Modeling Abstract Types in Modules
with Open Existential Types

Benoit Montagu

Didier Rémy

INRIA
{Benoit.Montagu, Didier.Remy}Qinria.fr

Abstract

We proposeFY, a calculusof openexistential types that is an ex-
tension of Systerf obtained by decomposing the introduction and
elimination of existential types into more atomic constsu©pen
existential types modehodulartype abstraction as done in mod-
ule systems. The static semanticsFdfadapts standard techniques
to deal with linearity of typing contexts, its dynamic sertiesis a
small-step reduction semantics that performs extrusidypd ab-
straction as needed during reduction, and the two are celgteub-
ject reduction and progress lemmas. Applying the Curry-giaiv
isomorphismFY can be also read back as a logic with the same ex-
pressive power as second-order logic but with more modutgrsw
of assembling partial proofs. We also extend the core cadctd
handle the double vision problem as well as type-level anu-te
level recursion. The resulting language turns out to be a fioew
malization of (a minor variant of) Dreyer’s internal langafor
recursive and mixin modules.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guage¥ Formal Definitions and Theory—Semantics; D.33¢-
gramming Languagés Language Constructs and Features —
Abstract data types, Modules; F.3.Bogics and Meanings of
Programg: Studies of Program Constructs—Type structure; F.4.1
[Mathematical Logic and Formal LanguageMathematical Logic
—Lambda calculus and related systems.

General Terms Design, Languages, Theory

Keywords Lambda-Calculus, Modules, Type systems, Abstract
types, Generativity, Existential Types, Linear type syseMod-
ularity.

1. Introduction

Modularity has always been the key to robust, manageablk, an
maintainable large software. It is even more so as the size an
complexity of software keeps increasing. Modular prograngm
requires good discipline from programmers but also googsup
from programming languages. Unsurprisingly, module systand
type systems for modules have been an area of intensivacasaa
the programming language community for more than two dexade
The module system fa¥iL, first proposed by MacQueen)
in the mid 80’s and independently improved and simplifiedhia t

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’09, January 18-24, 2009, Savannah, Georgia, USA.
Copyright(© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

mid 90’s by Harper and Lillibridgef) and by Leroy 10), is still the
one in use in all dialects d¥lL, with relatively minor differences.
Abstract types, higher-order functors, and shadrgpsteriori are
key ingredients of its expressiveness and success.

However, while the successful history of thi. module system
shows a relative ease of use, at least for the most frequeesca
its metatheoretical study has probably been one of the niffist d
cult parts of theML language. Even with today’s state-of-the-art
technology, it is still usually considered involved. Theakepancy
between the intuitive, perhaps misleading intelligilgitif modules
and their intricate formal description is inconvenientlyrising.

In earlier works, abstract types were usually identifiedhwit
existential types. However, it has been realized in the roid $at
existential types do not adequately model type abstraetsonsed
in modules. Since then, an abstract type has been considsrad
type whose definition has been forgotten. Consequentlybstnact
type cannot be referred to pwit is defined; instead, it is referred
to by whereit is defined,i.e. as a projectiorpath from a value
variable bound to the module where itis defined. Two decaates |
pathsare still at the foundation of th®L-based module systems
inuse (L1; 13; 19), and of more recent designs such as Schf (

Unfortunately, this formalization is still the source of ajor
difficulty with module systems: because types appear as comp
nents of module expressions, abstract types, which aremkssi
by paths, syntactically depend on values, which pulls ihelan-
guage all the complexity of dependent types. In fact, an iapb
property of a module system called thlease distinctior(7), which
states that types should ndynamicallydepend on values and so
ensures static typechecking and permits separate coiopilap-
pears to be in contradiction with the use of dependent types.

Hence, a large amount of work has been dedicated to showing
that dependencies used in module systems are in fact puatiy, s
and that types used to formalize them are moly dependent on
values. This restriction is now well understood and has been ele-
gantly formalized using singleton kindg;(22) to capture the ab-
sence of dynamic dependencies. Among other benefits, tieiofi
work treats type abstraction as subtyping, is highly exgves and
rather close tdViL. Moreover, its metatheory has been formalized
in Twelf (9), and thus mechanically verified. The robustness of the
approach has also been demonstrated by adapting the frakiewo
model type abstraction in a distributed settidg)(

However, despite these many positive results, there resgin
eral drawbacks with this approach—or with tML module sys-
tem. At the source of all difficulties, the tension between pies-
ence of type components in values and the phase distincion i
still present: in fact much of the formalism sophisticatisnfor
ensuring that types do not actually depend on values. Orte tec

1There seems to be no name agreement yet on how to call thisiveéted
form of dependent types.

nical difficulty, known as thevoidance problen{8), forces much
more type annotations in source expressions than what veloda-
wise be necessary. As a consequence, the internal caldutusds
ules, which has a clean and standard mathematical forrtializia
mostly used as an internal language for a surface languattpeawi
rather sophisticated elaboration mechanism, which thezedoes
not inherit the properties of the internal calculus. Whilétg gen-
eral and expressive, this modeling of modules is perhapghdur
from the programmers intuitions than other aspects of thguage.
In addition, this approach does not seem to easily accommadoa
recursive or mixin modules.

These arguments are as many invitations to pursue the invest
gation for finding alternative explanations of modules. Effoitly, it
should be conceptually economical and should more closéligat
the intuitive simplicity of the underlying mechanisms: @oal is
not, at least in a first step, to increase expressiveness.

Interestingly, in the purpose of explaining type abst@t@and
generativity for recursive modules and solving ttheuble vision
problem Dreyer introduced an internal language, calletcRas a
target of the elaboration for a surface language of recersigdules
(2; 3). Remarkably, the elaboration process is rather simple and
compositional, while the internal language provides rezittype
components nor dependent types. Hence, although this dies n
seem to have been Dreyer’s goal, it appears as a corollarthise
two ingredients do not seem to be necessary to model modules i
an accurate and easy manner. This is a great motivation su@ur
investigation in this direction.

A closer look at RG shows an expressive but intriguing set
of primitives that allows to create undefined type referenaed
later assign a definition to themnéw « in M” introduces a type
reference named in the scope ofM/ that should be set at most
once, with the type reference updatet' o := 7 in M : 7"
Then,M and onlyM will see the concrete definitionfor o while
other parts of the program will see abstractly. In this way, R
can handle two views for a given type variable: an abstraet on
without definition, and a concrete one, equipped with a didimi

RTG is obviously quite expressive, since it can be used to model
recursive modules. However, its static semantics is ssirgiand
somewhatad hoc its typechecking rules usassignmentsn a
global store to keep track of type definitions, which makessys-
tem non compositional and unnecessarily asymmetrical dend
ates from the traditional presentation of typing rules. Tgeamic
semantics of RG is also given through an abstract machine that
carries a globatype storeto record type assignments in an im-
perative manner, unnecessarily enforces a determinigiciation
order, and confuses the uses of assignment for buildingsi&eu
values and for modeling type abstraction. Thus, althoughipves
of RTG seento be adequately chosen, the presentation of its static
and dynamic semantics raises questions on the fundamesatal r
sons of its suitability and therefore turng ®away from the status
and potential applications that it really deserves: a tinigresting
calculus that could be used not only as an internal languagge,
hopefully also as the core of a surface language in which hesdu
could directly be programmed.

Our goal in this work is to give an alternate presentation of a
minor variant of R'G, that attempts to improve its foundations and
metatheoretical properties, and that hopefully gives &fjcation
for its set of primitives. Thus, like Rz, our system focuses on type
abstraction only: the study of other features, such as lreest
signatures or sharing constraints, is deferred to futurkwo

We first present corY, acalculusof openexistential types (8
without recursion, that is obtained by decomposing the lustra-
duction and elimination constructs for existential typetimore
atomic ones. We observe thaf already permitsnodulartype ab-
straction, without any recursion mechanism.

We use known techniques to deal with linearity of typing con-
texts (8) instead of RG's static effect calculus, thus keeping a
symmetric and compositional presentatior3.@. We give F¥ a
traditional small-step reduction semantic8.@ that expresses the
inherent notion of sharing behind generativity through éxéru-
sionof some binder. This permits to finely trace abstractionmyri
reduction. The static and dynamic semantics ¥fare related by
subject reduction and progress lemma3s. (8

Thanks to the Curry-Howard isomorphisf, can be read back
as a logic with the same expressive power as second-orderiog
with more modular ways of assembling partial proof8.@, and
in which the essence &fiL modules can already be modeled.

We build a series of conservative extension$) @n top of this
core to increase its expressiveness with, namely, morealipen-
recursive type definitions @81), a solution to the double vision
problem (8!.2), mutually recursive type equations4(8), and term-
level recursion (8.4). A crucial point is that these extensions are
independent from each other.

