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Abstract
MLF is a type system that seamlessly mergesML-style type in-
ference with System-F polymorphism. We propose a system of
graphic (type) constraints that can be used to perform type infer-
ence in bothML or MLF. We show that this constraint system is a
small extension of the formalism of graphic types, originally intro-
duced to representMLF types. We give a few semantic preserving
transformations on constraints and propose a strategy for applying
them to solve constraints. We show that the resulting algorithm has
optimal complexity forMLF type inference, and argue that, as for
ML, this complexity is linear under reasonable assumptions.

Categories and Subject DescriptorsF.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type struc-
ture; D.3.3 [Programming Languages]: Language Constructs and
Features—Polymorphism, constraints; D.3.2 [Language Classi-
fications]: Applicative (functional) languages; E.1 [Data Struc-
tures]: Graphs

General Terms Algorithms, Design, Languages, Theory

Keywords System F, MLF, ML, Unification, Type Inference,
Types, Graphs, Type Constraints, Type Generalization, Type in-
stantiation, Binders.

Introduction
MLF [2] is a type system that combines the power of first-class,
System-F-style polymorphism with the convenience ofML type
inference.MLF is a conservative extension ofML. In particular,
all ML terms are typable inMLF. Moreover, the full power of
first-order polymorphism is also available, as any System-F term
can be typed by using type annotations (containing second-order
types). Still, as inML, all typable expressions having principal
types. Moreover, the set of well-typed programs is invariant under
a wide class of program transformations, including let-expansion,
let-reduction,η-expansion of functional expressions, reordering of
arguments, curryfication, and also “abstraction of applications”,
which means thata1 a2 is typable if and only ifapply a1 a2 is
(whereapply is λ(f) λ(x) f x). Furthermore, only lambda-bound
arguments that are used polymorphically need an annotation; this

[Copyright notice will appear here once ’preprint’ option is removed.]

makes it very easy for the user to predict where and which annota-
tions to write. Finally,MLF is an impredicative type system, which
allows embedding polymorphism inside containers; for example,
(∀ (α) α → α) list is a valid type, quite different from the weaker
∀ (α) ((α → α) list). A full comparison betweenMLF and other
extensions of SystemF can be found in [3].

Unfortunately, the power ofMLF has a price.MLF types are
more general than System-F types, making them look unfamiliar.
The original syntactic presentation ofMLF [2] is also quite techni-
cal, and most extensions of the system in this form would require a
large amount of work. Finally, the type inference algorithmbased
on syntactic types has obvious sources of inefficiencies andwe be-
lieve that it would not scale up well to large, possibly automatically
generated, programs.

Graphic typeshave been introduced as a simpler alternative to
the original syntactic types, in order to solve all three issues [9]. In
this work, we extend graphic types to address the question oftype
inference. We do not adapt the existing type inference algorithm [2]
by replacing its unification algorithm on syntactic types with the
new, more efficient unification algorithm on graphic types [9]:
repeatedly translating to and from graphic types would be both
inelegant and inefficient, loosing the quite compact representation
of graphic types. Moreover, we believe that the graphic presentation
is better suited for studying the meta-theoretical properties ofMLF.

Instead, we propose an entirely graphical presentation of type
inference. Additionally, we highlight the strong ties betweenMLF

andML by parameterizing our type inference system with the ac-
tual set of types that is being used, rediscovering a known efficient
type inference algorithm forML. Our approach is also constraint-
based, hence more general than just a particular type inference al-
gorithm: we introduce a set of graphic constraint constructs, and
define typing constraints in term of those.

Our contributions are as follows:

• We propose a small set ofgraphic constraints, featuring gener-
alization scopes, existential nodes, unification and instantiation
edges. We encode typing problems in terms of those, by defin-
ing a compositional translation fromλ-terms to constraints.

• We show that this system can be seen as a small generalization
of the formalism of graphic types.

• We show that our constraint system is in fact implicitly param-
eterized by the type system considered and the operation of tak-
ing an instance of a type scheme. We make this last operation
explicit for bothML andMLF, and (re)prove thatML is a sub-
system ofMLF.

• We give a semantics to our constraints, first by defining what it
means for a constraint to be solved, and then as a set of types.
We link solved constraints and fully decoratedλ-terms.
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• We identify a set ofacyclicconstraints, that include all typing
constraints, and have decidable principal solutions.

• We study the theoretical complexity of solving typing con-
straints and show that under reasonable assumptions, type in-
ference inMLF has linear complexity—as inML. We also ob-
serve that our algorithm has optimal complexity for bothML
andMLF type inference.

Outline of the paper We introduce a graphic presentation ofML
types, extend it to graphic constraints, and define a translation from
source expressions to constraints (§1). We give a brief overview
of MLF and graphic types, and show that graphic constraints are
an extension of graphic types (§2). We define what it means for
a graphic constraint to be solved, both inML andMLF (§3), and
present sound and complete transformations on constraints(§4).
We show that a large class of constraints have principal solutions
and introduce a strategy to reduce any such constraint to an equiv-
alent one in solved form (§5). We discuss type annotations inMLF

(§6). We show that our strategy for solving constraints leads to an
efficient implementation of type inference (§7). We presenta few
examples of typings in §8 and discuss related works in §9.

An online prototypeMLF typechecker and an extended version
of this paper with all proofs are available online athttp: //
gallium. inria. fr/ ~remy/ mlf/ .

1. Graphic types and constraints
1.1 ML Graphic types

τ1 →

⊥ →

⊥

τ2 →

→

⊥

→

⊥

τ3 →

→

⊥

→

τ ′
3

→

→

⊥

Figure 1. GraphicML types

ML graphic types are first-order (quantifier free)term dags. As
with first-order terms, every node is labeled with a symbol, the
arity of which determines the number of its successors. Symbols
contain at least the arrow→ of arity 2. Variable nodes are labelled
using a pseudo-symbol⊥ of arity 0. However, in first-order term
dags (as opposed to first-order terms), nodes may also be shared,
i.e. there may be differentpaths leading to the same node. Paths
are sequences of integers that are used to designate nodes. The
empty pathǫ designates the root node. Ifk designates noden, k · j
designates thej’th successor ofn. We often leave· implicit and
write 121 instead of1 ·2 ·1. For illustration, consider the typeτ1 of
Figure 1. The rightmost lowermost node (which is labeled with⊥)
can be designated by either path21 or path22: this is a shared node.
We write〈π〉 for the node designated by pathπ. An edge between
nodesn andn′ in τ is writtenn ◦−→τ n′ or n ◦−→ n′ ∈ τ ,r simply
n ◦−→ n′ whenτ may be left implicit from context. For example,
〈2〉 ◦−→τ1

〈21〉.
In ML graphic types, only sharing of variable nodes is signifi-

cant: sharing of inner nodes, such as〈1〉 in type τ ′
3, is not. Thus,

ML graphic types may always be unfolded and read back as trees.
However, before doing so, bottom nodes must all be relabeled, each
with a different type variable, so that all occurrences thatwere
shared in the graph representation become the same type variable
in the unfolding. For instance, the skeleton of the typeτ1 in Fig-
ure 1 represents theML type α → (β → β). Similarly, τ2 rep-
resents(α → α) → (β → β), while bothτ3 and τ ′

3 represent
(α→ α)→ (α→ α).

Type instance6 on ML graphic types captures almost entirely
the corresponding instance relation onML types. In particular,
τ1 6 τ2 6 τ3 6 τ ′

3 holds. However,6 is oriented so that it allows
only more sharing; thusτ ′

3 6 τ3 does not hold, even though theML
types they represent are equal. This permits a simpler definition of
6, thus simpler reasonings1. We then prove that all our results hold
when types are equal up to asimilarity relation≈ that captures
sharing of inner nodes (i.e.τ3 ≈ τ ′

3 holds).
Notice that6 can be decomposed into two more atomic rela-

tions,graftingandmerging. Grafting adds a subgraph under a vari-
able node. For example,τ2 is obtained fromτ1 by grafting under
〈1〉 the graphic type representingγ → γ. Merging shares some
nodes, which need not be variable nodes. For example,τ3 results
from sharing nodes〈11〉 and 〈21〉 in τ2, while τ ′

3 is obtained by
sharing〈1〉 and〈2〉 in τ3.

1.2 (Graphic) type schemes and generalization

Central toML type inference is the notion of generalization:

Γ ⊢ e : τ α does not appear free inΓ

Γ ⊢ e : ∀ (α) τ
GEN

We will use the same mechanism in graphic type inference. To this
effect, we introduce a new type constructorG of arity one. A G-
node has a double role:

• It is used to indicate where polymorphism is introduced. For
that purpose, we introduce abinding edge2 leaving from each
bound variable to the G-node where it is bound. Thus a G-node
can be seen as representing atype scheme.

• It will be safe to generalize any variable node introduced inthe
scope of a G-node at the level of this node. Thus, G-nodes can
be seen as modelinggeneralization scopes.

G-nodes will in particular be used to typelet constructs, and we
need to be able to to nest them. However, they belong to the con-
straint and should not be part of the type structure. Both require-
ments can be fulfilled by binding every G-node to the outer G-node
where it has been introduced and accessing it only through its bind-
ing edge (except for the toplevel node, at the root).

χ G

g G

→

⊥

→

⊥

χ′ G

g G

→

⊥

→

⊥

χ′′ G

g G

→

⊥

→

Figure 2. Constraints with generalization scopes

Figure 2 shows three constraints, each containing twoG-nodes,
the root〈ǫ〉 and the nodeg, bound at〈ǫ〉. We extend the syntax
of paths to allow named nodes such asg. For example, in all three
constraints the rightmost lowermost bottom node can be designated
by either 〈g · 1 · 2〉, 〈1 · 1〉 or 〈1 · 2〉. In the figures, binding
edges are dotted oriented lines. In the text, we usen ≻−→χ g or
n ≻−→ g ∈ χo say thatn is bound atg in χ (we often leaveχ
implicit from context). Given a noden in χ, there is at most oneg

1 This also makes our definitions closer to (usual) implementations, which
use a union-find based representations of types.
2 Using binding edges instead of a sequence of explicit∀ nodes have many
advantages; in particular we gain commutation of adjacent binders and
removal of useless quantification for free.
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such thatn ≻−→ g, called thebinderof n, and written≻n. In all three
constraints of Figure 2, we haveg ≻−→ 〈ǫ〉 and 〈11〉 ≻−→ 〈ǫ〉.
Notice that binding edges do not count in arities: inχ, 〈1〉 is the
rightmost arrow node, notg.

The nodeg of constraintχ represents the type scheme∀ (α)
α → β, whereβ is a free variable represented by the node〈11〉
that is bound aboveg; conversely, the node〈g11〉 representing
α is bound atg. By contrast, in the constraintχ′, both variables
are bound aboveg, henceg represents the typeα → β, which
is monomorphic in the context ofg. The root node represents the
same type∀ (β) β → β in all three constraints.

G-nodes can only appear under the G-node to which they are
bound. Constraints are therefore stratified: all G-nodes are at the
top-most part ofχ, above thetypenodes of the constraint.

The instance relation6 on ML graphic types can be extended
to an instance relation⊑ on graphic constraints as follows: we
allow any transformation along6 at every type node, except that
nodes can only be merged if they have the same bound. In parallel,
we introduce a third instance operation that consists inraising a
binding edge along another one,i.e.replacing the bounds of a node
n by the bound ofs. This results in extruding the polymorphism
to the enclosing generalization scope. Readers familiar with rank-
basedML type inference [7, 8] can recognize the similarity between
raising and adjusting the ranks of two variables about to be unified.

As an example, consider nodes〈g11〉 and 〈g12〉 in Figure 2.
In χ, they cannot be merged. However, node〈g11〉 can be raised,
resulting in the constraintχ′. The merging is now possible, and
results in the constraintχ′′. In summary, we haveχ ⊑ χ′ and
χ′ ⊑ χ′′, and thereforeχ ⊑ χ′′ by transitivity.

1.3 Constraint edges and existential nodes

In order to perform type inference, we only need three more con-
structs: unification and instantiation constraints (both being mod-
elized usingconstraints edges) and existential nodes.

A unification edgen1 n2 links two type nodes and means
that n1 and n2 should be unified. Unification edges whose two
extremities are the same node are implicitly removed.

An instantiation edgeg n relates a G-nodeg to a type node
n. It requires the type undern to be an instance of the type scheme
represented byg. The exact definition of “being an instance” will
be given in §3.1.

Existential nodes are type nodes that are only part of the con-
straint structure. Usually they are nodes in which we are notinter-
estedper se, but only indirectly, in order to constrain other nodes.
For example, the typing of an applicationa1 a2 requiresa1 to be
arrow typeτ such that the domain ofτ is also the type ofa2. How-
ever, we are eventually only interested in the type resulting from
the application,i.e. the codomain ofτ . We thus introduce the arrow
node ofτ as an existential node.

χ G

G

g

→

⊥

int

n′

→

n

⊥ ⊥

χp G

G

→

⊥

→

int

χ′
p G

G

→

⊥

→

int

Figure 3. Typing id 1

Examples of constraints are given in Figure 3. The constraint χ
is the typing ofid 1, whereid is the identity function. The leftmost
G-nodeg represents the type scheme∀ (α) α → α of id. The
root G-node represents the typing constraint for an application,

as explained above. In particular,n is an existential arrow node
constrained (through an instantiation edge) to be an instance of the
G-nodes. Finally,n′ is an existential node that represents the type
int of 1 and constrains (through a unification edge) the domain of
n to be an integer.

Neither the instantiation nor the unification constraints are
solved inχ. The unification constraint can be satisfied by graft-
ing the typeint under〈n1〉 and merging this node withn′. The
instantiation constraint can be solved by taking as an instance of
∀ (α) α → α, the identityβ → β itself, and unifying this type
with n (thus merging〈n1〉 and 〈n2〉). The resulting constraint is
depicted byχp. In particular, the type of the application is the type
scheme represented by〈ǫ〉, in this case the ground typeint.

