
GADT meet subtyping

Gabriel Scherer and Didier Rémy

INRIA, Rocquencourt?

Abstract. While generalized abstract datatypes (GADT) are now con-
sidered well-understood, adding them to a language with a notion of
subtyping comes with a few surprises. What does it mean for a GADT
parameter to be covariant? The answer turns out to be quite subtle.
It involves fine-grained properties of the subtyping relation that raise
interesting design questions. We allow variance annotations in GADT
definitions, study their soundness, and present a sound and complete al-
gorithm to check them. Our work may be applied to real-world ML-like
languages with explicit subtyping such as OCaml, or to languages with
general subtyping constraints.

1 Motivation

In languages that have a notion of subtyping, the interface of parametrized
types usually specifies a variance. It defines the subtyping relation between two
instances of a parametrized type from the subtyping relations that hold between
their parameters. For example, the type α list of immutable lists is expected
to be covariant : we wish σ list ≤ σ′ list as soon as σ ≤ σ′.

Variance is essential in languages whose programming idioms rely on subtyp-
ing, in particular object-oriented languages. Another reason to care about vari-
ance is its use in the relaxed value restriction [Gar04]: while a possibly-effectful
expression, also called an expansive expression, cannot be soundly generalized in
ML—unless some sophisticated enhancement of the type system keeps track of
effectful expressions—it is always sound to generalize type variables that only
appear in covariant positions, which may not classify mutable values. Therefore,
it is important for extensions of type definitions, such as GADT, to support it
as well through a clear and expressive definition of parameter covariance.

For example, consider the following GADT of well-typed expressions:

type +α expr =

| Val : α→ α expr

| Int : int→ int expr

| Thunk : ∀β. β expr ∗ (β → α)→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

Is it safe to say that expr is covariant in its type parameter? It turns out that,
using the subtyping relation of the OCaml type system, the answer is “yes”.

? Part of this work has been done at IRILL.

But, surprisingly to us, in a type system with a top type >, the answer would
be “no”.

The aim of this article is to present a sound and complete criterion to check
soundness of parameter variance annotations, for use in a type-checker. We also
discuss the apparent fragility of this criterion with respect to changes to the
subtyping relation (e.g. the presence or absence of a top type, private types,
etc.), and a different, more robust way to combine GADT and subtyping.

Note Due to space restriction, the present article is only a short version from
which many details have been omitted. All proofs of results presented in this
version along with auxiliary results, as well as further discussions, can be found
in the longer version available online [SR].

Examples

Let us first explain why it is reasonable to say that α expr is covariant. Infor-
mally, if we are able to coerce a value of type α into one of type α′ (we write
(v :> α′) to explicitly cast a value v of type α to a value of type α′), then we
are also able to transform a value of type α expr into one of type α′ expr. Here
is some pseudo-code1 for the coercion function:

let coerce : α expr→ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Int n -> Int n

| Thunk β (b : β expr) (f : β → α) ->

Thunk β b (fun x -> (f x :> α′))
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

(* if β ∗ γ ≤ α′, then α′ is of the form

β′ ∗ γ′ with β ≤ β′ and γ ≤ γ′ *)
Prod β′ γ′ ((b :> β′ expr), (c :> γ′ expr))

In the Prod case, we make an informal use of something we know about the
OCaml type system: the supertypes of a tuple are all tuples. By entering the
branch, we gain the knowledge that α must be equal to some type of the form
β ∗ γ. So from α ≤ α′ we know that β ∗ γ ≤ α′. Therefore, α′ must itself be a
pair of the form β′ ∗ γ′. By covariance of the product, we deduce that β ≤ β′

and γ ≤ γ′. This allows to conclude by casting at types β′ expr and γ′ expr,
recursively.

Similarly, in the Int case, we know that α must be an int and therefore an
int expr is returned. This is because we know that, in OCaml, no type is above
int: if int ≤ τ , then τ must be int.

What we use in both cases is reasoning of the form2: “if T [β] ≤ α′, then I

know that α′ is of the form T [β
′
] for some β

′
”. We call this an upward closure

1 The variables β′ and γ′ of the Prod case are never really defined, only justified at
the meta-level, making this code only an informal sketch.

2 We write T [β] for a type expression T that may contain free occurrences of variables
β and T [σ] for the simultaneous substitution of σ for β in T .

property: when we “go up” from a T [β], we only find types that also have
the structure of T . Similarly, for contravariant parameters, we would need a
downward closure property: T is downward-closed if T [β] ≥ α′ entails that α′ is

of the form T [β
′
].

Before studying a more troubling example, we define the classic equality type
(α, β) eq, and the corresponding casting function cast : ∀αβ.(α, β) eq→ α→ β:

type (α, β) eq = let cast r =

| Refl : ∀γ. (γ, γ) eq match r with Refl -> (fun x -> x)

Notice that it would be unsound3 to define eq as covariant, even in only one
parameter. For example, if we had type (+α,=β) eq, from any σ ≤ τ we could
subtype (σ, σ) eq into (τ, σ) eq, allowing to cast any value of type τ back into
one of type σ, which is unsound in general.

As a counter-example, the following declaration is incorrect: the type α t

cannot be declared covariant.

type +α t =

| K : < m : int > → < m : int > t

let v = (K (object method m = 1 end) :> < > t)

This declaration uses the OCaml object type < m : int >, which qualifies ob-
jects having a method m returning an integer. It is a subtype of object types
with fewer methods, in this case the empty object type < >, so the alleged co-
variance of t, if accepted by the compiler, would allow us to cast a value of type
< m : int > t into one of type < > t. However, from such a value, we could
wrongly deduce an equality witness (< >, <m : int>) eq that allows to cast
any empty object of type < > into an object of type < m : int >, but this is
unsound, of course!

let get_eq : α t→ (α, < m : int >) eq = function

| K _ -> Refl (* locally α = < m : int > *)

let wrong : < > -> < m : int > =

let eq : (< >, < m : int >) eq = get_eq v in

cast eq

It is possible to reproduce this example using a different feature of the OCaml
type system named private type abbreviation4: a module using a type type t = τ
internally may describe its interface as type t = private τ . This is a compromise
between a type abbreviation and an abstract type: it is possible to cast a value
of type t into one of type τ , but not, conversely, to construct a value of type
t from one of type τ . In other words, t is a strict subtype of τ : we have t ≤
τ but not t ≥ τ . Take for example type file_descr = private int: this
semi-abstraction is useful to enforce invariants by restricting the construction of
values of type file_descr, while allowing users to conveniently and efficiently
destruct them for inspection at type int. Using an unsound but quite innocent-
looking covariant GADT datatype, one is able to construct a function to cast any

3 This counterexample is due to Jeremy Yallop.
4 This counterexample is due to Jacques Garrigue.

integer into a file_descr, which defeats the purpose of this abstraction—see
the extended version of this article for the full example.

