γ ` τ ′ ≈ τ

Γ ` (M : τ) : τ . M ′

Γ ` M : τ ′ . M ′ Γ ` τ ′ ≈ τ Γ′ ` {r} : {(`i : τi)i∈1..n} . {r′}
Γ . Γ′ ` {` : τ = M ; r} : {` : τ ; (`i : τi)i∈1..n} . {` = M ′ ; r′}

Figure 8. From F. to F, first pass: recovering pack’s (selected rules).

Qα ::= openα M | Qα M | M Qα | Qα [τ] | pack 〈τ,Qα〉 as ∃β. τ ′ | unpack Qα as β, x in M
| unpack M as β, x in Qα if β 6= α | νβ.Qα if β 6= α | openβ Qα if β 6= α | Qα.`
| {r ; ` = Qα ; r′} | let x = M in Qα | let x = Qα in M

να. (Qα M) _ (να.Qα) M
να. (let x = M in Qα) _ let x = M in να.Qα

να. let x = Qα M in M ′ _ να. let y = Qα in let x = y M in M ′

να. (openα M) _ unpack M as α, x in x
να. (let x = openα M in M ′) _ unpack M as α, x in M ′

Figure 9. From F. to F, second pass: recovering unpack’s (selected rules).

welltyped, then there is a unique subterm openα M ′ in-
side M and it is not located under λ’s of Λ’s. Thus, M is
a term of the form Qα, as defined3 in Fig. 9. The rewrit-
ing rules operate on terms of the form να.Qα and bring a
restriction and its opening closer by decreasing the size of
Qα. This is done either by predefining the subterm con-
taining the opening thanks to a let when it is possible or
by making the restriction go down otherwise. The last two
rules are terminal: they replace openings with unpackings
when the pattern of unpack is recognized. When no rewrit-
ing rule applies anymore, the term has no restriction left.
If moreover M is typable in a pure typing context, then it
cannot contain openings either. So, the resulting term is
in System F. Furthermore, each rewriting rule is both type
and semantics preserving (the type-erasure of the right-hand
side let-reduces to the type-erasure of the left-hand side).
Appendix contains an application of the translation on an
example.

It is an open question whether the translation can be ex-
tended to impure terms, i.e. terms that are welltyped in ar-
bitrary contexts. The issue is how to keep track of linearity
of existential resources.

5. Paths and shapes

A sledgehammer argument for paths in modules is their
ability to factorize code [7, 13], as exemplified by the well-
known diamond import pattern. Although this justifies the
need of a path system, this does not specifically vindicate
the use of paths at the term level. Instead, we introduce a
path system at the level of types, which is composed of two

3We temporarily add let’s, pack’s and unpack’s to the syntax to allow
for easier reasoning.

κ ::= ? | κ→ κ | {(`i : κi)
i∈1..n} (Kinds)

θ ::= α ∈ σ
σ ::= > | τ | [θ] σ (Shapes)
τ ::= . . . | τ.` | τ.1 | τ.2 (Projections)

Figure 10. Shapes and type projections.

key ingredients: type shapes and type projections.

5.1. Definitions

Differences from F. are described on Fig. 10 and ex-
plained below. We define kinds to forbid illegal projections:
they consist in the base kind, the kind of arrow types and the
kind of record types. By lack of space, we refer to the Ap-
pendix for details (Fig. 18 and 19). The syntactic categories
θ, σ and τ are mutually recursively defined. They are ex-
plained hereafter.

Shapes. Shapes represent sets of types and are used to re-
strict the range of binding type variables. Their interpreta-
tion is given on Fig. 11: the top shape > is the set of all
(wellformed) types, the singleton shape τ is the set contain-
ing the unique type τ , and the compound shape [α ∈ σ] σ′

is the set of types τ ′ [α← τ], where τ ′ ∈ σ′ and τ ∈ σ.
Binding occurrences of type variables henceforth carry a

shape. For example, the identity function on homogeneous
pairs (i.e. pairs whose components are of the same type),
has type ∀(α ∈ >) {` : α ; `′ : α} → {` : α ; `′ : α}, but
also ∀(α ∈ [β ∈ >] {` : β ; `′ : β})α → α. Shapes will
play the role of ML’s module signatures.

Type projections. Shapes can already express sharing
properties, internally, as shown above. However, without

Γ ` τ :: κ
Γ ` τ ∈ >

Γ ` τ :: κ
Γ ` τ ∈ τ

Γ ` τ ∈ σ Γ,∀ (α ∈ σ) ` τ ′ ∈ σ′

Γ ` τ ′ [α← τ] ∈ [α ∈ σ] σ′

Figure 11. Meaning of shapes.

external access to shapes their benefits would be very lim-
ited. We introduce projections to access shapes externally.

The typing rules ensure that a universally typed vari-
able α of shape σ will only be instantiated by types that
are in σ. Hence, if the shape only contains, for instance,
arrow types, which is the case if it has an arrow kind, then
α.1 and α.2 designate the domain and the codomain of α.
Similarly, if the shape only contains records with at least
field `, which is the case if the kind of the shape is a record
kind with a field `, then α.` designates the ` projection of α.

