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Abstract MLF is a type system that seamlessly merges ML-style im-
plicit but second-class polymorphism with System-F explicit first-class
polymorphism. We present xMLF, a Church-style version of MLF with
full type information that can easily be maintained during reduction. All
parameters of functions are explicitly typed and both type abstraction
and type instantiation are explicit. However, type instantiation in xMLF

is more general than type application in System F. We equip xMLF with
a small-step reduction semantics that allows reduction in any context
and show that this relation is confluent and type preserving. We also
show that both subject reduction and progress hold for weak-reduction
strategies, including call-by-value with the value-restriction.

Introduction

MLF (Le Botlan and Rémy 2003, 2007; Rémy and Yakobowski 2008b) is a type
system that seamlessly merges ML-style implicit but second-class polymor-
phism with System-F explicit first-class polymorphism. This is done by enriching
System-F types. Indeed, System F is not well-suited for partial type inference, as
illustrated by the following example. Assume that a function, say choice, of type
∀ (α) α → α → α and the identity function id, of type ∀ (β) β → β, have been
defined. How can the application choice to id be typed in System F? Should
choice be applied to the type ∀ (β) β → β of the identity that is itself kept
polymorphic? Or should it be applied to the monomorphic type γ → γ, with
the identity being applied to γ (where γ is bound in a type abstraction in front
of the application)? Unfortunately, these alternatives have incompatible types,
respectively (∀ (α) α → α) → (∀ (α) α → α) and ∀ (γ) (γ → γ) → (γ → γ):
none is an instance of the other. Hence, in System F, one is forced to irreversibly
choose between one of the two explicitly typed terms.

However, a type inference system cannot choose between the two, as this
would sacrifice completeness and be somehow arbitrary. This is why MLF en-
riches types with instance-bounded polymorphism, which allows to write more
expressive types that factor out in a single type all typechecking alternatives in
such cases as the example of choice. Now, the type ∀ (α>τ) α→ α, which should
be read “α→ α where α is any instance of τ”, can be assigned to choice id, and
the two previous alternatives can be recovered a posteriori by choosing different
instances for α.
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Currently, the language MLF comes with a Curry-style version iMLFwhere no
type information is needed and a type-inference version eMLF that requires par-
tial type information (Le Botlan and Rémy 2007). However, eMLF is not quite in
Church’s style, since a large amount of type information is still implicit and par-
tial type information cannot be easily maintained during reduction. Hence, while
eMLF is a good surface language, it is not a good candidate for use as an internal
language during the compilation process, where some program transformations,
and perhaps some reduction steps, are being performed. This has been a problem
for the adoption of MLF in the Haskell community (Peyton Jones 2003), as the
Haskell compilation chain uses an explicitly-typed internal language.

This is also an obstacle to proving subject reduction, which does not hold
in eMLF. In a way, this is unavoidable in a language with non-trivial partial
type inference. Indeed, type annotations cannot be completely dropped, but
must at least be transformed and reorganized during reduction. Still, one could
expect that eMLF be equipped with reduction rules for type annotations. This
has actually been considered in the original presentation of MLF, but only with
limited success. The reduction kept track of annotation sites during reduction;
this showed, in particular, that no new annotation site needs to be introduced
during reduction. Unfortunately, the exact form of annotations could not be
maintained during reduction, by lack of an appropriate language to describe their
computation. As a result, it has only been shown that some type derivation can
be rebuilt after the reduction of a well-typed program, but without exhibiting
an algorithm to compute them during reduction.

Independently, Rémy and Yakobowski (2008b) have introduced graphic con-
straints, both to simplify the presentation of MLF and to improve its type infer-
ence algorithm. This also lead to a simpler, more expressive definition of MLF.

In this paper, we present xMLF, a Church-style version of MLF that contains
full type information. In fact, type checking becomes a simple and local ver-
ification process—by contrast with type inference in eMLF, which is based on
unification. In xMLF, type abstraction, type instantiation, and all parameters
of functions are explicit, as in System F. However, type instantiation is more
general and more atomic than type application in System F: we use explicit type
instantiation expressions that are proof evidences for the type instance relations.

In addition to the usual β-reduction, we give a series of reduction rules for
simplifying type instantiations. These rules are confluent when allowed in any
context. Moreover, reduction preserves typings, and is sufficient to reduce all
typable expressions to a value when used in either a call-by-value or call-by-name
setting. This establishes the soundness of MLF for a call-by-name semantics for
the first time. Notably, xMLF is a conservative extension of System F.

The paper is organized as follows. We present xMLF, its syntax and its static
and dynamic semantics in §1. We study its main properties, including type
soundness for different evaluations strategies in §2. We discuss possible varia-
tions, as well as related and future works in §3. All proofs are omitted, but can
be found in (Yakobowski 2008, Chapters 14 & 15).
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α, β, γ, δ Type variable

τ ::= Type

| α Type variable
| τ → τ Arrow type
| ∀ (α> τ ) τ Quantification
| ⊥ Bottom type

φ ::= Instantiation

| τ Bottom
| !α Abstract
| ∀ (>φ) Inside
| ∀ (α>) φ Under
| N ∀-elimination
| O ∀-introduction
| φ;φ Composition
| 1 Identity

x, y, z Term variable

a ::= Term

| x Variable
| λ(x : τ ) a Function
| a a Application
| Λ(α> τ ) a Type function
| a φ Instantiation
| let x = a in a Let-binding