The difference between the former, correct Prod case and those two latter
situations with unsound variance is the notion of upward closure. The types α∗β
and int used in the correct example were upward-closed. On the contrary, the
private type file_descr has a distinct supertype int, and similarly the object
type < m:int > has a supertype < > with a different structure (no method m).

In this article, we formally show that these notions of upward and downward-
closure are the key to a sound variance check for GADT. We start from the
formal development of Simonet and Pottier [SP07], which provides a general
soundness proof for a language with subtyping and a very general notion of
GADT expressing arbitrary constraints—rather than only type equalities. By
specializing their correctness criterion, we can express it in terms of syntactic
checks for closure and variance, that are simple to implement in a type-checker.

The problem of non-monotonicity

There is a problem with those upward or downward closure assumptions: while
they hold in core ML, with strong inversion theorems, they are non-monotonic
properties: they are not necessarily preserved by extensions of the subtyping
lattice. For example, OCaml has a concept of private types: a type specified
by type t = private τ is a new semi-abstract type smaller than τ (t ≤ τ
but t � τ), that can be defined a posteriori for any type. Hence, no type is
downward-closed forever. That is, for any type τ , a new, strictly smaller type
may always be defined in the future.

This means that closure properties of the OCaml type system are relatively
weak: no type is downward-closed5 (so instantiated GADT parameters cannot be
contravariant), and arrow types are not upward-closed as their domain should be
downward-closed. Only purely positive algebraic datatypes are upward-closed.
The subset of GADT declarations that can be declared covariant today is small,
yet, we think, large enough to capture a lot of useful examples, such as α expr

above.

Giving back the freedom of subtyping

It is disturbing that the type system should rely on non-monotonic properties:
if we adopt the correctness criterion above, we must be careful in the future not
to enrich the subtyping relation too much.

Consider private types for example: one could imagine a symmetric concept
of a type that would be strictly above a given type τ ; we will name those types
invisible types (they can be constructed, but not observed). Invisible types

5 Except types that are only defined privately in a module and not exported: they
exist in a “closed world” and we can check, for example, that they are never used in
a private type definition.

and GADT covariance seem to be working against each other: if the designer
adds one, adding the other later will be difficult.

A solution to this tension is to allow the user to locally guarantee negative
properties about subtyping (what is not a subtype), at the cost of selectively
abandoning the corresponding flexibility. Just as object-oriented languages have
final classes that cannot be extended any more, we would like to be able to
define some types as public (respectively visible), that cannot later be made
private (resp. invisible). Such declarations would be rejected if the defining
type already has subtypes (e.g. an object type), and would forbid further dec-
larations of types below (resp. above) the defined type, effectively guaranteeing
downward (resp. upward) closure. Finally, upward or downward closure is a se-
mantic aspect of a type that we must have the freedom to publish through an
interface: abstract types could optionally be declared public or visible.

Another approach: subtyping constraints

Getting fine variance properties out of GADT is difficult because they correspond
to type equalities which, to a first approximation, use their two operands both
positively and negatively. One way to get an easy variance check is to encourage
users to change their definitions into different ones that are easier to check. For
example, consider the following redefinition of α expr (in a speculative extension
of OCaml with subtyping constraints):

type +α expr =

| Val : ∀α.α→ α expr

| Int : ∀α[α≥int].int→ α expr

| Thunk : ∀β. β expr ∗ (β → α)→ α expr

| Prod : ∀αβγ[α≥β ∗ γ]. (β expr ∗ γ expr)→ α expr

It is now quite easy to check that this definition is covariant, since all type
equalities α = Ti[β] have been replaced by inequalities α ≥ Ti[β] which are
preserved when replacing α by a subtype α′ ≥ α—we explain this more formally
in §4.2. This variation on GADT, using subtyping instead of equality constraints,
has been studied by Emir et al [EKRY06] in the context of the C] programming
language.

But isn’t such a type definition less useful than the previous one, which had
a stronger constraint? We will discuss this choice in more detail in §4.2.

Related work

Simonet and Pottier [SP07] have studied GADT in a general framework HMG(X),
inspired by HM(X). They were interested in typing inference using constraints,
so considered GADT with arbitrary constraints rather than type equalities, and
considered the case of subtyping with applications to information flow security
in mind. We instantiate their general framework, which allows us to reuse their
dynamic semantics and syntactic proofs of soundness, and concentrate only on

the static semantics, proving that we meet the requirements they impose on the
parametrized models.

Their soundness criterion is formulated in very general terms as a constraint
entailment problem. In contrast, our specialized study of the case of equality
and subtyping led to a refined, more syntactic, criterion. This provides a more
practically implementable check for type definitions, and reveals the design issues
surrounding v-closed constructors that were not apparent in their work.

Emir, Kennedy, Russo and Yu [EKRY06] studied the soundness of an object-
oriented calculus with subtyping constraints on classes and methods. Previous
work [KR05] had established the correspondence between equality constraints on
methods in an object-oriented style and GADT constraints on type constructors
in functional style. Through this correspondence, their system matches our pre-
sentation of GADT with subtyping constraints and easier variance assignment,
mentioned in the introduction (§1) and detailed in §4.2. They do not encounter
the more delicate notion of upward and downward closure.