For instance, a function taking two pairs as arguments
and returning the pair of their first components can be given
the following type:

∀(α1 ∈ [β1 ∈ >] [β′1 ∈ >] {` : β1 ; `′ : β′1})
∀(α2 ∈ [β2 ∈ >] [β′2 ∈ >] {` : β2 ; `′ : β′2})

α1 → α2 → {` : α1.` ; `′ : α2.`}
The resulting type is defined in terms of projections of the
types of the arguments. Projections may also be used to ex-
press sharing between the shapes of the arguments, much as
paths may express sharing between signatures of the argu-
ments of a functor in ML. Pursuing the example, we may
require that the first two components have the same type, so
that the result type is an homogeneous pair, as follows:

∀(α1 ∈ [β1 ∈ >] [β′1 ∈ >] {` : β1 ; `′ : β′1})
∀(α2 ∈ [β′2 ∈ >] {` : α1.` ; `′ : β′2})

α1 → α2 → {` : α1.` ; `′ : α1.`}
Equivalent types and shapes. Singleton shapes and type
projections obviously suggest a notion of type equivalence,
which we introduce as a judgment of the form Γ ` τ ≡ τ ′.
The main rules are shown in Fig. 12: Rule EQUI-VAR iden-
tifies elements of a singleton shape; types are equivalent
up to projections (rules EQUI-PROJ-*). Rule EQUI-FOLD
unfolds compound shapes inside the typing environment so
as to expose inner sharing. Notice that this is a form of
extrusion. (The whole set of rules can be found in the Ap-
pendix, Fig. 22.) We also define an equivalence on shapes
from their set-based semantics: two shapes are equivalent
if they contain the same types, which can also be character-
ized syntactically (Fig. 23 in the Appendix).

Of course, equivalent types are then identified through an
additional, straightforward typing rule (Appendix, Fig.24,
Rule EQUIV).

Summary. Shapes are stunningly simple objects: a re-
markable feature of shape equivalence is that shapes have a

EQUI-VAR

(α ∈ τ) ∈ Γ
Γ ` α ≡ τ

EQUI-PROJ-LABEL

Γ ` τ ≡ {`i :τ i∈1..n
i } 1 ≤ k ≤ n

Γ ` τ.`k ≡ τk

EQUI-PROJ-ARROW

Γ ` τ ≡ τ1→τ2

Γ ` τ.i ≡ τi

EQUI-FOLD

α /∈ ftv(Γ′, τ, τ ′)
Γ,∀ (α ∈ σ) ,∀ (α′ ∈ σ′) ,Γ′ ` τ ≡ τ ′

Γ,∀ (α′ ∈ [α ∈ σ] σ′) ,Γ′ ` τ ≡ τ ′

Figure 12. Type equivalence (selected rules).

canonical form, where only > is used on the left-hand side
of compound shapes. Hence, shapes are nothing more than
types with holes (i.e. >’s) and sharing: they can be rep-
resented as dags. The syntax of shapes may be extended
with sharing constraints, much as the with construct in mod-
ule signatures, enabling the definitions of new shapes from
older ones, concisely.

5.2. Applications

Shapes increase conciseness and modularity. Shapes
are an orthogonal extension to open existential types, and
can already increase conciseness in System F, as illustrated
by the use of projections in the examples above.

Another explanation of the power of shapes, is given
by (a sketch of) a translation into System F: quantifi-
cation over a type of the trivial shape > is translated
into the usual quantification; quantification over a type
of a singleton shape is translated by substituting the type
of the singleton, which illustrates the sharing power of
shapes. Finally, quantification over a compound shape
∀(α ∈ [β ∈ σ] σ′) τ is translated into an additional quan-
tification ∀(β ∈ σ)∀(α ∈ σ′) τ . Thus, compound shapes
can be seen as a way to save up explicit quantifications.

Simultaneous openings. An interesting application of
paths is the factorization of openings, as in Σβ(α∈
[γ1 ∈>] [γ2 ∈>] {`1 : γ1;`2 : γ2}= τ)M . This adds β to
the typing context, hence provides two fresh names β.`1
and β.`2 as if we had done two separate openings. This
usage corresponds to modules with multiple abstract type
components.

Scopeless type definitions. Paths also provide F. with
scopeless type definitions, as a side effect, by opening an
existential value whose witness is specified with a singleton
shape as in Σβ(α ∈ τ = τ)M . Since β has shape τ , β ≡ τ
holds. This fact appears in the typing context of M as the
binder ∃ (β ∈ τ) is present and carried over by the zipping
of contexts outside of M as the binder ∀ (β ∈ τ), so that
the information β ≡ τ is reachable in the whole program.
A simple example can be found in Appendix.

Wrap-up. In spite of its intrinsic simplicity, the path sys-
tem we propose is sufficiently expressive to write modules

and functors as compactly as in ML, while avoiding the
cumbersome use of type components.

6. Related work
Open existential types. Russo [17] justifies the meaning-
lessness of paths for module types, by interpreting modules
and signatures into semantic objects with System F types.
He makes use of existential quantifiers to track type genera-
tivity. Unfortunately, no semantics is given for the semantic
objects, so that one cannot calculate with them. Perhaps,
F. can be seen as a concrete calculus for his system.

In the context of run-time type inspection, Rossberg [16]
introduces λN, a version of System F with a construct to de-
fine abstract types and a mechanism of directed coercions.
His abstract types can be automatically extruded to allow
sharper type analysis, and are thus close to our Σ binder.
His coercions resemble ours, though ours are symmetric,
because they never cross the abstraction barrier. Although
both systems seem kindred in spirit, they are subtly differ-
ent, because they have been designed for different purposes:
in particular, λN is only partially related to traditional exis-
tential types, since parametricity is purposely violated.

Dreyer defines RTG to deal with type generativity in the
context of recursive modules [3]. He introduces type refer-
ences which can be written at most once. The creation of a
type reference with “new α in M” introduces a type vari-
able in the scope of M that should be treated as a resource
that can be set at most once, with his type reference update
“set α := τ in M”. Then, M and only M will see the
concrete definition τ for α while other paths of the program
will see α abstractly.

Technically, the treatment of these linear resources dif-
fer significantly from ours: his semantics employs a type
store to model static but imperative type reference updates,
whereas we just use extrusions of Σ binders4. He uses an
effect type system to guarantee the uniqueness of writing,
which exposes the evaluation order in the typing rules of
RTG, moving away from a logical specification, whereas
we use zipping of contexts—a symmetric operation—to en-
force sound openings and maintain a close correspondence
with logic. Intuitively, we think of existential values as gen-
erating a fresh type when opened, while he sees them as
functions in “destination passing style”.