Γ ::= Environment

| ∅ Empty
| Γ, α> τ Type variable
| Γ, x : τ Term variable

Figure 1. Grammar of types, instantiations, and terms

1 The calculus

Types, instantiations, terms, and typing environments All the syntactic
definitions of xMLF can be found in Figure 1. We assume given a countable
collection of variables ranged over by letters α, β, γ, and δ. As usual, types
include type variables and arrow types. Other type constructors will be added
later—straightforwardly, as the arrow constructor receives no special treatment.
Types also include a bottom type ⊥ that corresponds to the System-F type
∀α.α. Finally, a type may also be a form of bounded quantification ∀ (α> τ) τ ′,
called flexible quantification, that generalizes the ∀α.τ form of System F and,
intuitively, restricts the variable α to range only over instances of τ . The variable
α is bound in τ ′ but not in τ . (We may write ∀ (α) τ ′ when the bound τ is ⊥.)

In Church-style System F, type instantiation inside terms is simply type ap-
plication, of the form a τ . By contrast, type instantiation a φ in xMLF details
every intermediate instantiation step, so that it can be checked locally. Intu-
itively, the instantiation φ transforms a type τ into another type τ ′ that is an
instance of τ . In a way, φ is a witness for the instance relation that holds between
τ and τ ′. It is therefore easier to understand instantiations altogether with their
static semantics, which will be explained in the next section.

Terms of xMLF are those of the λ-calculus enriched with let constructs, with
two small differences. Type instantiation a φ generalizes System-F type appli-
cation. Type abstractions are extended with an instance bound τ and written
Λ(α > τ) a. The type variable α is bound in a, but not in τ . We abbreviate
Λ(α> ⊥) a as Λ(α) a, which simulates the type abstraction Λα. a of System F.
We write ftv(τ) and ftv(a) the set of type variables that appear free in τ and a.

We identify types, instantiations, and terms up to the renaming of bound
variables. The capture-avoiding substitution of a variable v inside an expression
s by an expression s′ is written s{v← s′}.
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Inst-Bot

Γ ⊢ τ : ⊥ ≤ τ

Inst-Under
Γ, α> τ ⊢ φ : τ1 ≤ τ2

Γ ⊢ ∀ (α>) φ : ∀ (α> τ ) τ1 ≤ ∀ (α> τ ) τ2

Inst-Abstr
α> τ ∈ Γ

Γ ⊢ !α : τ ≤ α

Inst-Inside
Γ ⊢ φ : τ1 ≤ τ2

Γ ⊢ ∀ (>φ) : ∀ (α> τ1) τ ≤ ∀ (α> τ2) τ

Inst-Intro
α /∈ ftv(τ )

Γ ⊢ O : τ ≤ ∀ (α>⊥) τ

Inst-Comp

Γ ⊢ φ1 : τ1 ≤ τ2
Γ ⊢ φ2 : τ2 ≤ τ3

Γ ⊢ φ1;φ2 : τ1 ≤ τ3

Inst-Elim

Γ ⊢ N : ∀ (α> τ ) τ ′ ≤ τ ′{α← τ}

Inst-Id

Γ ⊢ 1 : τ ≤ τ

Figure 2. Type instance

As usual, type environments assign types to program variables. However,
instead of just listing type variables, as is the case in System F, type variables
are also assigned a bound in a binding of the form α> τ . We write dom(Γ ) for
the set of all terms and type variables that are bound by Γ . We also assume
that typing environments are well-formed, i.e. they do not bind twice the same
variable and free type variables appearing in a type of the environment Γ must
be bound earlier in Γ . Formally, the empty environment is well-formed and, given
a (well-formed) environment Γ , the relations α 6∈ dom(Γ ) and ftv(τ) ⊆ dom(Γ )
must hold to form environments Γ, α> τ and Γ, x : τ .

Instantiations Instantiations φ are defined in Figure 1. Their typing, described
in Figure 2, are type instance judgments of the form Γ ⊢ φ : τ ≤ τ ′, stating that
in environment Γ , the instantiation φ transforms the type τ into the type τ ′.

The bottom instantiation τ expresses that (any) type τ is an instance of the
bottom type. The abstract instantiation !α, which assumes that the hypothesis
α>τ is in the environment, abstracts the bound τ of α as the type variable α. The
inside instantiation ∀ (>φ) applies φ to the bound τ ′ of a flexible quantification
∀ (α′ > τ ′) τ . Conversely, the under instantiation ∀ (α>) φ applies φ to the type
τ under the quantification. The type variable α is bound in φ; the environment
in the premise of the rule Inst-Under is increased accordingly. The quantifier
introduction O

3 introduces a fresh trivial quantification ∀ (α>⊥). Conversely, the
quantifier elimination N eliminates the bound of a type of the form ∀ (α>τ) τ ′ by
substituting τ for α in τ ′. This amounts to definitely choosing the present bound
τ for α, while the bound before the application could be further instantiated by
some inside instantiation. The composition φ;φ′ witnesses the transitivity of
type instance, while the identity instantiation 1 witnesses reflexivity.