Those two approaches (subtyping constraints with easy variance check, stronger
equality constraints with more delicate variance check) are complementary and
have different convenience trade-offs. In their system with explicit-constraint
definitions and implicit subtyping, the subtyping-constraint solution is the most
convenient, while our ML setting provides incentives to study the other solution.

2 A formal setting

We define a core language for Algebraic Datatypes (ADT) and, later, Gener-
alized Algebraic Datatypes (GADT), that is an instance of the parametrized
HMG(X) system of Simonet and Pottier [SP07]. We refine their framework by
using variances to define subtyping, but rely on their formal description for most
of the system, in particular the static and dynamic semantics. We ultimately rely
on their type soundness proof, by rigorously showing (in the next section) that
their requirements on datatype definitions for this proof to hold are met in our
extension with variances.

2.1 Atomic subtyping

Our type system defines a subtyping relation between ground types, parametrized
by a reflexive transitive relation between base constant types (int, bool, etc.).
Ground types consist of a set of base types b, function types τ1 → τ2, product
types τ1 ∗ τ2, and a set of algebraic datatypes σ t. (We write σ for a sequence of
types (σi)i∈I .) We use prefix notation for datatype parameters, as is the usage
in ML. Datatypes may be user-defined by toplevel declarations of the form:

type vα t =

| K1 of τ1[α]
| ...

| Kn of τn[α]

σ ≤ σ
σ1 ≤ σ2 σ2 ≤ σ3

σ1 ≤ σ3

b 6 c

b ≤ c

σ ≥ σ′ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′

σ ≤ σ′ τ ≤ τ ′

σ ∗ τ ≤ σ′ ∗ τ ′
type vα t ∀i, σi ≺vi σ

′
i

σ t ≤ σ′
t

Fig. 1. Subtyping relation

This is a disjoint sum: the constructors Kc represent all possible cases and each
type τ c[α] is the domain of the constructor Kc. Applying it to an argument e of
a corresponding ground type τ [σ] constructs a term of type σ t. Values of this
type are deconstructed using pattern matching clauses of the form Kc x → e,
one for each constructor.

The sequence vα is a binding list of type variables αi along with their variance
annotation vi, which is a marker among the set {+,−,=,on}. We may associate
a relation a relation (≺v) between types to each variance v:

– ≺+ is the covariant relation (≤);
– ≺− is the contravariant relation (≥), the symmetric of (≤);
– ≺= is the invariant relation (=), defined as the intersection of (≤) and (≥);
– ≺on, is the irrelevant relation (on), the full relation such that σ on τ holds for

all types σ and τ .

Given a reflexive transitive relation (6) on base types, the subtyping relation
on ground types (≤) is defined by the inference rules of Figure 1, which, in
particular, give their meaning to the variance annotations vα. The judgment
type vα t simply means that the type constructor t has been previously defined
with the variance annotation vα. Notice that the rules for arrow and product
types can be subsumed by the rule for datatypes, if one consider them as special
datatypes (with a specific dynamic semantics) of variance (−,+) and (+,+),
respectively. For this reason, the following definitions will not explicitly detail
the cases for arrows and products.

As usual in subtyping systems, we could reformulate our judgment in a
syntax-directed way, to prove that it admits good inversion properties: if σ t ≤
σ′ t and type vα t, then one can deduce that for each i, σi ≺vi σ′i.

On the restriction of atomic subtyping Our typing relation reproduces a simpli-
fication that is present in the formulation of Simonet and Pottier: it is atomic
in the sense that two non-constant type constructors in the subtyping relation
are always identical. We are confident their proof (and then our formal setting)
can be extended to cover the non-atomic case, but we have left this extension to
future work.

Richer type systems, for example if they have bottom or top types or, in the
case of the OCaml type system, private types and object types, have a non-
atomic subtyping relations. To be able to extend our work to such settings, we
have carefully marked each use of atomic subtyping in the formal development

with an hypothesis of v-closure, defined below. In the case of atomic subtyping,
all types are v-closed.

Definition 1 (Constructor closure). A type constructor α t is v-closed if,
for any type sequence σ and type τ such that σ t ≺v τ hold, then τ is necessarily
equal to σ′ t for some σ′.

2.2 The algebra of variances

If we know that σ t ≤ σ′ t, that is σ t ≺+ σ′ t, and the constructor t has
variable vα, an inversion principle tells us that for each i, σi ≺vi σ′i. But what if
we only know σ t ≺u σ′ t for some variance u different from (+)? If u is (−), we
get the reverse relation σi �vi σ′i. If u is (on), we get σi on σ′i, that is, nothing.
This outlines a composition operation on variances u.vi, such that if σ t ≺u σ′ t
then σi ≺u.vi σ′i holds. It is defined by the following table:

v.w = + − on w

= = = = on
+ = + − on
− = − + on
on on on on on
v

This operation is associative and commutative. Such an operator, and the alge-
braic properties of variances explained below, have already been used by other
authors, for example [Abe06].

There is a natural order relation between variances, which is the coarser-than
order between the corresponding relations: v ≤ w if and only if (≺v) ⊇ (≺w);
i.e. if and only if, for all σ and τ , σ ≺w τ implies σ ≺v τ .6 This reflexive, partial
order is described by the following lattice diagram:

=
CC

+
{{

AA
−

on
}}

That is, all variances are smaller than = and bigger than on.
From the order lattice on variances we can define join ∨ and meet ∧ of

variances: v ∨ w is the biggest variance such that v ∨ w ≤ v and v ∨ w ≤ v;
conversely, v ∧ w is the lowest variance such that v ≤ v ∧ w and w ≤ v ∧ w.
Finally, the composition operation is monotonous: if v ≤ v′ then w.v ≤ w.v′

(and v.w ≤ v′.w).

6 The reason for this order reversal is that the relations occur as hypotheses, in negative
position, in definition of subtyping: if we have v ≤ w and type vα t, it is safe to
assume type wα t: σ ≺w σ′ implies σ ≺v σ

′, which implies σ t ≤ σ′ t. One may
also see it, as Abel notes, as an “information order”: knowing that σ ≺+ τ “gives
you more information” than knowing that σ ≺on τ , therefore on ≤ +.