Despite these strong technical differences, the two sys-
tems can be put in close correspondence, when we remove
paths from F. and equirecursive and higher-order types
from RTG. In both directions, there exists an encoding5

based on the typing derivation that replaces the new and
set constructs with our ν and Σ binders, or conversely. In

4Perhaps, these two approaches could be related by seeing our extru-
sion as a local treatment of his type store, as has been proposed for value
references [5].

5The details of both encodings can be found in Appendix §A.4.

the forward direction, we assume that F. terms have been
rearranged to use the pack form only. In the backward di-
rection, we assume that terms of RTG do not use a type
variable before it has been written, as this would translate
in the general case into recursively defined abstract types,
which F. does not allow. Interestingly, RTG has been de-
signed specifically to allow this situation, as its goal was to
model recursive modules, whereas F. has disallowed this
situation to avoid the complexity of equirecursive types in
a first step, as they are not needed to model ML modules.
In this restrictive case, F. can a posteriori be seen as an
alternative presentation of RTG in direct style.

Paths. Our type projections are similar to Hofmann and
Pierce [8]’s type destructors, which they proposed to in-
crease the expressiveness of F≤. However, the supertype
bounds of F≤ have been replaced with shapes in F., which
are considerably simpler.

Concluding remarks

We have defined F., a variant of explicitly-typed Sys-
tem F with primitive open existential types, which general-
ize the usual notion of (closed) existential types by splitting
their creation and elimination into more atomic constructs.
The subject reduction and progress theorems holds for F.

and have straightforward routine proofs.
We have shown how openings of existential values

tightly correspond to type abstraction and generativity in
modules. Translations from and to System F have illus-
trated the modularity gain brought by F. and have restored
the close connection between abstract programs and logic.

We have proposed a new notion of paths, at the level
of types, that brings back the conciseness of writing pro-
vided by ML modules with almost no technical overhead.
Moreover, we have kept type abstraction and paths as two
independent mechanisms, though they are usually presented
together as an atomic package.

We believe that F. is promising as the core of a program-
ming language with first-class modules. The bare simplicity
of F. is its best asset.

We have purposely limited the expressiveness of F. to
the minimum that permits programming with modules in
the ML-like style, directly. The integration of general pur-
pose features such as recursive types, value references or
recursion, should be straightforward. Extending F. both
with equirecursive and with higher-order kinds while pre-
serving its direct and logical style is currently under work,
and promising. The former is required to enable program-
ming with—and hopefully provide a simpler foundations
for—recursive modules and mixin modules. The latter is
motivated by Russo’s work on modeling applicative func-
tors. We have avoided the complication of using linear types
by keeping resources in the typing contexts. Interestingly,

our systems remains sufficiently expressive to model ML-
like modules. Still, this restriction prevents the definition of
impure functions and breaks the usual symmetry between
contexts and expressions. Adding linear types should not
raise technical problems, but this remains to be investigated.

Of course, some form of type inference would eventu-
ally be needed in a real programming language based on
F.. An easy solution is to stratify the type system—just for
the purpose of type inference. We could infer ML-like types
for the base level and require explicit type information for
the module level, as for ML. Another more ambitious direc-
tion is to use a form of partial type inference with first-class
polymorphism.

Acknowledgments The authors owe much to Paul-André
Melliès for fruitful discussions that lead to technical sim-
plifications of our proposal and for suggesting the zipper
metaphor. We also thank Arthur Charguéraud and François
Pottier for helpful discussions and comments.

References
[1] L. Cardelli and X. Leroy. Abstract types and the dot no-

tation. In M. Broy and C. B. Jones, editors, Proceedings
IFIP TC2 working conference on programming concepts
and methods, pages 479–504. North-Holland, 1990. Also
available as research report 56, DEC Systems Research Cen-
ter.

[2] J. Courant. An applicative module calculus. In Theory
and Practice of Software Development 97, Lecture Notes
in Computer Science, pages 622–636, Lille, France, April
1997. Springer-Verlag.

[3] D. Dreyer. Recursive type generativity. Journal of Func-
tional Programming, pages 433–471, 2007.

[4] D. Dreyer, K. Crary, and R. Harper. A type system for
higher-order modules. In 2003 ACM SIGPLAN Symposium
on Principles of Programming Languages, 2003.

[5] M. Felleisen. The Calculi of Lambda-v-CS Conversion: A
Syntactic Theory of Control and State in Imperative Higher-
Order Programming Languages. PhD thesis, Indiana Uni-
versity, 1987.

[6] R. Harper and M. Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In Proceedings of the
21st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 123–137, New York, NY,
USA, 1994. ACM.

[7] R. Harper and B. C. Pierce. Design considerations for ML-
style module systems. In B. C. Pierce, editor, Advanced Top-
ics in Types and Programming Languages, chapter 8, pages
293–345. The MIT Press, 2005.

[8] M. Hofmann and B. C. Pierce. Type destructors. In
D. Rémy, editor, Informal proceedings of the Fourth Inter-
national Workshop on Foundations of Object-Oriented Lan-
guages (FOOL), January 1998.

[9] X. Leroy. A syntactic theory of type generativity and shar-
ing. Journal of Functional Programming, 6(5):667–698,
1996.

[10] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon.
The Objective Caml system release 3.10. INRIA, May 2007.

[11] M. Lillibridge. Translucent Sums: A Foundation for Higher-
Order Module Systems. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, May 1997.

[12] D. MacQueen. Modules for standard ML. In Proceedings of
the ACM Symposium on LISP and functional programming,
pages 198–207, New York, NY, USA, 1984. ACM.

[13] D. B. MacQueen. Using dependent types to express mod-
ular structure. In Proceedings of the 13th ACM SIGACT-
SIGPLAN symposium on Principles of programming lan-
guages, pages 277–286, New York, NY, USA, 1986. ACM.

[14] J. C. Mitchell and G. D. Plotkin. Abstract types have existen-
tial type. ACM Trans. Program. Lang. Syst., 10(3):470–502,
1988.

