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Abstract

MLF is a type system that seamlessly mergés-style type in-
ference with Systen- polymorphism. We propose a system of
graphic (type) constraints that can be used to perform tyfer-i
ence in bothVIL or MLF. We show that this constraint system is a
small extension of the formalism of graphic types, origiaitro-
duced to represemiLF types. We give a few semantic preserving
transformations on constraints and propose a strategyfiyiag
them to solve constraints. We show that the resulting algorhas
optimal complexity forMLF type inference, and argue that, as for
ML, this complexity is linear under reasonable assumptions.
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ficationg: Applicative (functional) languages; E.Dfta Struc-
tureq: Graphs

General Terms Algorithms, Design, Languages, Theory

Keywords SystemF, MLF, ML, Unification, Type Inference,
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stantiation, Binders.

Introduction

MLF [2] is a type system that combines the power of first-class,
SystemF-style polymorphism with the convenience BfL type
inference.MLF is a conservative extension ®iL. In particular,

all ML terms are typable iMLF. Moreover, the full power of
first-order polymorphism is also available, as any Sysketarm
can be typed by using type annotations (containing secomero
types). Still, as inML, all typable expressions having principal
types. Moreover, the set of well-typed programs is invariarder

a wide class of program transformations, including letaggion,
let-reductiony-expansion of functional expressions, reordering of
arguments, curryfication, and also “abstraction of apfibcs”,
which means that: a- is typable if and only ifapply a1 a2 is
(whereapply is A\(f) A(x) f z). Furthermore, only lambda-bound
arguments that are used polymorphically need an annotatn
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makes it very easy for the user to predict where and whichtanno
tions to write. FinallyMLF is an impredicative type system, which
allows embedding polymorphism inside containers; for gxam
(V(a) a — «) list is a valid type, quite different from the weaker
¥ (a) ((o — a)list). A full comparison betweeMLF and other
extensions of Systeffican be found in[3].

Unfortunately, the power ofMLF has a price MLF types are
more general than Systeftypes, making them look unfamiliar.
The original syntactic presentation BfLF [7] is also quite techni-
cal, and most extensions of the system in this form wouldirequ
large amount of work. Finally, the type inference algoritbased
on syntactic types has obvious sources of inefficienciesaanble-
lieve that it would not scale up well to large, possibly auaticeally
generated, programs.

Graphic typeshave been introduced as a simpler alternative to
the original syntactic types, in order to solve all thre@iéss[9]. In
this work, we extend graphic types to address the questitypef
inference. We do not adapt the existing type inference ahyoiZ]
by replacing its unification algorithm on syntactic typeghathe
new, more efficient unification algorithm on graphic typE}: [9
repeatedly translating to and from graphic types would bt bo
inelegant and inefficient, loosing the quite compact regmestion
of graphic types. Moreover, we believe that the graphicertion
is better suited for studying the meta-theoretical progerfMLF.

Instead, we propose an entirely graphical presentatiogpa t
inference. Additionally, we highlight the strong ties beamMLF
andML by parameterizing our type inference system with the ac-
tual set of types that is being used, rediscovering a knoficieft
type inference algorithm foL. Our approach is also constraint-
based, hence more general than just a particular type inderal-
gorithm: we introduce a set of graphic constraint conss;uand
define typing constraints in term of those.

Our contributions are as follows:

* We propose a small set gfaphic constraintsfeaturing gener-
alization scopes, existential nodes, unification and im&tton
edges. We encode typing problems in terms of those, by defin-
ing a compositional translation froxterms to constraints.

¢ \We show that this system can be seen as a small generalization
of the formalism of graphic types.

e \We show that our constraint system is in fact implicitly para
eterized by the type system considered and the operatiak-of t
ing an instance of a type scheme. We make this last operation
explicit for bothML andMLF, and (re)prove tha¥lL is a sub-
system ofvILF.

¢ We give a semantics to our constraints, first by defining what i
means for a constraint to be solved, and then as a set of types.
We link solved constraints and fully decoratederms.
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¢ We identify a set oficyclic constraints, that include all typing
constraints, and have decidable principal solutions.

e We study the theoretical complexity of solving typing con-
straints and show that under reasonable assumptions, riype i
ference inMLF has linear complexity—as iML. We also ob-
serve that our algorithm has optimal complexity for bl
andMLF type inference.

Outline of the paper We introduce a graphic presentation\t.
types, extend it to graphic constraints, and define a trioslrom
source expressions to constraintEl (§1). We give a briefvaawer

of MLF and graphic types, and show that graphic constraints are
an extension of graphic types]§2). We define what it means for

a graphic constraint to be solved, bothNML and MLF (§3), and
present sound and complete transformations on constr¢g)s
We show that a large class of constraints have principatisolsi
and introduce a strategy to reduce any such constraint tqug-e
alent one in solved form [®5). We discuss type annotationdlih
(48). We show that our strategy for solving constraints setadan
efficient implementation of type inferencd]87). We presefew
examples of typings in($8 and discuss related work§ln §9.

An online prototypeVILF typechecker and an extended version
of this paper with all proofs are available online &tttp: //
gallium. inria. fr/ "remy/mlf/.

1. Graphic types and constraints
1.1 ML Graphic types

‘B 1137

Figure 1. GraphicML types

ML graphic types are first-order (quantifier fréeedm dags As
with first-order terms, every node is labeled with a symblg t
arity of which determines the number of its successors. $§gnb
contain at least the arrow of arity 2. Variable nodes are labelled
using a pseudo-symbal of arity 0. However, in first-order term
dags (as opposed to first-order terms), nodes may also bedshar
i.e. there may be differermpathsleading to the same node. Paths
are sequences of integers that are used to designate ndues. T
empty pathe designates the root node Afdesignates node, % - j
designates thg'th successor of.. We often leave implicit and
write 121 instead ofl - 2 - 1. For illustration, consider the type of
Figure[d. The rightmost lowermost node (which is labeledhwi)
can be designated by either pathor path22: this is a shared node.
We write () for the node designated by path An edge between
nodesn andrn’ in T is writtenn o—, n’ orn o— n’ € 7,rsimply
n o— n/ whenr may be left implicit from context. For example,
(2) o (21). N o

In ML graphic types, only sharing of variable nodes is signifi-
cant: sharing of inner nodes, such@s in type 73, is not. Thus,

Type instance< on ML graphic types captures almost entirely
the corresponding instance relation ML types. In particular,
71 < 72 < 73 < 74 holds. Howeverg is oriented so that it allows
only more sharing; thus; < 73 does not hold, even though th_
types they represent are equal. This permits a simpler tiefirof
<, thus simpler reasonirfjswWe then prove that all our results hold
when types are equal up tosimilarity relation ~ that captures
sharing of inner nodes.¢. 75 =~ 75 holds).

Notice that< can be decomposed into two more atomic rela-
tions,grafting andmerging Grafting adds a subgraph under a vari-
able node. For example; is obtained fromr; by grafting under
(1) the graphic type representing — ~. Merging shares some
nodes, which need not be variable nodes. For examplegsults
from sharing nodeg11) and (21) in 72, while 73 is obtained by
sharing(1) and(2) in 73.

1.2 (Graphic) type schemes and generalization

Central toML type inference is the notion of generalization:
'ke:r « does not appear free In

F'ke:V(a) T

We will use the same mechanism in graphic type inferencehio t

effect, we introduce a new type constructerof arity one. A G-
node has a double role:

GEN

e |t is used to indicate where polymorphism is introduced. For
that purpose, we introducehinding eddg# leaving from each
bound variable to the G-node where it is bound. Thus a G-node
can be seen as representingype scheme

¢ |t will be safe to generalize any variable node introducethen
scope of a G-node at the level of this node. Thus, G-nodes can
be seen as modelirgeneralization scopes

G-nodes will in particular be used to typet constructs, and we
need to be able to to nest them. However, they belong to the con
straint and should not be part of the type structure. Bothiireg
ments can be fulfilled by binding every G-node to the outero@en
where it has been introduced and accessing it only throsdiint-

ing edge (except for the toplevel node, at the root).

Figure 2. Constraints with generalization scopes

Figurel2 shows three constraints, each containingGwmdes,
the root(e) and the nodey, bound at(e). We extend the syntax
of paths to allow named nodes suchga§or example, in all three
constraints the rightmost lowermost bottom node can bgdated
by either(g - 1-2), (1 -1) or (1 - 2). In the figures, binding
edges are dotted oriented lines. In the text, wense—, g or

ML graphic types may always be unfolded and read back as treesn, =~ ¢ € yo say thatn is bound atg in x (we often leavey

However, before doing so, bottom nodes must all be relabebeth
with a different type variable, so that all occurrences thate
shared in the graph representation become the same typdleari
in the unfolding. For instance, the skeleton of the typéan Fig-
ure[d represents thiglL type « — (3 — 3). Similarly, > rep-
resents(a« — a) — (B8 — B3), while bothts and 3 represent
(a = a) = (a—a).

implicit from context). Given a node in x, there is at most ong

1This also makes our definitions closer to (usual) implentants, which
use a union-find based representations of types.

2Using binding edges instead of a sequence of explicibdes have many
advantages; in particular we gain commutation of adjacémidos and
removal of useless quantification for free.

2008/4/15


http://gallium.inria.fr/~remy/mlf/
http://gallium.inria.fr/~remy/mlf/

such that =— g, called thebinderof n, and written?z. In all three
constraints of FigurEl2, we have = (e) and (11) >— (e).
Notice that binding edges do not count in arities;in(1) is the
rightmost arrow node, nat.

The nodeg of constrainty represents the type scherdéc)
a — [, whereg is a free variable represented by the ndde)
that is bound aboveg; conversely, the nodégll) representing
o is bound atg. By contrast, in the constraint’, both variables
are bound above, henceg represents the typa — (3, which
is monomorphic in the context @f. The root node represents the
same type¥ () 8 — [ in all three constraints.

as explained above. In particular,is an existential arrow node
constrained (through an instantiation edge) to be an instafthe
G-nodes. Finally,n’ is an existential node that represents the type
int of 1 and constrains (through a unification edge) the domain of
n to be an integer.

Neither the instantiation nor the unification constrainte a
solved in. The unification constraint can be satisfied by graft-
ing the typeint under(n1) and merging this node with’. The
instantiation constraint can be solved by taking as an estaf
V(a) @ — a, the identity3 — g itself, and unifying this type
with n (thus merging(n1) and (n2)). The resulting constraint is

G-nodes can only appear under the G-node to which they are depicted byy,. In particular, the type of the application is the type

bound. Constraints are therefore stratified: all G-nodesaathe
top-most part ofy, above theypenodes of the constraint.

The instance relatior on ML graphic types can be extended
to an instance relatiofic on graphic constraints as follows: we
allow any transformation alongl at every type node, except that
nodes can only be merged if they have the same bound. Ingarall
we introduce a third instance operation that consistsising a
binding edge along another on. replacing the bound of a node
n by the bound ofs. This results in extruding the polymorphism
to the enclosing generalization scope. Readers familitir kaink-
basedML type inferencelll1.18] can recognize the similarity between
raising and adjusting the ranks of two variables about tortiked.

As an example, consider nodégl1) and (g12) in Figure[2.

In x, they cannot be merged. However, nggé 1) can be raised,
resulting in the constraing’. The merging is now possible, and
results in the constraint”. In summary, we havee C ' and
x' C x”, and thereforey C x” by transitivity.

1.3 Constraint edges and existential nodes

In order to perform type inference, we only need three more co
structs: unification and instantiation constraints (bating mod-
elized usingconstraints edggsand existential nodes.

A unification edgen; n2 links two type nodes and means
that n; and ne should be unified. Unification edges whose two
extremities are the same node are implicitly removed.

An instantiation edge === n relates a G-nodgto a type node
n. It requires the type under to be an instance of the type scheme
represented by. The exact definition of “being an instance” will
be given in E31.

Existential nodes are type nodes that are only part of the con
straint structure. Usually they are nodes in which we ardntet-
estedper se but only indirectly, in order to constrain other nodes.
For example, the typing of an applicatian a-» requiresa; to be
arrow typer such that the domain ofis also the type ofi.. How-
ever, we are eventually only interested in the type resyfiom
the applicationi.e.the codomain of. We thus introduce the arrow
node ofr as an existential node.