We will frequently manipulate vectors vα, of variable associated with vari-
ances, which correpond to the “context” Γ of a type declaration. We extend
our operation pairwise on those contexts: Γ ∨ Γ ′ and Γ ∧ Γ ′, and the ordering
between contexts Γ ≤ Γ ′. We also extend the variance-dependent subtyping re-
lation (≺v), which becomes an order (≺Γ) between vectors of type of the same
length: σ ≺vα σ′ holds when for all i we have σi ≺vi σ′i.

2.3 Variance assignment in ADTs

A counter-example To have a sound type system, some datatype declarations
must be rejected. Assume (only for this example) that we have two base types
int and bool such that bool 6 int and int 66 bool. Consider the following
type declaration:

type (+α,+β) t =

| Fun of α→ β

If it were accepted, we could build type the following program that deduces from
the (+α) variance that (bool, bool) t ≤ (int, bool) t; that is, we could turn
the identity function of type bool → bool into one of type int → bool and
then turns an integer into a boolean:

let three_as_bool : bool =

match (Fun (fun x -> x) : (bool, bool) t :> (int, bool) t) with

| Fun (danger : int→ bool) -> danger 3

A requirement for type soundness We say that the type type vα t defined by
the constructors (Kc of τ

c[α])c∈C is well-signed if

∀c ∈ C,∀σ,∀σ′, σ t ≤ σ′ t =⇒ τ c[σ] ≤ τ c[σ′]

The definition of (+α,+β) t is not well-signed because we have (⊥,⊥) t ≤
(int,⊥) t according to the variance declaration, but we do not have the corre-
sponding conclusion (int→ ⊥) ≤ (⊥ → ⊥).

This is a simplified version, specialized to simple algebraic datatypes, of the
soundness criterion of Simonet and Pottier. They proved that this condition is
sufficient7 for soundness: if all datatype definitions accepted by the type-checker
are well-signed, then both subject reduction and progress hold—for their static
and dynamic semantics, using the subtyping relation (≤) we have defined.

A judgment for variance assignment When reformulating the well-signedness
requirement of Simonet and Pottier for simple ADT, in our specific case where
the subtyping relation is defined by variance, it becomes a simple check on
the variance of type definitions. Our example above is unsound as its claims α
covariant while it in fact appears in negative position in the definition.

7 It turns out that this condition is not necessary and can be slightly weakened: we
discuss this in the extended version of this article.

vc-Var
wα ∈ Γ w ≥ v

Γ ` α : v

vc-Constr
Γ ` type wα t ∀i, Γ ` σi : v.wi

Γ ` σ t : v

Fig. 2. Variance assignment

We define a judgment to check the variance of a type expression. Given
a context Γ of the form vα, that is, where each variable is annotated with a
variance, the judgment Γ ` τ : v checks that the expression τ varies along v when
the variables of τ vary along their variance in Γ . For example, (+α) ` τ [α] : +
holds when τ [α] is covariant in its variable α. The inference rules for the judgment
Γ ` τ : v are defined on Figure 2.

The parameter v evolves when going into subderivations: when checking Γ `
τ1 → τ2 : v, contravariance is expressed by checking Γ ` τ1 : (v.−). Previous
work (on variance as [Abe06] and [EKRY06], but also on irrelevance as in [Pfe01])
used no such parameter, but modified the context instead, checking Γ/− ` τ1
for some “variance cancellation” operation vw/ (see [Abe06] for a principled
presentation). Our own inference rules preserve the same context in the whole
derivation and can be more easily adapted to the decomposability judgment
Γ ` τ : v ⇒ v′ that we introduce in §3.4.

A semantics for variance assignment This syntactic judgment Γ ` τ : v cor-
responds to a semantics property about the types and context involved, which
formalizes our intuition of “when the variables vary along Γ , the expression τ
varies along v”. We also give a few formal results about this judgment.

Definition 2 (Interpretation of the variance checking judgment).
We write JΓ ` τ : vK for the property: ∀σ, σ′, σ ≺Γ σ′ =⇒ τ [σ] ≺v τ [σ′].

Lemma 1 (Correctness of variance checking). Γ ` τ : v is provable if and
only if JΓ ` τ : vK holds.

Lemma 2 (Monotonicity). If Γ ` τ : v is provable and Γ ≤ Γ ′ then Γ ′ ` τ : v
is provable.

Lemma 3 (Principality). For any type τ and any variance v, there exists a
minimal context ∆ such that ∆ ` τ : v holds. That is, for any other context Γ
such that Γ ` τ : v, we have ∆ ≤ Γ .

We can generalize inversion of head type constructors (§2.1) to whole type
expressions. The most general inversion is given by the principal context.

Theorem 1 (Inversion).
For any type τ [α], variance v, and type sequences σ and σ′, the subtyping

relation τ [σ] ≺v τ [σ′] holds if and only if the judgment Γ ` τ : v holds for some
context Γ such that σ ≺Γ σ′.

Furthermore, if τ [σ] ≺v τ [σ′], then σ ≺∆ σ′ holds, where ∆ is the more
general context such that ∆ ` τ : v holds.

Checking variance of type definitions We have all the machinery in place to
explain the checking of ADT variance declarations. The well-signedness criterion
of Simonet and Pottier gives us a general semantic characterization of which
definitions are correct: a definition type vα t = (Kc of (τ c[α])c∈C is correct if,
for each constructor c, we have:

∀σ,∀σ′, σ t ≤ σ′ t =⇒ τ [σ] ≤ τ [σ′]

By inversion of subtyping, σ t ≤ σ′ t implies σi ≺vi σ′i for all i. Therefore, it
suffices to check that:

∀σ,∀σ′, (∀i, σi ≺vi σ′i) =⇒ τ [σ] ≤ τ [σ′]

This is exactly the semantic property corresponding to the judgment vα ` τ : (+)!
That is, we have reduced soundness verification of an algebraic type definition
to a mechanical syntactic check on the constructor argument type.

This syntactic criterion is very close to the one implemented in actual type
checkers, which do not need to decide general subtyping judgments—or worse
solve general subtyping constraints—to check variance of datatype parameters.
Our aim is now to find a similar syntactic criterion for the soundness of vari-
ance annotations on guarded algebraic datatypes, rather than simple algebraic
datatypes.