[15] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal
theory of objects with dependent types. In Proceedings of
ECOOP, 2003.

[16] A. Rossberg. Generativity and dynamic opacity for abstract
types. In 5th ACM-SIGPLAN International Conference on
Principles and Practice of Declarative Programming, Upp-
sala, Sweden, September 2003.

[17] C. V. Russo. Types for modules. Electronic Notes in Theo-
retical Computer Science, 60, January 2003.

[18] Standard ML of New Jersey User’s Guide.

A. Appendix

A.1. Additional example

The splitting of pack allows for putting the information
of hiding parts of a type deeply inside a term: in the follow-
ing record, some leaves have been abstracted away.

∃(α = int)
let x = {`1 = (1 : α) ; `2 = 2} in
let y = {`1 = x ; `2 = x} in
{`1 = y ; `2 = y}

The corresponding system F term requires to repeat the type
of the whole term.

let z =
let x = {`1 = 1 ; `2 = 2} in
let y = {`1 = x ; `2 = x} in
{`1 = y ; `2 = y} in

pack 〈int, z〉 as
∃α. {`1 :{`1 :{`1 :α ; `2 : int} ; `2 :{`1 :α ; `2 : int}} ;

`2 :{`1 :{`1 :α ; `2 : int} ; `2 :{`1 :α ; `2 : int}}}
Moreover, whereas the information of hiding was located at
a single place in the F.-term, it is duplicated in the F-term,
as if each leaf had been abstracted independently.

A.2. Translations from and to system F

This section contains some formal results and an exam-
ple about the transformations presented in §4.

A.2.1 From F to F.

The (compositional) transformation from F to F. consists
in unfolding the syntactic sugar for pack and unpack. Its
is characterized by the following property.

Proposition 3. There exists a compositional transformation
J·K from F to F. such that:

• bJMKc = bMc

• if Γ `F M : τ then Γ `F. JMK : τ .

b·c is a type-erasure operation that is defined on Fig. 17.

A.2.2 From F. to F

The encoding of a subset of F. into F enjoys the following
property.

Proposition 4. There exists a global transformation L·M
from F. to F, defined for all terms M verifying Γ `F.

M : τ for some pure and type-definition-free context Γ,
such that:

• bLMMc let−→ bMc

• if Γ `F. M : τ , then Γ `F LMM : τ .

As described in §4, the translation consists in two sub-
transformations: the first one deals with the recovering of
pack’s, the second one copes with unpack’s. The sound-
ness of the first pass is ensured by the following lemma.

Lemma 3. If Γ ` M : τ . M ′, then bMc = bM ′c.
Moreover, Γσ ` M ′σ : τσ and Γ ` τ ≈ τσ where σ
denotes the substitution induced by the equations of Γ.

As the typing environment is required to be type-
definition-free, the transformation is type preserving. The
property between the underlying untyped terms of the
source and the target are proved without difficulty by in-
duction on the derivation.

Soundness of the second pass (Fig. 16) is proved inde-
pendently for each rule.

Example 1. A pure F.-term and its translation in F.

Before the transformation:
να.
let x = ∃(β = int)
{encode : int→ β =

λ(n : int)
if n < 0 then − 2 ∗ n+ 1 else 2 ∗ n ;

decode : β → int =
λ(n : int)

if n mod 2 = 0 then n/2 else (1−n)/2}
in let f = Λβ.

λ(p :{encode : int→ β ; decode : β → int})
λ(x : int) p.decode (p.encode x)

in {`1 = x ; `2 = f ; `3 = f [α] (openα x) 2008}

After the transformation:
let x = ∃(β = int)
{encode : int→ β =

λ(n : int)
if n < 0 then − 2 ∗ n+ 1 else 2 ∗ n ;

decode : β → int =
λ(n : int)

if n mod 2 = 0 then n/2 else (1−n)/2}
in let f = Λβ.

λ(p :{encode : int→ β ; decode : β → int})
λ(x : int) p.decode (p.encode x)

in {`1 = x ; `2 = f ;
`3 = unpack x as α, y in f [α] (y) 2008}

Example 2. Another application of the transformation.

Before the transformation:
να.
let r = ∃(β = int)
{encode : int→ β =

λ(n : int)
if n < 0 then − 2 ∗ n+ 1 else 2 ∗ n ;

decode : β → int =
λ(n : int)

if n mod 2 = 0 then n/2 else (1−n)/2} in
let x =

let y =
let z = {` = openα r ; `′ = 1} in z.`

in λ(x : int) y.decode y.encode x
in x 1

After the transformation:
let r = ∃(β = int)
{encode : int→ β =

λ(n : int)
if n < 0 then − 2 ∗ n+ 1 else 2 ∗ n ;

decode : β → int =
λ(n : int)

if n mod 2 = 0 then n/2 else (1−n)/2} in
unpack r as α, t in

let u = {` = t ; `′ = 1} in
let x =

let y =
let z = u in z.`

in λ(x : int) y.decode y.encode x
in x 1

A.3. Paths and shapes

A.3.1 Examples with functors

Example 3. Three versions of the identity function special-
ized on pairs:

• In System F: Λα.Λβ. λ(x :{` : α ; `′ : β})x
And its type: ∀α.∀β.{` : α ; `′ : β} → {` : α ; `′ : β}.