Figure 3. Typingid 1

Examples of constraints are given in Figlte 3. The congtrain
is the typing ofid 1, whereid is the identity function. The leftmost
G-nodeg represents the type scheméa) a — « of id. The
root G-node represents the typing constraint for an apjgica

scheme represented k), in this case the ground typet.

About unbound nodes So far, we have only bound variable nodes
and G-nodes. However, this approach lacks some homoggemedty
we instead choose to bind all nodes explicitly to the G-ndubsy t
belong to. A fully-bound version of,, in Figure[3 isy;,.

1.4 Putting it all together: typing constraints

Let x range over a denumerable set of variables. Expressions are
those of the\-calculus enriched withet bindings. As usual, the
expressions\(z) a andlet z = a’ in a bindsz in a but not ina’.

az=z|ANx)a|aa|letz=aina

To represent typing problems, we use a compositional ta¢nsl
from source terms toyping constraintsWe introduceexpression
nodesas a meta-notation standing for the constraint the exmessi
represents. An expression node is represented by a retdabox
in drawings. Expression nodes receive from the typing envirent
a set of constraint edges, meant to constrain the nodesporré-
ing to the free variables of the expression. Each edge ifiéabey
the variable it constrains. In drawings we represent sucét afs
edges as a blue edge=s , often leaving the labels implicit.
Expression nodes can be inductively transformed into £mpl
constraints using the rules presented in Fifilire 4. We fdl@iog-
ical presentations dfIL type inference, where generalization can
be performed at every typing stee. not only atlet construc.
Thus each basic expression is typed in a generalizatioreseoyl
the root of a basic constraint will always be a G-node. We have
drawn those nodes in the right-hand sides of Fifilire 4 in caler
disambiguate the origin of edges.

e A variable x is typed as the universal type scheméa) a.
That is, it is a G-node whose child is a bottom node bound on
the G-node. The bottom node is constrained by the unique edge
annotated bye in the typing environment (if there is no such
edge, the constraint is not closed, thus untypable).

e A let-binding let = a1 in az is typed asaz plus some
constraints on:. The generalization scope for is introduced at
the level ofaz. The (free) variables af; andas are constrained
by the typing environment, except farin a; which must be an
instance ofu;.

e An abstraction\(z) a is typed as a type scheme containing an
arrow type. The codomain of the arrow must be an instance of
a. The variables of. are constrained by the typing environment,
except forz that must unify with the domain of the arrow.

e An applicationa: a- is typed as the codomain of an arrow type
existentially introduced. The domain of the arrow is caaisied
so that it is an instance of the type @f, while the arrow type
itself must be an instance of the typeaaf Both sub-expressions
are constrained by the typing environment.

31t is well-known that, forML, both presentations are equivalent. However,
this is not the case favLF.
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Figure 4. Typing of primitive expressions

Figure[® shows the steps transforming the expression nade fo
A(z) A(y) = into a typing constraint. Notice that, in the middle
constraint, the expression node foreceives two unification edges,
one forz and one fory. However the unification edge faris not
useful, and is ultimately dropped singes not free inx.

Figure 5. Typing constraints foA(z) A(y) =

2. An overview of MLF and MLF graphic types
2.1 MLFtypes

CombiningML-style type inference with Systefpolymorphism
is difficult, as type inference in the presence of first-clagymor-
phism leads to two competing strategies: should types biepdy-
morphic for as long as possible, or conversely, for as stsopos-
sible? Unfortunately, those two paths are not confluent iregs,
leading to two correct but incomparable types for an exjwass
(assuming equal types for their subexpressions).

As an example, consider the expressitinose id, whereid has
typeV (o) @ — « (which we refer to as;4) and wherehoose has
typeV (8) 8 — B — [. In SystemF, we can give this application
both types/ (v) (y — v) — (v — ) ando;q — o4. Yet, neither
one is more general than the other.

To solve this problemMLF enriches types with a new form of
(bounded) quantificatiorthoose id receives the typ¥ (o > 0iq)

a — «. Notice that both the inner polymorphism 6f; — o4

and the fact that both occurrencesaj, are linked are retained.
The variablex is allowed to range over all possible instance of its
boundo;4, as indicated by the sigk. We say it isflexiblybound.
Of course, the two occurrences®@bn both sides of the arrow must
simultaneously pick the same instance: the weaker the angym
the weaker the result. The idea is to keep types as polynorphi
as possible, in order to be able to recover later—just by I{gi)p
instantiation—what they would have been if some part hadchbee
instantiated earlier.

This form of quantification, while expressive, is not yetfsuf
cient. For example, consider the terhfid : V(o) a — «)
(id 1,id 'c’). It is not typable inML, as the variabléd is used on
two arguments with incompatible typést andchar. In Systen¥F,
it can be given the type;; — int x char. However, it would be
incorrect to give it theMLF type V(a0 > 014) a — int  char,
as this type could be instantiated fmt — int) — int * char,
which would erroneously allow the application of the susces
function to a character. Thereforb|LF introduces another form
of quantification, calledigidly-bounded quantification and writ-
ten with an =" sign. The above term can be given the type
V(o = 0;4) a — int % char. Rigid quantification is used when
polymorphism igequired as rigid bounds will never be weakened
by instantiation.

2.2 MLF graphic types

Sharing inside types is of paramount importancklid. For exam-
ple, thetypes/(a =2 o) V(B> 0)a — fandV(y 2 0) v — v

are quite different—the former being more general than diied
as it can pick different instances eéffor o and 3.

MLF graphic types have originally been introduced in part to
directly capture these notions inside the representafitypes [9].
They also provide a more canonical representation of typed,
permit a straightforward definition of the type instanceatien
between types.

Its skeleton

MLF graphic type Its binding tree

© ©

o =V(@)V(B=Y()7—NVE>a—a)f—3

Figure 6. An example ofMLF graphic type

MLF graphic types can be decomposed into a first-order quanti-
fier free skeletoni(e. an ML graphic type), and hinding treethat
tells for every nodevhereandhowit is bound. Figur&lé shows an
example of such a decomposition.

The binding tree represents the quantifiers. As in graphie co
straints, we use edges rather than nodes for quantifiersleavés
the structure invariant by extrusion of quantifiers. All rechave a
binder. (Bottom nodes, which represent variables, mustoomdb.
Binding non-bottom nodes that are themselves bounds ofr othe
nodes is important to keep precise track of sharing andntiata
tion permissions, as described in the next section. Bindimdes
that are not themselves bounds of other nodes is not strietgs-
sary, but convenient for the regularity of the presenta}ion

We use the notatios— for binding edges, as in graphic con-
straints. However, we must distinguish between flexible agid
quantification. Flexible quantification allows instantiat as in
ML, so we (re)use dotted edges. Rigid quantification uses dashe
edges, as for nodél) in Figure[®. When the nature of binding
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edges is unimportant, we draw them as dotted-dashed liméisel

text we writen == n’ andn == n’ for flexible and rigid edges
respectively, or as =>~ n’ whereo stands for eithel> or =.

We write o—, for (o—,) U (+—<,) calledmixed edgeand
often leavey implicit from context. Let— range overo—s,

> ando—. We write —— and—— for the reflexive, transitive,
and transitive closures 6f—, respectively. (In drawings, we also

use— and — for —— and ——, to be less intrusive.) We
write (N —) for {n’ | 3n € N,n — n'}. The domain of
the constrainty, written dom(y) is the set of nodege) <,
reachable from the root node by inverse binding edges.

All superpositions of a graphic type with a binding tree dé no
form an MLF graphic type. Indeed, the resulting graph must be
well-dominated the binder of a nodex must dominaten for the
relationo=<. In essence, well-domination ensures that scopes are
properly nested. The same property must actually hold iphdca
constraints: in FigurEl3, bindingy1) at the root iny;, would have
been incorrect. Indeed;, the binder of(g11), would not have
dominated(g11) (as shown by the patft) —— (g1) o— (g11)).

2.3 The instance relation

Grafting

F@ EG

Weakening

O e p
FIC) b

Raising

Merging

ARG

FRI ©)

Figure 7. Instance operations

The instance relation oMLF typesC is defined as the compo-
sition of the atomic instantiation steps described schigaibt in
Figure[T. That isC is the relation(C¢ U C™ U C°® u CW)*.
The annotation§, Fl, andFRI are explained next.

GraftingandMergingoperate on the underlying term structure,
as in ML graphic types. Grafting replaces a bottom node. &
variable) by an arbitrariLF type. Merging fuses two isomorphic
subgraphs, as v (ao7) V(Bo7) a — BCM V(aoT) a — a.
RaisingandWeakeningoperate on the binding tree. As in graphic
constraints, raising extrudes a binder to the enclosingesdd we
consider theMLF typeV (o >V (3) 8 — ) o — « of choose id,
raising the variabled givesV (3) V(o > 8 — ) a — « (which
is equivalent to the SysteftypeV (3) (8 — B) — (B — B)).
Weakening turns a flexible binding edge into a rigid one, itheor
to require polymorphism.

Taking an instance of a typeimplicit. Thus,C must not solely
be sound with respect to the reduction of terms, but also iperm
type inference. Indeed, a relatiGhtoo expressive would allow—
thus require, for principality—guessing polymorphic tgpmaking
type inference undecidable]13]. MLF, C is the restriction of such
a larger instance relatiod. The operations i< \ C are available
explicitly, through the use of user-provided type annotations.

Permissions The instance operations presented in Fifllire 7 are
only sound in certain contexts. The transformations altbwe a
node depend mainly on the context in which the node appears,
which we may abstract as the nogermission It is a key point

of MLF that permissions depend only on the binding tree—in par-
ticular, they are independent of the variances of type coasirs.
There are three permissiornexible rigid, and locked
abbreviated by their first letter. A node with permissio
x is said to be anc-node. The permission of a node
is obtained by following the binding edges linking th |
root ton in the automaton opposite. Notice that the aut ™
tomaton follows binding edges in the inverse direction (ij
the one in drawings. For instance, for nodd), the au- ‘=, :
tomaton starts in the initial state and ends in the state, since

(€) «=< (1) <2< (11); hence this node is dnnode. Nodg1) is
anR-node. All other nodes affe-nodes.

We may now give an exact description of which transformation
are allowed at which node. We also provide intuitions, altfftoa
complete justification is beyond the scope of this paper.

Flexible edges are roughly the analogoudvilf quantification
and indicate where polymorphism is provided. Thus, by desig
nodes allow all forms of instantiation.

In contrast, rigid edges are used to require polymorphisom-C
sider the graphic type of Figuf@ 6. It corresponds to theeSyst
typeV (o) (V(y) v — v) — (¢ — «). A function of this type
cannot in general be treated as a function of tyge) = — o —

a wherer is an arbitrary instance &f(v) v — ~, because at least
this amount of polymorphism is required. Hence, an instapes-
ation under th&k-node(1), such as grafting the-node(11), must

not be allowed. More generally, grafting and merging of ahles
underR-nodes is unsound and forbidden, as well as any operation
that would allow them indirectly.

On the contrary, the inverse of an instance operation cauld i
principle be applied under nodé). However, allowing operations
in the inverse direction would not permit type inferencedahs
on first-order unification. Therefore, the allowed transfations
are the restriction of sound transformations withand we only
allow > N C, called abstraction and writter, under rigid nodes.
Abstraction only permits merging and raising of nodes wigidr
bindings,i.e. R-nodes. In particular, abstraction does not permit
grafting or weakening, as they would be unsound (or imptesib
atR andL nodes.

There is however one exception to this definition of absimact
An operation at a node can be unsound only if there exists a vari-
able noden’ that is (transitively) flexibly bound t@. Otherwise,
there is either no polymorphism at or it is protected by a rigid
edge below:. Formally, a node: is said to benert and called an
I-node, if for any variable node’ such thatn’ =*- n, there is
at least one rigid edge betweehandn; all operations are sound
at inert nodes. (Notice however that inner nodes cannot ke va
ables and thus cannot be grafted.) Inert nodes incladeomor-
phic nodes, on which no variable node is bound at all (for example
all the nodes in a graphic representatiorinaf— int).

One can now reread the definition©fin Figurell with permis-
sions in mind F| abbreviate$ or |, FRI abbreviate$ or R or l. For
example, weakening can be performed at flexible or inertsiode

A

2.4 Graphic constraints as an extension of graphic types

Instead of as an independent formalism, we choose to sehigrap
constraints as a small extension\tF graphic types. This avoids
the introduction of a new framework for constraints, anawaf
reusing all the results already established on graphicstype

G-nodes We addG to the algebra of type constructors and in-
troduce two sort$cheme and Type. The symbolG has signature
Type = Scheme while all others have signaturBype™ = Type
(wheren is the symbol arity); thuss-nodes cannot appear under
nodes of sorfype, calledtype nodesAll constraints must be well-
sorted, and we requil@-nodes to be flexibly bound. In the follow-
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ing, the root of a constraint is always@node. We let the lettey
range ovelG-nodes.