2.4 Variance annotations in GADT

A general description of GADT When used to build terms of type α t, a con-
structor K of τ behaves like a function of type ∀α.(τ → α t). Remark that
the codomain is exactly α t, the type t instantiated with parametric variables.
GADT arise by relaxing this restriction, allowing to specify constructors with
richer types of the form ∀α.(τ → σ t). See for example the declaration of con-
structor Prod in the introduction:

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

Instead of being just α expr, the codomain is now (β ∗ γ) expr. We moved
from simple algebraic datatypes to so-called generalized algebraic datatypes.
This approach is natural and convenient for the users, so it is exactly the syntax
chosen in languages with explicit GADT support, such as Haskell and OCaml,
and is reminiscent of the inductive datatype definitions of dependently typed
languages.

However, for formal study of GADT, a different formulation based on equality
constraints is preferred. We will use the following equivalent presentation, in the
syntax of Simonet and Pottier. The idea is that instead of having (β ∗ γ) t as
codomain of the constructor Prod, we will force it to be α t again, by adding an
explicit type equality α = β ∗ γ.

type α expr =

| Val of ∃β[α = β]. β
| Int of [α = int]. int
| Thunk of ∃βγ[α = γ]. β expr ∗ (β → γ)
| Prod of ∃βγ[α = β ∗ γ]. β expr ∗ γ expr

In the rest of the paper, we extend our former core language with such
guarded algebraic datatypes. This impacts the typing rules (which are precisely
defined in Simonet and Pottier), but not the notion of subtyping, which is defined
on (GADT) type constructors with variance type vα t just as it previously
was on simple datatypes. What needs to be changed, however, is the soundness
criterion for checking the variance of type definitions.

The correctness criterion Simonet and Pottier [SP07] define a general frame-
work HMG(X) to study type systems with GADT where the type equalities
in bounded quantification are generalized to an arbitrary constraint language.
They make few assumptions on the type system used, mostly that it has function
types σ → τ , user-definable (guarded) algebraic datatypes α t, and a subtyping
relation σ ≤ τ (which may be just equality, in languages without subtyping).

They use this general type system to give static semantics (typing rules) to a
fixed untyped lambda-calculus equipped with datatype construction and pattern
matching operations. They are able to prove a type soundness result under just
some general assumptions on the particular subtyping relation (≤). Here are the
three requirements to get their soundness result:

1. Incomparability of distinct types: for all types τ1, τ2, σ, σ
′ and distinct datatypes

α t, α′ t′, the types (τ1 → τ2), τ1 ∗ τ2, σ t and σ′ t′ must be pairwise in-
comparable (both � and �) — this is where our restriction to an atomic
subtyping relation, discussed in §2.1, comes from.

2. Decomposability of function and product types: if τ1 → τ2 ≤ σ1 → σ2
(respectively τ1 ∗ τ2 ≤ σ1 ∗ σ2), we must have τ1 ≥ σ1 (resp. τ1 ≤ σ1) and
τ2 ≤ σ2.

3. Decomposability of datatypes8: for each datatype α t and all type vectors
σ and σ′ such that σ t ≤ σ′ t, we must have (∃β[D[σ]]τ) ≤ (∃β[D[σ′]]τ) for
each constructor K of ∃β[D[β, α]]. τ [β].

Those three criteria are necessary for the soundness proof. We will now explain
how variance of type parameters impact those requirements, that is, how to
match a GADT implementation against a variance specification. With our def-
inition of subtyping based on variance, and the assumption that the datatype
vα t we are defining indeed has variance vα, is the GADT decomposability re-
quirement (item 3 above) satisfied by all its constructors? If so, then the datatype
definition is sound and can be accepted. Otherwise, the datatype definition does
not match the specified variance, and should be rejected by the type checker.

8 This is an extended version of the soundness requirement for algebraic datatypes:
it is now formulated in terms guarded existential types ∃β[D]τ rather than simple
argument types τ .

3 Checking variances of GADT

For every type definition, we need to check that the decomposability require-
ment of Simonet and Pottier holds. Remark that it is expressed for each GADT
constructor independently of the other constructors for the same type: we can
check one constructor at a time.

Assume we check a fixed constructor K of argument type ∃β[D[α, β]]. τ [β].
Simonet and Pottier prove that their requirement is equivalent to the following
formula, which is more convenient to manipulate:

∀σ, σ′, ρ,
(
σ t ≤ σ′ t ∧D[σ, ρ] =⇒ ∃ρ′, D[σ′, ρ′] ∧ τ [ρ] ≤ τ [ρ′]

)
(req-SP)

The purpose of this section is to extract a practical criterion equivalent to this
requirement. It should not be expressed as a general constraint satisfaction prob-
lem, but rather as a syntax-directed and decidable algorithm that can be used
in a type-checker—without having to implement a full-blown constraint solver.

3.1 Expressing decomposability

If we specialize req-SP to the Prod constructor of the α expr example datatype,
i.e. Prod of ∃βγ[α = β ∗ γ]β expr ∗ γ expr, we get:

∀σ, σ′, ρ1, ρ2,(
σ expr ≤ σ′ expr ∧ σ = ρ1 ∗ ρ2 =⇒ ∃ρ′1, ρ′2, (σ′ = ρ′1 ∗ ρ′2 ∧ ρ1 ∗ ρ2 ≤ ρ′1 ∗ ρ′2)

)
We can substitute equalities and use the (assumed) covariance to simplify the
subtyping constraint σ expr ≤ σ′ expr into σ ≤ σ′:

∀σ′, ρ1, ρ2,
(
ρ1∗ρ2 ≤ σ′ =⇒ ∃ρ′1, ρ′2, (σ′ = ρ′1∗ρ′2 ∧ ρ1 ≤ ρ′1 ∧ ρ2 ≤ ρ′2)

)
(1)

This is the upward closure property mentioned in the introduction. This trans-
formation is safe only if any supertype σ′ of a product ρ1 ∗ ρ2 is itself a product,
i.e. is of the form ρ′1 ∗ ρ′2 for some ρ′1 and ρ′2.