We end with a discussion of related worksj&nd concluding
remarks.

2. Open existential types
2.1 Abstract types as existential types

Mitchell and Plotkin (4) showed that abstract types could be
understood as existential types. However, it has also betoed
that existential types do natccuratelymodel type abstraction in
modules, because they lack some modular properties.

In SystemF, existential types are introduced by theck con-
struct: provided the term\/ has some type’[a < 7], the expres-
sionpack (7, M) as Ja. 7’ hides the type information, called the
witnessof the existential, from the type df/ so that the resulting
type isJa. 7'.

Pack
T'EM: 7'a«7]

I' pack (1, M) as 3a. 7" : Ja. T’

Existential types are eliminated by th@pack construct: pro-
vided M has typeda. T, the expressionnpack M as (o, z) in M’
binds the type variable: to the witness of the existential and the
value variabler to theunpackederm M in the body of M’. The
resulting type is the one df/’, in which o must not appear free.
The reason for this restriction is that otherwisewhich is bound
in M’, would escape its scope.

UNPACK
'tM: Ja.1 Taz:7FM 7 a ¢ ftv(r')
' unpack M as {a,x) in M’ : 7'
From now on, we assume that Systdmis equipped with

records and with the above primitive constructs, althoulgdyt
could also be provided as a well-known syntactic su@8y.(

2.2 Atomic constructs for existential types

In this section we split off the constructs for existentigbes.
Indeed, bottpack andunpack have modularity problems.

The crucial issue withunpack is non-locality it imposes the
same scope to the type varialleand the value variable, which
is emphasized by the non-escaping conditiormors a result, all
uses of the unpacked term must be anticipated. In other wiirels
only way to make the variabla available in the whole program
is to put unpack early enough in the program, which is a non
local, hence non modular, program transformation. Theords
that unpack is doing too many things at the same time: opening
the existential type, binding the opened value to a varjadnhel
restricting the scope of the fresh type variable.

The problem withpack is mostlyverbosity it requires to com-
pletely specify the resulting type, thus duplicating typfrmation
in the parts that have not been abstracted away. This canog-an
ing when hiding only a small part of a term, whereas this tea®d
very long type. This duplication happens, for instance, mhieing
the type of a single field of a large record, or maybe worse,nwhe
hiding some type information deeply inside a record. It issel
by the lack of separation between the introduction of anterial
quantifier, and the description of which parts of the type nings
abstracted away under that abstract name.

In both cases, the lack ahodularityis related to the lack of
atomicityof the constructs. Therefore, we propose to split both of
them into more atomic pieces, recovering modularity white-p
serving expressiveness of existential types. To achigselétcom-
position, we first need to enrich typing environments witlwne
items.

2.2.1 Richer contexts for typing judgments

The contexts of typing judgments in Systdmare sequences of
items, where an item is either a bindimg from a value variable
to a type, which is introduced while typing functions, or avensal
type variableVa, which is introduced while typing polymorphic
expressions. We augment typing environments with two nemst
existential type variableSa to keep track of the scope of (open)
abstract types, and type definitioriée = 7) to concisely mediate
between the abstract and concrete views of types. Thatps)gy
environments are as follows:

r == ¢ | I,b (Environments)
b == z:7 | Va | V(a=71) | Ja (Bindings)

Wellformedness of typing environments will ensure that @aoi-v
able is ever bound twice. We shall see below that existevid

ables have to be treated linearly. It is sensible to congluamn as
Skolem’s constants and to understand type definition bgslas
explicit type substitutions. For the moment, we considesiren-

ments as sequences modulo reordering of independent ildras.
structure will be enriched again im 8L

We define the domain of a binding as follows:

domz:7)2 x
domVa) = dom¥(a = 7)) = dom(3a) £ «

The domain of an environment is, as usual, the union of the do-

mains of the bindings it contains. In addition, we may useftie
lowing notations for specific domains:

doni T & {a|V(a=7)€T}
dom’T & {a|Va €T} dont'T 2 {a|3acT}

2.2.2 Splitting unpack

We replaceunpack with two orthogonal construct@peningand
restriction, that implemenscopeless unpackingf existential val-
ues andscope restrictiorof abstract types, respectively.

The openingopen () M expectsM to have an existential
type Jda. 7 andopensit under the namex, which istrackedin the
typing environment by the existential itefw. The rule can also
be read bottom-up, treating the itetw as alinear resource that is
consumed by the opening.

OPEN
I'EM: Ja.1

I',3akopen{a) M : T

Therestrictionva. M implements the non-escaping condition
of Rule UNPACK. First, it requiresa not to appear free in the
type of M, thus enforcing a limited scope. Second, it provides
an existential resourc8« in the environment, that ought to be

consumed by somepen («) M’ expression occurring within/ .

Nu
I3akM: 71 a ¢ ftv(r)

'Fva. M : t

As with RTG, one may recovetinpack as syntactic sugar:
unpack M as {a,z) in M’ £ va. (let z = open () M in M")

This makes explicit the simultaneous operations perforbyegn-
pack, which turns out not to be atomic at all: first, it defines a gcop
for the namex of the witness of the existential type &f; then, it
opensM under the namey; finally, it binds the resulting value to
z in the remaining expressiah/’.

The main flaw ofunpack, i.e. the scope restriction for the
abstract name, is essentially captured byrésgriction construct.
However, since the scope restriction has been separatedthe
unpack, it needs not (always) be used anymore. The abstracttype
may now be introduced at the outermost level or given by thty
context and freely made available to the whole program.

2.2.3 Splitting pack

We replacepack with three orthogonal constructsxistential intro-
duction which creates an existential typapen witness definition
which introduces a type witness and gives it a hname,cargcion
which determines which parts of types are to be hidden. Wegnte
this separation in two stages: first, we separate the (cjatefthi-
tion of a witness from the information of which parts are adsted
away; then, we split the definition of a witness again into piexes
that introduce an existential quantifier and the witnegsassely.

The closed witness definitioB(a. = 7) M introduces an exis-
tential type variablex with witnessr (more precisely, the definition
V(o = 7)) in the environment while typind/, and bindsx exis-
tentially in the resulting type.

FVia=7)F M : 7'
'-3(a=7)M : Ja.7’

Thecoercion(M : 7) replaces the type o/ with somecom-
patible type 7. The compatibility relation under contekt, writ-
ten=, is the smallest congruence that contains all type-dedimsti
occurring inI". A coercion is typically employed to specify where
some abstract types should be used instead of their withestee
typing of M.

COERCE
'M:7 7 =71
r(M:7):71

The expressiveness phck is retained, since it can be provided as
the following syntactic sugar:

pack (1, M) as 3.7’ & Ia=7)(M:7") if a¢ ftv(M)
However, the description of what is being hidden can now be
separated from the action of hiding, which avoids repeasioge
type information. Hence, it makes the creation of existnalues,
shorter, thus easier, and more maintainable. Indeed,atvalfor
putting the information of hiding parts of a type deeply desia
term, like in the following record, in which some leaves haeen
abstracted away.

I(a = int)
etz ={lr=(1:a); b2 =2}in
lety={l1=x; bz =x}in
{li=y; o=y}

The corresponding Systefterm requires to repeat the type of the
whole term.

let z =
Ietm:{&:l; (2:2}"\
lety={¢1 =x; o =2z}in
{th=y; t2=y}in
pack (int, z) as
Fa. {ly s {lr: {lr ;5 Lo zint}; Ly {4y : int}};
Lo i {lr:{l1:a;ly:int}; bo: {l1: int}}}

Moreover, whereas the information of hiding was locatedsahgle
place in theF Y term, it is duplicated in th& term, as if each leaf of
the record had been abstracted independently.

To complete the separation, we now sglftx = 7) M further.
The existential introductiorda. M introduces an existential type
variable in the environment while typind/, and makesy existen-
tially bound in the resulting type. This is the exact coupéet of
theopen construct.

a; by
a; by

EXISTS
I'dakM : 7

't 3da.M : Ja. 7

The open witness definitiok (5) (a« = 7) M introduces the
witnesst for the type variablen: similarly to what is done for
I(a = 1) M, the equatio¥(«. =) is added to the context while
typing M. In addition, an external nameis provided, in the same
way as for theopen construct. The internal nameand its equation
are only reachable internally, but the witness is denotedrpally
by the abstract type variablg The resulting type does not mention
the internal name, since it has been substituted for theredtene.
In other words, the witness definition define$rontier between a
concrete internal world and an abstract external ofie keep the
system sound, we ensure that a unique witness is hiddencbehin
external name, hence the use of an existential resourcetypime
rule will be refined later to handle the double vision problem

SIGMA
I'Va=1)FM : 71

[BEZ(B) (a=17)M : 7'a — B

Again, the split construci(« = 7) M can be recovered by the
following syntactic sugar:

Sa=7)M £ 3.2 (8) (a=7)M if B¢ ftv(r, M)

It is worth noting that th@pen witness definitiocorresponds to
type abstraction as it is currently done in module languagégpe
definition is kept hidden for the outer environment and a tyame
is generated so that we can refer to it without knowing itsccete
definition. Usual existential types are recovered by clpsite open
witness definitionij.e. by hiding the external name for the witness.