3 The choice of O is only by symmetry with the elimination form N described next,
and has no connection at all with linear logic.
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τ (!α) = α
⊥ τ = τ
τ 1 = τ
τ (φ1;φ2) = (τ φ1)φ2

τ O = ∀ (α>⊥) τ α /∈ ftv(τ )
(∀ (α> τ ) τ ′) N = τ ′{α← τ}
(∀ (α> τ ) τ ′) (∀ (>φ)) = ∀ (α> τ φ) τ ′

(∀ (α> τ ) τ ′) (∀ (α>) φ) = ∀ (α> τ ) (τ ′ φ)

Figure 3. Type instantiation (on types)

Example Let τmin, τcmp, and τand be the types of the parametric minimum and
comparison functions and of the conjunction of boolean formulas:

τmin , ∀ (α>⊥) α→ α→ α τcmp , ∀ (α >⊥) α→ α→ bool

τand , bool→ bool→ bool

Let φ be the instantiation ∀ (> bool);N. Then, ⊢ φ : τmin ≤ τand and ⊢ φ :
τcmp ≤ τand hold. Let τK be the type ∀ (α > ⊥) ∀ (β > ⊥) α → β → α (e.g. of
the λ-term λ(x) λ(y) x) and φ′ be the instantiation4 ∀ (α>) (∀ (>α);N). Then,
φ′ : τK ≤ τmin.

Type application As above, we often instantiate a quantification over ⊥ and
immediately substitute the result. Moreover, this pattern corresponds to the
System-F unique instantiation form. Therefore, we define 〈τ〉 as syntactic sugar
for (∀ (> τ);N). The instantiations φ and φ′ can then be abbreviated as 〈bool〉
and ∀ (α>) 〈α〉. More generally, we write 〈φ〉 for the computation (∀ (>φ);N).

Properties of instantiations Since instantiations make all steps in the instance
relation explicit, their typing is deterministic.

Lemma 1. If Γ ⊢ φ : τ ≤ τ1 and Γ ′ ⊢ φ : τ ≤ τ2, then τ1 = τ2.

The use of Γ ′ instead of Γ may be surprising. However, Γ does not contribute
to the instance relation, except in the side condition of rule Inst-Abstr. Hence,
the type instance relation defines a partial function, called type instantiation5

that, given an instantiation φ and a type τ , returns (if it exists) the unique type
τ φ such that ⊢ φ : τ ≤ τ φ. An inductive definition of this function is given in
Figure 3. Type instantiation is complete for type instance:

Lemma 2. If Γ ⊢ φ : τ ≤ τ ′, then τ φ = τ ′.

However, the fact that τ φ may be defined and equal to τ ′ does not imply that
Γ ⊢ φ : τ ≤ τ ′ holds for some Γ . Indeed, type instantiation does not check the
premise of rule Inst-Abstr. This is intentional, as it avoids parametrizing type
instantiation over the type environment. This means that type instantiation is
not sound in general. This is never a problem, however, since we only use type
instantiation originating from well-typed terms for which there always exists
some context Γ such that Γ ⊢ φ : τ ≤ τ ′.

4 The occurrence of α in the inside instantiation is bound by the under instantiation.
5 There should never be any ambiguity with the operation a φ on expressions; more-
over, both operations have strong similarities.
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Var
x : τ ∈ Γ

Γ ⊢ x : τ

Let
Γ ⊢ a : τ Γ, x : τ ⊢ a′ : τ ′

Γ ⊢ let x = a in a′ : τ ′

App
Γ ⊢ a1 : τ2 → τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

Abs
Γ, x : τ ⊢ a : τ ′

Γ ⊢ λ(x : τ ) a : τ → τ ′

TAbs
Γ, α> τ ′ ⊢ a : τ α /∈ ftv(Γ )

Γ ⊢ Λ(α> τ ′) a : ∀ (α> τ ′) τ

TApp
Γ ⊢ a : τ Γ ⊢ φ : τ ≤ τ ′

Γ ⊢ aφ : τ ′

Figure 4. Typing rules for xMLF

We say that types τ and τ ′ are equivalent in Γ if there exist φ and φ′ such that
Γ ⊢ φ : τ ≤ τ ′ and Γ ⊢ φ′ : τ ′ ≤ τ . Although types of xMLF are syntactically the
same as the types of iMLF—the Curry-style version of MLF (Le Botlan and Rémy
2007)—they are richer, because type equivalence in xMLF is finer than type
equivalence in iMLF, as will be explained in §3.

Typing rules for xMLF Typing rules are defined in Figure 4. Compared with
System F, the novelties are type abstraction and type instantiation, unsurpris-
ingly. The typing of a type abstraction Λ(α > τ) a extends the typing environ-
ment with the type variable α bound by τ . The typing of a type instantiation
a φ resembles the typing of a coercion, as it just requires the instantiation φ to
transform the type of a into the type of the result. Of course, it has the full
power of the type application rule of System F. For example, the type instan-
tiation a 〈τ〉 has type τ ′{α ← τ} provided the term a has type ∀ (α) τ ′. As in
System F, a well-typed closed term has a unique type—in fact, a unique typing
derivation.

A let-binding let x = a1 in a2 cannot entirely be treated as an abstraction for
an immediate application (λ(x : τ1) a2) a1 because the former does not require a
type annotation on x whereas the latter does. This is nothing new, and the same
as in System F extended with let-bindings. (Notice however that τ1, which is the
type of a1, is fully determined by a1 and could be synthesized by a typechecker.)