More generally, for a type Γ ` σ and a variance v, we are interested in a
closure property of the form

∀(ρ : Γ), σ′, σ[ρ] ≺v σ′ =⇒ ∃(ρ′ : Γ), σ′ = σ[ρ′]

Here, the context Γ represents the set of existential variables of the constructor
(β and γ in our example). We can easily express the condition ρ1 ≤ ρ′1 and
ρ2 ≤ ρ′2 on the right-hand side of the implication by considering a context Γ
annotated with variances (+β,+γ), and using the context ordering (≺Γ). Then,
(1) is equivalent to:

∀(ρ : Γ), σ′, σ[ρ] ≺v σ′ =⇒ ∃(ρ′ : Γ), ρ ≺Γ ρ′ ∧ σ′ = σ[ρ′]

Our aim is now to find a set of inference rules to check decomposability; we will
later reconnect it to req-SP. In fact, we study a slightly more general relation,
where the equality σ[ρ′] = σ′ on the right-hand side is relaxed to an arbitrary
relation σ[ρ′] ≺v′ σ′:

Definition 3 (Decomposability). Given a context Γ , a type expression σ[β]
and two variances v and v′, we say that σ is decomposable under Γ from vari-
ance v to variance v′, which we write Γ σ : v v′, if the property

∀(ρ : Γ), σ′, σ[ρ] ≺v σ′ =⇒ ∃(ρ′ : Γ), ρ ≺Γ ρ′ ∧ σ[ρ′] ≺v′ σ′

holds.

We use the symbol rather than ` to highlight the fact that this is just a logic
formula, not the semantics criterion corresponding to an inductive judgment,
nor a syntactic judgment—we will introduce one later in section 3.4.

Remark that, due to the positive occurrence of the relation ≺Γ in the propo-
sition Γ τ : v v′ and the anti-monotonicity of ≺Γ , this formula is “anti-
monotonous” with respect to the context ordering Γ ≤ Γ ′. This corresponds to
saying that we can still decompose, but with less information on the existential
witness ρ′.

Lemma 4 (Anti-monotonicity). If Γ τ : v v′ holds and Γ ′ ≤ Γ , then
Γ ′ τ : v v′ also holds.

In the following subsections, we study the subtleties of decomposability.

3.2 Variable occurrences

In the Prod case, the type whose decomposability was considered is β ∗ γ (in
the context β, γ). In this very simple case, decomposability depends only on the
type constructor for the product. In the present type system, with very strong
invertibility principles on the subtyping relation, both upward and downward
closures hold for products—and any other head type constructor. In the general
case, we require that this specific type constructor be upward-closed.

In the general case, the closure of the head type constructor alone is not
enough to ensure decomposability of the whole type. For example, in a complex
type expression with subterms, we should consider the closure of the type con-
structors appearing in the subterms as well. Besides, there are subtleties when
a variable occurs several times.

For example, while β ∗γ is decomposable from (+) to (=), β ∗β is not: ⊥∗⊥
is an instantiation of β ∗β, and a subtype of, e.g., int ∗ bool, but it is not equal
to (β ∗ β)[γ′] for any γ′. The same variable occurring twice in covariant position
(or having one covariant and one invariant or contravariant occurence) breaks
decomposability.

On the other hand, two invariant occurrences are possible: β ref ∗ β ref

is upward-closed (assuming the type constructor ref is invariant and upward-
closed): if (σ ref ∗ σ ref) ≤ σ′, then by upward closure of the product, σ′ is
of the form σ′1 ∗ σ′2, and by its covariance σ ref ≤ σ′1 and σ ref ≤ σ′2. Now
by invariance of ref we have σ′1 = σ ref = σ′2, and therefore σ′ is equal to
σ ref ∗ σ ref, which is an instance9 of β ref ∗ β ref.

9 We use the term instance to denote the replacement of all the free variables of a
type expression under context by closed types—not the specialization of an ML type
scheme.

Finally, a variable may appear in irrelevant positions without affecting closure
properties; β ∗ (β irr) (where irr is an upward-closed irrelevant type, defined
for example as type α irr = int) is upward closed: if σ ∗ (σ irr) ≤ σ′, then σ′

is of the form σ′1 ∗ (σ′2 irr) with σ ≤ σ′1 and σ on σ′2, which is equiconvertible to
σ′1 ∗ (σ′1 irr) by irrelevance, an instance of β ∗ (β irr).

3.3 Context zipping

The intuition to think about these different cases is to consider that, for any σ′,
we are looking for a way to construct a “witness” σ′ such that τ [σ′] = σ′ from
the hypothesis τ [σ] ≺v σ′. When a type variable appears only once, its witness
can be determined by inspecting the corresponding position in the type σ′. For
example in α∗β ≤ bool∗int, the mapping α 7→ bool, β 7→ int gives the witness
pair bool, int.

However, when a variable appears twice, the two witnesses corresponding to
the two occurrences may not coincide. (Consider for example β∗β ≤ bool∗int.)
If a variable βi appears in several invariant occurrences, the witness of each
occurrence is forced to be equal to the corresponding subterm of τ [σ], that is σi,
and therefore the various witnesses are themselves equal, hence compatible. On
the contrary, for two covariant occurrences (as in the β ∗ β case), it is possible
to pick a σ′ such that the two witnesses are incompatible—and similarly for one
covariant and one invariant occurrence. Finally, an irrelevant occurrence will
never break closure properties, as all witnesses (forced by another occurrence)
are compatible.

To express these merging properties, we define a “zip”10 operation v1 & v2,
that formally expresses which combinations of variances are possible for several
occurrences of the same variable; it is a partial operation (for example, it is not
defined in the covariant-covariant case, which breaks the closure properties) with
the following table:

v & w = + − on w

= = =
+ +
− −
on = + − on
v

3.4 Syntactic decomposability

Equipped with the zipping operation, we introduce a judgment Γ ` τ : v ⇒ v′ to
express decomposability, syntactically, defined by the inference rules on Figure 3.