About unbound nodes So far, we have only bound variable nodes
and G-nodes. However, this approach lacks some homogeneity, and
we instead choose to bind all nodes explicitly to the G-node they
belong to. A fully-bound version ofχp in Figure 3 isχ′

p.

1.4 Putting it all together: typing constraints

Let x range over a denumerable set of variables. Expressions are
those of theλ-calculus enriched withlet bindings. As usual, the
expressionsλ(x) a andlet x = a′ in a bindsx in a but not ina′.

a ::= x | λ(x) a | a a | let x = a in a

To represent typing problems, we use a compositional translation
from source terms totyping constraints. We introduceexpression
nodesas a meta-notation standing for the constraint the expression
represents. An expression node is represented by a rectangular box
in drawings. Expression nodes receive from the typing environment
a set of constraint edges, meant to constrain the nodes correspond-
ing to the free variables of the expression. Each edge is labelled by
the variable it constrains. In drawings we represent such a set of
edges as a blue edge , often leaving the labels implicit.

Expression nodes can be inductively transformed into simpler
constraints using the rules presented in Figure 4. We followthe log-
ical presentations ofML type inference, where generalization can
be performed at every typing step,i.e. not only atlet constructs3.
Thus each basic expression is typed in a generalization scope, and
the root of a basic constraint will always be a G-node. We have
drawn those nodes in the right-hand sides of Figure 4 in orderto
disambiguate the origin of edges.

• A variable x is typed as the universal type scheme∀ (α) α.
That is, it is a G-node whose child is a bottom node bound on
the G-node. The bottom node is constrained by the unique edge
annotated byx in the typing environment (if there is no such
edge, the constraint is not closed, thus untypable).

• A let-binding let x = a1 in a2 is typed asa2 plus some
constraints onx. The generalization scope fora1 is introduced at
the level ofa2. The (free) variables ofa1 anda2 are constrained
by the typing environment, except forx in a2 which must be an
instance ofa1.

• An abstractionλ(x) a is typed as a type scheme containing an
arrow type. The codomain of the arrow must be an instance of
a. The variables ofa are constrained by the typing environment,
except forx that must unify with the domain of the arrow.

• An applicationa1 a2 is typed as the codomain of an arrow type
existentially introduced. The domain of the arrow is constrained
so that it is an instance of the type ofa2, while the arrow type
itself must be an instance of the type ofa1. Both sub-expressions
are constrained by the typing environment.

3 It is well-known that, forML, both presentations are equivalent. However,
this is not the case forMLF.
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xX
⇓
G

⊥

x ∈ X

let x = a1 in a2

⇓
G

a2

G

a1

x

λ(x) a

⇓
G

→

⊥ G

a
⊥x

a1 a2

⇓
G

G

a1

G

a2

→

⊥ ⊥

Figure 4. Typing of primitive expressions

Figure 5 shows the steps transforming the expression node for
λ(x) λ(y) x into a typing constraint. Notice that, in the middle
constraint, the expression node forx receives two unification edges,
one forx and one fory. However the unification edge fory is not
useful, and is ultimately dropped sincey is not free inx.

λ(x) λ(y) x

G

→

⊥ λ(y) x ⊥

x

G

→

⊥ G

→

⊥ x ⊥

⊥

x

y

G

→

⊥ G

→

⊥ G

⊥

⊥

⊥

Figure 5. Typing constraints forλ(x) λ(y) x

2. An overview ofMLFand MLFgraphic types
2.1 MLF types

CombiningML-style type inference with System-F polymorphism
is difficult, as type inference in the presence of first-classpolymor-
phism leads to two competing strategies: should types be kept poly-
morphic for as long as possible, or conversely, for as short as pos-
sible? Unfortunately, those two paths are not confluent in general,
leading to two correct but incomparable types for an expression
(assuming equal types for their subexpressions).

As an example, consider the expressionchoose id, whereid has
type∀ (α) α→ α (which we refer to asσid ) and wherechoose has
type∀ (β) β → β → β. In SystemF, we can give this application
both types∀ (γ) (γ → γ)→ (γ → γ) andσid → σid . Yet, neither
one is more general than the other.

To solve this problem,MLF enriches types with a new form of
(bounded) quantification:choose id receives the type∀ (α > σid )
α → α. Notice that both the inner polymorphism ofσid → σid

and the fact that both occurrences ofσid are linked are retained.
The variableα is allowed to range over all possible instance of its
boundσid , as indicated by the sign>. We say it isflexiblybound.
Of course, the two occurrences ofα on both sides of the arrow must
simultaneously pick the same instance: the weaker the argument,
the weaker the result. The idea is to keep types as polymorphic
as possible, in order to be able to recover later—just by (implicit)
instantiation—what they would have been if some part had been
instantiated earlier.

This form of quantification, while expressive, is not yet suffi-
cient. For example, consider the termλ(id : ∀ (α) α → α)
(id 1, id ’c’ ). It is not typable inML, as the variableid is used on
two arguments with incompatible types,int andchar. In SystemF,
it can be given the typeσid → int × char. However, it would be
incorrect to give it theMLF type ∀ (α > σid ) α → int ∗ char,
as this type could be instantiated to(int → int) → int ∗ char,
which would erroneously allow the application of the successor
function to a character. Therefore,MLF introduces another form
of quantification, calledrigidly-bounded quantification and writ-
ten with an “=” sign. The above term can be given the type
∀ (α = σid ) α → int ∗ char. Rigid quantification is used when
polymorphism isrequired, as rigid bounds will never be weakened
by instantiation.

2.2 MLFgraphic types

Sharing inside types is of paramount importance inMLF. For exam-
ple, the types∀ (α > σ) ∀ (β > σ) α→ β and∀ (γ > σ) γ → γ
are quite different—the former being more general than the latter
as it can pick different instances ofσ for α andβ.

MLF graphic types have originally been introduced in part to
directly capture these notions inside the representation of types [9].
They also provide a more canonical representation of types,and
permit a straightforward definition of the type instance relation
between types.

→

MLFgraphic type

→

⊥

→

⊥

= →

Its skeleton

→

1

⊥

21

→

2

⊥

21

+ →

Its binding tree

→

⊥

→

⊥

σ = ∀ (α) ∀ (β = ∀ (γ) γ → γ) ∀ (δ > α→ α) β → δ

Figure 6. An example ofMLFgraphic type

MLFgraphic types can be decomposed into a first-order quanti-
fier free skeleton (i.e. anML graphic type), and abinding treethat
tells for every nodewhereandhow it is bound. Figure 6 shows an
example of such a decomposition.

The binding tree represents the quantifiers. As in graphic con-
straints, we use edges rather than nodes for quantifiers, as it leaves
the structure invariant by extrusion of quantifiers. All nodes have a
binder. (Bottom nodes, which represent variables, must be bound.
Binding non-bottom nodes that are themselves bounds of other
nodes is important to keep precise track of sharing and instantia-
tion permissions, as described in the next section. Bindingnodes
that are not themselves bounds of other nodes is not strictlyneces-
sary, but convenient for the regularity of the presentation.)

We use the notation≻−→ for binding edges, as in graphic con-
straints. However, we must distinguish between flexible andrigid
quantification. Flexible quantification allows instantiation, as in
ML, so we (re)use dotted edges. Rigid quantification uses dashed
edges, as for node〈1〉 in Figure 6. When the nature of binding
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edges is unimportant, we draw them as dotted-dashed lines. In the
text we writen >≻−→ n′ andn =≻−→ n′ for flexible and rigid edges
respectively, or asn ⋄≻−→ n′ where⋄ stands for either> or =.

We write◦−≺χ for (◦−→χ) ∪ (←−≺χ) calledmixed edgesand
often leaveχ implicit from context. Let−→ range over◦−→,
≻−→ and◦−≺. We write

∗−→ and
+−→ for the reflexive, transitive,

and transitive closures of−→, respectively. (In drawings, we also
use and for

+−→ and
∗−→, to be less intrusive.) We

write (N −→) for {n′ | ∃n ∈ N, n −→ n′}. The domain of
the constraintχ, written dom(χ) is the set of nodes〈ǫ〉 ∗←−≺χ

reachable from the root node by inverse binding edges.
All superpositions of a graphic type with a binding tree do not

form an MLF graphic type. Indeed, the resulting graph must be
well-dominated: the binder of a noden must dominaten for the
relation +◦−≺. In essence, well-domination ensures that scopes are
properly nested. The same property must actually hold in graphic
constraints: in Figure 3, binding〈g1〉 at the root inχ′

p would have
been incorrect. Indeed,g, the binder of〈g11〉, would not have
dominated〈g11〉 (as shown by the path〈ǫ〉 ←−≺ 〈g1〉 ◦−→ 〈g11〉).

2.3 The instance relation

Grafting
F ⊥ ⊑G ·

τ

Weakening

·

FI ·
>

⊑W ·

·
=

Merging

·

FRI c

π⋄

τ

c FRI

π′ ⋄

τ

⊑M ·

c

π π′⋄

τ

Raising

·

·
⋄′

FRI ·
⋄

⊑R ·

·
⋄′

·

⋄

Figure 7. Instance operations

The instance relation onMLF types⊑ is defined as the compo-
sition of the atomic instantiation steps described schematically in
Figure 7. That is,⊑ is the relation(⊑G ∪ ⊑M ∪ ⊑R ∪ ⊑W )∗.
The annotationsF, FI, andFRI are explained next.

GraftingandMergingoperate on the underlying term structure,
as in ML graphic types. Grafting replaces a bottom node (i.e. a
variable) by an arbitraryMLF type. Merging fuses two isomorphic
subgraphs, as in∀ (α ⋄ τ ) ∀ (β ⋄ τ ) α→ β ⊑M ∀ (α ⋄ τ ) α→ α.
RaisingandWeakeningoperate on the binding tree. As in graphic
constraints, raising extrudes a binder to the enclosing scope. If we
consider theMLF type∀ (α > ∀ (β) β → β) α→ α of choose id,
raising the variableβ gives∀ (β) ∀ (α > β → β) α → α (which
is equivalent to the System-F type∀ (β) (β → β) → (β → β)).
Weakening turns a flexible binding edge into a rigid one, in order
to require polymorphism.

Taking an instance of a type isimplicit. Thus,⊑must not solely
be sound with respect to the reduction of terms, but also permit
type inference. Indeed, a relation⊑ too expressive would allow—
thus require, for principality—guessing polymorphic types, making
type inference undecidable [13]. InMLF,⊑ is the restriction of such
a larger instance relation≤. The operations in≤ \ ⊑ are available
explicitly, through the use of user-provided type annotations.

Permissions The instance operations presented in Figure 7 are
only sound in certain contexts. The transformations allowed on a
node depend mainly on the context in which the node appears,
which we may abstract as the nodepermission. It is a key point

of MLF that permissions depend only on the binding tree—in par-
ticular, they are independent of the variances of type constructors.
There are three permissions:flexible, rigid, and locked,
abbreviated by their first letter. A node with permission
x is said to be anx-node. The permission of a noden
is obtained by following the binding edges linking the
root to n in the automaton opposite. Notice that the au-
tomaton follows binding edges in the inverse direction of
the one in drawings. For instance, for node〈11〉, the au-

F

R

L

tomaton starts in the initial stateF and ends in the stateL, since
〈ǫ〉 =←−≺ 〈1〉 >←−≺ 〈11〉; hence this node is anL-node. Node〈1〉 is
anR-node. All other nodes areF-nodes.

We may now give an exact description of which transformations
are allowed at which node. We also provide intuitions, although a
complete justification is beyond the scope of this paper.

Flexible edges are roughly the analogous ofML quantification
and indicate where polymorphism is provided. Thus, by design, F-
nodes allow all forms of instantiation.

In contrast, rigid edges are used to require polymorphism. Con-
sider the graphic type of Figure 6. It corresponds to the System-F
type∀ (α) (∀ (γ) γ → γ) → (α → α). A function of this type
cannot in general be treated as a function of type∀ (α) τ → α →
α whereτ is an arbitrary instance of∀ (γ) γ → γ, because at least
this amount of polymorphism is required. Hence, an instanceoper-
ation under theR-node〈1〉, such as grafting theL-node〈11〉, must
not be allowed. More generally, grafting and merging of variables
underR-nodes is unsound and forbidden, as well as any operation
that would allow them indirectly.

On the contrary, the inverse of an instance operation could in
principle be applied under node〈1〉. However, allowing operations
in the inverse direction would not permit type inference based
on first-order unification. Therefore, the allowed transformations
are the restriction of sound transformations with⊑ and we only
allow≥ ∩ ⊑, called abstraction and written⊏−, under rigid nodes.
Abstraction only permits merging and raising of nodes with rigid
bindings, i.e. R-nodes. In particular, abstraction does not permit
grafting or weakening, as they would be unsound (or impossible)
atR andL nodes.

There is however one exception to this definition of abstraction.
An operation at a noden can be unsound only if there exists a vari-
able noden′ that is (transitively) flexibly bound ton. Otherwise,
there is either no polymorphism atn, or it is protected by a rigid
edge belown. Formally, a noden is said to beinert and called an
I-node, if for any variable noden′ such thatn′ ∗≻−→ n, there is
at least one rigid edge betweenn′ andn; all operations are sound
at inert nodes. (Notice however that inner nodes cannot be vari-
ables and thus cannot be grafted.) Inert nodes includemonomor-
phic nodes, on which no variable node is bound at all (for example
all the nodes in a graphic representation ofint→ int).

One can now reread the definition of⊑ in Figure 7 with permis-
sions in mind.FI abbreviatesF or I, FRI abbreviatesF or R or I. For
example, weakening can be performed at flexible or inert nodes.