Example Let id stand for the identity Λ(α > ⊥) λ(x : α) x and τid for the
type ∀ (α > ⊥) α → α. We have ⊢ id : τid. The function choice mentioned
in the introduction, may be defined as Λ(β > ⊥) λ(x : β) λ(y : β) x. It has
type ∀ (β > ⊥) β → β → β. The application of choice to id, which we refer to
below as choice id, may be defined as Λ(β> τid) choice 〈β〉 (id (!β)) and has type
∀ (β > τid) β → β. The term choice id may also be given weaker types by type
instantiation. For example, choice idN has type (∀ (α>⊥) α→ α)→ (∀ (α>⊥)
α → α) as in System F, while choice id (O; ∀ (γ>) (∀ (> 〈γ〉);N)) has the ML

type ∀ (γ >⊥) (γ → γ)→ γ → γ.

Reduction The semantics of the calculus is given by a small-step reduction
semantics. We let reduction occur in any context, including under abstractions.
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(λ(x : τ ) a1) a2 −→ a1{x← a2} (β)
let x = a2 in a1 −→ a1{x← a2} (βlet)

a1 −→ a (ι-Id)
a (φ;φ′) −→ aφ (φ′) (ι-Seq)
aO −→ Λ(α>⊥) a α /∈ ftv(a) (ι-Intro)

(Λ(α> τ ) a)N −→ a{!α← 1}{α← τ} (ι-Elim)
(Λ(α> τ ) a) (∀ (α>) φ) −→ Λ(α> τ ) (a φ) (ι-Under)
(Λ(α> τ ) a) (∀ (>φ)) −→ Λ(α> τ φ) a{!α← φ; !α} (ι-Inside)

E[a] −→ E[a′] if a −→ a′ (Context)

Figure 5. Reduction rules

That is, the evaluation contexts are single-hole contexts, given by the grammar:

E ::= [ · ] | E φ | λ(x : τ) E | Λ(α> τ) E
| E a | a E | let x = E in a | let x = a in E

The reduction rules are described in Figure 5. As usual, basic reduction steps
contain β-reduction, with the two variants (β) and (βlet). Other basic reduc-
tion rules, related to the reduction of type instantiations and called ι-steps, are
described below. The one-step reduction is closed under the context rule. We
write −→β and −→ι for the two subrelations of −→ that contains only Con-

text and β-steps or ι-step, respectively. Finally, the reduction is the reflexive
and transitive closure −→→ of the one-step reduction relation.

Reduction of type instantiation Type instantiation redexes are all of the form
a φ. The first three rules do not constrain the form of a. The identity type
instantiation is just dropped (Rule ι-Id). A type instantiation composition is
replaced by the successive corresponding type instantiations (Rule ι-Seq). Rule
ι-Intro introduces a new type abstraction in front of a; we assume that the
bound variable α is fresh in a. The other three rules require the type instantiation
to be applied to a type abstraction Λ(α > τ) a. Rule ι-Under propagates the
type instantiation under the bound, inside the body a. By contrast, Rule ι-

Inside propagates the type instantiation φ inside the bound, replacing τ by τ φ.
However, as the bound of α has changed, the domain of the type instantiations
!α is no more τ , but τ φ. Hence, in order to maintain well-typedness, all the
occurrences of the instantiation !α in a must be simultaneously replaced by
the instantiation (φ; !α). Here, the instantiation !α is seen as atomic, i.e. all
occurrences of !α are substituted, but other occurrences of α are left unchanged
(see the appendix for the formal definition). For instance, if a is the term

Λ(α> τ) λ(x : α→ α) λ(y : ⊥) y (α→ α) (z (!α))

then, the type instantiation a (∀ (>φ)) reduces to:

Λ(α> τ φ) λ(x : α→ α) λ(y : ⊥) y (α→ α) (z (φ; !α))

Rule ι-Elim eliminates the type abstraction, replacing all the occurrences of α
inside a by the bound τ . All the occurrences of !α inside τ (used to instantiate τ
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into α) become vacuous and must be replaced by the identity instantiation. For
example, reusing the term a above, aN reduces to λ(x : τ → τ) λ(y : ⊥) y (τ →
τ) (z 1). Notice that type instantiations a τ and a (!α) are irreducible.

Examples of reduction Let us reuse the term choice id defined in §1 as Λ(β >
τid) choice 〈β〉 (id (!β)). Remember that 〈τ〉 stands for the System-F type applica-
tion τ and expands to (∀ (> τ);N). Therefore, the type instantiation choice 〈β〉
reduces to the term λ(x : β) λ(y : β) x by ι-Seq, ι-Inside and ι-Elim. Hence,
the term choice id reduces by these rules, Context, and (β) to the expression
Λ(β > τid) λ(y : β) id (!β).

Below are three specialized versions of choice id (remember that ∀ (α) τ and
Λ(α) a are abbreviations for ∀ (α>⊥) τ and Λ(α>⊥) a). Here, all type instan-
tiations are eliminated by reduction, but this is not always possible in general.

choice id 〈〈int〉〉 : (int→ int)→ (int→ int)
−→→ λ(y : int→ int) (λ(x : int) x)

choice idN : (∀ (α) α→ α)→ (∀ (α) α→ α)
−→→ λ(y : ∀ (α) α→ α) (Λ(α) λ(x : α) x)

choice id (O; ∀ (γ>) (∀ (> 〈γ〉);N)) : ∀ (γ) (γ → γ)→ (γ → γ)
−→→ Λ(γ) λ(y : γ → γ) (λ(x : γ) x)

System F as a subsystem of xMLF System F can be seen as a subset of
xMLF, using the following syntactic restrictions: all quantifications are of the
form ∀ (α) τ and ⊥ is not a valid type anymore (however, as in System F, ∀ (α) α
is); all type abstractions are of the form Λ(α) a; and all type instantiations are
of the form a 〈τ〉.