As an example, the following piece of program, written in an
ML-like syntax, defines an abstract module of integers:

module X :sig typet valz:t vals:t—t end=
struct type t=int valz=0 val s=X\(z:int)xz + 1 end

It provides the zero constamtand the successor functian The
type X.tis abstract and available in the whole program. Its coun-
terpart inFY is defined hereafter:

= (6) (a = int)
{z=0; s= A=

The two pieces of code look similar, except for the fact thatgig-
nature ascription has been replaced with an open witnegstasfi
The counterpart of the signature is the type in the coerdiwmte
that no type component, hence no name for the module, is deede
the counterpart oX .t is the abstract typg, which is present in the

iz +1}:{z:a; s:a— a})

|F7V(a:7") = T[a<—7"]|

(HWMHﬂ)()Q&ﬂ

V(a=71)F 1
| |

Z(B) (a=7)[]

1,38 - rla— 4|
open (3) [/ / N;ﬁﬁ g ftv(r[a +— B])

[T+ 38.7[a — 4|

Figure 1. Open existential constructs

typing context. It is available in the whole program and does
refer to a value variable.

Notice that it is also possible to rewrite this program in two
parts, by first creating an existential term and then opeitingder
the names.

let x =
I« = int)
{z=0; s= A=
open (3)
It has essentially the same effect: in fact the latter willree to the

former. It shows however that the mechanisms for type attsbra
and opening of existentials are the same.

iz +1}:{Z:a; Sta— a})in

2.2.4 Generative functors

Following Russo 21), generative functors are functions that have
a type of the formva. (1 — 38.72). In ML, generativity isim-
plicitly released when the functor is applied.fi¥, however, the
result of the function must bexplicitly openedbecause generativ-
ity and evaluation are two separate notions. To get the samaétr
with another fresh type, it suffices to open it again undettlzro
name.

2.2.5 A summary of the constructs for open existential types

The different constructs introduced for open existentyales are
gathered on the diagram of Figwhich describes their impact on
both the typing environment and the resulting type. To iasee
readability, terms are not printed on the judgments.

The topmost judgment corresponds to a concrete program (of
type 7[a < 7']) with an equatior/(« = 7') in its environment.
With the use of coercions one can mediate to a typehere the
equation has been folded and then go back to the concreteers
Then, using &, we can make the witness abstract by removing the
definition from the typing environment and using the extenzane
B instead. In this process, the varialglés marked as existential and
the internal name is replaced with the external one. If therexal
name does not occur free in the resulting type, we can rentave t
existential item from the environment, without changing tiipe,
to get the bottom right judgment. If this is not the case, wedase
the type by transferring the existential quantifier to thgetybottom
left judgment). We can then go back by re-opening the exiistien

2.2.6 Linearity to control openings and open witness
definitions

As openings and open witness definitions use abstract naiwess g
by the environment, one must be careful to avoid “abstractio

bYb=0ifb#A3da JaYVa=3a VaYIa = Ja

Figure 2. Zipping of bindings (preliminary definition).

capture”, as in the following (ill-typed) example.

let f=%(B) (a=int)(A(z:int)z+1:a— a)in
let x = X (8) (o = bool) (true: o) in f x

Here, f and z result from two different openings under the same
name 5. Hence, f and = are assigned type§ — [and 3,
respectively, using theameabstract namg. However, each branch
uses a different witness fab (int and bool respectively). This
yields to the unsound applicatighz, which evaluates to + true

To prevent abstraction capture, it suffices teaery names
be used in exactly one opening or open witness definitionrunde
nameg. This may be achieved by treating the existential items of
the typing environment in Bnear way. As usual in the literature,
linearity can easily be enforced in typing rules byippingopera-
tion that describes how typing environments of the premisast
be combined to form the one of the conclusion. We give inZFig.
and in this paragraph a preliminary definition of zipping tmeey
the intuition. It will be completed later. Zipping is a biyanpera-
tion (- Y -) that proceeds by zipping individual bindings pointwise.
For all items but existential type variables, zipping regsithe two
facing items to be identical, as usual. The interesting asen
one of the two items is an existential variafle: the intuition is
that, in this case, the other item must be the universal birfao,
hence theipperimage. This ensures that an existential variable in
the conclusion can only be used up in one of the premisesir&jpp
can also be explained in terms of internal and external ehdie
side that makes use @fx will make an internal choice by giving
the witness. Therefore the other sidristconsider the choice of
the witness as external, which is why it is given the itém

Note that an equivalent presentation, using two contexis,ob
them being linear, is also feasible. However, the curreas@nta-
tion makes extensions easier to define.

2.3 The appearance of recursive types

The above idea of zipping is unfortunately too generous:akes
recursive types appear naturally without any control. &di¢he
decomposition ofunpack into opening and restriction opens up
the way to recursive types, because it allows to use an abstra
type variable before its witness has been given. Recurgpest
can appear through type abstraction, through openings or open
witness definitions, in two ways.

We callinternal recursionthe first way, which is highlighted by
the following example:

let x = 3(a = B — [B) M in open (B) =

The abstract type variable is used in a witness to definewhich
is then opened under the narfieBy reducing this expression we
getopen (8) (e = B — B) M, which leads us to the recursive
equations = 3 — [.

We call external recursiorthe second way, which is hereafter
exemplified:

{€=%(5) (a1 = B2 — [2) M1 ;
lo =% (Ba) (a2 =P1 — B1) M2 }

The above code is a pair whose components have been akbstracte
away and the witnesses are mutually dependent. If we reninave t
type abstractions we get the recursive equation system (G2 —
B2 andfBz = 1 — [i.

Notice that recursive types never arise when using Sy$tem
unpack. Consider the following piece of code, whefg and C>

T = a | =71 | {(i:7m)E") (Typed
| Ve.r | Fa.T
M = z | Mz:7)M | MM (Termg
| letz=MinM | Aa.M | MrT
| {=M)y ety | ML
| FJaM | TB)(a=7)M | (M:7)
| open{a) M | va.M
v w | (w:T) (Valueg
u =z | Mz:7)M | A M (Pre-value$
| {l=v)" "y | 3B.2(B) (a=7)v
w = v | Y@ (a=1)w (Resulty

Figure 3. Syntax: types, terms, values, and results.

denote contexts:
va. Callet x = Chfopen {a) Mi] in My)]

If we consider this program as ampack, then the context§’; and
C> are empty. Consequently, cannot occur free i, or Cs. By
splitting unpack, however, this restriction has been waived.

3. CoreFY

We now present the core of our system, which prevents thesappe
ance of recursive types in a simple manner. We present itastirs
and show that its expressive power corresponds exactlyetorie

of SystemF. The translation used for this purpose brings interest-
ing insight on the gain of modularity th& achieves.

3.1 A more restrictive zipping

The zipping we defined above is too liberal in the sense that th
introduction of abstract types does not follow the scopeeofnt
variables, but this can be enforced again. Hence, we defipecid
zZipping, writtenY', specialized for théet rule, that requires that, if
'Y T'z is defined and i appears iz, thenYa mustnotappear
in T'y, while, if 3o appears inl';, thenVa should also appears
in 'z, as before. Zipping for the other rulgsis symmetric and
requires that i appears on one side, theéa must not be present
on the other side. This restriction easily permits to reprzdthe
usage of type variables in Systdmwhile keeping the flexibility
of our constructs.

3.2 Syntax

The languagdY is based on the explicitly typed version of Sys-
temF with records and is extended with constructs 8f% Types
and terms are described in Fg.

As open existentials do not introduce new forms of typesesyp
of F¥ are type variables, arrow types, record types, univergagy
and existential types. The notatiqid; : 7;)'S'" stands for a
sequence of pairs, each composed of a label and a type. Type
wellformedness is defined as usual.

Terms ofFY are variables, functions (whose arguments are ex-
plicitly typed), applicationslet-bindings, type generalizations and
applications, introductions and projections of recorag] the five
constructs for open existentials described above: exiatdntro-
ductions, open witness definitions, coercions, openingsrestric-
tions. Record fields are paifs= M of a label namée and a term
M. The label name is used to access the field externally, a3 usua
with records.