Unification edges A unification problem over graphic types is the
pair of a graphic type and an equivalence relation on its s.0de
solution of a unification problem is an instance of the typat th
makes the nodes equivalent for this relatibnl [10]. This sotes
the simpler problem of unifying two independent types. Wdaifion
edges are a graphic representation of a unification problem.

On a large class of problems, calladmissible unification is
principal; i.e. an admissible problem admits a solution from which
all other solutions are instances. We slightly extend tHanitien
of admissibility for graphic constraints:

DEFINITION 1. We say that a unification edge ng IS

admissibléf either it is admissible on graphic types of = ¢
andns =— ¢’ whereg andg’ are G-nodes.

We require unification constraints to relate two type nodés (
unification of two G-node would have no meaning), and to be
admissible.

Existential nodes Existential nodes are nodes that are not reach-
able when following only structure edges. Formallyis existen-
tial if » and# are not in the same partition for the relatio#-.
Existential nodes can be of any sort. However, we requirexall
istential nodes to be bound on G-nodes. Without this regirica
transformation that could be applied to a constrgimtould not be
applicable to a constraint’ derived fromy by adding some un-
constrained existential nodes, thus making reasoningeisyhtem
quite difficult.

The restrictions orG-nodes and existential nodes imply that
the binding structure above an existential type nedis n =2

(G =2-)*(¢), and allG-nodes have flexible permissions.

LEMMA 1. Any node reachable (by a mixed path) from a type node
is a type node. O

\/(Proof pIH)

Instantiation edges An instantiation edge ==-=» n must connect
a G node to a type node. We also requitg¢o be bound on &-
node (otherwise our system would not be stable by the operafi
taking the instance of a type scheme).

We introduce three operators for transforming constraints

DEFINITION 2. Lety be a constraint and/ a subset of its nodes.
Therestrictionof y to N, written | N, is the subgraph composed
of all the nodes ofV and all edges between two nodes/éf The
removalof N from x, written x \ N, is the restriction ofy to
dom(x) \ N, i.e.all the nodes of but those inV.

The projection proj (x) of x is the constraint obtained by re-
moving all unification and instantiation edges frgm O

MLF and ML constraints From now on, we distinguistMLF
constraints (that use the full rangeMLF graphic types), fronML
constraints in which types are restricted\id. graphic types. That

is, ML constraints are constraints in which all nodes have flexible
binding edges, and all type nodes are bound on a G-node.

Typing constraint@re the subset of constraints generated from
A-terms by the rules of Figufg 4. It is straightforward to fiethat
they verify all the well-formedness conditions above. Miwer,
they areML constraints: the typing constraints @aeactlythe same
in both systems.

PROPERTY1. Typing constraints are well-formetL and MLF
constraints. O

The instance relation on graphic constraints is essentia#
instance relatioi= on graphic types, and we use the same symbol
for both.

DEFINITION 3. Two constraintgc andy’ are such thakx C ' if
x andy’, viewed as graphic types, are in instance relation, and the
binding structure of G-nodes is the sameiandy’. O

Said otherwise, G-nodes, which encode the shape of theraorist
cannot be merged, raised or weakened.

3. Semantics of constraints
3.1 Expanding a type scheme

An instantiation constraing --==$» n requiresn to be an instance
of the type scheme under, hence, we must define what are the
instances of;. Of course, we must take into account generalization
scopes. In essence, nodes bound ahpwe not generalizable,
while those bound under are. We use a uniform charactesizati
for bothML andMLF.

DEFINITION 4. Theconstraint interiorof a noden, writtenC(n),

is the set(n «*<) of all nodes transitively bound ta. The

structural interior, writtenZ(n), is the restriction of the constraint

interior to nodes structurally reachable fram.e.C(n) N (n o).
The structural frontier of a noden, written F(n), is the set

(Z(n) o—) \ Z(n) of the nodes outsid&(n) with a structural

immediate predecessor insidén). g

We write Cy(n), Zy(n) and F,(n) when there is an ambiguity
on x. Notice that in arML constraint,;n € Z(g) implies in fact
n>—4g.

As an example, consider the first constraint of Fiddre 9. lset u
focus at noden first. Its constraint interior is composed of itself
andp2. The nodep; is not in the interior as it is bound above
The structural frontier oz is composed of the nodes and f,
reachable fromn andp, respectively. If we consider, its structural
interior is composed af, n, p1, andp2 while its constraint interior
(in light green) also contains the leftmost existentiabarnode.

Notice thatn € Z(n) andn € C(n); Z(n) is reduced to{n}
when all the children of. are bound strictly above.

The structural interior of a G-nodgrepresents the nodes gen-
eralizable at the level gf. Conversely, it would be unsafe to gener-
alize the nodes in the structural frontier or the nodes beldws,
in order to take an instance gf

o \We copy the skeleton of the structural interiorgofThe shape
of the binding tree depends on whether we perform expansion
in MLF or in ML, as binding tress foML are more restrictive
than forMLF.

e For each node in the structural frontier we introduce a fresh
bottom node connected to the original nodéy a unification
edge. This ensures that all instanceg #fill sharen. (Reusing
n directly would result in ill-dominated constraints.)

The creation of a fresh instance of a type scheme is caktedn-
sion It must be given a “destination” G-node where to bound the
nodes created by the expansion. Expansion is slightly lesergl

in ML than inMLF, as types iML are more constrained than types
in MLF. The difference will be explained through examples below.

DEFINITION 5 (MLFand ML expansion)Let g andg’ be two G-
nodes of a constraint. Letn be (g - 1). Theexpansion of; at g’
is derived fromy by:

* adding a copy oproj(x [ (Z(g) U F(g) \ {g})). The copy of
a nodep is calledp®;
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Figure 9. Examples oMLF expansion and solution-testing

o for every nodef in F(g), changingf© into a bottom node
flexibly bound atg’ and adding the unification edge f<

o for every nodep € Z(g) such thap =>- g, adding the binding
edgep® 25 p/, where
= in ML, (¢, p") is (¢, g') (notice that> is necessarily>)
s in MLF, (¢/,p) is (0, n°) if pis notn, or (>, ¢') if pisn.0

An illustration of anMLF expansion is given as the left constraint
in Figure[®. The right-hand side of the constraint is the Itesfu
expanding the G-nodgat g’. We have highlighted the nodes to be
copied @, p1, p2 and f, on the left) in dark blue and their copies
(n¢, pi, p5 and f¢, on the right) in red.

Notice that existential nodes and inner constraints arer&gh
during expansion (as is illustrated by the unification edegvben
p1 andps in Figure[®). Indeed, expansion is concerned with the
type structure, not with the constraint structure.

Degenerate type schemedAn interesting subcase occurs when
is not bound ory (which implies, by well-domination, th&(g) is
reduced to{g}). In this caseg introduces no polymorphism, and
there is no generic part to expand. Hence, anig copied, but the
copy will ultimately be unified with itself (as illustrated in the top
constraint on the right of Figufé 9). We say tlyds degenerate

ML versus MLF expansion Consider the constraint’ in Fig-
ure[8. Disregarding the unification edges »nandn2 for now,
the constraing’® shows the result of performing &ML expansion
of g at (¢) (underny, in blue), and then aMLF expansion (under
na, in red). The difference lies in the binders(af; - 1) and(n2-1),
which we have highlighted. In thelL expansion{n; - 1) is bound

on (¢). However, in theMLF expansion(n; - 1) is bound onna,
creatinginner polymorphism, forbidden imL.

Notice that, by definitionMLF expansion is always more gen-
eral thanML expansion: the former can be obtained from the latter
by performing a few raisings afterwards.

PROPERTY2. Consider anML constrainty, g and g’ two G-
nodes. Letyme (resp.xp,.r) be the result of performing aML

(resp.MLF) expansion of at g° in x. Theny,.F C xmL. O

3.2 Meaning of constraints

We are now ready to give a meaning to constraints, and start by
characterizing solved constraint edges. An instantiagdge is
solved when a fresh instance of the type schema&cheshe target

of the edge,i.e. it unifies with the target without changing the
constraint.

DEFINITION 6 (Propagation).Let e be an edgeg === n of
a constrainty. We call propagationof e in y, written x¢, the
constraint obtained by expandingat 72, and adding a unification
edge between and the root of the expansion. O

Intuitively, propagation enforces the constraint impobgdan in-
stantiation edge by forcing the unification of a copy of thpety
scheme with the constrained node. For example the cornisgréin
in Figure[® results from performing both &L and anMLF prop-
agation on the unique instantiation edgex6f

DEFINITION 7 (Solved constraint edgep unification edge ofy
is solved if its two extremities are merged. An instantiatzon-
strainte of x is solved ifx® C x. O

DEFINITION 8. A presolutionof a constrainty is an instancey,
of x in which all constraint edges are solved. sélution of x
is a typer, witnessedby a presolutiony, of y, for which the
instantiation edge in the solution-testing constraint igfuFe[d is
solved.

In essence, solutions are all the possible types that aanires of
the expansion of a presolution.

DEFINITION 9. Themeaningof a constraint is the set of its solu-
tions. A constrainty entailsa constrainty’ if the meaning ofy
contains the meaning of . Two constraints arequivalentif they
have the same meaning. We write and 4 for entailment and
equivalence of constraints. O

It follows from the semantics of constraints that instatidia re-
duces the set of solutionge. if x C X/, theny’ I x. Instan-
tiation may sometimes preserve the meaning; however itllysua
does not, and a constraint may become unsolvable by iretiamti
Conversely, many constraints not in instance relation nzas fthe
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same meaning—for example, constraints having differemdibg
structure forG-nodes {.e. constraint shape), as this structure is in-
variant by instantiation.

Examples Consider the constraint in Figurel®. (We will prove
in the next section that it is equivalent to the last constraie-
sented in FigurEl5. Hence, it encodes the typing(af) A(y) =.) In
afirst step, we can solve the unification edge by raising i)
and merging nodeél1) and(g12), which results iny’. However,
this is not a presolution: the constraints imposed by th&ani@-
tion edge are not solved.

Further instantiations,, r, xmL and . are presolutions of
X, as can be verified by performing an instantiation test. (‘Aleh
highlighted the differences between the three constraiNtstice
thatx,,.r is not a presolution iML, as it contains inner polymor-
phism: node(121) is not bound on(c). However, bothym. and
XL are MLF and ML presolutions ofy. Interestingly,xu.r =
xmL £ x holds. In fact,x,r is the principal presolution of
in MLF (as we will prove in Eb).

The types corresponding to the expansionsggfr, xmL and
XML @reTyF, 7ML and v, respectively. Hence,,, r and v are
solutions ofy (as are all their instances). The graphic typa
corresponds to the syntactiM() typeV (a) V (8) a — 8 — «,
while 7, F represent¥ (o) V(v 2V (8) 8 — a) a — ~. This
second type corresponds roughly to the SysketppeV (o) @ —
(V(B) B — «), with the additional possibility of instantiating

Presolutions and explicitly typed termsin our formalism, preso-
lutions are interesting objects in their own right. Indetiaty can
be seen as encoding an entire typing derivation. Givariema
and a presolutiory, of the typing constraint corresponding 4o
Xp €an be used to obtain a versionoivhere all type information
is fully explicit. Of course, different presolutions wilivg different
decorations ofi. (This correspondance should help with the defini-
tion of a Church-style version ofILF, which is ongoing work.)
Notice that the typing of\(y) z in Figure[® is quite different in
xmL andxp- In xme it is polymorphic in its argument, while it
is not in x\.: node(g11) is bound ory (i.e. to the generalization
scope corresponding ty(y) z) in xmL, and to{e) in xp.. This
difference is reflected in the correspondikgerms in Systent:

e
YAy )z
xmL: A ABA(z: @) V(iV(B)a—pB—a
My:08) =z

Notice that, by construction, each type variable introdulog aA
corresponds to a node bound on a G-node. For examplgqina
s (11), Bis (121) and~ is (g11). In this simple case, the twdy-
terms are3-convertible (at the level of types). Of course, this does
not hold for all presolutions. For example, another typiagy is
v (B) int — 8 — int (obtained by graftingnt under(11) in xmc),
resulting in a\-term that is not3-convertible to the ones above.