The derived typing rule for Λ(α) a and a 〈τ〉 are exactly the System-F typ-
ing rules for type abstraction and type application. Hence, typechecking in this
restriction of xMLF corresponds to typechecking in System F.

Moreover, the reduction in this restriction also corresponds to reduction
in System F. Indeed, a reducible type application is necessarily of the form
(Λ(α) a) 〈τ〉 and can always be reduced to a{α← τ} as follows:

(Λ(α) a) 〈τ〉 = (Λ(α>⊥) a) (∀ (> τ);N) (1)

−→ (Λ(α >⊥) a) (∀ (> τ)) (N) (2)

−→ (Λ(α >⊥τ) a{!α← τ ; !α}) (N) = (Λ(α> τ) a) (N) (3)

−→ a{!α← 1}{α← τ} = a{α← τ} (4)

Step (1) is by definition; step (2) is by ι-Seq; step (3) is by ι-Inside, step (4)
is by ι-Elim and equality steps (3) and (4) are by type instantiation and by
assumption as a is a term of System F, thus in which !α does not appear.

2 Properties of reduction

The reduction has been defined so that the type erasure of a reduction sequence
in xMLF is a reduction sequence in the untyped λ-calculus. Formally, the type
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erasure of a term a of xMLF is the untyped λ-term ⌈a⌉ defined inductively by

⌈x⌉ = x

⌈a φ⌉ = ⌈a⌉
⌈a1 a2⌉ = ⌈a1⌉ ⌈a2⌉

⌈let x = a1 in a2⌉ = let x = ⌈a1⌉ in ⌈a2⌉
⌈λ(x : τ) a⌉ = λ(x) ⌈a⌉
⌈Λ(α> τ) a⌉ = ⌈a⌉

It is immediate to verify that two terms related by ι-reduction have the same
type erasure. Moreover, if a β-reduces to a′, then the type erasure of a β-reduces
to the type erasure of a′ in one step in the untyped λ-calculus.

2.1 Subject reduction

Reduction of xMLF, which can occur in any context, preserves typings. This relies
on weakening and substitution lemmas for both instance and typing judgments.

Lemma 3 (Weakening). Let Γ, Γ ′, Γ ′′ be a well-formed environment.
If Γ, Γ ′′ ⊢ φ : τ1 ≤ τ2, then Γ, Γ ′, Γ ′′ ⊢ φ : τ1 ≤ τ2.
If Γ, Γ ′′ ⊢ a : τ ′, then Γ, Γ ′, Γ ′′ ⊢ a : τ ′.

Lemma 4 (Term substitution). Assume that Γ ⊢ a′ : τ ′ holds.
If Γ, x : τ ′, Γ ′ ⊢ φ : τ1 ≤ τ2 then Γ, Γ ′ ⊢ φ : τ1 ≤ τ2.
If Γ, x : τ ′, Γ ′ ⊢ a : τ , then Γ, Γ ′ ⊢ a{x← a′} : τ

The next lemma, which expresses that we can substitute an instance bound
inside judgments, ensures the correctness of Rule ι-Elim.

Lemma 5 (Bound substitution). Let ϕ and θ be respectively the substi-
tutions {α← τ} and {!α← 1}{α← τ}.
If Γ, α> τ, Γ ′ ⊢ φ : τ1 ≤ τ2 then Γ, Γ ′ϕ ⊢ φθ : τ1ϕ ≤ τ2ϕ.
If Γ, α> τ , Γ ′ ⊢ a : τ ′ then Γ, Γ ′ϕ ⊢ aθ : τ ′ϕ.

Finally, the following lemma ensures that an instance bound can be instantiated,
proving in turn the correctness of the rule ι-Inside.

Lemma 6 (Narrowing). Assume Γ ⊢ φ : τ ≤ τ ′. Let θ be {!α← φ; !α}.
If Γ, α> τ , Γ ′ ⊢ φ′ : τ1 ≤ τ2 then Γ, α> τ ′, Γ ′ ⊢ φ′θ : τ1 ≤ τ2.
If Γ, α> τ, Γ ′ ⊢ a : τ ′′ then Γ, α> τ ′, Γ ′ ⊢ aθ : τ ′′

Subject reduction is an easy consequence of all these results.

Theorem 1 (Subject reduction). If Γ ⊢ a : τ and a −→ a′ then, Γ ⊢ a′ : τ .

2.2 Confluence

Theorem 2. The relation −→β is confluent. The relations −→ι and −→ are
confluent on the terms well-typed in some context.

This result is proved using the standard technique of parallel reductions
(Barendregt 1984). Thus β-reduction and ι-reduction are independent; this al-
lows for instance to perform ι-reductions under λ-abstractions as far as possible
while keeping a weak evaluation strategy for β-reduction.
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The restriction to well-typed terms for the confluence of ι-reduction is due to
two things. First, the rule ι-Inside is not applicable to ill-typed terms in which
τ φ cannot be computed (for example (Λ(α> int) a) (∀ (>N))). Second, τ φ can
sometimes be computed, even though Γ ⊢ φ : τ ≤ τ ′ never holds (for example
if φ is !α and τ is not the bound of α in Γ ). Hence, type errors may be either
revealed or silently reduced and perhaps eliminated, depending on the reduction
path. As an example, let a be the term

(

Λ(α> ∀ (γ) γ)
(

(Λ(β > int) x) (∀ (> !α))
))

(∀ (>N))

We have both a −→ Λ(α > ⊥)
(

(Λ(β > int) x) (∀ (>N; !α))
)

6−→, and a −→
(

Λ(α> ∀ (γ) γ) Λ(β > α) x
)

(∀ (>N)) −→ Λ(α>⊥) Λ(β > α) x 6−→.
The fact that ill-typed terms may not be confluent is not new: for instance,

this is already the case with η-reduction in System F. We believe this is not
a serious issue. In practice, this means that typechecking should be performed
before any program simplification, which is usually the case anyway.