For conciseness, we also use the following syntactic sugar i
technical developments fatosed witness definitions

FHa=1)M B.X(B) (a=7)M if 3¢ ftv(r, M)

A

We write ftv(7) (respectivelyftv(M)) to denote the set of free type
variables of a type (respectively a ternd/).

3.3 Typing rules

Typing rules for open existentials have already been ptegen
in §2.2. The remaining typing rules (Fig) are as in Systenk
with two small differences: first, as mentioned above, tgpinles
with several typing judgments as premises use zipping aoist#
equality to relate their typing environments. This is theeaf
Rules Appr, LET, and RECORD Second, typing rules must also
ensure that values can be substituted without breakingriitye
which is the case when the typing environment does not aontai
existential items.

Definition 1. Whendon? I" is empty, we say thaf is pure and
write T" pure O

This condition appears as an additional premise of typitesru
of expressions that are also values (namely, Rules, LAM, GEN,
and EmMPTY). Purity will be used and explained in more details
in 83.4.

Because Rul®©rEN makes the environment decrease (if it is
read bottom-up), the property of weakeningnist provable in its
whole generality: one can only weaken a judgment by a nagatin
item that does not depend on linear items. This is sufficientHe
proof of soundness. A primitive weakening rule will be adeddn
considering extensions of co.

3.4 Reduction semantics

The languageFY is equipped with a small-step call-by-value re-
duction semantics. We begin with important remarks abobstsu
tutability, then define and explain values, and finally dibgcthe
reduction steps.

Substitution and purity Some termgannotbe safely substituted,
since substitution may violate the linear treatment of apghand
open witness definitions. It turns out thptire terms, i.e. terms
that are typable in a pure environment, behave well with eesp
to substitution:

Lemma 1 (Substitution lemma) Assume that" - M : 7 and
I,z :7,T” - M’ : 7" hold, wherel" is pure andl’ Y I is well
defined. TheI' V' T'), T + M'[x «— M] : 7’ also holds.

Therefore, values are substitutable if we restrict themurgep
terms. But conversely, every irreducible termnist necessarilya
pure term.

Results and values Results are well-behaved irreducible terms.
Results include values. In Systdm(as in many other languages)
results actually coincide with values. However, this neethe the
case. IrFY, results also include terms such®$3) (a = 7) AM(z :

letz =% (B) (a=int)(1:) in{lr=2; 2= (A(y:B)y) =}
w () (a = int)
letz=(1:a)in{h=a;lb=0Ay:a)y =
~ S(B) (a=int){lr=(1:0); lz=(ANy:a)y) (1:a)}
~N(B) (a=in){ti=0:a); L=(1:a)}

Figure 4. Example of extrusion.

linearity? Our solution is to extrude thes just enougito expose
and perform the next reduction step.

For example, consider the reduction steps on4=ighe initial
expression is a let-binding of the forlet x = w in M wherew is
the result formx (3) (a = int) (1 : «). Hence, the next expected
reduction step is the substitution @ffor = in M. However, since
2 occurs twice inM, this would duplicate the opening appearing in
w, thus breaking the linear use 6f The solution is to firsextrude
the X binding outside of the let-binding, so that the expression
bound tox becomes the substitutable value fofin:). However,
by enlarging the scope of, we have putM in its scope, in
which the external namg occurs. Therefore, we replace it with
the internal one in the enlarged scope. Then, we may perferm |
reduction safely and further reduce the redex that has besrted.

More generally, the reduction semantics will be set so Emt
can always be extruded out of redex forms. Note that the a@par
of witness definitions from coercions.€. splitting pack) plays
here an essential role: if the two constructs were boundthege
coercions should be necessarily extruded too, which woelldard
to achieve in a local manner. Here, only the witness defimstiare
extruded, while the coercions simply stay where they are.

Openings also introduce linear items into the environmeunt a
thus preclude substitution. Note however that they aréhaepart
of values nor of results, because they can be eliminatededhycr
tion, an openingopen (3) M will eventually lead to an “open-
exists” patterropen (3) 3. M’. This combination just performs
a transfer of an existential resource from the inner nairte the
outer one3, as demonstrated by the following derivation:

e I, da k- M T
:;ISTS [Jo. M : Ja. T
PENT, 35 Fopen (B) 3a. M = 7la — 0]

Therefore, the patterapen (3) Ja. M can simply be eliminated
into a renaming from the internal to the external nakigx — g].
This way, reduction makes the bottom-left cycle of Eiganish.

Reduction The semantics of ¥ is given by a call-by-value re-
duction strategy, described by a small-step reductiortioglathat
does not rely on types (it is compatible with type erasureg.fi
a left-to-right evaluation order so that the semantics temeinis-
tic, although we could have left the order unspecified. Byticst,

o) z, which are well-behaved and cannot be further reduced, but having a call-by-value strategy and a weak-reduction ieresa.

are not values, as they are not pure and thus not substiutabl
More precisely, values are defined in FigThey are either
pre-values or coerced pre-values, where pre-values aiables,
functions, generalizations, records of values or exiséngalues.
Note that nested coercions are not values—they must beefurth
reduced. Note also that no evaluation takes place uhsl@r As.
Finally, results are values preceded by a (possibly empiylisnce
of s.
The purity premises in some of the typing rules ensure that
values are pure, hence, by Lemmaubstitutable.

Lemma 2 (Purity of values) If I" - v : 7 holds, therT is pure.

Extrusions Values are substitutable, but some results are not val-
ues, namely a sequenceXs prefixing a value. How can we handle
these results, when they ought to be substituted, withasaking

Evaluation contexts are described in BigNote that, as op-
posed to Dreyer3), evaluation also takes place under existential
bindings. We define thexposed type variablesf a contextE,
written et E), that are either binding type variables or type vari-
ables that are carried by an opening or an open witness definit
A one-step reduction is the application of a reduction raledme
evaluation context. The reduction relation is the tramsitlosure
of the one-step reduction relation. Reduction steps afedanto
four groups.

Rules of the main group describe the contraction of redexes.
The let-reduction, theg-reduction, the reduction of type appli-
cations, and the record projection are as usual. The lastaotll
this group is the reduction of the “open-exists” patternlaxped
above. Notice that type substitution is a partial functionterms,
because syntax is not stable under type substitution: &iante,

letx =vin M ~ Mz « v] REDEX-LET
AMz:T)M)v ~ letx=vin M REDEX-APP
(Aa. M) T ~» Mo« 7] REDEX-INST
{(l; = v;) 1" by~ vg if1<k<n REDEX-PROJ
open (8) Ja. w ~ wla «— f] REDEX-OPEN
EXE B (a=1)w] ~ Z(B) (a=7)E[w][B — q] if « ¢ ftv(E) and
EXTRUDE

Y (B1) (a1 =11) X (B2) (a2 = T2)w

$

Y (A1) (a1 = 711) X (B2) (a2 = T2[a1 « T])w

({a, B} U ftv(7)) Net(E) = (7;

if ar € ftv(m SIGMA-SIGMA

(Mz:m)M):11 = 12)v ~ (Mz:10) M) (v:70):T2) COERCEAPP
(u:Vo. 7)1 ~ (uT: 7'+ 7)) COERCEINST
(w: {(l 1) "))l ~ (u by, 2 Tr) if1<k<n COERCEPROJ
open (&) (u: Ja.7) ~~ (open (&) u: T) COERCEOPEN
((w:r):7') ~ (u:7) COERCECOERCE
vB.X(B) (a=1)w ~ vB.E(B) (a=1)w[f — « if 8 € ftv(w) ERASE-NU-SIGMA 1
vB.X(B) (a=71)w ~ vB.X{(B) (o =T) w[a — 7] if € ftv(w) andg ¢ ftv(w) ERASE-NU-SIGMA?2
vB.E(B) (a=1)w ~ w if , 3 ¢ ftv(w) ERASE-NU-SIGMA3
E w= [] | EM | vE | lete=EinM | Er CoNTEXT
| { =0 e = B (6 = M) SRRy | B e DR S TV
| Ja.FE | (B (a=7)E | (E:7) | open{a) E | va.FE E[M] ~ E[M']
et([]) =0 et(X (8) (a =7) E) = {a, B} U et(E)
etJa. E) etME M) et (M E) etfletz=FEin M)
et (va. E) ={a}UetME) eMET) etME.L) et(E : 1)) = et E)

etV(open (a) F)

etv({(L; = M) S%F s by = E; (£ = M;)€F+2m

Figure 5. Reduction rules

(open (B8) M)[8 < 7] is undefined. The type system ensures that Lemma 4 (Instantiation by substitution)Assume that’,V(a =

type substitution is only performed when it is well-defined.