2.4 Graphic constraints as an extension of graphic types

Instead of as an independent formalism, we choose to see graphic
constraints as a small extension ofMLF graphic types. This avoids
the introduction of a new framework for constraints, and allows
reusing all the results already established on graphic types.

G-nodes We addG to the algebra of type constructors and in-
troduce two sortsScheme andType. The symbolG has signature
Type ⇒ Scheme while all others have signatureTypen ⇒ Type
(wheren is the symbol arity); thusG-nodes cannot appear under
nodes of sortType, calledtype nodes. All constraints must be well-
sorted, and we requireG-nodes to be flexibly bound. In the follow-
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ing, the root of a constraint is always aG-node. We let the letterg
range overG-nodes.

Unification edges A unification problem over graphic types is the
pair of a graphic type and an equivalence relation on its nodes. A
solution of a unification problem is an instance of the type that
makes the nodes equivalent for this relation [10]. This subsumes
the simpler problem of unifying two independent types. Unification
edges are a graphic representation of a unification problem.

On a large class of problems, calledadmissible, unification is
principal; i.e.an admissible problem admits a solution from which
all other solutions are instances. We slightly extend the definition
of admissibility for graphic constraints:

DEFINITION 1. We say that a unification edgen1 n2 is
admissibleif either it is admissible on graphic types orn1

+≻−→ g
andn2 ≻−→ g′ whereg andg′ are G-nodes. �

We require unification constraints to relate two type nodes (the
unification of two G-node would have no meaning), and to be
admissible.

Existential nodes Existential nodes are nodes that are not reach-
able when following only structure edges. Formally,n is existen-
tial if n and≻n are not in the same partition for the relation∗◦−→.
Existential nodes can be of any sort. However, we require allex-
istential nodes to be bound on G-nodes. Without this restriction, a
transformation that could be applied to a constraintχ would not be
applicable to a constraintχ′ derived fromχ by adding some un-
constrained existential nodes, thus making reasoning in the system
quite difficult.

The restrictions onG-nodes and existential nodes imply that
the binding structure above an existential type noden is n ⋄≻−→
(G >≻−→)∗〈ǫ〉, and allG-nodes have flexible permissions.

LEMMA 1. Any node reachable (by a mixed path) from a type node
is a type node. �√

(Proof p. 15)

Instantiation edges An instantiation edgeg n must connect
a G node to a type node. We also requiren to be bound on aG-
node (otherwise our system would not be stable by the operation of
taking the instance of a type scheme).

We introduce three operators for transforming constraints.

DEFINITION 2. Letχ be a constraint andN a subset of its nodes.
Therestrictionof χ to N , writtenχ ↾N , is the subgraph composed
of all the nodes ofN and all edges between two nodes ofN . The
removalof N from χ, written χ \ N , is the restriction ofχ to
dom(χ) \N , i.e.all the nodes ofχ but those inN .

The projectionproj (χ) of χ is the constraint obtained by re-
moving all unification and instantiation edges fromχ. �

MLF and ML constraints From now on, we distinguishMLF

constraints (that use the full range ofMLFgraphic types), fromML
constraints in which types are restricted toML graphic types. That
is, ML constraints are constraints in which all nodes have flexible
binding edges, and all type nodes are bound on a G-node.

Typing constraintsare the subset of constraints generated from
λ-terms by the rules of Figure 4. It is straightforward to verify that
they verify all the well-formedness conditions above. Moreover,
they areML constraints: the typing constraints areexactlythe same
in both systems.

PROPERTY1. Typing constraints are well-formedML and MLF

constraints. �

The instance relation on graphic constraints is essentially the
instance relation⊑ on graphic types, and we use the same symbol
for both.

DEFINITION 3. Two constraintsχ andχ′ are such thatχ ⊑ χ′ if
χ andχ′, viewed as graphic types, are in instance relation, and the
binding structure of G-nodes is the same inχ andχ′. �

Said otherwise, G-nodes, which encode the shape of the constraint,
cannot be merged, raised or weakened.

3. Semantics of constraints
3.1 Expanding a type scheme

An instantiation constraintg n requiresn to be an instance
of the type scheme underg; hence, we must define what are the
instances ofg. Of course, we must take into account generalization
scopes. In essence, nodes bound aboveg are not generalizable,
while those bound under are. We use a uniform characterization
for bothML andMLF.

DEFINITION 4. Theconstraint interiorof a noden, writtenC(n),
is the set(n ∗←−≺) of all nodes transitively bound ton. The
structural interior, writtenI(n), is the restriction of the constraint
interior to nodes structurally reachable fromn, i.e.C(n)∩(n ∗◦−→).

The structural frontier of a noden, written F(n), is the set
(I(n) ◦−→) \ I(n) of the nodes outsideI(n) with a structural
immediate predecessor insideI(n). �

We write Cχ(n), Iχ(n) andFχ(n) when there is an ambiguity
on χ. Notice that in anML constraint,n ∈ I(g) implies in fact
n ≻−→ g.

As an example, consider the first constraint of Figure 9. Let us
focus at noden first. Its constraint interior is composed of itself
andp2. The nodep1 is not in the interior as it is bound aboven.
The structural frontier ofn is composed of the nodesp1 and f ,
reachable fromn andp2 respectively. If we considerg, its structural
interior is composed ofg, n, p1, andp2 while its constraint interior
(in light green) also contains the leftmost existential arrow node.

Notice thatn ∈ I(n) andn ∈ C(n); I(n) is reduced to{n}
when all the children ofn are bound strictly aboven.

The structural interior of a G-nodeg represents the nodes gen-
eralizable at the level ofg. Conversely, it would be unsafe to gener-
alize the nodes in the structural frontier or the nodes below. Thus,
in order to take an instance ofg:

• We copy the skeleton of the structural interior ofg. The shape
of the binding tree depends on whether we perform expansion
in MLF or in ML, as binding tress forML are more restrictive
than forMLF.

• For each noden in the structural frontier we introduce a fresh
bottom node connected to the original noden by a unification
edge. This ensures that all instances ofg will sharen. (Reusing
n directly would result in ill-dominated constraints.)

The creation of a fresh instance of a type scheme is calledexpan-
sion. It must be given a “destination” G-node where to bound the
nodes created by the expansion. Expansion is slightly less general
in ML than inMLF, as types inML are more constrained than types
in MLF. The difference will be explained through examples below.

DEFINITION 5 (MLFandML expansion).Let g andg′ be two G-
nodes of a constraintχ. Let n be 〈g · 1〉. Theexpansion ofg at g′

is derived fromχ by:

• adding a copy ofproj (χ ↾ (I(g) ∪ F(g) \ {g})). The copy of
a nodep is calledpc;
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• for every nodef in F(g), changingfc into a bottom node
flexibly bound atg′ and adding the unification edgef fc;

• for every nodep ∈ I(g) such thatp ⋄≻−→ g, adding the binding

edgepc ⋄
′≻−→ p′, where

in ML, (⋄′, p′) is (⋄, g′) (notice that⋄ is necessarily>)
in MLF, (⋄′, p′) is (⋄, nc) if p is notn, or (>, g′) if p is n.�

An illustration of anMLF expansion is given as the left constraint
in Figure 9. The right-hand side of the constraint is the result of
expanding the G-nodeg atg′. We have highlighted the nodes to be
copied (n, p1, p2 andf , on the left) in dark blue and their copies
(nc, pc

1, pc
2 andfc, on the right) in red.

Notice that existential nodes and inner constraints are ignored
during expansion (as is illustrated by the unification edge between
p1 andp2 in Figure 9). Indeed, expansion is concerned with the
type structure, not with the constraint structure.

Degenerate type schemesAn interesting subcase occurs whenn
is not bound ong (which implies, by well-domination, thatI(g) is
reduced to{g}). In this case,g introduces no polymorphism, and
there is no generic part to expand. Hence, onlyn is copied, but the
copy will ultimately be unified withn itself (as illustrated in the top
constraint on the right of Figure 9). We say thatg is degenerate.

ML versusMLF expansion Consider the constraintχ′ in Fig-
ure 8. Disregarding the unification edges onn1 andn2 for now,
the constraintχ′e shows the result of performing anML expansion
of g at 〈ǫ〉 (undern1, in blue), and then anMLF expansion (under
n2, in red). The difference lies in the binders of〈n1 ·1〉 and〈n2 ·1〉,
which we have highlighted. In theML expansion,〈n1 · 1〉 is bound

on 〈ǫ〉. However, in theMLF expansion〈n2 · 1〉 is bound onn2,
creatinginner polymorphism, forbidden inML.

Notice that, by definition,MLF expansion is always more gen-
eral thanML expansion: the former can be obtained from the latter
by performing a few raisings afterwards.

PROPERTY2. Consider anML constraint χ, g and g′ two G-
nodes. LetχML (resp.χ

MLF
) be the result of performing anML

(resp.MLF) expansion ofg at gc in χ. Thenχ
MLF
⊑ χML. �

3.2 Meaning of constraints

We are now ready to give a meaning to constraints, and start by
characterizing solved constraint edges. An instantiationedge is
solved when a fresh instance of the type schemematchesthe target
of the edge,i.e. it unifies with the target without changing the
constraint.

DEFINITION 6 (Propagation).Let e be an edgeg n of
a constraintχ. We call propagation of e in χ, written χe, the
constraint obtained by expandingg at ≻n, and adding a unification
edge betweenn and the root of the expansion. �

Intuitively, propagation enforces the constraint imposedby an in-
stantiation edge by forcing the unification of a copy of the type
scheme with the constrained node. For example the constraint χ′e

in Figure 8 results from performing both anML and anMLF prop-
agation on the unique instantiation edge ofχ′.

DEFINITION 7 (Solved constraint edge).A unification edge ofχ
is solved if its two extremities are merged. An instantiation con-
strainte of χ is solved ifχe ⊑ χ. �

DEFINITION 8. A presolutionof a constraintχ is an instanceχp

of χ in which all constraint edges are solved. Asolution of χ
is a typeτ , witnessedby a presolutionχp of χ, for which the
instantiation edge in the solution-testing constraint of Figure 9 is
solved. �

In essence, solutions are all the possible types that are instances of
the expansion of a presolution.

DEFINITION 9. Themeaningof a constraint is the set of its solu-
tions. A constraintχ entails a constraintχ′ if the meaning ofχ
contains the meaning ofχ′. Two constraints areequivalentif they
have the same meaning. We write
 and⊣⊢ for entailment and
equivalence of constraints. �

It follows from the semantics of constraints that instantiation re-
duces the set of solutions,i.e. if χ ⊑ χ′, thenχ′ 
 χ. Instan-
tiation may sometimes preserve the meaning; however it usually
does not, and a constraint may become unsolvable by instantiation.
Conversely, many constraints not in instance relation may have the
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same meaning—for example, constraints having different binding
structure forG-nodes (i.e. constraint shape), as this structure is in-
variant by instantiation.

Examples Consider the constraintχ in Figure 8. (We will prove
in the next section that it is equivalent to the last constraint pre-
sented in Figure 5. Hence, it encodes the typing ofλ(x) λ(y) x.) In
a first step, we can solve the unification edge by raising node〈g12〉
and merging nodes〈11〉 and〈g12〉, which results inχ′. However,
this is not a presolution: the constraints imposed by the instantia-
tion edge are not solved.

Further instantiationsχ
MLF

, χML andχ′
ML are presolutions of

χ, as can be verified by performing an instantiation test. (We have
highlighted the differences between the three constraints.) Notice
thatχ

MLF
is not a presolution inML, as it contains inner polymor-

phism: node〈121〉 is not bound on〈ǫ〉. However, bothχML and
χ′

ML are MLF and ML presolutions ofχ. Interestingly,χ
MLF
⊑

χML ⊑ χ′
ML holds. In fact,χ

MLF
is the principal presolution ofχ

in MLF (as we will prove in §5).
The types corresponding to the expansions ofχ

MLF
, χML and

χ′
ML areτ

MLF
, τML andτML respectively. Henceτ

MLF
andτML are

solutions ofχ (as are all their instances). The graphic typeτML

corresponds to the syntactic (ML) type∀ (α) ∀ (β) α → β → α,
while τ

MLF
represents∀ (α) ∀ (γ > ∀ (β) β → α) α → γ. This

second type corresponds roughly to the System-F type∀ (α) α →
(∀ (β) β → α), with the additional possibility of instantiatingβ.

Presolutions and explicitly typed termsIn our formalism, preso-
lutions are interesting objects in their own right. Indeed,they can
be seen as encoding an entire typing derivation. Given aλ-terma
and a presolutionχp of the typing constraint corresponding toa,
χp can be used to obtain a version ofa where all type information
is fully explicit. Of course, different presolutions will give different
decorations ofa. (This correspondance should help with the defini-
tion of a Church-style version ofMLF, which is ongoing work.)

Notice that the typing ofλ(y) x in Figure 8 is quite different in
χML andχ′

ML. In χML it is polymorphic in its argument, while it
is not inχ′

ML: node〈g11〉 is bound ong (i.e. to the generalization
scope corresponding toλ(y) x) in χML, and to〈ǫ〉 in χ′

ML. This
difference is reflected in the correspondingλ-terms in SystemF:

χML : Λα. Λβ. λ(x : α)
(Λγ. λ(y : γ) x) [β]

χ′
ML : Λα. Λβ. λ(x : α)

λ(y : β) x

9

>

=

>

;

∀ (α) ∀ (β) α→ β → α

Notice that, by construction, each type variable introduced by aΛ
corresponds to a node bound on a G-node. For example, inχML, α
is 〈11〉, β is 〈121〉 andγ is 〈g11〉. In this simple case, the twoλ-
terms areβ-convertible (at the level of types). Of course, this does
not hold for all presolutions. For example, another typing for χ is
∀ (β) int→ β → int (obtained by graftingint under〈11〉 in χML),
resulting in aλ-term that is notβ-convertible to the ones above.