RelatingML and MLF Itis immediate to prove thadlLF extends
ML. Indeed, theML instance relation is a subrelation of the one in
MLF, and Propertffl2 implies thatn instantiation edge solvedién t
ML sense is also solved in théLF sense (as1LF expansions are
more general).

PROPERTY3. All ML (pre)solutions areVLF (pre)solutions. [

Interestingly,MLF presolutions containing only flexible edges can
always be transformed by raising intdL presolutions. Thus flex-
ible quantification alone is not significantly more expresshan
ML quantification; it just gives more general types—and more op
portunities to use rigid quantification.

/ /
1 7
i

.i 7 " i 7N
l\.\\ -»@ \.\\ @

INST-ELIM-MONO
-
Figure 10. Simplifying unconstrained existential nodes and de-
generate instantiation edges

PROPERTY4. Consider anML constrainty with an MLF presolu-
tion x, in which all binding edges are flexible. Then there exists
MLF solutions ofy witnessed by, that are ML types, and those
types are alsdVIL solutions ofy. O
(Proof p[TH)

4. Reasoning on constraints

We now present a few transformations on constraints thaepve
sets of solutions; most of them also preserve sets of prasods—a
much stronger result.

4.1 Preserving presolutions

While we are ultimately interested in proving that constrahave
the same set of solutions, we often show the stronger rdzait t
presolutionsare preserved by instantiation. We writel-? x’ to
mean that every presolution gfis a presolution of,’.

LEMMA 2. Considery and x'. Thenx I-? x iff X’ C x, holds
for any presolutiony, of x. O
(Proof p[TH)

4.2 Unconstrained existential nodes

Existential nodes are meant to introduce constraint edQese
those edges have been solved, the existential nodes beseirss)
and can be eliminated. Implementation-wise, this allowsngga
memory; it also permits to reason on simpler constraints.

DEeFINITION 10. Letn be an existential node of a constraimsuch
that no node ir€ (n) is the origin or the target of a constraint edge.
We callexistential elimination of: in x the constraing \ C(g).O

We refer to this operation asxEsTs-ELIM. An example is shown
in Figure[ID, where existentially eliminating the nodesndg: in
x (whose constraint interiors are highlighted) giwes

Let us write3” for a an existential elimination, argf for the
inverse operation.

LEMMA 3. Atomic instance_; and existential introduction com-
mute. O
(Proof pIH)

Note that this property wouldot hold if G-nodes could be raised,
as examplified in Figurled.1.

This result is also of particular importance to us, as it nseae
can locally reason on constraints without existential sedbence
reusing all results obtained on graphic tyges [10]

For existential elimination, we must distinguish the caghere
the instance transformation occurs inside the part beingreited.
Also, if the interior of the node being eliminated is changed a
raising), more than one elimination might be needed.
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Figure 11. Non-commutation of instance and existential introduc-
tion whenG-nodes can be raised

LEMMA 4. Let x be a constraint,y’ and x”’ such thaty C=; x’
andx 3% x” Then eithery’ = x” or x' (3%)T x” or the two
operations commute. Moreover the two operations commuite if
instance operation does not change the nodes being eliedniat
(Proof pIH)

LEMMA 5. Consider a constrainfy which is a presolution, and
x' derived fromy by performing an existential introduction or
elimination (EEI). Theny’ is a presolution witnessing the same
solutions asy. O
(Proof p[IH)

As a direct consequence of the previous lemmas:

LEMMA 6. Existential elimination preserves solutions. U
(Proof pIH)

4.3 Solved instantiation edges

Expansion is concerned only with the nodes of the structural
terior of aG-nodeg. A transformation that does not change the
interior of g leaves its expansion unchanged. We can in fact lift this
property to propagation, and by extension, to solved itistthon
edges:

LEMMA 7. An instantiation edggy == d that is solved in a
constrainty remains solved in any instance pfthat leaveszZ(g)
unchanged.

(Proof p[IH)
This property is quite important for reasoning, as it ensutat
unrelated changes will not break solved edges.

4.4 Unification edges

The level of generalization we brought to our graphic repnéss-
tion is small enough that the unification algorithm on unt¢@ised
graphic types[]9] can be reused unchanged. Moreover, utiifica
remains principal.

LEmMMA 8. The unification algorithm on graphic types is a sound,
complete and principal transformation on graphic constiai [
(Proof p[TH)

The principality of unification on graphic types also ensureat
unification edges can always be solved eagerly.

LEMMA 9. Lete be a unification edge of. If unifyinge in x fails,
x has no solution. Otherwise, lat be the principal unifier ok
in x. Theny andx’ have the same (pre)solutions.

(Proof pTH)
Interestingly, unification oML graphic types can be solved with
the unification algorithm foMLF graphic types. This follows from
the facts that type instance fbtL is a subrelation of type instance
for MLF and that the unification algorithm ofiLF applied toML
graphic types return§iL graphic types. In fact, the unification al-
gorithm needs not check for permissions when the input tgpes
ML constraints, since in this case all nodes have flexible germi
sions. Moreover, the raisings it performs amount to updadjen-
eralization levels when variables are merged, exactly a® dio
efficient implementations d¥iL type inference based on ranks and
term dagsl[i7.18].

4.5 Degenerate instantiation edges

A degenerate G-node contains no polymorphism, as witnesged
the fact that no “real” fresh node is created when it is expdnén
instantiation edge leaving from a degenerate G-node i§itlsgen-
erate, in the sense that it is equivalent to an unificatioreedbis
is described by ruleNsT-ELIM -MoNoon the right of Figur€0.

DEFINITION 11. Lete be an instantiation edge a constrajrieav-
ing from a degeneraté-node. We call NsT-ELIM -MoONOthe rule

transformingy into x° \ e. U
LEMMA 10. INST-ELIM-MONO preserves solutions. g
(Proof p[TH)

Notice that this rule does not preserve presolutions btrgteak-
ing, as it changes the number of instantiation edges. Hawéve
preserves the “shape” of presolutions, the structure of G-nodes
and type nodes.

We can now prove that the constrajnof Figure® is equivalent
to the typing constraint ok(z) A(y) z given in FigurdB. Indeed
the former is obtained from the latter by successively:

1. solving by unification the constraint edge on ndt#);

2. performing NST-ELIM-MONO on the G-node corresponding
to the variabler (which we callg), as it is degenerate after the
unification;

3. existentially eliminating (whose interior is reduced #y}).
Thus the equivalence is by Lemnid§3, 10@nd 6.
4.6 Eager propagation

A crucial property of our framework is that scheme expansiod
propagation are essentiflljnonotonic w.r.t. to instance.

LEMMA 11. Consider a constraint’ such thaty C; %/, ande an
instantiation edge of. Theny’® IF? x°. O
(Proof p[TH)

An important consequence of this property is that we may
propagate any instantiation edge in any constraint witbbahging
its presolutions.

4The propertyx C x’ = x° C x’¢ does not hold. However, iff (x°)
andi{(x’¢) are the constraints resulting from solving the unificatidges
generated by the propagation %f andx’, x C x’ = U(x°) C
U (x'¢) does hold.
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LEMMA 12. Propagation preserves presolutions. O
(Proof p[IH)
This result provides a good test when designing the reldfion
Indeed, if it did not hold, it would be impossible to reduceeay
inference to propagation¢.type scheme instance) and unification.

5. Solving acyclic constraints

In their full generality, our constraints may be used to e@eco
typing problems with polymorphic recursion, which are atie
undecidable irML.

Alternatively, we can also encode semi-unification proldem
(that are also undecidable). Consider a semi-unificatiadblpm
(Ii < ri)i=1. We may build the equivalent problefd. < R;);,
where L is TI(l1, ...l,) and R; is TI(al, ..., al_y, 7, @y q, ...a™)

andlII is a symbol of arityn. This can be encoded as

Q) £

where all nodes are bound at the root (and in gerlgsabndr;’s
share some leaves).

Thus we restrict our attention to constraints in which thetan-
tiation edges induce aacyclicrelation.

DEFINITION 12. A G-nodeg directly dependson another G-
node ¢’ if ¢’ constrains the constraint interior gf i.e. In €
C(g),g" == n. Thedependencyelation betweerG-nodes is the
transitive closure of the “directly depends on” relation. O

DEFINITION 13. A constrainty is acyclicif the dependency rela-
tion on itsG-nodes is a strict partial order. O

Notice that the typing constraints presented in Fifilire 4ayelic,
as instantiation edges follow the scopes of the variablethef
expression, which are nested.

Importantly, acyclicity is stable by instantiation.

LEMMA 13.If x C x’ then the dependency relation i is a
subrelation of the one iry. O
(Proof p[TH)

5.1 Finding a principal presolution

In acyclic constraints, propagating-then-unifying antamsiation
edge solves that edge.

LEMMA 14. Let e be an instantiation edgg --==» d of a con-
straint xy whered is not inC(g). Letx’ be the principal unifier of
the unification edges introduced f (if this unifier exists). Then
X’ is an instance of in whiche is solved. O
(Proof p[TH)

The condition onn and C(g) vacuously holds on acyclic con-
straints. It ensures that the interior @fvill not be changed by the
unification. Afterwards, the conclusion is simply by idergry
of propagation-unification.

Acyclic constraints admit a principal presolution, whidmde
built using the following strategy.

1. Solve all unification edges by unification.

2. Visit the instantiation edges in an order compatible vtita
dependency relation. On each edge

(a) perform a propagation an

10

(b) unify the resulting unification edges.

Those operations solvg(LemmdI#). Moreover, since the con-
straint is acyclic, all instantiation edges already vitifeence
solved) remain solved (Lemrih 7).

The preservation of presolutions follows from Lemigha 9 fepsEl
andZh and from Lemniall2 for sted 2a.

We introduce one more definition, in order to charactefze
nodes of a constraint that remain solved throughout thetsal of
the instantiation edges.

DEFINITION 14. A G-nodey is recursively-solved its interior is
not the target of a unification edge and for any edge g’ === d
with d € C(g), e is solved and;’ is recursively solved. O

THEOREM1. Acyclic constraints have principal decidable preso-
lutions. U
(Proof pCTH)
The proof of this result implies a few interesting propestie
The first one is thatG-nodes with no escaping edges can be
solved locally.

DEFINITION 15. We say that &-node g is closedif any edge
n — n’ (with — ranging overo—, >—, and ====),
n € C(g) impliesn’ € C(g) orn = g and— iSsuseip OF =—. [J

COROLLARY 1. If sis closed in an acyclic constraint, andx ad-
mits a presolutiory,, there exists a presolutiog, of x, witnessing
the solutions of,, such thats is closed iny,. O

This result relies on the fact that unification and propagmatfol-
low” edges. Hence, no binding edge will ever be raised algove
the principal presolution.

Another key consequence is that once a G-node is recursively
solved, its interior will never need to be instantiated mdrieus,
after its outgoing instantiation edges have been propdgate can
remove them.

COROLLARY 2. Consider a recursively solved G-nodeof an
acyclic constrainty. For any edges = g === d, the constrainty
andx® \ e are equivalent. O

Of course, this also holds for unconstrair@aodes, which are
trivially recursively solved.

COROLLARY 3. Lete be an edgg --==» n of an acyclic constraint
x. If C(g) is not the target of a constraint edge, thgrand x° \ e
are equivalent. Under those hypotheses, weleogi-EXPAND the
replacement of by x° \ e. O

This is another proof of the correctness of rilesT-ELIM -MONO.
However, Lemmd_10 is more general, as it does not require the
constraint to be acyclic.

Typability in unannotatedMLFand ML The strategy solving an
acyclic constraint gives us some hindsight on the expressss
of MLF. Consider a typing constraint. It is &dL constraint (Prop-
ertyll). If it is solvable invILF, its principal presolution will contain
only flexible edges, as propagation and unification do nobéhice
new rigid edges. Then, by Propefly 4, it will have M. solution.
Thus, a program without type annotations is typabl#id™ if and
only if it is typable inML. (However, in general its principal type
in ML will be a strict instance of its principal type MLF).