2.3 Strong normalization

We conjecture, but have not proved, that all reduction sequences are finite.

2.4 Accommodating weak reduction strategies and constants

In order to show that the calculus may also be used as the core of a programming
language, we now introduce constants and restricts the semantics to a weak
evaluation strategy.

We let the letter c range over constants. Each constant comes with its arity |c|.
The dynamic semantics of constants must be provided by primitive reduction
rules, called δ-rules. However, these are usually of a certain form. To characterize
δ-rules (and values), we partition constants into constructors and primitives,
ranged over by letters C and f , respectively. The difference between the two lies
in their semantics: primitives (such as +) are reduced when fully applied, while
constructors (such as cons) are irreducible and typically eliminated when passed
as argument to primitives.

In order to classify constructed values, we assume given a collection of type
constructors κ, together with their arities |κ|. We extend types with constructed
types κ (τ1, . . . τ|κ|). We write α for a sequence of variables α1, . . . αk and ∀ (α) τ
for the type ∀ (α1) . . . ∀ (αk) τ . The static semantics of constants is given by
an initial typing environment Γ0 that assigns to every constant c a type τ of
the form ∀ (α) τ1 → . . . τn → τ0, where τ0 is a constructed type whenever the
constant c is a constructor.

We distinguish a subset of terms, called values and written v. Values are
term abstractions, type abstractions, full or partial applications of constructors,
or partial applications of primitives. We use an auxiliary letter w to character-
ize the arguments of functions, which differ for call-by-value and call-by-name
strategies. In values, an application of a constant c can involve a series of type
instantiations, but only evaluated ones and placed before all other arguments.
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Moreover, the application may only be partial whenever c is a primitive. Eval-
uated instantiations θ may be quantifier eliminations or either inside or under
(general) instantiations. In particular, a τ and a (!α) are never values. The gram-
mar for values and evaluated instantiations is as follows:

v ::= λ(x : τ) a
| Λ(α : τ) a
| C θ1 . . . θk w1 . . . wn n ≤ |C|
| f θ1 . . . θk w1 . . . wn n < |f |

θ ::= ∀ (>φ) | ∀ (α>) φ | N

Finally, we assume that δ-rules are of the form f θ1 . . . θk w1 . . . w|f | −→f a (that
is, δ-rules may only reduce fully applied primitives).

In addition to this general setting, we make further assumptions to relate the
static and dynamic semantics of constants.

Subject reduction: δ-reduction preserves typings, i.e., for any typing context
Γ such that Γ ⊢ a : τ and a −→f a′, the judgment Γ ⊢ a′ : τ holds.

Progress: Well-typed, full applications of primitives can be reduced, i.e., for
any term a of the form f θ1 . . . θk w1 . . . wn verifying Γ0 ⊢ a : τ , there
exists a term a′ such that a −→f a′.

Call-by-value reduction We now specialize the previous framework to a
call-by-value semantics. In this case, arguments of applications in values are
themselves restricted to values, i.e. w is taken equal to v. Rules (β) and (βlet)
are limited to the substitution of values, that is, to reductions of the form
(λ(x : τ) a) v −→ a{x ← v} and let x = v in a −→ a{x ← v}. Rules ι-

Id, ι-Comp and ι-Intro are also restricted so that they only apply to values
(e.g. a is textually replaced by v in each of these rules). Finally, we restrict rule
Context to call-by-value contexts, which are of the form

Ev ::= [ · ] | Ev a | v Ev | Ev φ | let x = Ev in a

We write −→→v the resulting reduction relation. It follows from the above restric-
tions that the reduction is deterministic. Moreover, since δ-reduction preserves
typings, by asumption, the relation −→→v also preserves typings by Theorem 1.

Progress holds for call-by-value. In combination with subject-reduction, this
ensures that the evaluation of well-typed terms “cannot go wrong”.

Theorem 3. If Γ0 ⊢ a : τ , then either a is a value or a −→→v a
′ for some a′.

Call-by-value reduction and the value restriction The value-restriction is
the most standard way to add side effects in a call-by-value language. It is thus
important to verify that it can be transposed to xMLF.

Typically, the value restriction amounts to restricting type generalization
to non-expansive expressions, which contain at least value-forms, i.e. values and
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term variables, as well as their type-instantiations. Hence, we obtain the following
revised grammar for expansive expressions b and for non-expansive expressions u.

b ::= u | b b | let x = u in b

u ::= x | λ(x : τ) b | Λ(α : τ) u | uφ
| C θ1 . . . θk u1 . . . un n ≤ |C|
| f θ1 . . . θk u1 . . . un n < |f |

As usual, we restrict let-bound expressions to be non-expansive, since they im-
plicitly contain a type generalization. Notice that, although type instantiations
are restricted to non-expansive expressions, this is not a limitation: b φ can al-
ways be written as (λ(x : τ) xφ) b, where τ is the type of a, and similarly for
applications of constants to expansive expressions.