• With shapes:
Λ(α ∈ [β1 ∈ >] [β2 ∈ >] {` : β1 ; `′ : β2})
λ(x :α)x

And its type:
∀(α ∈ [β1 ∈ >] [β2 ∈ >] {` : β1 ; `′ : β2})α→ α

• In ML:
functor

(X : sig type t1 type t2 val x : t1 val x′ : t2 end)
= X
An its type:
functor

(X : sig type t1 type t2 val x : t1 val x′ : t2 end)
→ sig type t1 = X.t1 type t2 = X.t2

val x : t1 val x′ : t2 end

Example 4. Three versions of a function taking two pairs as
arguments and returning the pair of their first components:

• In System F:
Λα1.Λα2.Λβ1.Λβ2.
λ(x :{` : α1 ; `′ : α2})λ(y :{` : β1 ; `′ : β2})
{` = x.` ; `′ = y.`}

And its type:
∀α1.∀α2.∀β1.∀β2.
{` : α1 ; `′ : α2} → {` : β1 ; `′ : β2}
→ {` : α1 ; `′ : β1}

• With shapes:
Λ(α ∈ [α1 ∈ >] [α2 ∈ >] {` : α1 ; `′ : α2})
Λ(β ∈ [β1 ∈ >] [β2 ∈ >] {` : β1 ; `′ : β2})
λ(x :α)λ(y :β) {` = x.` ; `′ = y.`}

And its type:
∀(α ∈ [α1 ∈ >] [α2 ∈ >] {` : α1 ; `′ : α2})
∀(β ∈ [β1 ∈ >] [β2 ∈ >] {` : β1 ; `′ : β2})
α→ β → {` : α.` ; `′ : β.`}

• In ML:
functor

(X : sig type t1 type t2 val x : t1 val x′ : t2 end)
(Y : sig type t1 type t2 val x : t1 val x′ : t2 end)

= struct val x = X.x val x′ = Y.x end
And its type:
functor

(X : sig type t1 type t2 val x : t1 val x′ : t2 end)
→ functor

(Y : sig type t1 type t2 val x : t1 val x′ : t2 end)
→ sig val x : X.t1 val x′ : Y.t2 end

A.3.2 Examples with existentials

Example 5. Comparison of scopeless type definitions in
ML and F. with paths.

• In ML:

module M =
struct type t = int ∗ bool val x = (1, false) end

let f (p : M.t) = (1 + fst p, snd p) in
f M.x

• In F. with paths:
let m =
Σβ(α ∈ {` = int ; `′ = bool} = {` = int ; `′ = bool})
{x = {` = 1 ; `′ = false}} in

let f = λ(p :β) {` = 1 + p.` ; `′ = p.`′} in
f m.x

In the second program, let us call τ0 the type {` : int ; `′ :
bool}. Then let us call M and P the subterm that defines
the variablem and the one followingm’s definition, respec-
tively. The last node of its derivation is as follows:

∃ (β ∈ τ0) ` M : {x : τ0}
∀ (β ∈ τ0) ,m : {x : τ0} ` P : {x : τ0}
∃ (β ∈ τ0) ` let m = M in P : τ0

As M opens an existential value with the name β, its typ-
ing environment contains the existential binding ∃ (β ∈ τ0).
Notice the zipping operation transforms it into an universal
one ∃ (β ∈ τ0) in the second branch of the let. Thus in both
branches we can prove β ≡ τ0. This is as in the above ML
code: inside and outside moduleM , we know the definition
of M.t since it is transparent.

A.4. Comparison between F. and RTG

Our system F. and Dreyer’s RTG are tightly related. Us-
ing Dreyer’s destination-passing style (DPS) encoding of
existentials, we describe—informally—an encoding of F.

into RTG:

J∃α. τKRTG = ∀↑α. unit
α↓−−→ JτK

Jpack 〈τ,M〉 as ∃α. τ ′KRTG =
let x = JMKRTG in
Λ↑α. λ(x :unit) set α := JτKRTG in x : Jτ ′KRTG

Jνα.MKRTG = new α in JMKRTG

Jopenα MKRTG = let x = JMKRTG in x [α] ()

This puts in correspondence both points of view. Creating
an existential value consists in delaying a type variable as-
signment. Opening an existential value corresponds to re-
leasing the writing of a type reference. Finally, the creation
of an existential resource in the typing environment is simi-
lar to the creation of a writable type reference.

Although this encoding is compositional, it is restricted
to source terms where all existential values are introduced
with the pack form. Thus, the more liberal forms of exis-
tential introduction ∃(α = τ)M should have been put in
pack forms first, based on their typing derivation.

The inverse translation can be informally defined on a
strict subset of RTG that does not use equirecursive, higher-

order types and recursion. More precisely, we forbid using
a writable type reference before it has been written. We
purposely introduced this restriction in F., for simplicity,
to keep the correspondence with System F, and because it
was sufficient to encode ML modules.

Assuming this restriction on RTG terms, we give—
informally—the following translation:
r
∀↑α. τ1

α↓−−→ τ2

z

F.
= Jτ1KF. → ∃α. Jτ2KF.

q
Λ↑α. λ(x :τ1) e

y
F. =

λ(x :τ1) να. let x = JeKF. in ∃(β = α) (x : Jτ2KF.)
where τ2 is the type of e, extracted from the derivation

Jv1 [α] v2KF. = openα (Jv1KF. Jv2KF.)

Jlet α = τ in eKF. = JeKF. [α← JτKF.]

Jnewα in eKF. = να. JeKF.

Jsetα := τ1 in e : τ2KF. =
Σα(α = Jτ1KF.) (JeKF. : Jτ2KF.)

Thanks to the restriction above, a “DPS function” has a
type ∀↑α. τ1

α↓−−→ τ2 where α is not free in τ1. Hence, it can
be translated into a function of type Jτ1KF. → ∃α. Jτ2KF. .
Notice that this case requires the typing derivation, as in
the other direction. The application of a DPS function is
translated accordingly. The translation of other constructs
is rather obvious.

A.5. Rules and definitions

The rest of the appendix gathers the rules and definitions
used in this paper.