THEOREMZ2. Any expression typable without type annotations in
MLFis typable inML. O

This result is a direct consequence of the following result:

LEMMA 15. Consider anML acyclic constraint. It is typable in
ML if and only if it is typable inVILF.
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(Proof p[TH)

Inconsistent constraints We have so far ignored the possibility
that a constraint might become inconsistent while simisidyit.
This situation is in fact implicitly dealt with by our formam: an
inconsistent constraint (such as a unification edge thaldvead to

a constructor clash or a cyclic type) cannot be solved. Ttaainot
be removed by existential elimination, and will remain uwed.
Consequently, the constraint has no presolution. Of couare
implementation can fail as soon as an inconsistency is found

Efficiency Using the order induced by the dependency relation
ensures that an instantiation edge never needs to be ptedaga

e if it is not duplicated byC, and toe and its copy otherwise. The
following holds:

x—< xe
U iUl
X'- g~ xe O

LEMMA 18. Rule INST-COPY preserves the meaning of acyclic
constraints. g

(Proof pZT)

more than once. Hence, the number of unification steps tat ca 6. Type annotations

be performed is bounded by the number of instantiation eplyess
the number of initial unification edges.

One potential source of inefficiency in the strategy usedni fi
the principal presolution is that the resulting constraart be much
bigger than the solution itself. Hence a better approactwéf
are interested only in the solutions) is to applsi-EXPAND to
perform the propagation, then existential eliminationtte hodes
that are no longer constrained. While this does not change ti
complexity, it ensures that constraints remain as smalloasiple
and improves space complexity.

5.2 Splitting G-nodes

INST-COPY
o == o
PN U\
o o o o
%, A i3

| o\o 7

Figure 12. Rule INST-COPY

An interesting rule to consider istbT-CoPY, presented in Fig-
ure[12. It can be applied whenever a G-node has one or more-outg
ing instantiation edge. The edges may be arbitrarily panigd into
two sequences, and the interior nodes and edges of the G-aogle
duplicated (as well as edges between the interior and tiniér.

Intuitively, one could think that the constraint in whicletks-
node has been split has more solutions. Indeed, each sclueride ¢
seemingly pick a different type. However, this is not theecas
acyclic constraints. Indeed, since they have principasqrgions,
the two schemes can pick only instances of the most gendtal so
tion.

We first prove two intermediate commutation lemmas.

LEMMA 16. Lety andy’ be two constraints such thgtC x’. Let
g be a G-node. Lef' be one application of NST-CoPYON g. The
following holds:

IR O
(Proof p[TH)

LEMMA 17. Let x be a constraintg one of its G-nodes(' an
application of INST-COPY. Let U be the application ofJnif on
a given unification edge, U’ the application of this algorithm to
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Figure 13. Types of coercion functions

Type annotations are a key tdLF. Interestingly, we do not
use primitive typing constructs to type them. Instead, we ad
denumerable set @oercion functiongo the typing environment.

As an example, consider the annotati@n: 38V (a) 8 —

(e — «)). It contains bothuniversal and existentialquantifica-
tion, and expresses thatmust be a function, the type of its first
argument being left unspecified, and its return type beiragtx
a — «. This annotation can be represented by the typef Fig-
ure[I3. The existential part is bound at the radtrfode, while the
nodes inside the universal part are bound{dnor under (in this
simple case they are all bound ¢1).

More general annotations are depicted by the pseudoxygde
the same figure. In the annotatiéa : «), the typer at node(1)
inside x is universallyquantified. However, the other nodesgf
represented by the meta-node notation and bound on the root,
are existentiallyquantified: they can be instantiated during type
inference.

The annotationa : ) is desugared as the application a,
where the type of the coercian is also shown on Figufell3. Each
side of the arrow is a copy af. Hence, they could a priori be instan-
tiated independently. However, the domain is rigidly bqunéan-
ing that the polymorphism is requested, and thus cannoakyte
weakened by instantiation:must be of type-. On the contrary, the
codomain is flexibly bound, meaning that the polymorphisprds
vided, and can freely instantiated. The nodes correspgrdithe
existential part ok are not duplicated: they are shared between the
domain and the codomain, and will be instantiated simutiasky
on both sides. An example is given by the type.

Similarly, the expression(z : k) a is also syntactic sugar, for
A(z) let z = (z : k) in a; an example is given in($8. Notice that
type annotations are part of expressions. Hence, two teriths w
different annotations are really different terms and douwatally
have a common, most general type.

7. Complexity of type inference
7.1 Simplifying typing constraints

For homogeneity, typing constraints introduce a G-nodeestery
sub-expression, including variables. However, those aperflu-
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Figure 14. Simplifying the typing of variables
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Figure 15. Simplifying ML constraints

3 On the left-hand side, both type

B - : schemes are introduced at the
i nod same level, thus the embedding
is 2. On the right-hand side, one
! ! is inside the other and the em-
© © bedding is 3.

Figure 16. Type schemes embedding

ous. Indeedlet-bound variables only generate indirections, while
the G-node for a\-bound variable will ultimately be degenerate.
The corresponding simplifications rules are presentedgarelT.

In ML typing constraints, the G-nodes for abstractions and 8.

application are also superfluous (hence G-nodes are in fdgt o

needed fotet-bound expressions). Indeed, as shown in Fifule 15,

a type node inside a type scheme that is “used” only once ahe at
nearest generalization scope can be extruded entirely.

All simplifications can be performed in linear time eitheteaf
the generation of constraints, or on-the-fly during theivegation.

LEMMA 19. RulesVAR-ABS and VAR-L ET preserve solution&l
(Proof p 2T

LEMMA 20. Rule ML-EXTRUDE preserves the solutions dflL
constraints. g
(Proof pIZI))

7.2 Complexity analysis

While type inference foML is DExP-TIME complete (when types
need not be output), McAllester has showh [6] that type &iee

has complexityO(kn(a(kn) 4+ d)) where is the inverse of the
Ackermann functionk is the maximum size of type schemes ahd

sumptions, type inference ML hasO(n«a(n)) complexity, which
is almost linear (the termy(n) is negligible).

Our strategy for solving constraints is quite similar to tire
used in efficient implementations of type inferenceNtr [6,[4]. In
particular, type schemes are also simplified in an innerfaskion.
Unification in MLF can also be performed in tim@(na(n)) and
the complexity analysis of McAllester fddL can be transferred to
our constraints setting—provided we reason on the embgdafin
G-nodes instead of the embeddindefconstructs. More precisely,
for our typing constraints, the functiahverifies:

dz) =1
d(\(z) a) =d(a) +1
d(ab) = max(d(a),d(b)) + 1
d(let x = a in b) = max(d(a) + 1,d(b))

When applying MR-LET and \VAR-ABS, d verifiesd(z) = 0.

Importantlyd does not increase with right-nesting lef bind-
ings. In particular, a large upper bound @fis the height of the
biggest function of the program (when written as an absswat
tax tree). Under the two assumptions tiih} large programs are
composed of cascades of right-nested topltedeclarations, and
(2) k does not increase with the size of the program, type inferenc
in our constraints system (thusLF) has linear complexity.

Notice that, if we restrict ourselves ML, using the constraint
simplification of Figure[ZIb will eliminateG-nodes for all sub-
expressions but the left-hand sidelef constructs. We therefore
obtain exactly the same complexity as McAllester.

Our analysis also provides an upper bound for the complexity
of type inference. In the worst case, the maximum size of type
schemesk is bounded by2°(™ and the maximum depth dE-
nodesd is bounded by:. The complexity is thus i2°™ x n x
((2°9™ x n) +n),i.e.in 20, As ML programs are typable in
MLFif and only if they are typable iML, the complexity bound for
MLF cannot be better that the one fdi_. We thus have established
the exact complexity bour2 (™ for type inference iMLF.

Examples of typings

X1
Az) z

Figure 18. Typing A(z) =

Figure[I8 presents the typing of the identity, valid in bith
and MLF. The first step (fromy to xs) is by unification, x4 is
by INST-EXPAND on the instantiation edgeys is by EXISTs-
ELIM on g, x6 IS by unification on the rightmost edge. (The steps

the maximum embedding of type schemes. (Fidude 16 describesyz to xs could have been directly proven byaR-ABS.) x~ is
what is meant by embedding of type schemes.) In McAllester’s by unification. The resulting principal type (o) a — «,

analysis,d corresponds to the maximum left-nestinglef con-
structsj.e.nestings of the formet x = (lety = ... in...)in....
As argued by McAllestei] is almost always bounded by 5, and

abbreviated as;,.
Figure[TY presents the typing lef y = A(z) z in y y in MLF.
In x3 we have developed the expression nodeifay. In x4 we

k does not increase with the size of the program. Under those as have replaced(x) = by its principal typing and appliedAR-LET

12

2008/4/15



X1 X3 xs (G xs (G)
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Figure 17. Typinglety = A(z) x iny y

to bothn; andns. x5 is by INST-EXPAND on each instantiation allows choosing a strategy to solve the instantiation dljgesex-

edge, then by EISTS-ELIM on g. x¢ is by unification andy7 by ample, the function in an application can be typed beforaatge-

ExISTS-ELIM onn. The result iss;;. The derivation is essentially  ment. While our implementation already gives quite reaelator

the same irfML, up to a few nodes bound &t) in x5 to x~. messages (see FigUrel 20), we are also experimenting wién oth
The last example (Figule1l9) uses a type constraint on a pa- strategies.

rameter. As explained in Sectifh 6, it expands into the esgioa Point (1) is trickier. However, in simple examples that da no

described in constraingz. In x3 we have expanded the expression result from encodings, a message such as “funcfi@xpects an
nodes for both the abstraction and the applicatign =. We have argument of type- but receives a value of type; type ' is prob-
also simplified on the fly the instantiation edge &) into a uni- ably not polymorphic enough” is often sufficient. An inteieg
fication one; this is possible bjsT-EXPAND and ExISTS-ELIM. step will be to preserve type variables used inside typetatinas
x4 is by VAR-ABS on n, then by unification on the redirected uni-  through inference—an easy, if tedious, task.

fication edgeys is by unification on the remaining edges is by . ) . F . -
ExisTs-ELIM onn. Up to a few unimportant differences, the high- Displaying syntactic types ML syntactic types are often difficult

lighted nodes correspond to the constraipif FigurelLY. Simpli- to read because ofAthe bounded quantifica.ltio.n they featue. F
fying those nodes thus resultsya. ys is by INST-EXPAND on the example, the tern&k” = A(z) A(y) = has for principal type
instantiation edge, then byxX&sTs-ELIM. xo is by unification. The V(@ V(A =V(B)B—a)a—y

result is the typ&/ (a = 0i4) V(8 > 0ia) o — (3, corresponding _ i R _
roughly to the Systenf-type o,y — o4 in Which instantiating the A way to relieve this tension is to |qtr0duce a syntactic subat
occurrence of;4 on the right of the arrow is allowed. inlines bounds. The gets for principal type

Implementation An MLF type checker (which faithfully imple- V(a)a— (V(B) B— a)
ments the algorithm presented i1-85.1) can be fourigtap: //
gallium.inria.fr/“remy/mlf/. Although graphic types are
used internally, we print the types in syntactic form. Usirgimple
syntactic sugar (discussed below) this nearly always tesugjuite
readable, SysterA-Hooking, types. In particular, this should allevi-
ate doubts tha¥1LF types are too complicated to be presented to the

This type is a type of Systef hence much more familiar looking.

Of course, we cannot just inline all bounds, as we would lose
sharing, the fact that the bound is flexible or rigid, and tree@
where the bound is introduced. In consequence, we folloaethr
restrictions:

programmer. An interactive mode in which the user can gealyi 1. Bounds used strictly more than once are never inlinedefgixc
select which constraint edge to solve is also available ¢amdbe of course for monomorphic types).

used to solve the examples above step by step). _ 2. Rigid bounds are inlined on the left of an arrow; flexibleson

~ Much of the difficulty in implementing graphic constraintsd the left. Thus our convention follows the variance of thearr
in finding a good representation for graphic types, and implet- constructor, hence the intuition. For the other type comstrs
ing the unification algorithm. Notice that MLF graphic types the than the arrow, the choice is left to the user.

graph structure and the binding tree are interwoven and ¢dgies
go in inverse directions. Finding an efficient functiongbnesen-
tation of such a structure is not obvious, so we use an imperat
implementation. This only causes problems when unificeads,
i.e.when a type inference error occurs. In this case we type the ex In spite of these restrictions, nearly all terms get priatigypes
pression a second time, and explain the error in terms ofate | that look like Systenf types. IndeedMLF binds types “as low as

3. Bounds are inlined only when they are used immediatelyr&he
they are introduced. For example,is inlined inV (o > o)
int — o, butnotinv (a > o) V(B > int — a) int — (.

valid constraint. possible”, hence Condition 3 is rarely restrictive. Coiadit2 is ac-

The generation of typing constraints from theerm is entirely tually the heart of the sugar, and follows the intuitionsegivy the
straightforward, using a single recursive function. Maeo typ- variance; following another convention would probably ftse the
ing constraints are simple enough that the dependencyorelan programmer. Condition 1 is also rarely used. Indeed, sHzoadds
instantiation edges needs not be computed. Instead, wistam- nearly only appear in partial applications, which are thelwes un-
tiation edges on-the-fly during constraints generation. usual.