RelatingML andMLF It is immediate to prove thatMLFextends
ML. Indeed, theML instance relation is a subrelation of the one in
MLF, and Property 2 implies thatn instantiation edge solved in the
ML sense is also solved in theMLF sense (asMLF expansions are
more general).

PROPERTY3. All ML (pre)solutions areMLF (pre)solutions. �

Interestingly,MLF presolutions containing only flexible edges can
always be transformed by raising intoML presolutions. Thus flex-
ible quantification alone is not significantly more expressive than
ML quantification; it just gives more general types—and more op-
portunities to use rigid quantification.

G
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→

⊥
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→

→
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INST-ELIM -MONO
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Figure 10. Simplifying unconstrained existential nodes and de-
generate instantiation edges

PROPERTY4. Consider anML constraintχ with anMLFpresolu-
tion χp in which all binding edges are flexible. Then there exists
MLF solutions ofχ witnessed byχp that areML types, and those
types are alsoML solutions ofχ. �

(Proof p. 15)

4. Reasoning on constraints
We now present a few transformations on constraints that preserve
sets of solutions; most of them also preserve sets of presolutions—a
much stronger result.

4.1 Preserving presolutions

While we are ultimately interested in proving that constraints have
the same set of solutions, we often show the stronger result that
presolutionsare preserved by instantiation. We writeχ 
p χ′ to
mean that every presolution ofχ is a presolution ofχ′.

LEMMA 2. Considerχ and χ′. Thenχ 
p χ′ iff χ′ ⊑ χp holds
for any presolutionχp of χ. �

(Proof p. 16)

4.2 Unconstrained existential nodes

Existential nodes are meant to introduce constraint edges.Once
those edges have been solved, the existential nodes become useless,
and can be eliminated. Implementation-wise, this allows saving
memory; it also permits to reason on simpler constraints.

DEFINITION 10. Letn be an existential node of a constraintχ such
that no node inC(n) is the origin or the target of a constraint edge.
We callexistential elimination ofn in χ the constraintχ \ C(g).�

We refer to this operation as EXISTS-ELIM . An example is shown
in Figure 10, where existentially eliminating the nodesg1 andg2 in
χ (whose constraint interiors are highlighted) givesχ′.

Let us write∃E for a an existential elimination, and∃I for the
inverse operation.

LEMMA 3. Atomic instance⊑1 and existential introduction com-
mute. �

(Proof p. 16)

Note that this property wouldnot hold if G-nodes could be raised,
as examplified in Figure 11.

This result is also of particular importance to us, as it means we
can locally reason on constraints without existential nodes—hence
reusing all results obtained on graphic types [10]

For existential elimination, we must distinguish the caseswhere
the instance transformation occurs inside the part being eliminated.
Also, if the interior of the node being eliminated is changed(by a
raising), more than one elimination might be needed.
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Figure 11. Non-commutation of instance and existential introduc-
tion whenG-nodes can be raised

LEMMA 4. Let χ be a constraint,χ′ and χ′′ such thatχ ⊑1 χ′

and χ ∃E χ′′ Then eitherχ′ = χ′′ or χ′ (∃E)+ χ′′ or the two
operations commute. Moreover the two operations commute ifthe
instance operation does not change the nodes being eliminated. �

(Proof p. 16)

LEMMA 5. Consider a constraintχ which is a presolution, and
χ′ derived fromχ by performing an existential introduction or
elimination (EEI). Thenχ′ is a presolution witnessing the same
solutions asχ. �

(Proof p. 16)

As a direct consequence of the previous lemmas:

LEMMA 6. Existential elimination preserves solutions. �
(Proof p. 16)

4.3 Solved instantiation edges

Expansion is concerned only with the nodes of the structuralin-
terior of a G-nodeg. A transformation that does not change the
interior ofg leaves its expansion unchanged. We can in fact lift this
property to propagation, and by extension, to solved instantiation
edges:

LEMMA 7. An instantiation edgeg d that is solved in a
constraintχ remains solved in any instance ofχ that leavesI(g)
unchanged. �

(Proof p. 16)

This property is quite important for reasoning, as it ensures that
unrelated changes will not break solved edges.

4.4 Unification edges

The level of generalization we brought to our graphic representa-
tion is small enough that the unification algorithm on unconstrained
graphic types [9] can be reused unchanged. Moreover, unification
remains principal.

LEMMA 8. The unification algorithm on graphic types is a sound,
complete and principal transformation on graphic constraints. �

(Proof p. 17)

The principality of unification on graphic types also ensures that
unification edges can always be solved eagerly.

LEMMA 9. Lete be a unification edge ofχ. If unifyinge in χ fails,
χ has no solution. Otherwise, letχ′ be the principal unifier ofe
in χ. Thenχ andχ′ have the same (pre)solutions. �

(Proof p. 17)

Interestingly, unification onML graphic types can be solved with
the unification algorithm forMLFgraphic types. This follows from
the facts that type instance forML is a subrelation of type instance
for MLF and that the unification algorithm ofMLF applied toML
graphic types returnsML graphic types. In fact, the unification al-
gorithm needs not check for permissions when the input typesare
ML constraints, since in this case all nodes have flexible permis-
sions. Moreover, the raisings it performs amount to updating gen-
eralization levels when variables are merged, exactly as done in
efficient implementations ofML type inference based on ranks and
term dags [7, 8].

4.5 Degenerate instantiation edges

A degenerate G-node contains no polymorphism, as witnessedby
the fact that no “real” fresh node is created when it is expanded. An
instantiation edge leaving from a degenerate G-node is itself degen-
erate, in the sense that it is equivalent to an unification edge. This
is described by rule INST-ELIM -MONOon the right of Figure 10.

DEFINITION 11. Lete be an instantiation edge a constraintχ leav-
ing from a degenerateG-node. We call INST-ELIM -MONO the rule
transformingχ into χe \ e. �

LEMMA 10. INST-ELIM -MONOpreserves solutions. �
(Proof p. 18)

Notice that this rule does not preserve presolutions strictly speak-
ing, as it changes the number of instantiation edges. However, it
preserves the “shape” of presolutions,i.e. the structure of G-nodes
and type nodes.

We can now prove that the constraintχ of Figure 8 is equivalent
to the typing constraint ofλ(x) λ(y) x given in Figure 3. Indeed
the former is obtained from the latter by successively:

1. solving by unification the constraint edge on node〈11〉;
2. performing INST-ELIM -MONO on theG-node corresponding

to the variablex (which we callg), as it is degenerate after the
unification;

3. existentially eliminatingg (whose interior is reduced to{g}).
Thus the equivalence is by Lemmas 9, 10 and 6.

4.6 Eager propagation

A crucial property of our framework is that scheme expansionand
propagation are essentially4 monotonic w.r.t. to instance⊑.

LEMMA 11. Consider a constraintχ′ such thatχ ⊑1 χ′, ande an
instantiation edge ofχ. Thenχ′e 
p χe. �

(Proof p. 18)

An important consequence of this property is that we may
propagate any instantiation edge in any constraint withoutchanging
its presolutions.

4 The propertyχ ⊑ χ
′ =⇒ χ

e ⊑ χ
′e does not hold. However, ifU(χe)

andU(χ′e) are the constraints resulting from solving the unification edges
generated by the propagation inχe andχ

′e, χ ⊑ χ
′ =⇒ U(χe) ⊑

U(χ′e) does hold.
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LEMMA 12. Propagation preserves presolutions. �
(Proof p. 18)

This result provides a good test when designing the relation⊑.
Indeed, if it did not hold, it would be impossible to reduce type
inference to propagation (i.e.type scheme instance) and unification.

5. Solving acyclic constraints
In their full generality, our constraints may be used to encode
typing problems with polymorphic recursion, which are already
undecidable inML.

Alternatively, we can also encode semi-unification problems
(that are also undecidable). Consider a semi-unification problem
(li ≤ ri)

n
i=1. We may build the equivalent problem(L ≤ Ri)

n
i=1

whereL is Π(l1, ...ln) andRi is Π(αi
1, ..., α

i
i−1, ri, α

i
i+1, ...α

n)
andΠ is a symbol of arityn. This can be encoded as

G

Π

l1 . . . ln

Π

⊥ . . . r1 . . . ⊥

. . . Π

⊥ . . . rn . . . ⊥

where all nodes are bound at the root (and in generalli’s andri’s
share some leaves).

Thus we restrict our attention to constraints in which the instan-
tiation edges induce anacyclicrelation.

DEFINITION 12. A G-nodeg directly dependson another G-
node g′ if g′ constrains the constraint interior ofg, i.e. ∃n ∈
C(g), g′ n. Thedependencyrelation betweenG-nodes is the
transitive closure of the “directly depends on” relation. �

DEFINITION 13. A constraintχ is acyclic if the dependency rela-
tion on itsG-nodes is a strict partial order. �

Notice that the typing constraints presented in Figure 4 areacyclic,
as instantiation edges follow the scopes of the variables ofthe
expression, which are nested.

Importantly, acyclicity is stable by instantiation.

LEMMA 13. If χ ⊑ χ′ then the dependency relation inχ′ is a
subrelation of the one inχ. �

(Proof p. 18)

5.1 Finding a principal presolution

In acyclic constraints, propagating-then-unifying an instantiation
edge solves that edge.

LEMMA 14. Let e be an instantiation edgeg d of a con-
straint χ whered is not inC(g). Letχ′ be the principal unifier of
the unification edges introduced inχe (if this unifier exists). Then
χ′ is an instance ofχ in whiche is solved. �

(Proof p. 19)

The condition onn and C(g) vacuously holds on acyclic con-
straints. It ensures that the interior ofg will not be changed by the
unification. Afterwards, the conclusion is simply by idempotency
of propagation-unification.

Acyclic constraints admit a principal presolution, which can be
built using the following strategy.

1. Solve all unification edges by unification.

2. Visit the instantiation edges in an order compatible withthe
dependency relation. On each edgee:

(a) perform a propagation one;

(b) unify the resulting unification edges.

Those operations solvee (Lemma 14). Moreover, since the con-
straint is acyclic, all instantiation edges already visited (hence
solved) remain solved (Lemma 7).

The preservation of presolutions follows from Lemma 9 for steps 1
and 2b and from Lemma 12 for step 2a.

We introduce one more definition, in order to characterizeG
nodes of a constraint that remain solved throughout the traversal of
the instantiation edges.

DEFINITION 14. A G-nodeg is recursively-solvedif its interior is
not the target of a unification edge and for any edgee = g′ d
with d ∈ C(g), e is solved andg′ is recursively solved. �

THEOREM1. Acyclic constraints have principal decidable preso-
lutions. �

(Proof p. 19)

The proof of this result implies a few interesting properties.
The first one is thatG-nodes with no escaping edges can be

solved locally.

DEFINITION 15. We say that aG-node g is closed if any edge
n −→ n′ (with −→ ranging over◦−→, ≻−→, and ),
n ∈ C(g) impliesn′ ∈ C(g) or n = g and−→ is or≻−→. �

COROLLARY 1. If s is closed in an acyclic constraintχ, andχ ad-
mits a presolutionχp, there exists a presolutionχ′

p of χ, witnessing
the solutions ofχp, such thats is closed inχ′

p. �

This result relies on the fact that unification and propagation “fol-
low” edges. Hence, no binding edge will ever be raised aboveg in
the principal presolution.

Another key consequence is that once a G-node is recursively
solved, its interior will never need to be instantiated more. Thus,
after its outgoing instantiation edges have been propagated, we can
remove them.

COROLLARY 2. Consider a recursively solved G-nodeg of an
acyclic constraintχ. For any edgee = g d, the constraintsχ
andχe \ e are equivalent. �

Of course, this also holds for unconstrainedG-nodes, which are
trivially recursively solved.

COROLLARY 3. Lete be an edgeg n of an acyclic constraint
χ. If C(g) is not the target of a constraint edge, thenχ andχe \ e
are equivalent. Under those hypotheses, we callINST-EXPAND the
replacement ofχ by χe \ e. �

This is another proof of the correctness of rule INST-ELIM -MONO.
However, Lemma 10 is more general, as it does not require the
constraint to be acyclic.

Typability in unannotatedMLFandML The strategy solving an
acyclic constraint gives us some hindsight on the expressiveness
of MLF. Consider a typing constraint. It is anML constraint (Prop-
erty 1). If it is solvable inMLF, its principal presolution will contain
only flexible edges, as propagation and unification do not introduce
new rigid edges. Then, by Property 4, it will have anML solution.
Thus, a program without type annotations is typable inMLF if and
only if it is typable inML. (However, in general its principal type
in ML will be a strict instance of its principal type inMLF).

THEOREM2. Any expression typable without type annotations in
MLF is typable inML. �

This result is a direct consequence of the following result:

LEMMA 15. Consider anML acyclic constraint. It is typable in
ML if and only if it is typable inMLF. �
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(Proof p. 19)

Inconsistent constraints We have so far ignored the possibility
that a constraint might become inconsistent while simplifying it.
This situation is in fact implicitly dealt with by our formalism: an
inconsistent constraint (such as a unification edge that would lead to
a constructor clash or a cyclic type) cannot be solved. Thus it cannot
be removed by existential elimination, and will remain unsolved.
Consequently, the constraint has no presolution. Of course, an
implementation can fail as soon as an inconsistency is found.

Efficiency Using the order induced by the dependency relation
ensures that an instantiation edge never needs to be propagated
more than once. Hence, the number of unification steps that can
be performed is bounded by the number of instantiation edgesplus
the number of initial unification edges.