WF-EMPTY
α ∈ dom Γ Γ ` wf

Γ ` αwf

WF-ARROW
Γ ` τ wf Γ ` τ ′ wf

Γ ` τ → τ ′wf

WF-RECORD
∀i, j, i 6= j ⇒ `i 6= `j
∀i ∈ {1..n} , Γ ` τi wf

Γ ` {(`i : τi)
i∈1..n}wf

WF-FORALL
Γ,∀α ` τ wf
Γ ` ∀α. τ wf

WF-EXISTS
Γ,∃α ` τ wf
Γ ` ∃α. τ wf

OK-EMPTY

ε ` wf

OK-VAR
Γ ` wf Γ ` τ wf x /∈ dom Γ

Γ, x : τ ` wf

OK-FORALL
Γ ` wf α /∈ dom Γ

Γ,∀α ` wf

OK-EXISTS
Γ ` wf α /∈ dom Γ

Γ,∃α ` wf

OK-EQ

Γ ` wf Γ ` τ wf α /∈ dom Γ
Γ, α = τ ` wf

Figure 13. Wellformed types and environments.

VAR
Γ ` wf Γ pure
Γ ` x : Γ (x)

LAM
Γ, x : τ1 ` M : τ2 Γ pure

Γ ` λ(x :τ1)M : τ1 → τ2

APP
Γ1 ` M1 : τ2 → τ Γ2 ` M2 : τ2

Γ1 . Γ2 ` M1 M2 : τ

LET
Γ1 ` M1 : τ1 Γ2, x : τ1 ` M2 : τ2

Γ1 �q Γ2 ` let x = M1 in M2 : τ2

GEN
Γ,∀α ` M : τ Γ pure

Γ ` Λα.M : ∀α. τ

INST
Γ ` M : ∀α. τ ′ Γ ` τ wf

Γ ` M [τ] : τ ′ [α← τ]

RECORD-EMPTY
Γ ` wf Γ pure

Γ ` {} : {}

RECORD-VAL1
∀i ∈ {1, . . . , n} , ` 6= `′i

Γ ` M : τ Γ′ ` {r} : {(`′i : τ ′i)
i∈1..n}

Γ . Γ′ ` {` = M ; r} : {` : τ ; (`′i : τ ′i)
i∈1..n}

RECORD-VAL2
∀i ∈ {1, . . . , n} , ` 6= `′i Γ ` M : τ0

Γ ` τ0 ≈ τ Γ′ ` {r} : {(`′i : τ ′i)
i∈1..n}

Γ . Γ′ ` {` : τ = M ; r} : {` : τ ; (`′i : τ ′i)
i∈1..n}

PROJ

Γ ` M : {(`i : τi)i∈1..n} 1 ≤ k ≤ n
Γ ` M.`k : τk

EXISTS
Γ, α = τ ′ ` M : τ

Γ ` ∃(α = τ ′)M : ∃α. τ

COERCE
Γ ` M : τ ′ Γ ` τ ′ ≈ τ

Γ ` (M : τ) : τ

OPEN
Γ ` M : ∃α. τ α /∈ dom Γ

Γ,∃α ` openα M : τ

NU
Γ,∃α ` M : τ α /∈ ftv(τ)

Γ ` να.M : τ

SHIFT
Γ′ ` M : τ Γ Γ′

Γ ` M : τ

Figure 14. All typing rules of F..

let x = v in M M [x← v] (REDEX-LET)
(λ(x :τ)M) v let x = v in M (REDEX-APP)

(Λα.M) [τ] M [α← τ] (REDEX-INST)
{rv}.` {rv} ↑ ` (REDEX-PROJ)

(Σβ(α = τ)w1) w2 Σβ(α = τ) (w1 (w2 [β ← α])) if α /∈ ftv(w2) (SIGMA-APP-LEFT)
v (Σβ(α = τ)w) Σβ(α = τ) ((v [β ← α]) w) if α /∈ ftv(v) (SIGMA-APP-RIGHT)

(Σβ(α = τ)w) [τ ′] Σβ(α = τ) (w [τ ′ [β ← α]]) if α /∈ ftv(τ ′) (SIGMA-INST)
(Σβ(α = τ)w).` Σβ(α = τ) (w.`) (SIGMA-PROJ)

{rv ; ` : τ ′? = Σβ(α = τ)w ; r}
Σβ(α = τ) {rv [β ← α] ; ` : τ ′? [β ← α] = w ; r [β ← α]}

if α /∈ ftv(rv) ∪ ftv(r)
(SIGMA-RECORD)

openγ (Σβ(α = τ)w) Σβ(α = τ) (openγ w) if γ /∈ {α, β} (SIGMA-OPEN)
∃(γ = τ ′) (Σβ(α = τ)w) Σβ(α = τ [γ ← τ ′]) (∃(γ = τ ′ [β ← α])w) if γ /∈ {α, β} (SIGMA-EXISTS)

νγ.Σβ(α = τ)w Σβ(α = τ) (νγ. w) if γ /∈ {α, β} ∪ ftv(τ) (SIGMA-NU)
(Σβ(α = τ)w : τ ′) Σβ(α = τ) (w : τ ′ [β ← α]) if α /∈ ftv(τ ′) (SIGMA-COERCE)

(λ(x :τ)M : τ1 → τ2) v ((λ(x :τ)M) (v : τ) : τ2) (COERCE-APP)
(u : ∀α. τ ′) [τ] (u [τ] : τ ′ [α← τ]) (COERCE-INST)

(u : {(`i : τi)i∈1..n}).`k (u.`k : τk) if 1 ≤ k ≤ n (COERCE-PROJ)
openα (u : ∃α. τ) (openα u : τ) (COERCE-OPEN)

((u : τ) : τ ′) (u : τ ′) (COERCE-COERCE)
νβ.Σβ(α = τ) v νβ.Σβ(α = τ) v [α← τ] if α ∈ ftv(v) (NU-SIGMA1)

νβ.Σβ(α = τ) v v if α /∈ ftv(v) (NU-SIGMA2)

These rules are closed under evaluation context and transitivity.

Figure 15. Reduction rules.