Explaining type inference errors raises two challeng&sex- Using our convention, deciding whether an inlined variable
plaining unification clashes caused BitF polymorphism; 2) as- can be instantiated is done by findingn the sugarified type, and
sociating a type inference error with the corresponding pithe checking whether we have followed an arrow on the left. 1§ thi
source term. is the caseq has locked (or rigid) permissions. Otherwise it has

The difficulty in point (2) is only apparent. Indeed, it isaght- flexible permissions and can be instantiated. Thus thericnités
forward to associate a constraint edge with the expreshimnré- quite simple. If we consider the principal type Af, 3 appears at
sulted in its creation (and our prototype already printsesaurce
location in error messages). Our constraints-based agipraiao 51n general, there exists different strategies with optiomhplexity.
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Xt Ay:V(@)a—a)yy |

X2’ My)lety=ce, yinyy ‘
wherec,,, =

Figure 19. Typing A(y

# fun x — if x = 1 then True else x

:V(a)a—a)yy

Both branches of this ’if’ have incompatible types. The ’then’ part has type bool while the ’else’ part

has type int.

# (fun x :

'a. 'a — 'a) — xx) succ

Cannot apply the first expression to the second: the argument is probably not polymorphic enough.

The first expression has type (‘a. 'a—'a) — (/

# fun x = x x

c. ‘e —'c) while the second has type int — int.

Cannot apply the first expression to the second: the resulting type would be cyclic.
The first expression has type ’a while the second has type ’a. The context is (’a > 1)

Figure 20. Examples of error messages

path (2). Hence we have not followed an arrow on the left (there
would bel on the the path in this case), aAddan be weakened by
instantiation.

Our syntactic sugar is actually a variation on an idea pregos
by Leijen[8, Section 2.6]. However, in this work, the thimmhlition
was ommitted, and the convention was not bijective (resglin
types with really different polymorphism being displayéé same
way).

9. Comparison with other works

A detailed comparison betwediLF and other extensions of Sys-
temF can be found in[I3]. The most closely related wdrk [4] pro-
pose a restriction okLF where non Systerf-types only appear
internally during type inference and can always be instded
into SystemF types afterwards. Another related wofk][12] intro-
duces a notion of “boxy types” that resembles our flexiblelisigs.
Both works aim at finding a type system with second-order poly
morphism that assigns Systeftypes to expressions. SintéLF
types are more expressive than Systenes, we believe that our
graphic presentation of type inference would help explashsys-
tems more systematically. Hopefully, our inference aldyoni could
also be adapted to those works.

Efficient type inference for ML Efficient type inference algo-
rithms for ML have many similarities with our graphic type infer-

14

ence algorithm. Of course, they all use an efficient grapgetani-
fication algorithm and reduce type schemes in an inner-dasér
ion. More interestingly, they also use a notion of ranks (anfes)

to keep track of generalization levels and perform germatitin
more efficiently [67[B]. Merging two multi-equations in][Be-
quires them to have the same rank, hence lowering their mank t
the smallest of the two beforehand. Similarly, merging tvedes

in graphic types requires them to have the same bound, heise r
ing them to their lowest common binder. Raising binding edugs
also strong similarities with Rule SHr-ALL of [4].

Type inference as typing constraintsTo the best of our knowl-
edge Henglein has first expressed type inference as théastita

of type-inference constraints, which led him to semi-uaifign
problems [[1]. Hence, the obvious similarity between our-con
straints and his. However, his constraints are interpreted sim-
ple types while ours are interpreted over graphic types gibaeral-
ize SystenF types. Our constraints are therefore more expressive.
His constraints avoid the explicit representationG@Ghodes, and
instead read types as type schemes according to the cowext.
cannot make this simplification iMLF becauseMLF expansion is
more complicated than tHdL one.

Typing constraints foiML have been explored in detalll [7].
There are many similarities between this work and ours. riypi
constraints are introduced first, independently of the tyihg
language; then a set of sound and complete transformations o
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typing constraints are introduced; the type inferencerélyo is
finally obtained by imposing a strategy on applications ofi-co
straint transformations. Moreover, some important stepboth
frameworks can be put in correspondence (solving unifinatan-
straints, expansion of type-schemet,). However, our constraints
are more concise, for two reasons. Firstly, the graphiqalesen-
tation of types is more canonical: for instance, we need fefar
commutation of adjacent binders. Secondly, the underlyiimg-
ing structure of graphic types is reused for describing ihdihg
constructs of graphic constraints. Hence, the representat con-
straints requires fewer extension to the representatidyppafs, as
the latter is already richer.

Semi-unification As shown by Henglein[]J1], type inference for
ML reduces to semi-unification problems that are triviallyclicy

by construction—in the absence of polymorphic recursioendé¢,

we should be able to see our constraints as encoding a form of
acyclic graphic-type semi-unification problems. It woukttainly

be worth further exploring this point of view. Possibly, weutd
enable implicit polymorphic recursion ikILF by allowing some
incompleteness in type inference. (Explicit polymorptécursion

is already available through type annotations.)

Other versions of MLF There are two syntactic presentations
of MLF [Z B]. In the original one[]?], the instance relation on
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A. Proofs
Proof of Cemmal

Letn be a type node. Consider a nodesuch that o< n'. The
proof is by induction onr.

If 7 is the empty pathp’ = n which is indeed a type node.

If misn o— n” o™< n':n’ cannot be &-node, by well-
sortedness. Hence” is a type node. Conclusion by induction
hypothesis.

If misn «—< n” o™< n': n is a type node, hence r@node
is bound on it. Consequently,” is a type node. Conclusion by
induction hypothesis. |

Proof of [Property 4

Let us cally, the constraint derived frorg, by binding any type
noden on the firstG n’ node such that = n’ (if the binder of
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n is already aG-node, its binder is unchanged). Notice thatis
anML constraint.

Notice thaty, can be derived frony, by applying amulti-raise
operator to all the type nodes. This operator raises allsbdand
on a given node; it preserves well-domination byl [10, Lemiha 1
Thusx, C® x., holds @), since all nodes have flexible permis-
sions.

Consider now an instantiation edgel et x;, be theM LF prop-
agation ofe in x,, x.. the ML one. By hypothesisy;,, C x; holds
2.

Notice thaty;, = x,. holds @). Indeed, given &-nodeg,
Ty, (9) = Zy,.(g), thus the expanded nodes in both and x.
have the same shape. Theh is also the result of multi-raising
all type nodes iny;. Consider a node of x;,. It is bound at the
same node iy, as inx,.. Thus we can apply 110, Lemnal10] to
Xp C x» (proven by (1) and (2)) and to each node raised in (3). We
obtainy,. C x., which proves thak. is a presolution.

We have thus proven that. is anML presolution ofy. Since
Xxr IS an instance ofy,, all instances of the expansion gf.
are instances of the expansion pf. In particular, all solutions
witnessed by, are also witnessed by,. This is the desired result.
|

Proof of C(emmad

Assumeyx IFP x'. By definition, any presolutiony, of x is a
presolution ofy’. This impliesy’ C x,, which is exactly the result.
Assume now thak’ C x, holds for anyy, presolution ofy (1).
Consider such a presolutioyy. By (1), X’ C x,. By construction,
Xp IS a presolutionZ). By (1) and (2)x, is a presolution ofy’.
This provesy IF? x'. [ |

Proof of C(emma3d

The proof is by case disjunction on the instance operatiothel
operation is ir_§, T} or £, the commutation is immediate.

If the operation iS_%, we use the following names:

3 (n
N ( )x"
Raise(n') lRaise(n/)
X El[(n)

We prove thatRaise(n’) can be applied tg¢’. This will also
prove thaB’ (n) can be applied tg”, as the result will be a well-
formed graph.

By definition, n’ is raisable iny. [L0, Lemm&_1] implies that,
vn' 0" —— X(n)),n" #n' = n' ¢ By(n") (1) (indeed,
n' € B(n) is trivially equivalent toB(n') C B(n)). This is
equivalent tovm, —=(n’ o< n” € x) (2).

Consider nownewpaths iny’, i.e. paths that link two nodes in
X’ but noty. Necessarily they contain the edge— n. Consider
a pathz starting fromn’. Sincen’ is raised, it is a type node.
Lemmal[l shows that all nodes reachable frafmare also type
nodes. Hence there are no new paths starting froniHence (2)
still hold in x’, which proves that’ is raisable. [ ]

Proof of C(eEmma4

Let n the root of the existential elimination,the instance opera-
tion. The proof is by case disjunction on

o = Graft(r,n’) or o = Weaken(n'): If n’ € C(n), eliminating
nin x’ givesx’. Otherwise the two operations commute.

o = Raise(n'): If n’ € C(n) andn’ is not bound om, eliminating
ninx’ givesy’. If n’ is bound om, eliminatingn’ andn (the
order is unimportant) in’ givesx”. If ' ¢ C(n), the two
operations commute.
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o = Merge(n1,n2): If ny andny are both inC(n), eliminating
n in x’ gives x”. If none are inC(n), the two operations
commute. If one node is iG(n), and the other is not, either
ny Orng isn. Theny' = x”.

| |

Proof of Lemmad

¢ ' andy expand to the same type, by definition of expansion and
existential elimination; hence they witness the same &wist

e ' is solved. Consider indeed a constraint edgef '. It is
also an edge of, as EEI preserve constraint edges. This edge
is solved iny, sincey is a presolution.

- If eis a unification edge, it is still trivially solved ig’.

- If e is an instantiation edge, considef andx’¢. We prove
the dashed lines of the diagram below.

IE
Y XS X/‘\\
o eC e‘ ‘e o'
/
Xe 77777 le ~
0

Propagation and EEI commute, as existential nodes are not
copied during expansion. Hengé" can be obtained fromy®
by the same EEb which transformsy into x’.

Consider now the instance operatigrsolving the unification
edge introduced i°:

o Ifthe EEl is an introduction, Lemnfd 3 ensures that we can
apply the same steps tg. This solves the edge and the
resulting constraint i plus the EEI, which is exactly’.
Hencee is solved iny’.

o If the EEI operation was an elimination, notice that the
instance steps solving the edge are such fffatC .
Consequently, they do not change the existential part that
is being removed by (the kernel ofC is the identity
relation). Hence, in this case, existential eliminationl an
instance commute (Lemnia 4), and the same argument as
in the previous case proves thais solved. [ |

Proof of (emmad

Consider a constraint, andy’ obtained by performing an existen-
tial elimination fromy.

Suppose that has a presolution,,. Lemmd3 shows that there
existsy;, such thaty, 3” x}, andx’ C x,, Lemma® ensures that
Xp is a presolution witnessing the same solutiongasThusy;, is
a presolution ofy’. Hence any solution of is a solution ofy’.

Conversely, supposg’ has a presolutioty;,. LemmalB shows
that there exists;, such thaty C x, andx; 3’ xp. Lemmal®
ensures thak, is a presolution witnessing the same solutions as
Xp- In particular,y,, is a presolution of. Hence any solution of’
is a solution ofy. [ |

Proof of Cemma 4

The proof is by induction on the length gf T x’. If it is 0, the
result is immediate. Otherwise, it is of the fos=; X' C x'. We
suppose without loss of generality that all grafting perfed only
graft one constructor, as in the hypotheseg of [10, Leimmalgg
is possible by the results ¢f110, Section 6.2.3] and [10 OFée 7).

We prove thate is solved iny”, by case disjunction on the
operationo such thaty” = o(x). (Afterwards the conclusion is by
induction hypothesis applied tg’.) Notice that, since is solved,
a derivation ofy® C x C x” exists ().