The second group of rules implements the extrusion:ef
through every other construct: RUEEXTRUDE permits extrusion
through evaluation contexts, provided this is valid witkpect to
scopes of (exposed) type variables. To make the exchangeoof t
3s possible, Rul&iGmA-SIGMA substitutes the definition of the
outer one to delete dependencies.

The third group of reduction rules keeps track of coercions
during reduction, as exemplified by RulBoERCEAPP. Notice
that nested coercions are merged, the outer one takingitprior
(RuleCoeRCcECoERCH, which makes the top-most cycle of Fig.
vanish.

Finally, the fourth group of rules is responsible for thesenz
of restricted open witness definitions. RIH&ASE-NU-SIGMA L
replaces the external name with the internal one. The roRubé
ERASE-NU-SIGMAZ2 is to replace the type variable of a witness
with the witness itself: the same substitution occurs int&@ys
while unpack-ing apack-ed term. Finally, the restricted definition
is erased by RUlERASE-NU-SIGMA 3.

Remark that onlyEs are extruded: every local introduction of
resources by & stays local and is eventually eliminated. Similarly,
coercions are not extruded either.

3.5 Type soundness

Type soundness results from the combination of the subgect r
duction and progress properties. The subject reductioafpsoas
usual, mainly built on the substitution lemma (Lemtjaand the
instantiation lemma, which comes in two forms:

Lemma 3 (Instantiation by equation)Assume that" - ~wf and
I',Vo,I" = M : 7/ hold and that no free type variable ofis
existentially bound if". Thenl', V(o = 7),I" = M : 7’ holds.

7),I" = M : 7' holds. ThenM[a «+ 7] is well-defined and
I, IV[a + 7] F M[aw + 7] @ 7'[ac < 7] holds.

The proof of subject reduction itself is not really inforrivat,
but it is particularly interesting that the proof is abselytstandard
and almost straightforward. It proceeds by induction onrdukic-
tion relation.

Proposition 1 (Subject reduction) If ' = M : 7 andM ~ M’,
then - M’ : .

Progress is proved by induction on the typing derivation.

Proposition 2 (Progress) If ' = M : 7 andT does not contain
value variable bindings, then either M is a result, or it isleeible.

The side condition thdf does not contain any value variable is
as usual. However, we cannot require the more restrictipethne-
sis thatl" be empty, since evaluation takes place under the hinders
v and 3. Moreover, this allows to consider the reductionagfen
programsj.e. programs with free type variables. This is the case of
programs with abstract types, which come from unrestricigeh-
ings or open witness definitions. This closely correspormdsit
programs composed of modules with abstract types.

3.6 Translation to SystemF

From Fto F¥ As mentioned in 8.2, the encoding opack and
unpack is unsurprisingly straightforward. It preserves typinglan
abstraction as well as semantics: the encoding keeps theslyimgd
untyped skeleton unchanged.

From F¥to F Conversely, it is also possible to globally reorganize
every closed term ofY so that it uses (the encodings afyck
andunpack. We sketch out this transformation that consists in five
rewriting stages, which we review now:

QY u= open()M | X(a)(B=7)M | Q°M | MQ* | Q%7 | pack(r,Q%) as3p.7’
| vB.Q™ | Q¥4 | open(B)Q* | X(B)(y=1)Q" where3,y # o
| {(ti=M)S; 0=Q%; (6 =M;)7} | letz=MinQ* | letz=Q%in M

valetz =Q% Min M' — va.lety=Q%inletx =y M in M’
valetz =M Q%in M’ — va.lety=Q%inletx =M yin M’

va. (Q* M) — (va.Q%)
va. (M Q%) - M (I/Oc.Qa.)

va.(letx=Min Q%) — letx = M inva.Q°

Figure 6. Translation to Systerf (excerpts): extrusion afpens andXs, intrusion ofvs.

1. From the typing derivation, insert coercions arodtsland3is
in order to ge® (8) (o = 7') (M : 7) andJa. (M : 7).

2. Replace existential quantifiers by usepadk, according to the
rule: 3a. (M : 7) — va.let x = M in pack (o, x) as Jov. T

3. Extrudeopens andXs usinglet-bindings (as described by a
representative set of rules on left-hand side ofjignd intrude
vs so that they get closer to each other (right-hand side of)-ig

4. Recover Systerh constructs:

va.let x = open {(a) M in M’ — unpack M as (a,z) in M’
va.letx =X {(a) (a =70) (M : 1) in M’
—> unpack (pack (1o, M| < 79]) as Jav. 7) as (o, z) in M’

5. Finally, remove all coercions.
All stages but (3) are compositional.

Proposition 3. The translation is type-preserving, abstraction-
preserving and semantics-preserving.

4. Extensions ofF¥

In this section we consider several extensions Fér for which
soundness properties (lemniaand?) of F¥ extend.

4.1 More flexible non-recursive type equations

Core FY imposed a simple but strong restriction to enforce type
equations to be acyclic. In this section we present a morergén
technique to control recursive types, by enriching thecstme of
typing environments in a natural way: we no longer consitlent
as sequencese. totallyordered sets, but gmartially ordered sets,
where the order relation expresses dependencies betwedinds
and is required to bacyclic which means that no binding can
(transitively) depend on itself. This disallows the zipgpiaf two
environments when this condition could not be satisfied.

More specifically, a typing environmeiitis a dag represented
as a pain&, <) of a finite set of binding€ and an acyclic partial
order< on domé, i.e. there exists no binding such thadomb <
domb. We sometimes writé < b’ instead ofdomb < domb’.

If b < o', we say thath depends orb’. We use the following

The property holds for each stage of the translation and each notation for composing and decomposing typing environsient

rewriting rule. Abstraction is unchanged since the scofessoare
not altered by the transformation. Semantics is preservéuki fol-
lowing way: the untyped skeleton of the image of the transtat
let-reduces to the skeleton of the source. Thus, while the evalu
ation order is kept unchanged, reducing the image requi@a® m
[B-reduction steps than reducing the source.

The latter point highlights the increase of modularity gbt
by F¥ over Systent: it allows for organizing the code more freely.

Thelogical facet By erasing the terms from the typing rules, we
can consider the logic underlying cofé: not only the expressible
formulas are exactly those of second-order arithmetic alad we
can deduce from the translations above thatvéhled formulas are
identical In particular, FY's logic is consistent. Moreover, since
the reduction steps are increased by the translation ae $ire
untyped skeletons of Systefnterms are terminating, the untyped
skeleton of every closed program 6t is also terminating. In
addition, the fact that the untyped skeleton of the imageeduces
to the untyped skeleton of the source essentially tells asttie
two pieces of program computee same thingandin the same
way. the translation to Systeff just performs a reorganization of
the type derivation. Hence, the correspondence with Sy$tém
twofold: it holds on the static as well as on the dynamic vieinp
which connect§Y with SystemF in a very tight manner.

The gain of modularity brought by cofé’ in terms of program-
ming can be read back in terms of proofs: it allows new assiaignbl
of partial proofs {.e. with abstract types), where environments are
zippedwhen combining proof-terms.

One can wonder what is the logical status of the typing rules
we presented: Rul€oERCE has the form of a subtyping rule
with the semantics of the identity (coercions are erasedhiey t
translation); RuleExisTs is the right introduction rule for the
existential quantifier; Rul®pPEeNis the right elimination rule; Rule
SIGMA is a left introduction rule; Rulélu is a left elimination rule.

that typing rules look familiar:

Notation 1. We write I'1, (b < D), I'2 when no binding inI';
depends orb, andb does not depend on bindings Bt, and D
is the set of bindings depends on. In particular, whén is empty,
b is minimal for the dependency relation.

Definition 2 (Zipping). LetI'; andI'; be two typing environments
of the form (&1, <1) and (&2, <2). Let < be the transitive closure
(<1 U <2)*. If < is acyclic, the zipping of’; andTI'z, written
1 YT, is(&1Y &2, <), wherey Y & is:

o {b1 Y ba | b1 €& NAby € E Adomb; = domb,}, if & and
&> have the same domain.

e &1 Y & where&lis &1 U {(Va) | (Ba) € &2 Na ¢
domé&; } and symmetrically fo€s, when&; and &5 have the
same domain.

¢ undefined otherwise.

The zipping of'; andT'; is undefined if< is not acyclic or if
&1Y & is undefined. O

The second item in the definition of zipping extends the emvir
ments before considering their zipping. This performs aplicit
weakening on each side that refines the detection of cydesilla
be exemplified below.

RulesSigmA, OrPEN and LET introduce new dependencies to
keep track of cycles. We review them now.