One potential source of inefficiency in the strategy used to find
the principal presolution is that the resulting constraintcan be much
bigger than the solution itself. Hence a better approach (ifwe
are interested only in the solutions) is to apply INST-EXPAND to
perform the propagation, then existential elimination to the nodes
that are no longer constrained. While this does not change time
complexity, it ensures that constraints remain as small as possible
and improves space complexity.

5.2 Splitting G-nodes

INST-COPY

◦

◦

G

◦

◦

◦

⊣⊢ ◦

◦

G

◦

◦

◦

G

◦

Figure 12. Rule INST-COPY

An interesting rule to consider is INST-COPY, presented in Fig-
ure 12. It can be applied whenever a G-node has one or more outgo-
ing instantiation edge. The edges may be arbitrarily partitioned into
two sequences, and the interior nodes and edges of the G-nodes are
duplicated (as well as edges between the interior and the frontier).

Intuitively, one could think that the constraint in which the G-
node has been split has more solutions. Indeed, each scheme could
seemingly pick a different type. However, this is not the case on
acyclic constraints. Indeed, since they have principal presolutions,
the two schemes can pick only instances of the most general solu-
tion.

We first prove two intermediate commutation lemmas.

LEMMA 16. Letχ andχ′ be two constraints such thatχ ⊑ χ′. Let
g be a G-node. LetC be one application ofINST-COPY on g. The
following holds:

· ·

· ·

C

⊑1

C

⊑
�

(Proof p. 19)

LEMMA 17. Let χ be a constraint,g one of its G-nodes,C an
application of INST-COPY. Let U be the application ofUnif on
a given unification edgee, U ′ the application of this algorithm to

e if it is not duplicated byC, and toe and its copy otherwise. The
following holds:

χ χC

χ′ χ′
C

C

U

C

U ′

�

LEMMA 18. Rule INST-COPY preserves the meaning of acyclic
constraints. �

(Proof p. 20)

6. Type annotations

κ :

τ

◦

⋄

cκ G

→

τ

=

◦

⋄ τ

>

κ0 :

⊥

→

→

⊥

cκ0
G

→

→

→

⊥

⊥

→

→

⊥

Figure 13. Types of coercion functions

Type annotations are a key toMLF. Interestingly, we do not
use primitive typing constructs to type them. Instead, we add a
denumerable set ofcoercion functionsto the typing environment.

As an example, consider the annotation(a : ∃β ∀ (α) β →
(α → α)). It contains bothuniversaland existentialquantifica-
tion, and expresses thata must be a function, the type of its first
argument being left unspecified, and its return type being exactly
α → α. This annotation can be represented by the typeκ0 of Fig-
ure 13. The existential part is bound at the root “:” node, while the
nodes inside the universal part are bound on〈1〉 or under (in this
simple case they are all bound on〈1〉).

More general annotations are depicted by the pseudo-typeκ of
the same figure. In the annotation(a : κ), the typeτ at node〈1〉
insideκ is universallyquantified. However, the other nodes ofκ,
represented by the◦ meta-node notation and bound on the root,
are existentiallyquantified: they can be instantiated during type
inference.

The annotation(a : κ) is desugared as the applicationcκ a,
where the type of the coercioncκ is also shown on Figure 13. Each
side of the arrow is a copy ofτ . Hence, they could a priori be instan-
tiated independently. However, the domain is rigidly bound, mean-
ing that the polymorphism is requested, and thus cannot actually be
weakened by instantiation:a must be of typeτ . On the contrary, the
codomain is flexibly bound, meaning that the polymorphism ispro-
vided, and can freely instantiated. The nodes corresponding to the
existential part ofκ are not duplicated: they are shared between the
domain and the codomain, and will be instantiated simultaneously
on both sides. An example is given by the typecκ0

.
Similarly, the expressionλ(x : κ) a is also syntactic sugar, for

λ(x) let x = (x : κ) in a; an example is given in §8. Notice that
type annotations are part of expressions. Hence, two terms with
different annotations are really different terms and do notusually
have a common, most general type.

7. Complexity of type inference
7.1 Simplifying typing constraints

For homogeneity, typing constraints introduce a G-node forevery
sub-expression, including variables. However, those are superflu-
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VAR-LET

◦

G

◦

G

⊥

◦

⊣⊢ ◦

G

◦

◦

VAR-ABS

◦

◦

◦

G

⊥

◦

⊣⊢ ◦

◦

◦

◦

Figure 14. Simplifying the typing of variables

ML-EXTRUDE

G

G

g

◦n′

+

·
n

e

⊣⊢ML

G

G

◦
+

·

Condition:

• e is the only instanti-
ation edge leavingg

• g +◦−→ n′

Figure 15. Simplifying ML constraints

G

G

·

G

·

G

G

·

G

·

On the left-hand side, both type
schemes are introduced at the
same level, thus the embedding
is 2. On the right-hand side, one
is inside the other and the em-
bedding is 3.

Figure 16. Type schemes embedding

ous. Indeed,let-bound variables only generate indirections, while
the G-node for aλ-bound variable will ultimately be degenerate.
The corresponding simplifications rules are presented in Figure 14.

In ML typing constraints, the G-nodes for abstractions and
application are also superfluous (hence G-nodes are in fact only
needed forlet-bound expressions). Indeed, as shown in Figure 15,
a type node inside a type scheme that is “used” only once and atthe
nearest generalization scope can be extruded entirely.

All simplifications can be performed in linear time either after
the generation of constraints, or on-the-fly during their generation.

LEMMA 19. RulesVAR-ABS andVAR-LET preserve solutions.�
(Proof p. 20)

LEMMA 20. Rule ML-EXTRUDE preserves the solutions ofML

constraints. �
(Proof p. 21)

7.2 Complexity analysis

While type inference forML is DEXP-TIME complete (when types
need not be output), McAllester has shown [6] that type inference
has complexityO(kn(α(kn) + d)) whereα is the inverse of the
Ackermann function,k is the maximum size of type schemes andd
the maximum embedding of type schemes. (Figure 16 describes
what is meant by embedding of type schemes.) In McAllester’s
analysis,d corresponds to the maximum left-nesting oflet con-
structs,i.e.nestings of the formlet x = (let y = . . . in . . .) in . . ..

As argued by McAllester,d is almost always bounded by 5, and
k does not increase with the size of the program. Under those as-

sumptions, type inference inML hasO(nα(n)) complexity, which
is almost linear (the termα(n) is negligible).

Our strategy for solving constraints is quite similar to theone
used in efficient implementations of type inference forML [6, 7]. In
particular, type schemes are also simplified in an innermostfashion.
Unification inMLF can also be performed in timeO(nα(n)) and
the complexity analysis of McAllester forML can be transferred to
our constraints setting—provided we reason on the embedding of
G-nodes instead of the embedding oflet constructs. More precisely,
for our typing constraints, the functiond verifies:

d(x) = 1

d(λ(x) a) = d(a) + 1

d(a b) = max(d(a), d(b)) + 1

d(let x = a in b) = max(d(a) + 1, d(b))

When applying VAR-LET and VAR-ABS, d verifiesd(x) = 0.
Importantlyd does not increase with right-nesting oflet bind-

ings. In particular, a large upper bound ofd is the height of the
biggest function of the program (when written as an abstractsyn-
tax tree). Under the two assumptions that(1) large programs are
composed of cascades of right-nested toplevellet declarations, and
(2) k does not increase with the size of the program, type inference
in our constraints system (thus inMLF) has linear complexity.

Notice that, if we restrict ourselves toML, using the constraint
simplification of Figure 15 will eliminateG-nodes for all sub-
expressions but the left-hand side oflet constructs. We therefore
obtain exactly the same complexity as McAllester.

Our analysis also provides an upper bound for the complexity
of type inference. In the worst case, the maximum size of type
schemesk is bounded by2O(n) and the maximum depth ofG-
nodesd is bounded byn. The complexity is thus in2O(n) × n ×
(α(2O(n) × n) + n), i.e. in 2O(n). As ML programs are typable in
MLF if and only if they are typable inML, the complexity bound for
MLFcannot be better that the one forML. We thus have established
the exact complexity bound2O(n) for type inference inMLF.

8. Examples of typings
χ1

λ(x) x

χ2 G

→

⊥ G

⊥

⊥

χ3 G

→

G

⊥

⊥

χ4 G

→

G

⊥

⊥ ⊥

χ5 G

→

⊥ ⊥ ⊥

χ6 G

→

⊥ ⊥

χ7 G

→

⊥

Figure 18. Typingλ(x) x

Figure 18 presents the typing of the identity, valid in bothML
and MLF. The first step (fromχ2 to χ3) is by unification,χ4 is
by INST-EXPAND on the instantiation edge.χ5 is by EXISTS-
ELIM on g, χ6 is by unification on the rightmost edge. (The steps
χ2 to χ6 could have been directly proven by VAR-ABS.) χ7 is
by unification. The resulting principal type is∀ (α) α → α,
abbreviated asσid .

Figure 17 presents the typing oflet y = λ(x) x in y y in MLF.
In χ3 we have developed the expression node fory y. In χ4 we
have replacedλ(x) x by its principal typing and applied VAR-LET
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χ1

let y = λ(x) x
in y y

χ2 y y

λ(x) x

y

χ3 G

G

⊥

n1

λ(x) x

G

⊥

n2

→

⊥ ⊥

χ4 G

G

g

→

⊥

→

⊥ ⊥

χ5 G

→

⊥
→

⊥

→

⊥ ⊥

χ6 G

n →

→

⊥

χ7 G

→

⊥

Figure 17. Typing let y = λ(x) x in y y

to bothn1 andn2. χ5 is by INST-EXPAND on each instantiation
edge, then by EXISTS-ELIM on g. χ6 is by unification andχ7 by
EXISTS-ELIM onn. The result isσid . The derivation is essentially
the same inML, up to a few nodes bound at〈ǫ〉 in χ5 to χ7.

The last example (Figure 19) uses a type constraint on a pa-
rameter. As explained in Section 6, it expands into the expression
described in constraintχ2. In χ3 we have expanded the expression
nodes for both the abstraction and the applicationcκid

x. We have
also simplified on the fly the instantiation edge oncκid

into a uni-
fication one; this is possible by INST-EXPAND and EXISTS-ELIM .
χ4 is by VAR-ABS onn, then by unification on the redirected uni-
fication edge.χ5 is by unification on the remaining edge.χ6 is by
EXISTS-ELIM onn. Up to a few unimportant differences, the high-
lighted nodes correspond to the constraintχ3 of Figure 17. Simpli-
fying those nodes thus results inχ7. χ8 is by INST-EXPAND on the
instantiation edge, then by EXISTS-ELIM .χ9 is by unification. The
result is the type∀ (α = σid ) ∀ (β > σid ) α → β, corresponding
roughly to the System-F typeσid → σid in which instantiating the
occurrence ofσid on the right of the arrow is allowed.

Implementation An MLF type checker (which faithfully imple-
ments the algorithm presented in §5.1) can be found athttp://
gallium.inria.fr/~remy/mlf/. Although graphic types are
used internally, we print the types in syntactic form. Usinga simple
syntactic sugar (discussed below) this nearly always results in quite
readable, System-F looking, types. In particular, this should allevi-
ate doubts thatMLF types are too complicated to be presented to the
programmer. An interactive mode in which the user can graphically
select which constraint edge to solve is also available (andcan be
used to solve the examples above step by step).

Much of the difficulty in implementing graphic constraints lies
in finding a good representation for graphic types, and implement-
ing the unification algorithm. Notice that inMLF graphic types the
graph structure and the binding tree are interwoven and their edges
go in inverse directions. Finding an efficient functional represen-
tation of such a structure is not obvious, so we use an imperative
implementation. This only causes problems when unificationfails,
i.e.when a type inference error occurs. In this case we type the ex-
pression a second time, and explain the error in terms of the last
valid constraint.

The generation of typing constraints from theλ-term is entirely
straightforward, using a single recursive function. Moreover, typ-
ing constraints are simple enough that the dependency relation on
instantiation edges needs not be computed. Instead, we sortinstan-
tiation edges on-the-fly during constraints generation.

Explaining type inference errors raises two challenges: (1) ex-
plaining unification clashes caused byMLF polymorphism; (2) as-
sociating a type inference error with the corresponding part of the
source term.

The difficulty in point (2) is only apparent. Indeed, it is straight-
forward to associate a constraint edge with the expression that re-
sulted in its creation (and our prototype already prints exact source
location in error messages). Our constraints-based approach also

allows choosing a strategy to solve the instantiation edges5; for ex-
ample, the function in an application can be typed before theargu-
ment. While our implementation already gives quite readable error
messages (see Figure 20), we are also experimenting with other
strategies.

Point (1) is trickier. However, in simple examples that do not
result from encodings, a message such as “functionf expects an
argument of typeτ but receives a value of typeτ ′; typeτ ′ is prob-
ably not polymorphic enough” is often sufficient. An interesting
step will be to preserve type variables used inside type annotations
through inference—an easy, if tedious, task.

Displaying syntactic types MLFsyntactic types are often difficult
to read because of the bounded quantification they feature. For
example, the termK , λ(x) λ(y) x has for principal type

∀ (α) ∀ (γ > ∀ (β) β → α) α→ γ

A way to relieve this tension is to introduce a syntactic sugar that
inlines bounds. ThenK gets for principal type

∀ (α) α→ (∀ (β) β → α)

This type is a type of SystemF, hence much more familiar looking.
Of course, we cannot just inline all bounds, as we would lose

sharing, the fact that the bound is flexible or rigid, and the place
where the bound is introduced. In consequence, we follow three
restrictions:

1. Bounds used strictly more than once are never inlined (except
of course for monomorphic types).

2. Rigid bounds are inlined on the left of an arrow; flexible ones on
the left. Thus our convention follows the variance of the arrow
constructor, hence the intuition. For the other type constructors
than the arrow, the choice is left to the user.