2008/4/15


http://gallium.inria.fr/~remy/mlf/mlf-graphic-types.pdf#xlemma.1
http://gallium.inria.fr/~remy/mlf/mlf-graphic-types.pdf#xlemma.10
http://gallium.inria.fr/~remy/mlf/mlf-graphic-types.pdf#xlemma.1
http://gallium.inria.fr/~remy/mlf/mlf-graphic-types.pdf#xlemma.9
http://gallium.inria.fr/~remy/mlf/mlf-graphic-types.pdf#subsubsection.6.2.3
http://gallium.inria.fr/~remy/mlf/mlf-graphic-types.pdf#xtheorem.1

If ois notRaise(d): Notice that, sinc&(g) is unchanged (hence
F(g)), the expansion creates the same nodeg &ndx”’. Hence
x""¢ = o(x¢) holds @), by LemmdB.

e 0 = Graft(r,n):

By (2) and the shape ef x“ Cf x"°. Moreover, we have sup-
posed that the graftings betwegnandy”” are atomic. Hence,
by [I0, Lemmé B] and (1), we obtaiy’® C x”.

o = Raise(n):

By (2) and the shape ef, x© Cf* x"°; moreoverp is bound at

the same node ig”¢ andx”. By [10, Lemme 10] and (1), we
obtainy”¢ C x”.

e 0 = Merge(ni,n2)

By (2) and the shape af, x* T y”’¢. By definition,n; and
ny are merged iny’’. By [I0, Lemma 1] and (1), we obtain
X//e E X”.

0 = Weaken (n)

We consider an ordered derivationgf C ", in which weak-
enings and merging are performed bottom-up, a nddeeing

X1 R X2
- ),
9(G)- (S
b ©) p ©)
fs(xa) " fs(x2)
= (©)
.. g

g\®

Figure 21. Mixed paths and raisings of existential nodes

Any instancey’ of x (for ﬁ) is in the domain offs. Conversely,
the codomain offs is the set of instances g% (x). Thus defined,

weakened before it is merged (this is the strategy used in the ¢ is a bijection p).

proof of [10, Theorenil4]). The operatidiVeaken(n) neces-
sarily appears in this derivation. Also, all other openasionly
involve nodes of the expansion, whilds outside it. Hence, this
weakening operation commutes with all previous operations
the derivation. By (2), this proveg’® C x”.

If o = Raise(d) In this casey’’® = (Raise(d) ; Raise(F°) ;
Raise(r))(x®), whereF' = F(g) andr the root of the expanded
part. This proves that® T "¢ (3).

Let us next prove that all nodes 6fare bound strictly abova
in x (4). Consider a node € F. Letw be such tha{g - 1) o™ n.
Sincee is solved,d o™ n also holds. By well-domination, all
nodes ofF(g) must be bound at least as highdaflow, sinced can
be raised iny, no node structurally undet can have been bound

ondin x (by [10, Lemma 1]). This proves the desired subresult.

By (4), the nodes of™° are bound lower iny’’¢ than iny”. By
construction; andd are bound at the same nodexfi® and x”.
By applying [10, Lemma 10]F’|+2 times to (1) and (3), we obtain
X//e E X”. .
Proof of C(emmad

g
We distinguish the instance relation on graphic types,temit,
X
and the one on constraints, writtén. Disregarding existential

X g
nodes,(C) C (C) holds, asG-nodes cannot be merged, raised
or weakened. However, given two correct constraiptand x’

g
with the same binding structure for G-nodes, the relaior x’
trivially implies y & ' ().

One (apparent) difference between graphic types and graphi
constraints is that some mixed paths disappear when etiédten
nodes are raised. This is examplified by the constrajngsd -
in Figure[Z1. By raising the. node, the mixed patty) o—< (g-1)
disappears. However, this difference is unimportant beeate can
add some structure edges, as we prove below.

In the following, we consider a constraigtcontaining an uni-
fication edge: = n1 n2. By definition, bothn; andn. are
type nodes.

Let S be the set of existential nodes of sdktpe of x. Let fs
be the function adding a structure edge:) o— n for any node
n of S. (We temporarily add to our formalism the needed family of
constructorsy, for k > 1.)

17

Notice that the relatiory é X < fs(x) ﬁ fs(x') holds
(3). The result is immediate for grafting, merging and weakgni
For raising, it is straightforward to adapt the proof of Lealfh
(Indeed, we could have existentially introducgd——< G o— n
instead of the structure edgeo— n.)

Notice also thalfs(x) can be viewed as a graphic type, as the
only existential nodes it contains a@enodes, for which we could
also add structure edges. Finally, notice tbatf behaves exactly
the same way oi or fs(x) (4), as it does not “see” the new edges,
which are introduced on nodes abaoveandns.

SoundnessSupposéJnif finds a unifiery’ for e. Theny i X
holds. Howevery’ has the same binding structure fonodes ag
(5), sinceUnif will never try to merge, weaken or raise nodes above
n1 andnz, and there are nG-nodes under, or no (Lemmall).

Thus (1) impliesy ﬁ x’, andUnif is sound.

From now on, we suppose there exists an unifigiof e in x
for ﬁ Thenfs(x) ﬁ fs(xs) holds by (3). Moreoverfs(xs) is a
unifier ofe in fs(x) (for i or ﬁ) (6).

Completeness:Unif is complete on graphic types. Hence, by
(6), it returns a unifier when called ofik(x). Hence, by (4) it
returns a unifier when called opy and is complete.

Principality: Unif is principal on graphic types. Hence, by (6)
it returns a principal unifier when called ofy(x). This type is

an instance offs(x) for i In fact, by (1) and (5), it is also an
instance foré By (2), letx, be the constraint such that this unifier
is fs(xp)- .

By principality on graphic typesfs(xp) E fs(xs) holds.
Hencefs(xp) é fs(xs) also holds by (1), (5) and the definition of
xs- Finally, xp ﬁ xs holds by (3). This proves that, is a principal
unifier of e in x for ﬁ This is exactly the desired result, dsif
returnsy s when called ony (by (4)). [ |
Proof of Cemmad

Suppose that the unification effails. Suppose now that has

a presolutiony,. By definition, e is solved inx,, hencey, is

a unifier ofe in x. Contradiction with the completeness of the
unification algorithm (LemmEl 8).
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Consider now a presolutiog, of x. By definition,x C x5
holds. Sincee is solved inx, (by definition of presolutions), we
havey C x' C x, by principality of unification (LemmB&l8). This

ensures thay andy’ have the same presolutions. [ |
Proof of Cemma 10
The proof steps are given in Figurd 22.
(1)p (2)p
\ -+ \ -+
N 7 R
(G N (G
; ,/\ ; {\
| .»9 \ »g) ._-
On On O
n,d
(3) (4)
-7 -7
7
O
n,d

Figure 22. Proofs steps forNST-ELIM -MONO

Step (1) is by equality of presolutions. Indeed, tkenode is de-

generate in any instance of both constraints, so the only way

to solve the instantiation edge is by mergingand d. (More
precisely, by merging with n¢, which is itself merged with.)

Step (2) is by unification (Lemm§l9).

Step (3) is by equality of presolutions, with the same reasoning as
for Step (1).

Step (4) is by UNIF again.

Proof of Cemma11

Lete = g ====3 d. We proceed by case analysis on the operagtion
such thaty’ = p(x). In many cases, the relatigyf = X' directly
holds, which implies the result. We implicitly use the facat the
copyn® of a node has always more permissions than

e pis Graft(r,n)
- If n € Z(g), theny’® = (p; Graft(r,n°))(x)
- If n ¢ Z(g), thenx”® = p(x°)
e pis Weaken (n)
- I(f n e I(g) andn # (g - 1), thenx’® = (p; Weaken(n®))
- Ian ¢ Z(g) orn = {g - 1), theny’® = p(x°®).
e pis Merge(ni,n2)

- The caser, € C(g), n2 ¢ C(g) (or the symmetrical case) is
impossible. Indeed, the only possibility would be that= ¢
(or n2 = g), butG-nodes cannot be merged.

- If n1,m2 € Z(g): X'° = (p ; Merge(n1°,n2°)) (x°)

18

-If n1i,n2 ¢ C(g) orni € Z(g) andns € C(g) — Z(g) (or
the symmetrical case), thegi® = p(x°)

e pisRaise(n), withn # d

-If n € Z(g) andn =%~ g and—-(n =—>— g), then
X'¢ = (p; Raise(n®))(x°).
-If n ¢ Z(g), orn € I(g) andn =—>— g, x'* = p(x°).

-n € I(g), n = g. In this case, the commutation is not
immediate. Indeed, in, n is in the interior, while it is in the
exterior iny’. The idea is to merge the copied nodes under
n in x¢ with the nodes unden. However, this cannot be
done untiln has been raised high enough for this.

Consider indeeg®. The noden® can be raised in this con-
straint, because could be raised iry. Then letu’ be a unifi-
cation edge betweetf andn in x°. This edge is admissible,

asn® is aG-node after the raising. Let us call’ this con-
straint. We havey” I x° by dropping of constraints and
instance.

Moreover, the principal unifier of this edge #f is exactly
X", which showsy® C x”, hencex” I-? x¢ ().

Notice next that is in the structural frontier of in x’. The
only difference between’® andx”’ is that there are some
nodes undem® in x”’. However, those nodes are exactly
the same nodes as under andn andn® are linked by a
unification edge. Thug” andx’® are equivalent for-?,
which concludes with (1).

e pis Raise(d)
- d ¢ Z(g): Theny'® = (Raise(d);Raise(F);Raise(n°))(x®)
whereF’ = F(g) andn = (g - 1).
- d € Z(g): notice that be definition of instantiation edges,
d =— g must hold. Theny’® = (Raise(d) ; Raise(F) ;

Raise(n®) ; Raise(d®) ; Merge(d®, d))(x®) with the same
notations as above. |

Proof of Lemma 12

Let x be a constraint one of its instantiation edges.

Consider a presolutioy, of x. By definition, it is an instance
of x. By applying Lemm4l1, we obtaig;, IH? x°. By definition
of presolutions, we also havg, T x,, hencey, IF* x;, and
xp IFP x° by transitivity ofI-P. Hence,x,, is a presolution of°,
andy IFP x©.

Consider now a presolutiog, of x°. By definition, it solves all
the unification edges of®, in particular those resulting from the
expansion. All introduced existential nodes are thus nithge,
andyx C xp holds. This provey, IF? x. Thus,x® IFF x also
holds. [ |

Proof of (emma13

We show the property for atomic instantiation steps. Theegan
case follows by induction. In each case, we show that direged-
dency may only decrease.

Weakening: The dependency relation remains unchanged.

Grafting: The interiors ofG-nodes are enlarged, but with new
nodes that do not contain instantiation edges. Hence, thetdi
dependency relation remains unchanged.

Raising: The interiors ofG-nodes may only decrease (if the node
raised is bound on @-nodes, its subgraph leaves the interior of
this node, otherwise alt-nodes interiors are left unchanged).
Hence the relation diminishes or remains unchanged.
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Merging: The interiors ofG-nodes are left unchanged, as G-nodes
are never merged and so merging can only odnside the
interior of G-nodes. |

Proof of L(emma14

Let E be the set of unification edge resulting from the propagation

1. ¥’ is an instance of:

The existential structure introduced during the propagais
merged with the existing structure undewhen the unification
edges are solved.

2. The nodes of,, (g) have not been instantiated y:

By definition of the unification algorithm, the nodes changed
are those reachable by~ from a node constrained by an
edge inE. These nodes are either freshe(created by the
propagation), unded, or under a node in the frontier (hence
the exterior) ofg. Hence, we just need to prove that no node
underd is inC(g).

By contradiction, suppose there existsuch thak € C(g) and

d o* n. By well-domination, eithey =*- d, ord == g.

The second case is forbidden by the hypothesig andg. The

first case is impossible becausis a type node, angla G-node.
3. eis solved iny’

The diagram presented in Figilird 23 holds.

M
e 6/6\ ee
X X‘
I
Unif Unif}
v
!/ [& le
X5 —X
\E,

Figure 23. Propagation and unification

Unif
Let us first justify the edgec®® — x'¢. Propagatinge a
second time in¢ is similar to doing an existential introduction.
The new nodes are not considered by the unification algorithm
so the first expanded nodes are merged exactly ag.iThe
square closes because the interiog biave not changed, so the
propagation creates the same nodeg’iand°.