SIGMA
IV(a=7)<DYF-M : 7 D'CD
I3B<D)FX{(B) (a=7)M : 7[3 « q]

Unsurprisingly, RuleSIGmMA specifies that the external name has
at least all dependencies of the internal name, among whigh |
the (dependencies of the) free type variables of the witnEsis
prevents the example of external recursion seer?if3, §vhich we

LAM APP LET y
VAR T pure 'k M im—T dom’ T1Ndont Ty C D
T pure T ok D(x:m1<D)F M : 12 Tob My : 1 TMFDM 7 Do, (x:11<D)F Mz : T2
'tz :(z) PEXz:m)M : 11— 72 Ty YTobk My My @ 7 i1 YTebletx =M in Mo : 7
GEN INST EMPTY
I" pure I'F 7 wf I" pure RECORD , _
I,(Va<D)F M : 7 I'-M : Va.r’ T ok (Ti b M; =)" €™ injective (i +— £;)"€" "
I'-Aa.M :Va.t kM7 :7'a«— 7] r={}:{; Ly YT b {(l = M)} {(l)€™}
PrROJ COERCE SIGMA
1<k<n ExISTS rFr=r D'\ ({f} udomI’) C D, if ~is=
LHM: {(:n)<c"") IGa<D)FM : 7 'e-M:7 I,(V3<D),I'", Ma<B~71)<D)F-M : 7
' My : 1 'F3a.M : Ja.7 r-(M:7):71 [,38<D),I'FS{(B) (a7)M : 7[a + f]
Nu WEAKEN Sim ,
OPEN a ¢ ftv(r) I'ikFT F'trar Fix
'tM: Ja.T1 IGa<D)FM : 7 'M: T r'e-M:7 D(xz:7<D)ks: T
T, (3o < domI™\ donT" T') I- open () M : T 'va.M: T I'+-M: 7 '-M:r 'kulx:7)s: 7

Figure 7. Typing rules of the extended system

recall below, to be well-typed:

{61 =3 (b1) (a1 =2 — B2) M1 ;
by =X (B2) (e = B1 — P1) M2 }

The dependencg: < (3 is required to type the first component,
since the witness depends Gp. Symmetrically,3> < (3, is also
required to type the second component. Consequently, pipénzj
is forbidden because of the obvious cycle.

As opposed to the case of RufecMA, the witness is unknown
in the open construct. Hence, the condition placed on R#eN
is stronger: the abstract type variable (possibly) dep@emdsvery
type variable present in the context, except on type defimstsince
these are only indirections: it is unnecessary to track depe-
cies on internal names since they are always included ingpert
dencies of the external names, as described by RueiA. Con-
versely, taking dependencies on internal names into at¢eeaurid
be too coarse and impede subject reduction, since a consaxjag
extrusions is the expansion of the scope of internal names.

OPEN
I'EM: da.1

I, (3aw<domI’ \ doni T') - open (a) M : T

As a result, the above example would again be rejected if the

s were replaced with “open-exists” patterns. By contrdsg t
following example is well-typed, since the witness of thestfir
branch does not depend 6.

{ =3 <ﬂl> (Oél = int) My
ly =X (B2) (e = B1 — P1) M2 }

Rewriting this piece of code with “open-exists” patternsagain
well-typed, in spite of the stronger condition on RaleEeN, thanks
to the implicit weakening in zipping: we can type the firstrirh
without usingV/3: in the environment (provided/; does not
mention3;). Therefore, the requiremenf < (32 is not required in
the first branch and no cycle is detected.
Finally, RuleLET (see Fig7) highlights variables that are used,

hence possibly hidden in an existential value, in the firainbh

of internal recursion seen irR§& and reminded below:
let x = 3(a =B — [B) M in open (B) x

The bindingv3 is required in the typing environment of the bound
expression, whereas the bindif@ appears in the typing environ-
ment for the body. Thus, the constraint< 3 is required in the
typing environment of the body, which prevents typoyen (3) z,

as RuleOPENrequests thai 3 must be minimal in the dependency
relation.

4.2 Addressing the double vision problem

Defining an expression that manipulates an abstract typerdef
its witness has been given is sometimes desirable, as igdrin
more freedom in the code structure. It may also become nagess
when building recursive values. Currently, the followirgrm is
considered as ill-typed:

Fp.let f =Xz :B)xinX(B) (a=int)(1: «)

This is because RulBiGMA (see 8.2.3 does not let the external
nameg visible in its premise. It is easy to correct this by leaving
a Vg3 in the premise instead ofi3 (see below). However, the
following piece of code would still be rejected:

Blet f=Xz:B)xinZ(B) (a=int) f(1:«)

After the existential resourcg is introduced, it defineg as the
identity on 8 and then useg in the context of the open witness
definitionX (3) (a = int) . However, we do not know that and3
denote thesamewitness: the applicatiolfi (1 : «) is ill-typed.

This is called thalouble vision problemit characterizes the in-
ability to maintain a link between the internal and extemialw
of a given type. This problem is well-known in the study ofuec
sive modules, but as we can see it already happens in thecgbsen
of recursion. To solve this problem, is suffices to carry thissing
information in the context (for clarity, dependencies amatted):

SIGMA
V3T Y(a<dB=7)FM : 1

03,17 2 (B) (a=7)M : 7la —]

of thelet and used in an opening in the second branch. Therefore, The typing environment is enriched with a new kind of equatio

the value variable that is bound in th& must depend on these
variables. These are indeed responsible for the cycle iaxhmple

V(a<B=7"), which says that the witness' is denoted by the
internal namex, and, in addition, that the external nanfecan

be viewed internally as. This is realized through the use of the
similarity relation defined under a contekt and written< that
satisfies all the equalities between internal and exteraialas that
are present in the contekt It is used through Rul&im (Fig. 7).

By definition, this semantics ensures that only equatioatsate
marked as potentially recursive may actually create réveitgpes
during reduction. Type soundness ensures that this is iguffic
to reduce well-typed programse. that recursive types are never

The reader may wonder why the authors decided to use both anneeded in other configurations. Hence, although abstrpestgan

external and an internal name, while they denote the saneetbj
instead of using only one name as done irGRvhere a single type
reference is used along with two scopes, only one of whictedos
a type definition.

be used in a flexible manner, the risk of inadvertently useaur-
sive types via type abstraction can be tracked by the typeisys
and tightly tuned by the user.

It is also interesting that mutually recursive equations ex-

We give two reasons for handling two names and an equation plicitly resolved during reduction, and moreover in a statdwvay.

relating them: first, it corresponds to practice in recugsivodules,
where a single type component is reached through two differe
paths, which leads to the double vision problem. Second;shef
two names makes programs more maintainable in the senggishat
more respectful to the notion afterface whatever is the internal

4.4 ExtendingFY with term-level recursion

In this section, we extend® with recursive valueg(z:7) v, which
are necessary to define recursive modules.
Although it is possible to use the well-known backpatchiag s

name, the external name will always be the same. Thus, one canmantics for fixpoints, we prefer a storeless, unrollingdshseman-

apply an internal renaming without changing the externpéty

4.3 ExtendingFY with type-level recursion

Extended non-recursive type definitions lead to a finer typck-

ing but do not require a change in the semantics. By confpast,
mitting recursive type definitions has the reverse effegting is
unchanged, but semantics must be adapted. We extend thaltype
gebra with a fixpoint and specify with the use of the symisdh-
stead of= when a type equation is allowed to contribute to a cycle.
Wellformedness ensures that recursive types are conteacti

M 2B (axT)M
w | 2(8) (a=T)w

We also extend the type compatibility relation with the Uswa
folding rule for recursive types (see Fig) and consider that type
compatibility is co-inductively defined. We add the followgirules
to the reduction relation:

(B) (am)X (F) (& 27w
= B() (o = 7la =)5 (B) (a = T)w

VB2 () (o = 7') (£(B:) (i > 7)) v _
~ V3.3 <ﬁl> (O/ = CIOSQO/ af =7, (i 4 B; Ti)lel))
(2 (Bi) (i ~ 7)) <" v whereV stands fow or 3

When two Xs have to be exchanged, it is no longer possible to
substitute the first witness into the second one for well&ximess
reasons. Instead, we replace the first internal name witlesttes-
nal one during swapping, as described by the first reductits It
should be applied when needed, to pit eloser to its correspond-
ing v or 3, when there is one, so that the second rule can apply.
The second rule specifies that a closed or restricted, palignt
recursive type definition can be resolved into a non-revarsne,
that involves a recursive witness. To do this, ttlese operator,
that is defined in Fi@, gathers the other witnesses and ties the
recursive knot. Thanks to co-induction, the provable etjgalare
unchanged. The reduction below exemplifies the closureatiper

