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The original M LF

It is intuitively simple, but

Its purely syntactic presentation is technically linvolved.

Is it the right definition?
(It is sound, indeed, but where there other better choices?)

No, it is not quite right!

We now have the right definition, twice:

“Semantically”, in Recasting MLF (work with Didier Le Botlan)

Graphically, in this work



A new fully graphical presentation of Full MLF

We build on previous work

A Graphical presentation of MLF types (TLDI 06)

Types and the instance relation are either well-known or simple
operations on graphs. Allows for an efficient unification algorithm.

We
enrich types with type constraints.
solve type constraints by reducing them to unification problems.
express type inference as typing constraints
obtain a type-inference algorithm about as efficient as the one for ML

show type soundness by reasoning on graphical typing constraints.
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Function parameters that are
used polymorphically and only

=, Lthose need an annotation.

ANx) xx - ill-typed, as we do not guess polymorphism!
AMz:Vio)a—a)zx : V@E=V(i)a—a)f—pF


















Binding all nodes
allows for a more
regular representation




Superposition of a term-dag

(first-order terms sharing suffixes)



and a binding tree structure

(+ well-formedness conditions between both)
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Instance relation
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Changes [permissions|




Instance relation

Weakening




The interior of a node n is the set of nodes, said inner n,
that are transitively bound at n.




It can be transformed locally, as long as the interface
(struture edges crossing the frontier) is maintained.
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They are graphic types extended with. ..

1) Existential nodes and unification edges




They are graphic types extended with. ..

2) Type schemes and instantiation edges

Use sorts Scheme and Type to constraint formation of edges



General picture

Constraints are given a meaning as a set of types that are solutions of
the constraints.

(Hence two constraints with the same meaning may have completely
different shapes, e.g. two unsolvable constraints are equivalent)

Constraints are also types. As such, they can be instantiated along L.



General picture

Constraints are given a meaning as a set of types that are solutions of
the constraints.

(Hence two constraints with the same meaning may have completely
different shapes, e.g. two unsolvable constraints are equivalent)

Constraints are also types. As such, they can be instantiated along L.

Definition:
A presolution of a constraint y is an instance of x
in which all constraint edge are solved.

A solution of y is of a the projection of a presolution of x



Projection of a constraint

1) Remove all existential nodes, 2) garbage collect from the root node,
3) remove all dangling edges.
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Projection of a constraint

1) Remove all existential nodes, 2) garbage collect from the root node,
3) remove all dangling edges.




A unification edge p prssss( g if p =g

Unification edges are solved by unification :-)



An instantiation edge s === m is solved if
the type at m matches the type scheme at s



An instantiation edge s====99% m is solved if
the type at m matches the type scheme at s
i.e. the unification of a copy of s with m leaves the constaint unchanged.



An instantiation edge s====99% m is solved if




A key property
A solvable constraint has a principal presolution,

i.e. an instance of the original constraint that is a presolution and
of which all other presolutions are instances.



x IF X’ if all solutions of y are solutions of /.



x IF X’ if all solutions of y are solutions of /.

In particular y IF ¥’ whenever y' C y
(X' is more constrained than yx.)

However, interesting entailments are not along L.

x 7 X' if the solutions of x are exactly the solutions of y’.



Unif-Elim

Solving unification edges

EXists-Elim

Elimination of existential nodes without inner constraints



Inst-Elim-Poly (Existential nodes and constraint edges also copied)
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Inst-Copy (Existential nodes and constraint edges also copied)
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s1 depends on sy if sy ====pp n and n IS iNNer sy.

A constraint y is admissible if the dependency relation is acyclic.
(Except for pathological cases, other cases do not have solutions).

Strategy for solving admissible constraints

Independent schemes may be solved first, by [nst-Elim-Poly

T he unification edge that is introduced may be solved immediately.

This way, no constaint edge is ever duplicated.
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We show type soundness in IMLF a fully implicitly typed
version of XMLF.



We show type soundness in IMLF a fully implicitly typed
version of XMLF.

XMLF is defined as II\/ILF, replacing C by C= everywhere
where CZ is (C U 3)*

No type inference and no principal types in II\/IL':

This changes the semantics of contraints, which have more
solutions. Entailment is incomparable.

Transformations rules of XI\/ILF are not not complete or not
sound in IMLF



Subject reduction means that — is a subrelation of [-]IF [-].

We show that [-]IF[-] satisfies the rules defining —.

Progress is easy.






Equivalence, by definition




Entailment, 7



Equivalence, Unification



Equivalence, by existential elimination



Entailment, by inverse instance



Entailment, by [nst-Bof],




Equivalence, decomposition of CH
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Entailment, just dropping constraints
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Equivalence, zooing on details.



Entailment, by Inst-Bof




ailas/x]

Equivalence, by definition,




Simpler, canonical definition of MLF.
Efficient, scalable type inference.

Generalizing type constraint for ML.
Makes type inference independent of the underlying language.

Good basis for further extensions:
higher-order types, recusive types, existential types, ...

Also to be explored: semi-unification problem for I\/ILF types.

See http://gallium.inria.fr/~remy/mlf/


http://gallium.inria.fr/~remy/mlf/

Appendices



Nodes/contexts are partitioned into four categories:
I irreversible
R€ explicitly reversible
R'  implicitly reversible
U unsafe.
They are uniquely determined by the binding tree.

R'-nodes are non-bottom nodes whose incoming binding edges all
originate from other R'-nodes.

The remaining nodes are further classified by looking at the sequence
of labels obtained from following their binding edges in the inverse
direction (starting from the root) in the automaton drawn here.



Relations

Grafting | Merging | Raising | Weakening
Instance L I IR LR I
Abstraction = — R R —
Similarity < - R R —

Decompositions

We may always treat types up to <, since (C U »=)* = (C; =

We may also (sometimes) treat types up to E, since (CU 3)* =

)



Applying

-
D :

See [Genl typing rule.




A revisited syntactic presentation of I\/IL':, with an interpretation of types
as sets of System-F types.

It justifies the choice of types and type instance.

We exhibit a correspondance with implicitly typed and explicitly typed
versions of I\/ILF

We encodes MLF into [E™Y (an extension of F with intersection types)

The instance relation is (slightly) enhanced by correcting artifacts of the
syntactic definition in the original relation.

However, this presentation is restricted to [Plain ML"] (types are stratified).
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Type Equivalence
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Type Instance
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A(y)let y=cuyyinyy

(2) by definition



(3) unification



(4) existential elimination



(5)



(6) by definition



(7) many steps



The End