Qα ::= openα M | Qα M | M Qα | Qα [τ] | pack 〈τ,Qα〉 as ∃β. τ ′ | unpack Qα as β, x in M
| unpack M as β, x in Qα if β 6= α | νβ.Qα if β 6= α | openβ Qα if β 6= α | Qα.`
| {r ; ` = Qα ; r′} | let x = M in Qα | let x = Qα in M

να. openα M _ unpack M as α, x in x
να.Qα M _ (να.Qα) M
να.M Qα _ M (να.Qα)
να.Qα [τ] _ να. let x = Qα in x [τ]

να. pack 〈τ,Qα〉 as ∃β. τ ′ _ να. let x = Qα in pack 〈τ, x〉 as ∃β. τ ′
να. unpack Qα as β, y in M _ να. let x = Qα in unpack x as β, y in M
να. unpack M as β, x in Qα _ unpack M as β, x in να.Qα

να. νβ.Qα _ νβ. να.Qα if β 6= α
να. openβ Qα _ openβ να.Qα if β 6= α

να. (Qα.`) _ (να.Qα) .`
να. {r ; ` = Qα ; r′} _ {r ; ` = να.Qα ; r′}
να. let x = M in Qα _ let x = M in να.Qα

να. let x = openα M in M ′ _ unpack M as α, x in M ′

να. let x = Qα M in M ′ _ να. let y = Qα in let x = y M in M ′ if y /∈ fv(M,M ′)
να. let x = M Qα in M ′ _ να. let y = Qα in let x = M y in M ′ if y /∈ fv(M,M ′)
να. let x = Qα [τ] in M _ να. let y = Qα in let x = y [τ] in M if y /∈ fv(M)

να. let x =
pack 〈τ,Qα〉 as ∃β. τ ′ in M

_ να. let y = Qα in
let x = pack 〈τ, y〉 as ∃β. τ ′ in M

if y /∈ fv(M)

να. let x = unpack Qα as β, y in M
in M ′

_ να. let z = Qα in
let x = unpack z as β, y in M
in M ′

if z /∈ fv(M,M ′)

να. let x = unpack M as β, y in Qα

in M ′
_ unpack M as β, y in

να. let x = Qα in M ′
if x 6= y

να. let x = νβ.Qα in M _ νβ. να. let x = Qα in M
να. let x = openβ Qα in M _ να. let y = Qα in let x = openβ y in M if y /∈ fv(M,M ′)

να. let x = Qα.` in M _ να. let y = Qα in let x = y.` in M if y /∈ fv(M)
να. let x = {r ; ` = Qα ; r′} in

M
_ να. let y = Qα in

let x = {r ; ` = y ; r′} in M
if z1, z2 /∈ fv(Qα, r,M)

να. let x = let y = M in Qα in M ′ _ let x = M in
να. let z = Qα in let x = let y = x in z in M ′

if z /∈ fv(M ′)

να. let x = let y = Qα in M in M ′ _ να. let x = Qα in let x = let y = x in M in M ′

Figure 16. From F. to F, second pass: recovering unpack’s.

bxc , x bλ(x :τ)Mc , λ(x) bMc bM M ′c , bMc bM ′c blet x = M in M ′c , let x = bMc in bM ′c

bΛα.Mc , λ(x) bMc if x /∈ fv(M) bM [τ]c , bMc {}

b{(`i : τ ?
i as xi = Mi)i∈1..n}c , {(`i as xi = bMic)i∈1..n} bM.`c , bMc.` b∃(α = τ)Mc , bMc

b(M : τ)c , bMc bopenα Mc , bMc bνα.Mc , bMc
Figure 17. Type-erasure.

WF-VAR
Γ, α ∈ σ,Γ′ ` wf Γ ` σ :: κ

Γ, α ∈ σ,Γ′ ` α :: κ

WF-ARROW
Γ ` τ1 :: κ1 Γ ` τ2 :: κ2

Γ ` τ1 → τ2 :: κ1 → κ2

WF-EMPTY
Γ ` wf

Γ ` { } :: ?

WF-RECORD
1 ≤ n ∀i ∈ {1..n} , Γ ` τi :: κi

∀i, j, i 6= j ⇒ `i 6= `j

Γ ` {(`i : τi)
i∈1..n} :: {(`i : κi)

i∈1..n}

WF-PROJ-LABEL

Γ ` τ :: {(`i : κi)
i∈1..n} 1 ≤ k ≤ n

Γ ` τ.`k :: κk

WF-PROJ-ARROW
Γ ` τ :: κ1 → κ2

Γ ` τ.i :: κi

WF-FORALL
Γ ` σ :: κ Γ, α ∈ σ ` τ :: κ′

Γ ` ∀(α ∈ σ) τ :: ?

WF-EXISTS
Γ ` σ :: κ Γ, α ∈ σ ` τ :: κ′

Γ ` ∃ (α ∈ σ) τ :: ?

Figure 18. Wellformed types.

WF-TOP
Γ ` wf

Γ ` > :: ?

WF-SINGLE
Γ ` τ :: κ
Γ ` τ :: κ

WF-SHAPE
Γ ` σ :: κ Γ, α ∈ σ ` σ′ :: κ′

Γ ` [α ∈ σ] σ′ :: κ′

Figure 19. Wellformed shapes.

WF-EMPTY

ε ` wf

WF-QUANTIFIER

Γ ` wf
Γ ` σ :: κ α /∈ dom Γ

Γ, α ∈ σ ` wf

WF-EQ

Γ ` wf
Γ ` σ :: κ Γ ` τ :: κ′

Γ ` τ ∈ σ α /∈ dom Γ
Γ, α ∈ σ = τ ` wf

WF-VAR
Γ ` wf

Γ ` τ :: κ x /∈ dom Γ
Γ, x : τ ` wf

Figure 20. Wellformed environments.