Uﬁl.z <ﬂ1> (Ocl ~ a1 X ﬂg) by <52> (062 ~ a1 X 042)1]

~ VBB A(B1) (a1 =7) X (B2) (a2 = an X az) v

Y <52> (Oéz ~T X ch)uﬁLE <ﬁ1> (Ocl = T)’U

~ X {(B2) (a2 = 7 X az) v[on — 7]

wherer = closda1 <81 = a1 X B2, a2 <32 &= a1 X az)
= poq. (01 X pas. (a1 X az))

~
~

coo | poeT

~
T

The term we consider contains two mutually recursive tydade
tions, and the external nant& of the first one is restricted. The
closeoperator computes the closed witnessvhich becomes the
new, recursive witness g@f;, defined by a non-recursive equation.
Then, the innermost can be extruded, and the restricted equation
is eventually eliminated.

tics, so as to avoid the need for references. Our unrollingeseics
lies between the backpatching semantics, which computes-re
sive values at their creation and fails if they are ill-foeddand the
lazy semantics, which unfolds recursive values only atrtbse.
As the former we evaluate recursive definitions at their tinea
by letting evaluation proceed under fixpoints, fithoutunrolling
them. Instead, fixpoints are unrollesh demandwvhen they need
to be destructed, as with the lazy semantics. (lll-founddirsion
may thus loop at its use instead of its creation, as with tag la
semantics.) The two aspects of our semantics are capturéeeby
form of evaluation contexts and the following reductionerute-
spectively:

E == ...
Rlp(z: 7)v] ~

whereR is a redex-form, that is, an applicati¢h v, an instantia-
tion [-] T, a projection-].£, or an openingpen () [-].

In order to enable unrolling, one must ensure that reducimg u
der fixpoints and extrudings always give rise to a value, because
impure results cannot be substituted. For this purpose estict
the body of fixpoints to bextended resultslenoted by, which are
either results or themselves recortts;bindings, or projections of
extended results.

| plain)E
Rllet z = p(z: 7)vin]

M o= | w(x:7)s
u = | pE:m)v | xdly--- ly
s = w | letz=sins | {(li=3s:)"} | st

Pre-values are extended with both fixpoints of values anssjpty
empty) sequences of projections of variables.

Soundness properties are straightforwardly preservedhlsy t
extension.

In conclusion, adding term-level recursionfdis not an issue.
Indeed, this is a direct consequence of the modularitfF 6fs
constructs. Moreover, our approach permits to keep a stdnda
style of presentation: it uses evaluation contexts, anitlaugsing
references to model recursion.

5. Related work

Russo 21) justifies the meaninglessness of dependent types for
modules, by interpreting modules and signatures into séman
objects with Systenk types. He also uses existential quantifiers to
track type generativity. It seems however that his exisaéhypes
are implicitly opened and automatically extruded. Unfortunately,
the dynamic semantics of semantic objects is not described.

In the context of run-time type inspection, Rossb&@) (ntro-
duces\y, a version of Systerd with a construct to define abstract
types and a mechanism of directed coercions. His abstrpesty
can be automatically extruded to allow sharper type anslysid
are thus close to ot binder. His coercions resemble ours, though

closda<fB=71)2 7 _
closda <8~ 71) 2 ua. 7[3 « o closd (v < Bi ~i)"’

CIOSE{(O&L‘ N ﬁz ~; Ti)iel ,Oé, < ﬁ, = T’) £ CIOSQ(O&Z‘ < ﬁz ~; Ti[ﬁ, —
,of 9B ~1') & closd(q; < Bi ~ i[f — pa. TG —]])

T/])iEI) -
1€)

Figure 8. Closing mutually recursive type equations

ours are symmetric, because they never cross the abstrdmio
rier. Although both systems seem kindred in spirit, theysaretly
different, because they have been designed for quite eiffepur-
poses: in particular\y is only partially related to traditional exis-
tential types, since parametricity is purposely violated.

In spite of strong similarities, soma#eeptechnical differences
remain between Rs andFY. The treatment of the linear resources
differs significantly: RG's semantics employs a type store to
model static but imperative type reference updates, wikevea
just use extrusions of binders. These two approaches might be
related by seeing our extrusion as a local treatment of is $yore,
as has already been proposed for value referer@®sreyer uses
assignment in a global store to guarantee the uniquenessitef w
ing: this exposes the evaluation order in the typing rulefRoé
and makes them asymmetrical, moving away from a logical-spec
ification, whereas weip contexts to enforce sound openings and
maintain a close correspondence with logdituitively, we think of
existential values as generating a fresh type when opertatt e
considers them as functions in “destination passing st{ie®s).
Despite these strong technical differences, the two systeswe
similar constructs: therlew” primitive is similar to ourv binder;
the “set o := 7 in M” is related to theX (a) (o« = 7) M con-
struct. Note the use of a single type name here (as mentioned i
84.2). The two systems differ a little more in other constructs. |

RTG, the creation of ammpure function of typer; in, whose
body defines a witness for a type variablgis always prefixed by
the Dps construct, namely the generalization by a writable type
variableAa 7 K. M. The former is useful to write typical examples
of recursive modules and allows for their separate comipitat
However, this construct taken alone would have to be trelited
early, which would require the introduction of linearity ippes,
and would raise type wellformedness issues with respecife t
substitution. Hence, the two constructs are combined irgimgle

form. Itis said that a term with typea | K.~ can be understood as

a Dpsfunction of typevVa T K. () 24, 7. In other words, an existen-

tial value is a term where the assignment for the witnessoizefin.
This implies, however, that the body of a°Bfunction, hence the
body of an existential term, isot evaluated. One could argue that it
would suffice to predefine the body witHet-binding, so that it is
evaluated, but this is not always feasible since the bodylegend
itself on the type variablex. By contrast,FY disallows the defi-
nition of impure functions, but the existential introdwetida. M
corresponds to Rs’s type variable generalizatioha T K. M taken
alone. However, evaluatiatoestake place under existential quan-
tifiers in FY. To make it possible, ouocal management of exis-
tential resources and their elimination is of primordiapiontance.
The approach followed in R treats type abstraction as a side ef-
fect and therefore correlates type abstraction with eveloaTo
our point of view, the two must be separated, &Ydlemonstrates
that this is achievable. Moreover, it leads to a finer semanti

Flatt and Felleisens] introduced constraints within signatures
to track dependencies, whereas we used constraints onlyin e
ronments, thus enabling a natural generalization of thricture.

Concluding remarks

We defined coreéFY, a variant of explicitly-typed Systerfi with
primitive open existential typethat generalize the usual notion of
(closed) existential types by splitting their creation &tichination

into more atomic constructs. The subject reduction and ressy
theorems hold foF¥ and have routine proofs.

We showed how openings of existential values and open véitnes
definitions tightly correspond to type abstraction and getnaty
in modules. More importantly, we highlighted that type aéstion
and generativityshould and catbe separated from evaluation, and
neednot be explained as a side effect. Instead, the mechanism of
extrusionplays a central role.

We exhibited a tight correspondence between &drand Sys-
temF: it has exactly the same expressive power, but allows ta@writ
programs more modularly. This gives strong theoreticaintta:
tions toF¥ and, by extension, to /.

The languagé& " handles liberal non-recursive type definitions,
gives a solution to the double vision problem, and allowsually
recursive equations as well as recursive values.

We believe thafY is promising as the core of a programming
language with first-class modules. Thare simplicityof the no-
tionsFY is based on is its best asset. It would be interesting to di-
rectly integrate our approach in existing works on mixin mieg.

We limited FY¥ to the definition ofpure functions to keep the
system simple enough: impure functions would indeed need to
be treated linearly and would certainly introduce depeniEn
constraints into types. Yet, this extension is worth coesid):
it would make the system more canonical and would correlate
functions with contexts as it is usually the case. For instamwe
could recoverlet-binding as a derived construct. In addition, it
would permit to re-explore the duality between existestiahd
universals that is already visible in the typing rules.

Among future work remains the study of representation inde-
pendence properties, as well as the integration of progiamfea-
tures such as higher-order types or value references. Higher
types are motivated by Russo’s work on applicative functors

This work only realizes the first half of our project of defin-
ing a core calculus for a module language with simple and log-
ical foundations. Indeed Y still misses a significant, orthogonal
ingredient to scale up: path systenmust complete it, that would
permit to write compact programs and overcome the diamonrd im
port problem. This second half, already briefly introducadan
earlier work (5), will be developed independently in another pa-
per. Of course, some form of type inference will eventualyy b
needed in a surface language basedrénAn easy solution is to
stratify the type system, just for the purpose of type infiess We
could infer ML-like types for the base level and require explicit
type information for the module level, as fdiL. Another more
ambitious direction is to use a form of partial type inferenith
first-class polymorphism.