3. Bounds are inlined only when they are used immediately where
they are introduced. For example,α is inlined in ∀ (α > σ)
int→ α, but not in∀ (α > σ) ∀ (β > int→ α) int→ β.

In spite of these restrictions, nearly all terms get principal types
that look like System-F types. Indeed,MLF binds types “as low as
possible”, hence Condition 3 is rarely restrictive. Condition 2 is ac-
tually the heart of the sugar, and follows the intuitions given by the
variance; following another convention would probably confuse the
programmer. Condition 1 is also rarely used. Indeed, sharedbounds
nearly only appear in partial applications, which are themselves un-
usual.

Using our convention, deciding whether an inlined variableα
can be instantiated is done by findingα in the sugarified type, and
checking whether we have followed an arrow on the left. If this
is the case,α has locked (or rigid) permissions. Otherwise it has
flexible permissions and can be instantiated. Thus the criterion is
quite simple. If we consider the principal type ofK, β appears at

5 In general, there exists different strategies with optimalcomplexity.
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χ1 λ(y : ∀ (α) α→ α) y y

χ2 λ(y) let y = cκid
y in y y

wherecκid
= G

→

→

⊥

→

⊥

χ3 G

→

⊥ G

→

→

⊥

→

⊥

G

⊥ n

→

⊥ ⊥

y y ⊥

y

χ4 G

→

G

→

→

⊥

→

⊥

→

⊥ ⊥

y y ⊥

y

χ5 G

→

G

→

n→

⊥

→

⊥

y y ⊥

y

χ6 G

→

→

⊥

G

→

⊥

y y ⊥

y

χ7 G

→

→

⊥

G

→

⊥

⊥

χ8 G

→

→

⊥

→

⊥

→

⊥

χ9 G

→

→

⊥

→

⊥

Figure 19. Typingλ(y : ∀ (α) α→ α) y y

# fun x → if x = 1 then True else x
Both branches of this ’if’ have incompatible types. The ’then’ part has type bool while the ’else’ part
has type int.

# (fun x : ’a. ’a → ’a) → x x) succ
Cannot apply the first expression to the second: the argument is probably not polymorphic enough.
The first expression has type (′a. ′a→′ a)→ (′c. ′c→′ c) while the second has type int→ int.

# fun x ⇒ x x
Cannot apply the first expression to the second: the resulting type would be cyclic.
The first expression has type ’a while the second has type ’a. The context is (’a > ⊥)

Figure 20. Examples of error messages

path〈2〉. Hence we have not followed an arrow on the left (there
would be1 on the the path in this case), andβ can be weakened by
instantiation.

Our syntactic sugar is actually a variation on an idea proposed
by Leijen[5, Section 2.6]. However, in this work, the third condition
was ommitted, and the convention was not bijective (resulting in
types with really different polymorphism being displayed the same
way).

9. Comparison with other works
A detailed comparison betweenMLF and other extensions of Sys-
temF can be found in [3]. The most closely related work [4] pro-
pose a restriction ofMLF where non System-F types only appear
internally during type inference and can always be instantiated
into System-F types afterwards. Another related work [12] intro-
duces a notion of “boxy types” that resembles our flexible bindings.
Both works aim at finding a type system with second-order poly-
morphism that assigns System-F types to expressions. SinceMLF

types are more expressive than System-F ones, we believe that our
graphic presentation of type inference would help explore such sys-
tems more systematically. Hopefully, our inference algorithm could
also be adapted to those works.

Efficient type inference for ML Efficient type inference algo-
rithms forML have many similarities with our graphic type infer-

ence algorithm. Of course, they all use an efficient graph-based uni-
fication algorithm and reduce type schemes in an inner-outerfash-
ion. More interestingly, they also use a notion of ranks (or frames)
to keep track of generalization levels and perform generalization
more efficiently [6, 7, 8]. Merging two multi-equations in [8] re-
quires them to have the same rank, hence lowering their rank to
the smallest of the two beforehand. Similarly, merging two nodes
in graphic types requires them to have the same bound, hence rais-
ing them to their lowest common binder. Raising binding edges has
also strong similarities with Rule S-LET-ALL of [7].

Type inference as typing constraintsTo the best of our knowl-
edge Henglein has first expressed type inference as the satisfaction
of type-inference constraints, which led him to semi-unification
problems [1]. Hence, the obvious similarity between our con-
straints and his. However, his constraints are interpretedover sim-
ple types while ours are interpreted over graphic types, that general-
ize System-F types. Our constraints are therefore more expressive.
His constraints avoid the explicit representation ofG-nodes, and
instead read types as type schemes according to the context.We
cannot make this simplification inMLF becauseMLF expansion is
more complicated than theML one.

Typing constraints forML have been explored in detail [7].
There are many similarities between this work and ours. Typing
constraints are introduced first, independently of the underlying
language; then a set of sound and complete transformations on
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typing constraints are introduced; the type inference algorithm is
finally obtained by imposing a strategy on applications of con-
straint transformations. Moreover, some important steps of both
frameworks can be put in correspondence (solving unification con-
straints, expansion of type-schemes,etc.). However, our constraints
are more concise, for two reasons. Firstly, the graphical represen-
tation of types is more canonical: for instance, we need no rule for
commutation of adjacent binders. Secondly, the underlyingbind-
ing structure of graphic types is reused for describing the binding
constructs of graphic constraints. Hence, the representation of con-
straints requires fewer extension to the representation oftypes, as
the latter is already richer.

Semi-unification As shown by Henglein [1], type inference for
ML reduces to semi-unification problems that are trivially acyclic
by construction—in the absence of polymorphic recursion. Hence,
we should be able to see our constraints as encoding a form of
acyclic graphic-type semi-unification problems. It would certainly
be worth further exploring this point of view. Possibly, we could
enable implicit polymorphic recursion inMLF by allowing some
incompleteness in type inference. (Explicit polymorphic recursion
is already available through type annotations.)

Other versions ofMLF There are two syntactic presentations
of MLF [2, 3]. In the original one [2], the instance relation on
types is not as general as the one proposed when graphic types
were introduced [9] (and further increased later [10]). Hence, the
type inference system we have presented is slightly more general;
however, we do not know of a short, non-artificialλ-term typable
in our system but not in the original one.

The extended instance relation has been transferred back tothe
syntactic presentation [3], albeit at some technical cost.However,
this work does not address type inference. Moreover, it is based
on a stratified, restricted version ofMLF, in which types are not as
general as those presented here or in the original presentation.

Conclusion
We have extended the initial presentation of graphic types [9]
to represent typing constraints, for bothML and MLF. Graphic
constraints are simpler than the syntactic constraints that have been
developed forML; in particular they sidestep tedious issues such
asα-renaming or commutations of binders. We obtain a new, fully
graphical presentation ofMLF, where both the specification and the
type inference algorithm are done graphically. This presentation
highlights the very strong ties betweenML and MLF. We have
also shown that type inference forMLF has linear-time complexity
under reasonable assumptions.

By lack of space, type soundness is deferred to another pa-
per [11]. We have proven the soundness of the (larger) systemthat
uses≤ instead of⊑ as the type instance relation (§2.3).

In spite of the overhead inherent to using a slightly uncommon
formalism, reasoning on the meta-theoretical properties of the sys-
tem has shown to be significantly simpler on graphic types than on
syntactic ones. Hence, we believe our graphical approach isa very
good basis for exploring further extensions ofMLFwith richer type
structure, such as recursive types, primitive existentials, higher-
order types, dependent types, or some form of subtyping. This new
presentation ofMLF typechecking as solving of typing constraints
is also a significant simplification ofMLF and a significant step to-
wards its possible use in a full-scale programming language.
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A. Proofs
Proof of Lemma 1

Let n be a type node. Consider a noden′ such thatn π◦−≺ n′. The
proof is by induction onπ.

If π is the empty path,n′ = n which is indeed a type node.

If π is n ◦−→ n′′ π′◦−≺ n′: n′′ cannot be aG-node, by well-
sortedness. Hencen′′ is a type node. Conclusion by induction
hypothesis.

If π is n ←−≺ n′′ π′◦−≺ n′: n is a type node, hence noG-node
is bound on it. Consequently,n′′ is a type node. Conclusion by
induction hypothesis.

Proof of Property 4

Let us callχr the constraint derived fromχp by binding any type
noden on the firstG n′ node such thatn +≻−→ n′ (if the binder of
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n is already aG-node, its binder is unchanged). Notice thatχr is
anML constraint.

Notice thatχr can be derived fromχp by applying amulti-raise
operator to all the type nodes. This operator raises all nodes bound
on a given node; it preserves well-domination by [10, Lemma 1].
Thusχp ⊑R χr holds (1), since all nodes have flexible permis-
sions.

Consider now an instantiation edgee. Let χ′
p be theMLF prop-

agation ofe in χp, χ′
r theML one. By hypothesis,χ′

p ⊑ χp holds
(2).

Notice thatχ′
p ⊑R χ′

r holds (3). Indeed, given aG-nodeg,
Iχp

(g) = Iχr
(g), thus the expanded nodes in bothχ′

p and χ′
r

have the same shape. Thenχ′
r is also the result of multi-raising

all type nodes inχ′
p. Consider a noden of χ′

p. It is bound at the
same node inχ′

r as inχr. Thus we can apply [10, Lemma 10] to
χ′

p ⊑ χr (proven by (1) and (2)) and to each node raised in (3). We
obtainχ′

r ⊑ χr, which proves thatχr is a presolution.
We have thus proven thatχr is anML presolution ofχ. Since

χr is an instance ofχp, all instances of the expansion ofχr

are instances of the expansion ofχp. In particular, all solutions
witnessed byχr are also witnessed byχp. This is the desired result.

Proof of Lemma 2

Assumeχ 
p χ′. By definition, any presolutionχp of χ is a
presolution ofχ′. This impliesχ′ ⊑ χp, which is exactly the result.
Assume now thatχ′ ⊑ χp holds for anyχp presolution ofχ (1).
Consider such a presolutionχp. By (1),χ′ ⊑ χp. By construction,
χp is a presolution (2). By (1) and (2)χp is a presolution ofχ′.
This provesχ 
p χ′.

Proof of Lemma 3

The proof is by case disjunction on the instance operation. If the
operation is in⊑G

1 ,⊑W
1 or⊑M

1 , the commutation is immediate.
If the operation is⊑R

1 , we use the following names:

χ χ′

χ′′ ·

∃I(n)

Raise(n′)

∃I(n)

Raise(n′)

We prove thatRaise(n′) can be applied toχ′. This will also
prove that∃I(n) can be applied toχ′′, as the result will be a well-
formed graph.

By definition,n′ is raisable inχ. [10, Lemma 1] implies that,
∀n′′, n′′ ≻−→ ≻χ(n′), n′′ 6= n′ =⇒ n′ /∈ Bχ(n′′) (1) (indeed,
n′ ∈ B(n) is trivially equivalent toB(n′) ⊂ B(n)). This is
equivalent to∀π, ¬(n′ π◦−≺ n′′ ∈ χ) (2).

Consider nownewpaths inχ′, i.e. paths that link two nodes in
χ′ but notχ. Necessarily they contain the edge≻n←−≺ n. Consider
a pathπ starting fromn′. Sincen′ is raised, it is a type node.
Lemma 1 shows that all nodes reachable fromn′ are also type
nodes. Hence there are no new paths starting fromn′. Hence (2)
still hold in χ′, which proves thatn′ is raisable.

Proof of Lemma 4

Let n the root of the existential elimination,o the instance opera-
tion. The proof is by case disjunction ono.

o = Graft(τ, n′) or o = Weaken(n′): If n′ ∈ C(n), eliminating
n in χ′ givesχ′′. Otherwise the two operations commute.

o = Raise(n′): If n′ ∈ C(n) andn′ is not bound onn, eliminating
n in χ′ givesχ′. If n′ is bound onn, eliminatingn′ andn (the
order is unimportant) inχ′ givesχ′′. If n′ /∈ C(n), the two
operations commute.

o = Merge(n1, n2): If n1 and n2 are both inC(n), eliminating
n in χ′ gives χ′′. If none are inC(n), the two operations
commute. If one node is inC(n), and the other is not, either
n1 or n2 is n. Thenχ′ = χ′′.

Proof of Lemma 5

• χ′ andχ expand to the same type, by definition of expansion and
existential elimination; hence they witness the same solutions.

• χ′ is solved. Consider indeed a constraint edgee of χ′. It is
also an edge ofχ, as EEI preserve constraint edges. This edge
is solved inχ, sinceχ is a presolution.

- If e is a unification edge, it is still trivially solved inχ′.

- If e is an instantiation edge, considerχe andχ′e. We prove
the dashed lines of the diagram below.

χ χ′

χe χ′e

o ∈ ∃IE

eo′ ∈⊑ e

o

o′

Propagation and EEI commute, as existential nodes are not
copied during expansion. Henceχ′e can be obtained fromχe

by the same EEIo which transformsχ into χ′.

Consider now the instance operationo′ solving the unification
edge introduced inχe:

◦ If the EEI is an introduction, Lemma 3 ensures that we can
apply the same steps toχ′. This solves the edge and the
resulting constraint isχ plus the EEI, which is exactlyχ′.
Hencee is solved inχ′.

◦ If the EEI operation was an elimination, notice that the
instance steps solving the edge are such thatχe ⊑ χ.
Consequently, they do not change the existential part that
is being removed byo (the kernel of⊑ is the identity
relation). Hence, in this case, existential elimination and
instance commute (Lemma 4), and the same argument as
in the previous case proves thate is solved.

Proof of Lemma 6

Consider a constraintχ, andχ′ obtained by performing an existen-
tial elimination fromχ.