Theorem 4. Expansive and non-expansive expressions are closed by call-by-
value reduction.

Corollary 1. Subject reduction holds with the value restriction.

It is then routine work to extend the semantics with a global store to model side
effects and verify type soundness for this extension.

Call-by-name reduction For call-by-name reduction semantics, we can actu-
ally increase the set of values, which may contain applications of constants to
arbitrary expressions; that is, we take a for w. The ι-reduction is restricted as
for call-by-value. However, evaluation contexts are now En ::= [ · ] | En a | En φ.
We write −→→n the resulting reduction relation. As for call-by-value, it is deter-
ministic by definition and preserves typings. It may also always progress.

Theorem 5. If Γ0 ⊢ a : τ , then either a is a value or a −→→n a
′ for some a′.

3 Discussion

Elaboration of graphical eMLF into xMLF To verify that, as expected,
xMLF can be used as an internal language for eMLF, we have exhibited a type-
preserving type-erasure-preserving translation from eMLF to xMLF. Technically,
this translation is based on the presolutions of type inference problems in the
graphic constraint framework of MLF. An important corollary is the type sound-
ness of eMLF—in its most expressive6 version (Rémy and Yakobowski 2008b).
By lack of space, this translation is however not presented in this paper, but can
be found in (Rémy and Yakobowski 2008a). We also expect that xMLF could be
used as an internal language for HML, another less expressive but simpler surface
language for iMLF that has been recently proposed (Leijen 2009).

6 So far, type-soundness has only been proved for the original, but slightly
weaker variant of MLF (Le Botlan 2004) and for the shallow, recast version of
MLF (Le Botlan and Rémy 2007).
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Expressiveness of xMLF The translation of eMLF into xMLF shows that xMLF

is at least as expressive as eMLF. However, and perhaps surprisingly, the converse
is not true. That is, there exist programs of xMLF that cannot be typed in MLF.
While, this is mostly irrelevant when using MLFas an internal language for eMLF,
the question is still interesting from a theoretical point of view, as understanding
xMLF on its own, i.e. independently of the type inference constraints of eMLF,
could perhaps suggest other useful extensions of xMLF.

For the sake of simplicity, we explain the difference between xMLF and iMLF,
the Curry-style version of MLF (which has the same expressiveness as eMLF).
Although syntactically identical, the types of xMLF and of syntactic iMLF differ
in their interpretation of alias bounds, i.e. quantifications of the form ∀ (β>α) τ .
Consider, for example, the two types τ0 and τid defined as ∀ (α>τ) ∀ (β>α) β →
α and ∀ (α>τ) α→ α. In iMLF, alias bounds can be expanded and τ0 and τid are
equivalent. Roughly, the set of their instances (stripped of toplevel quantifiers)
is {τ ′ → τ ′ | τ ≤ τ ′}. In contrast, the set of instances of τ0 is larger in xMLF and
at least a superset of {τ ′′ → τ ′ | τ ≤ τ ′ ≤ τ ′′}. This level of generality cannot
be expressed in iMLF.

The current treatment of alias bounds in xMLF is quite natural in a Church-
style presentation. Surprisingly, it is also simpler than treating them as in eMLF.
A restriction of xMLFwithout alias bounds that is closed under reduction and in
closer correspondence with iMLF can still be defined a posteriori, by constraining
the formation of terms, but the definition is contrived and unnatural. Instead of
restricting xMLF to match the expressiveness of iMLF, a question worth further
investigation is whether the treatment of alias bounds could be enhanced in
iMLF and eMLF to match the one in xMLFwithout compromising type inference.

Related works A strong difference between eMLF and xMLF is the use of ex-
plicit coercions to trace the derivation of type instantiation judgments. A similar
approach has already been used in a language with subtyping and intersection
types, proposed as a target for the compilation of bounded polymorphism (Crary
2000). In both cases, coercions are used to make typechecking a trivial process.
In our case, they are also exploited to make subject reduction easy—by introduc-
ing the language to describe how type instance derivations must be transformed
during reduction. (We believe that the use of explicit coercions for simplifying
subject-reduction proofs has been neglected.) In both approaches, reduction is
split into a standard notion of β-reduction and a new form of reduction (which
we call ι-reduction) that only deals with coercions, preserves type-erasures, and
is (conjectured to be) strongly normalizing. There are also important differ-
ences. While both coercion languages have common forms, our coercions intend-
edly keep the instance-bounded polymorphism form ∀ (α > τ) τ ′. On the oppo-
site, coercions are used to eliminate the subtype-bounded polymorphism form
∀ (α ≤ τ) τ ′ in (Crary 2000), using intersection types and contravariant arrow
coercions instead, which we do not need. It would be worth checking whether
union types, which are propsoed as an extension in (Crary 2000), could be used
to encode away our instance-bounded polymorphism form.
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Besides this work and the several papers that describe variants of MLF, there
are actually few other related works. Both Leijen and Löh (2005) and Leijen
(2007) have studied the extension of MLFwith qualified types, and as a subcase,
the translation of MLFwithout qualified types into System F. However, in order
to handle type instantiations, a term a of type ∀ (α > τ ′) τ is elaborated as a
function of type ∀ (α) (τ ′⋆ → α)→ τ⋆, where τ⋆ is a runtime representation of τ .
The first argument is a runtime coercion, which bears strong similarities with
our instantiations. However, an important difference is that their coercions are at
the level of terms, while our instantiations are at the level of types. In particular,
although coercion functions should not change the semantics, this critical result
has not been proved so far, while in our settings the type-erasure semantics
comes for free by construction. The impact of coercion functions in a call-by-
value language with side effects is also unclear. Perhaps, a closer connection
between their coercion functions and our instantiations could be established and
used to actually prove that their coercions do not alter the semantics. However,
even if such a result could be proved, coercions should preferably remain at the
type level, as in our setting, than be intermixed with terms, as in their proposal.