Next, x*¢ C™ x° holds (by merging the copies of the nodes of
the structural frontier, and the root of the two propagatjon
This impliesx“® T x’. Hencex’ is an unifier of the edge
introduced by the second introductioni°. This means that

it is an instance of the principal unifier of this edge, whish i
x'¢. (Indeed, the two propagated parts being equal, unifyireg on
unification edge or the other yields the same graph.) Heree th
relationx’ C x’ holds, which is exactly the desired resull

Proof of [heorem 1

We reason on constraints without unification edges, as ttersbe
solved by unification without loss of generalit}) (Lemmd®).

Let x be a constraint. We extend the relation “depends on”
to two instantiation edges by = d depends ory’ s d’
iff f depends onf’. This relation is a strict partial order, since
the dependency relation on breakpoints is acyclic. Moreave
only decreases (as a relation) by instance, as does thedismsn
relation (proof of Lemm&13).

We say that an instantiation edge= g === d is recursively
solved if g is recursively solved and is solved. The proof is by

19

induction on the number of instantiation edges not recahgiv
solved.

If this number is 0,y is solved: all instantiation edges are
recursively solved (hence solved), all unification edgestzeen
solved (1). Hence we choogeas its own more general presolution.

Otherwise, lete = g === d be a non recursively solved
instantiation edge minimal for the dependency order. Siate
unification edges are solved (1), this implies thas recursively
solved ance is not ) (otherwise, we would consider one of the
unsolved edges constrainiggnstead).

One stepWe propagate in the resulting graph and solve the
resulting unification edges.

If there is no solution,y is unsolvable (LemmasdL2 afid 9).
Hence, we now suppose that the unification has succeeded (oth
erwise there are no presolutions to reason on).

If the unification has succeeded, the resulting grapihas again
the same presolutions gs(LemmadIP anfl9 again). Moreover, it
is an instance of ande is solved iny’ (LemmaI}) ).

All the instantiation edges recursively solved ynare still
solved iny’ (and hence recursively solved)):

The nodes of changed by the unification are those structurally
underd. Now d is in at most one structural interior of Gnode
(as those nodes are existentially introduced). Let us densiach
case:

d is in no structural interior: all the nodes undet for o are in
no G structural interior either. Hence solving the unificatiod d
not change any such interior. Lemiida 7 ensures that all edges
previously solved are solved.

disinZ(g'): (for aG-nodeg’). All the nodes unded for ot are
inZ(g") or outside of any structural interior of@node. Hence,
the only such interior changed by unificationyls Sinced is in
Z(g"), s’ depends oB. By hypothesis (2) is not solved, hence
g’ is not recursively solved. In particular, the edges oritiia
from g’ are not recursively solved. Hence, by Lemitha 7 again,
all edges recursively solved are still solvedyin

Conclusion:The edgee is recursively solved, agis recursively
solved (2) ana is solved (3). By hypothesig,was not recursively
solved. Hence, using (4), at least one more edge is reclysive
solved in’. Moreover, we have already proved that is an
instance ofy, and that it has the same presolutionsyasience
we can conclude by induction hypothesis.

Remark: the most general presolution is uniglet x, andyx;,
be two potentially most general presolution (obtained byosing
the edges to propagate in different ways). We obtain imntelgia
Xr C Xxp andx;, C xp. The kernel of instance is equality_]10,
Lemma 2], hence the result. |

Proof of [emma 13

Let x be the constraint. The direction “typable ML implies
typable inMLF" is proven in Propertfl3. Suppose then thats
typable inMLF. The proof of Theorerll1 show that its principal
presolutiony, contains only flexible edges, as unification does not
introduce fresh binding edges, and propagation only capiessing
subgraphs. Thus we can apply PropE&lty 4towhich gives us an
ML solution toy. |

Proof of Cemma18

Let g’ be the name of the copy @f Let xc be C(x). The proof
is by case disjunction on the instance operatiom each case we
describe the constraint; closing the diagram.

e 0 = Graft(r,n) withn = (g - 7) € C(g)
Xo = (Graft(r,n) ; Graft(r,g" - 7)) (xc)

2008/4/15


http://gallium.inria.fr/~remy/mlf/mlf-graphic-types.pdf#xlemma.2

e 0 = Weaken(n) withn = (g - ) € C(g)
Xo = (Weaken(n) ; Weaken (g - ))(xc)
e 0 = Raise(n) withn = (g - m) € C(g), n not bound ory
xc = (Raise(n) ; Raise(g" - 7)) (xc)
e 0 = Raise(n) withn = (g - m) € C(g), n bound ong
xc = (Raise(n) ; Raise(g’ - ) ; Merge(n, ¢’ - m))(xc)
e 0 = Merge(ni,n2) with ny = (g - m), n2 = (g - m2),
ni,n2 € C(g)
Xo = (Merge(ny, (g' - 1)) ; Merge(nz, (" - m2))) (xc)
e In all the other cases¢: = C(xc)

Note that, for the case = Merge(ni,n2) andg === nq,

g == n2, We either have to allow multiple instantiation edges
between nodes, or to allow a single instantiation edge tlie s
into two edges. [ |

Proof of Cemma 18

Let x be a constraint. Lef be an application ofNST-CopY. Let
xc beC(x).

Consider a presolutiory,, of x. Let xc, be the constraint
obtained by applying Lemm@ll6 tpc and x,. By hypothesis,

Xp IS solved, hence it does not contain unification edges, and al

instantiation edges are solved. By its definitiops, does not
contain unification edges. Moreover, all its instantiatialges can
be solved, by using the steps that solve themginFinally, x, and

Xc, witness the same solutions, as the copy does not change th

expansion. Hence all solutions gfare solutions ofc.

X1 X2 X3 X4
o) o) o) [0
7 7 7 7
Yo o< e Yoee
7 v 7 RN RN PN
r r r T
SN SN SO N
A A
o o
» »
g2 :
“»o : °
7 n Rl
2 o
G»®
g1 g1

Figure 24. Steps proving ¥R-LET

Consider the constraing;, obtained by propagating, === n
in xp. Let T' be the sequence of instance operations solving the
propagation for the edgg === (g2 - 1) (Sincey, is a presolution
of x1). We suppose without loss of generality thHAtis done
bottom-up, and that the last operationMerge (g1, (g2 - 1)); let
T’ be T without this last operation.

Next, consider a path such that{g: - 1 - ) € F(g1). Then by
definition of presolutions and propagatidg; - 1-7) = (g2-1- 7).
Moreover, given the shape of the binding treeyin, we have
(g2 - 1-m) € F(g2). Next, again by definition of presolutions

€nd propagation, we havgs - 1 - ) = (n - ).

ThusT” can almost directly be used to act on the expansion in

In the other direction, we cannot apply the same approach. x;, as the nodes in the frontier gf are shared witm. The only

Indeed, the two copies qf could seemingly be instantiated in

most general presolution gf will instantiate the two copies of the
G-node similarly.

Let x, be the most general presolution gf We show by
induction on the number of steps leadingxg in the proof of
Theorenfll that the most general presolutioyefis C(x;).

If there areQ steps,x is solved. Thenyc is solved, applying
INST-CoOPY to a presolution yields a presolution. Moreover, both
constraints witness the same solutions, as the copy doebange
the expansion.x

Otherwise, there are two possible kinds of steps:

1. The unification of a unification edgg let x’ be the resulting
constraint. We unifye and its eventual copy igc. Lemmaly
ensures that the resulting constrain€igy’). This constraint is
more general thagc,, (Lemma®).

2. The propagation of an instantiation edgdhen we propagate
e and its eventual copy iryc. The result is trivially equal to
C(x°) and is more general thape,, (LemmaIR).

In both cases, conclusion is by induction hypothesis agpbethe
obtained constraint. [ |

Proof of C(emma 19

For VAR-ABS, the result is by unificationNST-ELIM -MoONO and
existential elimination.

For VAR-LET, the proof steps are shown in Figlird 24. We have
x4 F x3 by ExiIsTS-ELIM and x2 IF x1,x3 by dropping of
constraints.

x1 IF x2: letx, be a presolution of 1, plus the additional edge
g1 ===9» n (thusy, is an instance of-). We will prove thaty,, is
a presolution ofyz.

20

difference is that we must change the way nodes lea¥{igg) are
raised. Indeed, the binding tree abaveand g» is not the same.
Without loss of generality, we suppose tHdtis such that all nodes
ultimately outsidegs are first raised so that they are all bound at
g2, then multi-raised until they are all boundsatsince they must
be bound above the least common ancestay;pfj2 andn), and
then freely raised (this last step is unimportant for us). tén
adaptT” so that the multi-raising are changed to account for the
difference in binding heights betwegh and n. This preserves
well-domination, as multi-raising preserves well-dontioa. We
call 7" the resulting transformations, ang the constrain(x;,).

Let us examiney, . By constructiongs could be merged with
(g2 - 1) if the expansion had been done gg. In particular, up to
expansion i(e. binding and flag reset}({g> - 1)) andZ(g5) are
equal ). In x;, however, the merging is not possible yet, because
the nodes undet might be further instantiated.

Consider nowys, wheree is gz ====3» n. Sincey, is a presolu-
tion of x1, this propagation can be solved. Lgf’ be the constraint
obtained by solving only the unification edges resultingrfrthe
nodes on the frontier. By (1), it is in fact the case thgt = x; .
Indeed, in both constraints, the nodes in the frontier ofetkgan-
sions are the nodes in the frontiergf and the nodes in the interior
of the expansion are the interior @f, up to expansion (in,’, uni-
fying the nodes of the frontier has not changed the interighe
expansion). Thus the remainder of the propagation;fncan be
solved.

We have thus proven that the edge---=» n is solved. Thus
Xp IS @ presolution, in particular of2, andx: I+ x2 (in fact, in
this case we have proven equality of the shape of the présadit

xa Ik x2: let x, be a presolution of4. Let x;, be x; plus g2,
the bottom node under it, and the two remaining instantisitges.
The unification edges introduced by propagating--=» (g2 - 1)
can be solved:
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¢ the bottom node undepy, creates no constraint for the skeleton
or the term-graph.

e sincey, Is a presolution, all nodes (g1 ) are already bound
above the least common binderg@fandn, which is the root of
the graph here. Thus solving the unification edge does rex rai
a node already iry.

We cally; the resulting constraint. Notice that in this constragat,
and g, have exactly the same frontier, and their structural interi
is the same (up to expansion). Thyis-=--# n is solved, andy;,

is a presolution. Since it witnesses the same solutiong.ashis
proves the subresult. [ |

Proof of Cemma2d

Let x andy’ be the left and righ-hand sides of the rule respectively.
One implication is obvious, ag = x’

Supposey, is anML presolution ofy. Let us callm the node
(g-1). We argue will prove that: andn can be merged ix,, and
that the result is a presolution.

Consider indeed ;. By hypothesisy;, C x;. Considery; in
which the unification edges resulting from the frontier asbvad.
We cally’ this constraint. Letn“ be the copy ofn in the propaga-
tion, i.e. the root of the expansion. Ig; there is exactly the same
structure undern andm®. Thus those two nodes can be unified,
and we cally4 the resulting constraint. Notice that the nodes under
m* are unchanged by this unificatioth)( Indeed, the unification
will not change the nodes i (g) (they are already merged j ),
while the copies in the nodes B{g) are all bound ori. Thus the
nodes undem will be raised, while those unden® will not. It re-
mains to unify the edge between® andn. This is possible by (1),
by following the same steps that those solving this edgg irWe
call x4 the resulting constraint.

Let us prove thaty% is a presolution. We use Lemniih 7, and
consider the structural interiors that have been changenhifying
m and n. Unification only changes the nodes under the nodes
unified, so we must only consider the structural interiorshef
nodes undern andn, i.e. the structural interior ofy and of ¢’
(whereg’ is the G-node whose structural interior containdlotice
that g’ might not exist ifn. is existential iny5).

By (1), the nodes under have not been changed by the unifi-
cation. Thus all instantiation edges leavigig(if it exists) are still
solved. Moreoverg is the only instantiation edge leavigg and it
is solved by construction of the unification. Thus all insi@tion
edges are solved igs, and it is a presolution.

Next, notice that unifyingn andn raisesn’ so that it is bound
at least atj in x5. Thusy’ T x5 holds, by [T, Lemma_ 10].
Moreover,y andyj witness the same solutions, as the nodes under
(e) are unchanged by the unification @f andn. This proves the
other direction of the result. [ |
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http://gallium.inria.fr/~remy/mlf/mlf-graphic-types.pdf#xlemma.10
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