We sometimes need to merge sub-derivations into larger ones, so in addition
to decomposability, the judgments simultaneously ensures that v is a correct

10 The idea of context merging and the term “zipping” are inspired by Montagu and
Remy [MR09]

sc-Triv
v ≥ v′ Γ ` τ : v

Γ ` τ : v ⇒ v′

sc-Var
wα ∈ Γ w = v

Γ ` α : v ⇒ v′

sc-Constr
Γ ` type wα t : v-closed Γ = &i Γi ∀i, Γi ` σi : v.wi ⇒ v′.wi

Γ ` σ t : v ⇒ v′

Fig. 3. Syntactic decomposablity

variance for τ under Γ . Actually, in order to understand the details of this judg-
ment, it is quite instructive to compare it with the variance-checking judgment
Γ ` τ : v defined on Figure 2.

The first thing to notice is that the present rules are not completely syntax-
directed: we first check whether v ≥ v′ holds, and if not, we apply syntax-
directed inference rules; existence of derivations is still easily decidable. If v ≥ v′
holds, satisfying the semantics criterion is trivial: τ [σ] ≺v τ ′ implies τ [σ] ≺v′ τ ′,
so taking σ for σ′ is always a correct witness, which is represented by Rule
sc-Triv. The other rules then follow the same structure as the variance-checking
judgment.

Rule sc-Var is very similar to vc-Var, except that the condition w ≥ v is re-
placed by a stronger equality w = v. This difference comes from the fact that the
semantics condition for closure checking (Definition 2) includes both a variance
check, which is monotonic in the context (Lemma 2) and the decomposability
property, which is anti-monotonic (Lemma 4), so the present judgment must be
invariant with respect to the context.

The most interesting rule is sc-Constr. It checks first that the head type
constructor is v-closed (according to Definition 1); then, it checks each subtype
for decomposability from v to v′ with compatible witnesses, that is, in an envi-
ronment family Γi that can be zipped into a unique environment Γ .

In order to connect the syntactic and semantics versions of decomposability,
we define the interpretation JΓ ` τ : v ⇒ v′K of syntactic decomposability.

Definition 4 (Interpretation of syntactic decomposability).
We write JΓ ` τ : v ⇒ v′K for the conjunction of properties JΓ ` τ : vK and
Γ τ : v v′.

Note that our interpretation Γ ` τ : v ⇒ v′ does not coincide with our
previous decomposability formula Γ τ : v v′, because of the additional
variance-checking hypothesis that makes it composable. The distinction between
those two notions of decomposition is not useful to have a sound criterion, but
is crucial to be complete with respect to the criterion of Simonet and Pottier,
which imposes no variance checking condition.

Lemma 5 (Soundness of syntactic decomposability).
If the judgment Γ ` τ : v ⇒ v′ holds, then JΓ ` τ : v ⇒ v′K is holds.

Completeness is the general case is however much more difficult and we only
prove it when the right-hand side variance v′ is (=). In other words, we take back
the generality that we have introduced in §3.1 when defining decomposability.

Lemma 6 (Completeness of syntactic decomposability). If JΓ ` τ : v ⇒
v′K holds for v′ ∈ {=,on}, then Γ ` τ : v ⇒ v′ is provable.

Lemma 6 is an essential piece to finally turn the correctness criterion req-SP

of Simonet and Pottier into a purely syntactic criterion.

Theorem 2 (Algorithmic criterion). The req-SP criterion is equivalent to

∃Γ, (Γi)i, Γ ` τ : (+) ∧ Γ = &
i
Γi ∧ ∀i, Γi ` Ti : vi ⇒ (=)

This presentation of the correctness criterion only relies on syntactic judg-
ments. It is pragmatic in the sense that it suggests a simple and direct implemen-
tation, as a generalization of the check currently implemented in type system
engines — which are only concerned with the Γ ` τ : + part.

To compute the contexts Γ and (Γi)i∈I existentially quantified in this for-
mula, one can use a variant of our syntactic judgments where the environment Γ
is not an input, but an output of the judgment; in fact, one should return for each
variable α the set of possible variances for this judgment to hold. For example,
the query (? ` α ∗ β ref : +) should return (α 7→ {+,=};β 7→ {=}). Defining
those algorithmic variants of the judgments is routine, and we have not done it
hereby lack of space. The sets of variances corresponding to the decomposability
of the (Ti)i∈I (? ` Ti : vi ⇒ (=)) should be zipped together and intersected with
the possibles variances for τ , returned by (? ` τ : +). The algorithmic criterion
is satisfied if and only if the intersection is not empty; this can be decided in a
simple and efficient way.

4 Closed-world vs. open-world subtyping

4.1 A better control on upward and downward-closure

As explained in the introduction, the problem with the upward and downward
closure properties is that they are not monotonic: enriching the subtyping lat-
tice of our type system does not preserve them. While the core language has a
nice variance check for GADT, adding private types in particular destroys the
downward-closure property of the whole type system.

Our proposed solution to this tension is to give the user the choice to locally
strengthen negative knowledge about the subtyping relation by abandoning some
flexibility. Just as object-oriented languages have a concept of final classes
that cannot be extended, we would like to allow to define downward-closed

datatypes, whose private counterparts cannot be declared, and upward-closed

datatypes that cannot be made invisible: defining type t = private τ would
be rejected by the type-checker if τ was itself declared downward-closed.

4.2 Subtyping constraints and variance assignment

Consider our introductory example α expr of strongly typed expressions (§1).
A simple way to get such a type to be covariant would be, instead of proving
delicate, non-monotonic upward-closure properties on the tuple type involved in
the equation α = β ∗ γ, to change this definition so that the resulting type is
obviously covariant:

type +α expr =

| Val of ∃β[α ≥ β]. β
| Int of [α ≥ int]. int
| Thunk of ∃βγ[α ≥ γ]. β expr ∗ (β → γ)
| Prod of ∃βγ[α ≥ β ∗ γ]. β expr ∗ γ expr

We have turned each equality constraint α = T [β] into a subtyping constraint
α ≥ T [β]. For a type α′ such that α ≤ α′, we get by transitivity that α′ ≥ T [β].
This means that α expr trivially satisfies the correctness criterion from Simonet
and Pottier. Formally, instead of checking Γ ` Ti : vi ⇒ (=), we are now checking
Γ ` Ti : vi ⇒ (+), which is significantly easier to satisfy: when vi is itself + we
can directly apply the sc-Triv rule.