Acknowledgments

The authors would like to thank Paul-André Mellies, Frascoi
Pottier and Robert Harper for fruitful discussions, andramoous
referees for their helpful comments on earlier version$isf paper.

References

[1] Luca Cardelli and Xavier Leroy. Abstract types and the datation.
In M. Broy and C. B. Jones, editorBroceedings IFIP TC2 working
conference on programming concepts and methpdges 479-504.
North-Holland, 1990.

[2] Derek Dreyer. Recursive type generativityournal of Functional
Programming pages 433-471, 2007.

http://gallium.inria.fr/~xleroy/publi/abstract-types-dot-notation.pdf
http://www.mpi-sws.org/~dreyer/papers/dps/jfp.pdf

[3] Derek Dreyer. A type system for recursive modules.Phoceedings
of ACM SIGPLAN International Conference on Functional Parg-
ming pages 289-302, 2007.

[4] Derek Dreyer, Karl Crary, and Robert Harper. A type systan f
higher-order modules. IRroceedings of ACM SIGPLAN Symposium
on Principles of Programming Languagesges 236—249, 2003.

[5] Matthew Flatt and Matthias Felleisen. Units: Cool moddtesot lan-
guages. IrProceedings of ACM SIGPLAN Conference on Program-
ming Language Design and Implementatipages 236-248, 1998.

Robert Harper and Mark Lillibridge. A type-theoretic appch to
higher-order modules with sharing. Rroceedings of ACM SIGPLAN
Symposium on Principles of Programming Languagesges 123—
137, New York, NY, USA, 1994. ACM.

Robert Harper, John C. Mitchell, and Eugenio Moggi. Higbester
modules and the phase distinction.Rroceedings of ACM SIGPLAN
Symposium on Principles of Programming Languagesges 341—
354, San Francisco, CA, January 1990.

Robert Harper and Benjamin C. Pierce. Design considerafor ML-
style module systems. In Benjamin C. Pierce, edAalyanced Topics
in Types and Programming Languagebkapter 8, pages 293—-345. The
MIT Press, 2005.

[9] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a na@ited
metatheory of Standard MLSIGPLAN Not.42(1):173-184, 2007.

[10] Xavier Leroy. A syntactic theory of type generativity andasing.
Journal of Functional Programming(5):667—698, 1996.

[11] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didienfyéand
Jérdbme Vouillon. The Objective Caml system release 3.18RIA,
May 2007.

[12] David MacQueen. Modules for Standard ML. ACM Symposium
on LISP and functional programmingages 198-207, New York, NY,
USA, 1984. ACM.

[13] Robin Milner, Mads Tofte, Robert Harper, and David MacQueEhe
Definition of Standard ML (Revisedyhe MIT Press, May 1997.

[14] John C. Mitchell and Gordon D. Plotkin. Abstract types haxesten-
tial type. ACM Trans. Program. Lang. Syst0(3):470-502, 1988.

[15] Benoit Montagu and Didier Rémy. Towards a simpler account o
modules and generativity: Abstract types h@enexistential types.
Available electronically, March 2008.

[16] Martin Odersky, Vincent Cremet, Christine Rockl, and Ni&s
Zenger. A nominal theory of objects with dependent typesPio-
ceedings of European Conference on Object-Oriented Progrimg
pages 201-224, 2003.

[17] Gilles Peskine Abstract types in collaborative programBhD thesis,
Université Paris VII — Denis Diderot, June 2008.

[18] John C. Reynolds. Types, abstraction and paramettigypmphism.
In Information Processing 8pages 513-523. Elsevier Science, 1983.

[19] Sergei Romanenko, Claudio Russo, and Peter Seshftscow ML
Owner’s Manual June 2000.

[20] Andreas Rossberg. Generativity and dynamic opacity fcstralt
types. InProceedings of ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programmjraages 241-252,
Uppsala, Sweden, September 2003.

[21] Claudio V. Russo. Types for moduleElectronic Notes in Theoretical
Computer Sciengeés0, January 2003.

[22] Christopher A. Stone and Robert Harper. Deciding type \&jence
in a language with singleton kinds. Rroceedings of ACM SIGPLAN
International Conference on Principles and Practice of Beative
Programming pages 214—-227, Boston, January 2000.

[23] Andrew K. Wright and Matthias Felleisen. A syntactic apgeb to
type soundnesdnformation and Computatiqri15(1):38-94, 1994.

[6

[7

8

—_

ENTAIL-BINDING

ENTAIL -REFL ENTAIL-TRANS b # Ja
T'F ok TilIFTy I's IFTs I, (b<D)F ok
TIFT Tl T3 I,(b<D)IFT
Figure 9. Entailment of environments
OK-VAR OK-EXISTS
ftv(t) € D C domI’ D C domI’
I+ rwf x ¢ domI’ '+ok «¢ doml’

I,(x:7<D)F ok T, (3a< D) F ok

Ok-EQ OK-FORALL
ftv(r) C D C domI’ D C domI’
'krwf a¢doml’ (¢ ftv(r) ' ok a ¢ domI’

T,(V(a<B=7)<DW{B})F ok T, (Va<D) F ok

OK-EQREC
ftv(pa. 7) € D C domI’
Tk po.twf B¢ ftv(r) OK-EMPTY
I, (V(a<B=71)<DW{a,[})F ok e ok

Figure 10. Wellformed environments

WEF-VAR WF-ARROW
'+ ok a € domI’ T'F 7o wif T'F 7o wf
T awf FF71—>T2VVf
WF-RECORD .
injective (i > £;)"<"" WE-EMPTY WF-FORALL
(T F 7 wh)' st ' ok T, (Vo< D) I 7 wf
DF{(t) S " we I+ {}wf I+ Vo. 7 wf
WF-Mu
WF-EXISTS pae. T contractive
I, (3a<D) F 7 wf I, (Va<D)F 7wf
T'F Ja. 7 wf I'F po. 7 wf

Figure 11. Wellformed types

EQ-EQ-LEFT EQ-EQ-RIGHT
EQ-REFL I'Frjae—71"1=7 I'rr=7a«7"]
' 7wf V(a<aB~7") el V(a<aB~7")el
T'Fr=71 T'-r=71 T'-r=7
EQ-FIX-LEFT EQ-FIX-RIGHT

T'krla— pa. 7] =7 I'7' =71la — pa.7]

I'poa.r=7 k7' =pa.t

(Rules for congruence are omitted.)

Figure 12. Compatible types (co-inductive definition)

SIM-REFL SIM-EQ

'+ ok '+ ok SIM-EMPTY
o € domI’ Vie<af~T1)el T' ok
F'Fa<a F'Fa<p r-{}<{}

(Rules for transitivity and congruence are omitted.)

Figure 13. Similar types

http://www.mpi-sws.org/~dreyer/papers/recmod/main-short.pdf
http://www.mpi-sws.org/~dreyer/papers/recmod/main-short.pdf
http://doi.acm.org/10.1145/277650.277730
http://doi.acm.org/10.1145/174675.176927
http://theory.stanford.edu/~jcm/papers/harper-mm-90.pdf
http://www.cs.cmu.edu/~dklee/papers/tslf-popl.pdf
http://gallium.inria.fr/~xleroy/publi/syntactic-generativity.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/
http://doi.acm.org/10.1145/800055.802036
http://mitpress.mit.edu/book-home.tcl?isbn=0262631814
http://theory.stanford.edu/~jcm/papers/mitch-plotkin-88.pdf
http://gallium.inria.fr/~remy/modules/
http://lamp.epfl.ch/~odersky/papers/ecoop03.pdf
http://moscova.inria.fr/~peskine/research/
http://www.itu.dk/~sestoft/mosml/manual.pdf
http://doi.acm.org/10.1145/888251.888274
http://research.microsoft.com/~crusso/papers/entcs.pdf
http://www.cs.cmu.edu/~rwh/courses/modules/papers/stone-harper00/paper.pdf
http://dx.doi.org/10.1006/inco.1994.1093

	Introduction
	Open existential types
	Abstract types as existential types
	Atomic constructs for existential types
	Richer contexts for typing judgments
	Splitting unpack
	Splitting pack
	Generative functors
	A summary of the constructs for open existential types
	Linearity to control openings and open witness definitions

	The appearance of recursive types

	Core Fzip
	A more restrictive zipping
	Syntax
	Typing rules
	Reduction semantics
	Type soundness
	Translation to System F

	Extensions of Fzip
	More flexible non-recursive type equations
	Addressing the double vision problem
	Extending Fzip with type-level recursion
	Extending Fzip with term-level recursion

	Related work