Future works The demand for an internal language for MLF was first made
in the context of using the eMLF type system for the Haskell language. We
expect xMLF to better accommodate qualified types than eMLF since no evidence
function would be needed for flexible polymorphism, but it remains to be verified.

Type instantiation, which changes the type of an expression without changing
its meaning, goes far beyond type application in System F and resembles retyping
functions in System F

η—the closure of F by η-conversion (Mitchell 1988). Those
functions can be seen either at the level of terms, as expressions of System F

that βη-reduces to the identity, or at the level of types as a type conversion.
Some loose parallel can be made between the encoding of MLF in System F

by Leijen and Löh (2005) which uses term-level coercions, and xMLFwhich uses
type-level instantiations. Additionally, perhaps F

η could be extended with a
form of abstraction over retyping functions, much as type abstraction ∀ (α> τ)
in xMLF amounts to abstracting over the instantiation !α of type τ → α. (Or
perhaps, as suggested by the work of Crary (2000), intersection and union types
could be added to F

η to avoid the need for abstracting over coercion functions.)

Regarding type soundness, it is also worth noticing that the proof of subject
reduction in xMLF does not subsume, but complements, the one in the original
presentation of MLF. The latter does not explain how to transform type annota-
tions, but shows that annotation sites need not be introduced (only transformed)
during reduction. Because xMLFhas full type information, it cannot say anything
about type information that could be left implicit and inferred. Given a term in
xMLF, can we rebuild a term in iMLFwith minimal type annotations? While this
should be easy if we require that corresponding subterms have identical types
in xMLF and iMLF, the answer is unclear if we allow subterms to have different
types.
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The semantics of xMLF allows reduction (and elimination) of type instan-
tiations a φ through ι-reduction but does not operate reduction (and simpli-
fication) of instantiations φ alone. It would be possible to define a notion of
reduction on instantiations φ −→ φ′ (such that, for instance, ∀ (>φ1;φ2) −→
∀ (>φ1); ∀ (>φ2), or conversely?) and extend the reduction of terms with a con-
text rule a φ −→ a φ′ whenever φ −→ φ′. This might be interesting for more
economical representations of instantiation. However, it is unclear whether there
exists an interesting form of reduction that is both Church-Rosser and large
enough for optimization purposes. Perhaps, one should rather consider instanti-
ation transformations that preserve observational equivalence, which would leave
more freedom in the way one instantiation could be replaced by another.

Extending xMLF to allow higher-order polymorphism is another interesting
research direction for the future. Such an extension is already under investigation
for the type inference version eMLF (Herms 2009).

Conclusion We have completed theMLF trilogy by introducing the Church-style
version xMLF, that was still desperately missing for type-aware compilation and
from a theoretical point of view. The original type-inference version eMLF, which
requires partial type annotations but does not tell how to track them during
reduction, now lies between the Curry-style presentation iMLF that ignores all
type information and xMLF that maintains it during reduction. We have shown
that xMLF is well-behaved: reduction preserves well-typedness, and the calculus
is sound for both call-by-value and call-by-name semantics.

Hence, xMLF can be used as an internal language for MLF, with either call-by-
value or call-by-name semantics, and also for the many restrictions of MLF that
have been proposed, including HML. Indeed, the translation of partially typed
eMLFprograms into fully typed xMLF ones, presented in (Rémy and Yakobowski
2008a), preserves well-typedness and the type erasure of terms, and therefore
ensures the type soundness of eMLF. Hopefully, this will help the adoption of
MLF and maintain a powerful form of type inference in modern programming
languages that will necessarily feature first-class polymorphism.

Independently, the idea of enriching type applications to richer forms of type
transformations might also be useful in other contexts.
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⊲ Didier Le Botlan and Didier Rémy. Recasting MLF. Research Report 6228,
INRIA, Rocquencourt, BP 105, 78 153 Le Chesnay Cedex, France, June 2007.

⊲ Daan Leijen. A type directed translation of MLF to System F. In The In-
ternational Conference on Functional Programming (ICFP’07). ACM Press,
October 2007.

⊲ Daan Leijen. Flexible types: robust type inference for first-class polymorphism.
In Proceedings of the 36th annual ACM Symposium on Principles of Program-
ming Languages (POPL’09), pages 66–77, New York, NY, USA, 2009. ACM.
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and terms in the usual way.

Types

τ θ = τ

Terms

x θ = x

(a1 a1) θ = (a1 θ) (a1 θ)
(a φ) θ = a (φ θ)

(λ(x : τ) a) θ = λ(x : τ θ) a θ
(Λ(α > τ) a) θ = Λ(α : τ θ) a θ

Type instantiations

!α θ = !α
!α0 θ = φ0

(τ) θ = (τ θ)
(∀ (>φ)) θ = ∀ (>φ θ)

(∀ (α>) φ) θ = ∀ (α>) (φ θ)
(φ;φ′) θ = (φ θ); (φ′ θ)

N θ = N

O θ = O1 θ = 1
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