Suppose thatχ has a presolutionχp. Lemma 4 shows that there
existsχ′

p such thatχp ∃E χ′
p andχ′ ⊑ χ′

p Lemma 5 ensures that
χ′

p is a presolution witnessing the same solutions asχp. Thusχ′
p is

a presolution ofχ′. Hence any solution ofχ is a solution ofχ′.
Conversely, supposeχ′ has a presolutionχ′

p. Lemma 3 shows
that there existsχp such thatχ ⊑ χp andχ′

p ∃I χp. Lemma 5
ensures thatχp is a presolution witnessing the same solutions as
χ′

p. In particular,χp is a presolution ofχ. Hence any solution ofχ′

is a solution ofχ.

Proof of Lemma 7

The proof is by induction on the length ofχ ⊑ χ′. If it is 0, the
result is immediate. Otherwise, it is of the formχ ⊑1 χ′′ ⊑ χ′. We
suppose without loss of generality that all grafting performed only
graft one constructor, as in the hypotheses of [10, Lemma 9].This
is possible by the results of [10, Section 6.2.3] and [10, Theorem 1].

We prove thate is solved inχ′′, by case disjunction on the
operationo such thatχ′′ = o(χ). (Afterwards the conclusion is by
induction hypothesis applied toχ′′.) Notice that, sincee is solved,
a derivation ofχe ⊑ χ ⊑ χ′′ exists (1).
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If o is notRaise(d): Notice that, sinceI(g) is unchanged (hence
F(g)), the expansion creates the same nodes inχ andχ′′. Hence
χ′′e = o(χe) holds (2), by Lemma 3.

• o = Graft(τ, n):

By (2) and the shape ofo, χe ⊑G
1 χ′′e. Moreover, we have sup-

posed that the graftings betweenχ andχ′′ are atomic. Hence,
by [10, Lemma 9] and (1), we obtainχ′′e ⊑ χ′′.

• o = Raise(n):

By (2) and the shape ofo, χe ⊑R
1 χ′′e; moreover,n is bound at

the same node inχ′′e andχ′′. By [10, Lemma 10] and (1), we
obtainχ′′e ⊑ χ′′.

• o = Merge(n1, n2)

By (2) and the shape ofo, χe ⊑M
1 χ′′e. By definition,n1 and

n2 are merged inχ′′. By [10, Lemma 11] and (1), we obtain
χ′′e ⊑ χ′′.

• o = Weaken(n)

We consider an ordered derivation ofχe ⊑ χ′′, in which weak-
enings and merging are performed bottom-up, a noden′ being
weakened before it is merged (this is the strategy used in the
proof of [10, Theorem 4]). The operationWeaken(n) neces-
sarily appears in this derivation. Also, all other operations only
involve nodes of the expansion, whilen is outside it. Hence, this
weakening operation commutes with all previous operationsin
the derivation. By (2), this provesχ′′e ⊑ χ′′.

If o = Raise(d) In this case,χ′′e = (Raise(d) ; Raise(F c) ;
Raise(r))(χe), whereF = F(g) andr the root of the expanded
part. This proves thatχe ⊑R χ′′e (3).

Let us next prove that all nodes ofF are bound strictly above
≻

d
in χ (4). Consider a noden ∈ F . Let π be such that〈g · 1〉 π◦−→ n.
Sincee is solved,d π◦−→ n also holds. By well-domination, all
nodes ofF(g) must be bound at least as high asd. Now, sinced can
be raised inχ, no node structurally underd can have been bound

on
≻

d in χ (by [10, Lemma 1]). This proves the desired subresult.
By (4), the nodes ofF c are bound lower inχ′′e than inχ′′. By

construction,r andd are bound at the same node inχ′′e andχ′′.
By applying [10, Lemma 10]|F |+2 times to (1) and (3), we obtain
χ′′e ⊑ χ′′.

Proof of Lemma 8

We distinguish the instance relation on graphic types, written
g

⊑,

and the one on constraints, written
χ

⊑. Disregarding existential

nodes,(
χ

⊑) ⊂ (
g

⊑) holds, asG-nodes cannot be merged, raised
or weakened. However, given two correct constraintsχ and χ′

with the same binding structure for G-nodes, the relationχ
g

⊑ χ′

trivially implies χ
χ

⊑ χ′ (1).

One (apparent) difference between graphic types and graphic
constraints is that some mixed paths disappear when existential
nodes are raised. This is examplified by the constraintsχ andχ2

in Figure 21. By raising the⊥ node, the mixed path〈g〉 ◦−≺ 〈g ·1〉
disappears. However, this difference is unimportant because we can
add some structure edges, as we prove below.

In the following, we consider a constraintχ containing an uni-
fication edgee = n1 n2. By definition, bothn1 andn2 are
type nodes.

Let S be the set of existential nodes of sortType of χ. Let fS

be the function adding a structure edge≻χ(n) ◦−→ n for any node
n of S. (We temporarily add to our formalism the needed family of
constructorsGk for k ≥ 1.)

G

χ1

g G

◦ ⊥

⊑R

G

χ2

g G

◦ ⊥

G

fS(χ1)

g G

◦ ⊥

⊑R

G

fS(χ2)

g G

◦ ⊥

Figure 21. Mixed paths and raisings of existential nodes

Any instanceχ′ of χ (for
χ

⊑) is in the domain offS . Conversely,
the codomain offS is the set of instances offS(χ). Thus defined,
fS is a bijection (2).

Notice that the relationχ
χ

⊑ χ′ ⇐⇒ fS(χ)
χ

⊑ fS(χ′) holds
(3). The result is immediate for grafting, merging and weakening.
For raising, it is straightforward to adapt the proof of Lemma 3.
(Indeed, we could have existentially introducedg ←−≺ G ◦−→ n
instead of the structure edgeg ◦−→ n.)

Notice also thatfS(χ) can be viewed as a graphic type, as the
only existential nodes it contains areG-nodes, for which we could
also add structure edges. Finally, notice thatUnif behaves exactly
the same way onχ or fS(χ) (4), as it does not “see” the new edges,
which are introduced on nodes aboven1 andn2.

Soundness:SupposeUnif finds a unifierχ′ for e. Thenχ
g

⊑ χ′

holds. However,χ′ has the same binding structure forG nodes asχ
(5), sinceUnif will never try to merge, weaken or raise nodes above
n1 andn2, and there are noG-nodes undern1 or n2 (Lemma 1).

Thus (1) impliesχ
χ

⊑ χ′, andUnif is sound.

From now on, we suppose there exists an unifierχs of e in χ

for
χ

⊑. ThenfS(χ)
χ

⊑ fS(χs) holds by (3). MoreoverfS(χs) is a

unifier ofe in fS(χ) (for
g

⊑ or
χ

⊑) (6).

Completeness:Unif is complete on graphic types. Hence, by
(6), it returns a unifier when called onfS(χ). Hence, by (4) it
returns a unifier when called onχ, and is complete.

Principality: Unif is principal on graphic types. Hence, by (6)
it returns a principal unifier when called onfS(χ). This type is

an instance offS(χ) for
g

⊑. In fact, by (1) and (5), it is also an

instance for
χ

⊑. By (2), letχp be the constraint such that this unifier
is fS(χp).

By principality on graphic types,fS(χp)
g

⊑ fS(χs) holds.

HencefS(χp)
χ

⊑ fS(χs) also holds by (1), (5) and the definition of

χs. Finally,χp

χ

⊑ χs holds by (3). This proves thatχp is a principal

unifier of e in χ for
χ

⊑. This is exactly the desired result, asUnif
returnsχs when called onχ (by (4)).

Proof of Lemma 9

Suppose that the unification ofe fails. Suppose now thatχ has
a presolutionχp. By definition, e is solved inχp, henceχp is
a unifier of e in χ. Contradiction with the completeness of the
unification algorithm (Lemma 8).
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Consider now a presolutionχp of χ. By definition, χ ⊑ χp

holds. Sincee is solved inχp (by definition of presolutions), we
haveχ ⊑ χ′ ⊑ χp by principality of unification (Lemma 8). This
ensures thatχ andχ′ have the same presolutions.

Proof of Lemma 10

The proof steps are given in Figure 22.

G

G

G

· n

·
d

(1)

⊣⊢p

G

G

G

· n

·
d

(2)

⊣⊢p

G

G

G

·
n, d

(3)

⊣⊢p

G

G

G

·
n, d

(4)

⊣⊢p

G

G

G

· n

·
d

Figure 22. Proofs steps for INST-ELIM -MONO

Step (1) is by equality of presolutions. Indeed, theG-node is de-
generate in any instance of both constraints, so the only way
to solve the instantiation edge is by mergingn andd. (More
precisely, by mergingd with nc, which is itself merged withn.)

Step (2) is by unification (Lemma 9).

Step (3) is by equality of presolutions, with the same reasoning as
for Step (1).

Step (4) is by UNIF again.

Proof of Lemma 11

Let e = g d. We proceed by case analysis on the operationp
such thatχ′ = p(χ). In many cases, the relationχe ⊑ χ′e directly
holds, which implies the result. We implicitly use the fact that the
copync of a node has always more permissions thann.

• p is Graft(τ, n)

- If n ∈ I(g), thenχ′e = (p ; Graft(τ, nc))(χe)

- If n /∈ I(g), thenχ′e = p(χe)

• p is Weaken(n)

- If n ∈ I(g) andn 6= 〈g · 1〉, thenχ′e = (p ; Weaken(nc))
(χe).

- If n /∈ I(g) or n = 〈g · 1〉, thenχ′e = p(χe).

• p is Merge(n1, n2)

- The casen1 ∈ C(g), n2 /∈ C(g) (or the symmetrical case) is
impossible. Indeed, the only possibility would be thatn1 = g
(or n2 = g), butG-nodes cannot be merged.

- If n1, n2 ∈ I(g): χ′e = (p ; Merge(n1
c, n2

c))(χe)

- If n1, n2 /∈ C(g) or n1 ∈ I(g) andn2 ∈ C(g) − I(g) (or
the symmetrical case), thenχ′e = p(χe)

• p is Raise(n), with n 6= d

- If n ∈ I(g) and n 6≻−→ g and¬(n ≻−→≻−→ g), then
χ′e = (p ; Raise(nc))(χe).

- If n /∈ I(g), or n ∈ I(g) andn ≻−→≻−→ g, χ′e = p(χe).

- n ∈ I(g), n ≻−→ g. In this case, the commutation is not
immediate. Indeed, inχ, n is in the interior, while it is in the
exterior inχ′. The idea is to merge the copied nodes under
nc in χe with the nodes undern. However, this cannot be
done untiln has been raised high enough for this.

Consider indeedχe. The nodenc can be raised in this con-
straint, becausen could be raised inχ. Then letu′ be a unifi-
cation edge betweennc andn in χe. This edge is admissible,

as
≻

nc is aG-node after the raising. Let us callχ′′ this con-
straint. We haveχ′′ 
 χe by dropping of constraints and
instance.

Moreover, the principal unifier of this edge inχe is exactly
χ′′, which showsχe ⊑ χ′′, henceχ′′ 
p χe (1).

Notice next thatn is in the structural frontier ofg in χ′. The
only difference betweenχ′e andχ′′ is that there are some
nodes undernc in χ′′. However, those nodes are exactly
the same nodes as undern, andn andnc are linked by a
unification edge. Thusχ′′ andχ′e are equivalent for⊣⊢p,
which concludes with (1).

• p is Raise(d)

- d /∈ I(g): Thenχ′e = (Raise(d);Raise(F );Raise(nc))(χe)
whereF = F(g) andn = 〈g · 1〉.

- d ∈ I(g): notice that be definition of instantiation edges,
d ≻−→ g must hold. Thenχ′e = (Raise(d) ; Raise(F ) ;
Raise(nc) ; Raise(dc) ; Merge(dc, d))(χe) with the same
notations as above.

Proof of Lemma 12

Let χ be a constraint,e one of its instantiation edges.
Consider a presolutionχp of χ. By definition, it is an instance

of χ. By applying Lemma 11, we obtainχe
p 
p χe. By definition

of presolutions, we also haveχe
p ⊑ χp, henceχp 
p χe

p, and
χp 
p χe by transitivity of
p. Hence,χp is a presolution ofχe,
andχ 
p χe.

Consider now a presolutionχp of χe. By definition, it solves all
the unification edges ofχe, in particular those resulting from the
expansion. All introduced existential nodes are thus merged in χp,
andχ ⊑ χp holds. This provesχp 
p χ. Thus,χe 
p χ also
holds.

Proof of Lemma 13

We show the property for atomic instantiation steps. The general
case follows by induction. In each case, we show that direct depen-
dency may only decrease.

Weakening: The dependency relation remains unchanged.

Grafting: The interiors ofG-nodes are enlarged, but with new
nodes that do not contain instantiation edges. Hence, the direct
dependency relation remains unchanged.

Raising: The interiors ofG-nodes may only decrease (if the node
raised is bound on aG-nodes, its subgraph leaves the interior of
this node, otherwise allG-nodes interiors are left unchanged).
Hence the relation diminishes or remains unchanged.
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Merging: The interiors ofG-nodes are left unchanged, as G-nodes
are never merged and so merging can only occurinside the
interior ofG-nodes.

Proof of Lemma 14

Let E be the set of unification edge resulting from the propagation.

1. χ′ is an instance ofχ:

The existential structure introduced during the propagation is
merged with the existing structure underd when the unification
edges are solved.

2. The nodes ofCχ(g) have not been instantiated inχ′:

By definition of the unification algorithm, the nodes changed
are those reachable by∗◦−→ from a node constrained by an
edge inE. These nodes are either fresh (i.e. created by the
propagation), underd, or under a node in the frontier (hence
the exterior) ofg. Hence, we just need to prove that no node
underd is in C(g).