∈-TOP

Γ ` τ :: κ
Γ ` τ ∈ >

∈-SINGLE

Γ ` τ :: κ
Γ ` τ ∈ τ

∈-SHAPE

Γ ` τ ∈ σ Γ, α ∈ σ ` τ ′ ∈ σ′

Γ ` τ ′ [α← τ] ∈ [α ∈ σ] σ′

∈-EQUIV

Γ ` τ ′ ∈ σ Γ ` τ ≡ τ ′

Γ ` τ ∈ σ

∈-FOLD

α1 /∈ ftv(σ2) α2 /∈ ftv(Γ2, τ, σ)
Γ1, α2 ∈ σ2, α1 ∈ σ1,Γ2 ` τ ∈ σ

Γ1, α1 ∈ [α2 ∈ σ2] σ1,Γ2 ` τ ∈ σ

Figure 21. Shapes membership.

EQUI-VAR-SINGLE

Γ ` wf α ∈ τ ∈ Γ
Γ ` α ≡ τ

EQUI-RECORD

∀i ∈ {1..n} , Γ ` τi ≡ τ ′i
Γ ` {(`i : τi)}i∈1..n ≡ {(`i : τ ′i)}i∈1..n

EQUI-PROJ-LABEL

Γ ` τ ≡ {(`i : τi)
i∈1..n}

Γ ` τ.k ≡ τk

EQUI-PROJ-ARROW

Γ ` τ ≡ τ1 → τ2

Γ ` τ.i ≡ τi

EQUI-FORALL

Γ ` σ ≡ σ′ Γ, α :: κ ∈ σ ` τ ≡ τ ′

Γ ` ∀(α ∈ σ) τ ≡ ∀(α ∈ σ′) τ ′

EQUI-EXISTS

Γ ` σ ≡ σ′ Γ, α :: κ ∈ σ ` τ ≡ τ ′

Γ ` ∃ (α ∈ σ) τ ≡ ∃ (α ∈ σ′) τ ′

EQUI-FOLD

α1 /∈ ftv(σ2) α2 /∈ ftv(Γ2, τ, τ
′)

Γ1, α2 ∈ σ2, α1 ∈ σ1,Γ2 ` τ ≡ τ ′

Γ1, α1 ∈ [α2 ∈ σ2] σ1,Γ2 ` τ ≡ τ ′

EQUI-REFL

Γ ` τ :: κ
Γ ` τ ≡ τ

EQUI-SYM

Γ ` τ2 ≡ τ1
Γ ` τ1 ≡ τ2

EQUI-TRANS

Γ ` τ1 ≡ τ2 Γ ` τ2 ≡ τ3
Γ ` τ1 ≡ τ3

Figure 22. Equivalent types.

Γ ` σ1 v σ2 Γ ` σ2 v σ1

Γ ` σ1 ≡ σ2

Γ, α ∈ σ ` α ∈ σ′

Γ ` σ v σ′

Figure 23. Equivalent shapes.

VAR
Γ ` wf Γ pure
Γ ` x : Γ (x)

LAM
Γ, x : τ1 ` M : τ2 Γ pure

Γ ` λ(x :τ1)M : τ1 → τ2

APP
Γ1 ` M1 : τ2 → τ Γ2 ` M2 : τ2

Γ1 . Γ2 ` M1 M2 : τ

LET
Γ1 ` M1 : τ1 Γ2, x : τ1 ` M2 : τ2

Γ1 �q Γ2 ` let x = M1 in M2 : τ2

GEN
Γ,∀ (α ∈ σ) ` M : τ Γ pure
Γ ` Λ(α ∈ σ)M : ∀(α ∈ σ) τ

INST

Γ ` M : ∀(α ∈ σ) τ ′ Γ ` τ :: κ Γ ` τ ∈ σ

Γ ` M [τ] : τ ′ [α← τ]

RECORD-EMPTY
Γ ` wf Γ pure

Γ ` {} : {}

RECORD-VAL1
∀i ∈ {1, . . . , n} , ` 6= `′i

Γ ` M : τ Γ′ ` {r} : {(`′i : τ ′i)
i∈1..n}

Γ . Γ′ ` {` = M ; r} : {` : τ ; (`′i : τ ′i)
i∈1..n}

RECORD-VAL2
∀i ∈ {1, . . . , n} , ` 6= `′i Γ ` M : τ0

Γ ` τ0 ≈ τ Γ′ ` {r} : {(`′i : τ ′i)
i∈1..n}

Γ . Γ′ ` {` : τ = M ; r} : {` : τ ; (`′i : τ ′i)
i∈1..n}

PROJ

Γ ` M : {(`i : τi)i∈1..n} 1 ≤ k ≤ n
Γ ` M.`k : τk

EXISTS
Γ, α ∈ σ = τ ′ ` M : τ

Γ ` ∃(α ∈ σ = τ ′)M : ∃ (α ∈ σ) τ

COERCE
Γ ` M : τ ′ Γ ` τ ′ ≈ τ

Γ ` (M : τ) : τ

OPEN
Γ ` M : ∃ (α ∈ σ) τ α /∈ dom Γ

Γ,∃ (α ∈ σ) ` openα M : τ

NU
Γ,∃ (α ∈ σ) ` M : τ α /∈ ftv(τ)

Γ ` ν (α ∈ σ)M : τ

SHIFT
Γ′ ` M : τ Γ Γ′

Γ ` M : τ

EQUIV

Γ ` M : τ Γ ` τ ≡ τ ′

Γ ` M : τ ′

Figure 24. F. with paths: all typing rules. Differences with F. appear in a gray shade.

	Previous approaches
	Paths-based module systems
	Abstract types as existential types

	Open existential types
	Atomic constructs for existential types
	Syntax of Fzip
	Typing rules
	Semantics

	Type soundness
	Translations from and to System F
	Paths and shapes
	Definitions
	Applications

	Related work
	Appendix
	Additional example
	Translations from and to system F
	From F to Fzip
	From Fzip to F

	Paths and shapes
	Examples with functors
	Examples with existentials

	Comparison between Fzip and Rtg
	Rules and definitions