By contradiction, suppose there existsn such thatn ∈ C(g) and
d ∗◦−→ n. By well-domination, eitherg ∗≻−→ d, or d ∗≻−→ g.
The second case is forbidden by the hypothesis ond andg. The
first case is impossible becaused is a type node, andg a G-node.

3. e is solved inχ′

The diagram presented in Figure 23 holds.

χ χe χee

χ′ χ′e

e e

e

Unif

⊑M
1

Unif

⊑

Figure 23. Propagation and unification

Let us first justify the edgeχee
Unif

−→ χ′e. Propagatinge a
second time inχe is similar to doing an existential introduction.
The new nodes are not considered by the unification algorithm,
so the first expanded nodes are merged exactly as inχ′. The
square closes because the interior ofg have not changed, so the
propagation creates the same nodes inχ′ andχe.

Next,χee ⊑M χe holds (by merging the copies of the nodes of
the structural frontier, and the root of the two propagations).
This impliesχee ⊑ χ′. Henceχ′ is an unifier of the edge
introduced by the second introduction inχee. This means that
it is an instance of the principal unifier of this edge, which is
χ′e. (Indeed, the two propagated parts being equal, unifying one
unification edge or the other yields the same graph.) Hence the
relationχ′e ⊑ χ′ holds, which is exactly the desired result.

Proof of Theorem 1

We reason on constraints without unification edges, as thosecan be
solved by unification without loss of generality (1) (Lemma 9).

Let χ be a constraint. We extend the relation “depends on”
to two instantiation edges byf d depends onf ′ d′

iff f depends onf ′. This relation is a strict partial order, since
the dependency relation on breakpoints is acyclic. Moreover, it
only decreases (as a relation) by instance, as does the dependency
relation (proof of Lemma 13).

We say that an instantiation edgee = g d is recursively
solved if g is recursively solved ande is solved. The proof is by

induction on the number of instantiation edges not recursively-
solved.

If this number is 0,χ is solved: all instantiation edges are
recursively solved (hence solved), all unification edges have been
solved (1). Hence we chooseχ as its own more general presolution.

Otherwise, lete = g d be a non recursively solved
instantiation edge minimal for the dependency order. Sinceall
unification edges are solved (1), this implies thatg is recursively
solved ande is not (2) (otherwise, we would consider one of the
unsolved edges constrainingg instead).

One step:We propagatee in the resulting graph and solve the
resulting unification edges.

If there is no solution,χ is unsolvable (Lemmas 12 and 9).
Hence, we now suppose that the unification has succeeded (oth-
erwise there are no presolutions to reason on).

If the unification has succeeded, the resulting graphχ′ has again
the same presolutions asχ (Lemmas 12 and 9 again). Moreover, it
is an instance ofχ ande is solved inχ′ (Lemma 14) (3).

All the instantiation edges recursively solved inχ are still
solved inχ′ (and hence recursively solved (4)):

The nodes ofχ changed by the unification are those structurally
underd. Now d is in at most one structural interior of aG-node
(as those nodes are existentially introduced). Let us consider each
case:

d is in no structural interior: all the nodes underd for +◦−→ are in
noG structural interior either. Hence solving the unification did
not change any such interior. Lemma 7 ensures that all edges
previously solved are solved.

d is in I(g′): (for aG-nodeg′). All the nodes underd for +◦−→ are
in I(g′) or outside of any structural interior of aG-node. Hence,
the only such interior changed by unification isg′. Sinced is in
I(g′), s′ depends ons. By hypothesis (2),e is not solved, hence
g′ is not recursively solved. In particular, the edges originating
from g′ are not recursively solved. Hence, by Lemma 7 again,
all edges recursively solved are still solved inχ′.

Conclusion:The edgee is recursively solved, asg is recursively
solved (2) ande is solved (3). By hypothesis,e was not recursively
solved. Hence, using (4), at least one more edge is recursively
solved in χ′. Moreover, we have already proved thatχ′ is an
instance ofχ, and that it has the same presolutions asχ. Hence
we can conclude by induction hypothesis.

Remark: the most general presolution is unique:Let χp andχ′
p

be two potentially most general presolution (obtained by choosing
the edges to propagate in different ways). We obtain immediately
χp ⊑ χ′

p andχ′
p ⊑ χp. The kernel of instance is equality [10,

Lemma 2], hence the result.

Proof of Lemma 15

Let χ be the constraint. The direction “typable inML implies
typable inMLF” is proven in Property 3. Suppose then thatχ is
typable inMLF. The proof of Theorem 1 show that its principal
presolutionχp contains only flexible edges, as unification does not
introduce fresh binding edges, and propagation only copiesexisting
subgraphs. Thus we can apply Property 4 toχp, which gives us an
ML solution toχ.

Proof of Lemma 16

Let g′ be the name of the copy ofg. Let χC beC(χ). The proof
is by case disjunction on the instance operationo. In each case we
describe the constraintχ′

C closing the diagram.

• o = Graft(τ, n) with n = 〈g · π〉 ∈ C(g)

χ′
C = (Graft(τ, n) ; Graft(τ, g′ · π))(χC)
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• o = Weaken(n) with n = 〈g · π〉 ∈ C(g)

χ′
C = (Weaken(n) ; Weaken(g′ · π))(χC)

• o = Raise(n) with n = 〈g · π〉 ∈ C(g), n not bound ong

χ′
C = (Raise(n) ; Raise(g′ · π))(χC)

• o = Raise(n) with n = 〈g · π〉 ∈ C(g), n bound ong

χ′
C = (Raise(n) ; Raise(g′ · π) ; Merge(n, g′ · π))(χC)

• o = Merge(n1, n2) with n1 = 〈g · π1〉, n2 = 〈g · π2〉,
n1, n2 ∈ C(g)

χ′
C = (Merge(n1, 〈g′ · π1〉) ; Merge(n2, 〈g′ · π2〉))(χC)

• In all the other cases:χ′
C = C(χC)

Note that, for the caseo = Merge(n1, n2) and g n1,
g n2, we either have to allow multiple instantiation edges
between nodes, or to allow a single instantiation edge to be split
into two edges.

Proof of Lemma 18

Let χ be a constraint. LetC be an application of INST-COPY. Let
χC beC(χ).

Consider a presolutionχp of χ. Let χCp be the constraint
obtained by applying Lemma 16 toχC and χp. By hypothesis,
χp is solved, hence it does not contain unification edges, and all
instantiation edges are solved. By its definition,χCp does not
contain unification edges. Moreover, all its instantiationedges can
be solved, by using the steps that solve them inχp. Finally,χp and
χCp witness the same solutions, as the copy does not change the
expansion. Hence all solutions ofχ are solutions ofχC .

In the other direction, we cannot apply the same approach.
Indeed, the two copies ofg could seemingly be instantiated in
different ways. However, this is in fact never useful, because the
most general presolution ofχ′ will instantiate the two copies of the
G-node similarly.

Let χp be the most general presolution ofχ. We show by
induction on the number of steps leading toχp in the proof of
Theorem 1 that the most general presolution ofχC is C(χp).

If there are0 steps,χ is solved. ThenχC is solved, applying
INST-COPY to a presolution yields a presolution. Moreover, both
constraints witness the same solutions, as the copy does notchange
the expansion.x

Otherwise, there are two possible kinds of steps:

1. The unification of a unification edgee; let χ′ be the resulting
constraint. We unifye and its eventual copy inχC . Lemma 17
ensures that the resulting constraint isC(χ′). This constraint is
more general thanχCp (Lemma 9).

2. The propagation of an instantiation edgee. Then we propagate
e and its eventual copy inχC . The result is trivially equal to
C(χe) and is more general thanχCp (Lemma 12).

In both cases, conclusion is by induction hypothesis applied to the
obtained constraint.

Proof of Lemma 19

For VAR-ABS, the result is by unification, INST-ELIM -MONO and
existential elimination.

For VAR-LET, the proof steps are shown in Figure 24. We have
χ4 ⊣⊢ χ3 by EXISTS-ELIM and χ2 
 χ1, χ3 by dropping of
constraints.

χ1 
 χ2: let χp be a presolution ofχ1, plus the additional edge
g1 n (thusχp is an instance ofχ2). We will prove thatχp is
a presolution ofχ2.
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Figure 24. Steps proving VAR-LET

Consider the constraintχ′
p obtained by propagatingg1 n

in χp. Let T be the sequence of instance operations solving the
propagation for the edgeg1 〈g2 · 1〉 (sinceχp is a presolution
of χ1). We suppose without loss of generality thatT is done
bottom-up, and that the last operation isMerge(g1

c, 〈g2 · 1〉); let
T ′ beT without this last operation.

Next, consider a pathπ such that〈g1 · 1 · π〉 ∈ F(g1). Then by
definition of presolutions and propagation,〈g1 ·1 ·π〉 = 〈g2 ·1 ·π〉.
Moreover, given the shape of the binding tree inχ1, we have
〈g2 · 1 · π〉 ∈ F(g2). Next, again by definition of presolutions
and propagation, we have〈g2 · 1 · π〉 = 〈n · π〉.

ThusT ′ can almost directly be used to act on the expansion in
χ′

p, as the nodes in the frontier ofg2 are shared withn. The only
difference is that we must change the way nodes leavingI(gc

2) are
raised. Indeed, the binding tree above≻n and g2 is not the same.
Without loss of generality, we suppose thatT ′ is such that all nodes
ultimately outsidegc

2 are first raised so that they are all bound at
≻g2, then multi-raised until they are all bound atr (since they must
be bound above the least common ancestor ofg1, g2 andn), and
then freely raised (this last step is unimportant for us). Wethen
adaptT ′ so that the multi-raising are changed to account for the
difference in binding heights between≻g2 and n. This preserves
well-domination, as multi-raising preserves well-domination. We
call T ′′ the resulting transformations, andχ′′

p the constraintT (χ′
p).

Let us examineχ′′
p . By construction,gc

2 could be merged with
〈g2 · 1〉 if the expansion had been done onχ2. In particular, up to
expansion (i.e. binding and flag reset),I(〈g2 · 1〉) andI(gc

2) are
equal (1). In χ′′

p however, the merging is not possible yet, because
the nodes undern might be further instantiated.

Consider nowχe
2, wheree is g2 n. Sinceχp is a presolu-

tion of χ1, this propagation can be solved. Letχ′′′
p be the constraint

obtained by solving only the unification edges resulting from the
nodes on the frontier. By (1), it is in fact the case thatχ′′′

p = χ′′
p .

Indeed, in both constraints, the nodes in the frontier of theexpan-
sions are the nodes in the frontier ofg2, and the nodes in the interior
of the expansion are the interior ofg2, up to expansion (inχ′′′

p , uni-
fying the nodes of the frontier has not changed the interior of the
expansion). Thus the remainder of the propagation inχ′′

p can be
solved.

We have thus proven that the edgeg1 n is solved. Thus
χp is a presolution, in particular ofχ2, andχ1 
 χ2 (in fact, in
this case we have proven equality of the shape of the presolutions).

χ4 
 χ2: let χp be a presolution ofχ4. Let χ′
p beχp plusg2,

the bottom node under it, and the two remaining instantiation edges.
The unification edges introduced by propagatingg1 〈g2 · 1〉
can be solved:
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• the bottom node underg2 creates no constraint for the skeleton
or the term-graph.

• sinceχp is a presolution, all nodes inF(g1) are already bound
above the least common binder ofg1 andn, which is the root of
the graph here. Thus solving the unification edge does not raise
a node already inχ4.

We callχ′′
p the resulting constraint. Notice that in this constraint,g1

andg2 have exactly the same frontier, and their structural interior
is the same (up to expansion). Thusg2 n is solved, andχ′′

p

is a presolution. Since it witnesses the same solutions asχ4, this
proves the subresult.

Proof of Lemma 20

Let χ andχ′ be the left and righ-hand sides of the rule respectively.
One implication is obvious, asχ ⊑ χ′

Supposeχp is anML presolution ofχ. Let us callm the node
〈g · 1〉. We argue will prove thatm andn can be merged inχp, and
that the result is a presolution.

Consider indeedχe
p. By hypothesis,χe

p ⊑ χp. Considerχe
p in

which the unification edges resulting from the frontier are solved.
We callχ′

1 this constraint. Letmc be the copy ofm in the propaga-
tion, i.e. the root of the expansion. Inχ′

1 there is exactly the same
structure underm andmc. Thus those two nodes can be unified,
and we callχ′

2 the resulting constraint. Notice that the nodes under
mc are unchanged by this unification (1). Indeed, the unification
will not change the nodes inF(g) (they are already merged inχ′

1),
while the copies in the nodes ofI(g) are all bound on≻n. Thus the
nodes underm will be raised, while those undermc will not. It re-
mains to unify the edge betweenmc andn. This is possible by (1),
by following the same steps that those solving this edge inχ′

1. We
call χ′

3 the resulting constraint.
Let us prove thatχ′

3 is a presolution. We use Lemma 7, and
consider the structural interiors that have been changed byunifying
m and n. Unification only changes the nodes under the nodes
unified, so we must only consider the structural interiors ofthe
nodes underm and n, i.e. the structural interior ofg and of g′

(whereg′ is the G-node whose structural interior containsn. Notice
thatg′ might not exist ifn is existential inχ′

3).
By (1), the nodes undern have not been changed by the unifi-

cation. Thus all instantiation edges leavingg′ (if it exists) are still
solved. Moreover,e is the only instantiation edge leavingg, and it
is solved by construction of the unification. Thus all instantiation
edges are solved inχ′

3, and it is a presolution.
Next, notice that unifyingm andn raisesn′ so that it is bound

at least at≻g in χ′
3. Thus χ′ ⊑ χ′

3 holds, by [10, Lemma 10].
Moreover,χ andχ′

3 witness the same solutions, as the nodes under
〈ǫ〉 are unchanged by the unification ofm andn. This proves the
other direction of the result.
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