While we now have a different datatype, which gives us a weaker subtyping
assumption when pattern-matching, we are still able to write the classic function
eval : α expr → α, because the constraints α ≥ τ are in the right direction to
get an α as a result.

let rec eval : α expr→ α = function

| Val β (v : β) -> (v :> α)
| Int (n : int) -> (n :> α)
| Thunk βγ ((v : β expr), (f : β → γ)) ->

(f (eval v) :> α)
| Prod β γ ((b : β expr), (c : γ expr)) ->

((eval b, eval c) :> α)

However, allowing subtyping constraints in GADT has some disadvantages.
If the language requires subtyping casts to be explicit, this would make pat-
tern matching of GADT syntactically heavier than with current GADT where
equalities constraints are used implicitly. Subtyping constraints need also be ex-
plicit in the type declaration, forcing the user out of the convenient “generalized
codomain type” syntax.

From a theoretical standpoint, we think there is value in exploring both di-
rections: experimenting with GADT using subtyping constraints, and with fine-
grained closure properties for equality constraints. Both designs allow to reason
in an open world setting, by being resilient to extensions of the subtyping rela-
tion. Whether it is possible to expose those features to the expert language user
(e.g. library designers) without forcing all users to pay the complexity burden
remains to be seen.

5 Future Work

Extension of the formal exposition to non-atomic subtyping As remarked in §2.1
during the definition of our formal subtyping relation, the soundness proof of
Simonet and Pottier is restricted to atomic subtyping. We conjecture that their
work can be extended to non-atomic subtyping, and furthermore that our results
would extend seamlessly in this setting, thanks to our explicit use of the v-closure
hypothesis.

Experiments with v-closure of type constructors as a new semantic property In
a language with non-atomic subtyping such as OCaml, we need to distinguish
v-closed and non-v-closed type constructors. This is a new semantic property
that, in particular, must be reflected through abstraction boundaries: we should
be able to say about an abstract type that it is v-closed, or not say anything.

How inconvenient in practice is the need to expose those properties to have
good variance for GADT? Will the users be able to determine whether they want
to enforce v-closure for a particular type they are defining?

Experiments with subtyping constraints in GADT In §4.2, we have presented a
different way to define GADT with weaker constraints (simple subtyping instead
of equality) and stronger variance properties. It is interesting to note that, for
the few GADT examples we have considered, using subtyping constraints rather
than equality constraints was sufficient for the desired applications of the GADT.

However, there are cases were the strong equality relying on fine-grained
closure properties is required. We need to consider more examples of both cases
to evaluate the expressiveness trade-off in, for example, deciding to add only one
of these solutions to an existing type system.

Completeness of variance annotations with domain information For simple alge-
braic datatypes, variance annotations are “enough” to say anything we want to
say about the variance of datatypes. Essentially, all admissible variance relations
between datatypes can be described by considering the pairwise variance of their
parameters, separately.

This does not work anymore with GADT. For example, with only this notion
of variance, all we can soundly say about the equality type (α, β) eq is that it
must be invariant in both its parameters. In particular, the well-known trick of
“factoring out” GADT by using the eq type in place of equality constraint does
not preserve variances.

We think it would possible to regain some “completeness”, and in particular
re-enable factoring by eq, by considering domain information, that is information
on constraints that must hold for the type to be inhabited. If we restricted the
subtyping rule with conclusion σ t ≤ σ′ t to only cases where σ t and σ′ t
are inhabited—with a separate rule to conclude subtyping in the non-inhabited
case—we could have a finer variance check, as we would only need to show
that the criterion of Simonet and Pottier holds between two instances of the
inhabited domain, and not any instance. If we stated that the domain of the

type (α, β) eq is restricted by the constraint α = β, we could soundly declare the
variance (onα,onβ) eq on this domain—which no longer prevents from factoring
out GADT by equality types.

Conclusion

Checking the variance of GADT is surprisingly more difficult (and interesting)
than we initially thought. We have studied a novel criterion of upward and
downward closure of type expressions and proposed a corresponding syntactic
judgment that is easily implementable. We presented a core formal framework to
prove both its correctness and its completeness with respect to the more general
criterion of Simonet and Pottier.

This closure criterion exposes important tensions in the design of a subtyping
relation, for which we previously knew of no convincing example in the context of
ML-derived programming languages. We have suggested new language features
to help alleviate these tensions, whose convenience and practicality is yet to be
assessed by real-world usage.

Considering extension of GADT in a rich type system is useful in practice;
it is also an interesting and demanding test of one’s type system design.

References

Abe06. Andreas Abel. Polarized subtyping for sized types. Mathematical Structures
in Computer Science, 2006. Special issue on subtyping, edited by Healfdene
Goguen and Adriana Compagnoni.

EKRY06. Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan Yu. Variance
and generalized constraints for C# generics. In Proceedings of the 20th
European conference on Object-Oriented Programming, ECOOP’06, 2006.

Gar04. Jacques Garrigue. Relaxing the value restriction. In In International Sym-
posium on Functional and Logic Programming, Nara, LNCS 2998, 2004.

KR05. Andrew Kennedy and Claudio V. Russo. Generalized algebraic data
types and object-oriented programming. In Proceedings of the 20th an-
nual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, 2005. URL: http://research.microsoft.com/
pubs/64040/gadtoop.pdf.

MR09. Benôıt Montagu and Didier Rémy. Modeling abstract types in modules with
open existential types. In ACM Symposium on Principles of Programming
Languages (POPL), pages 63–74, January 2009. URL: http://gallium.

inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf.
Pfe01. Frank Pfenning. Intensionality, extensionality, and proof irrelevance in

modal type theory. In 16th IEEE Symposium on Logic in Computer Science
(LICS 2001), 16-19 June 2001, Boston University, USA, Proceedings, 2001.

SP07. Vincent Simonet and François Pottier. A constraint-based approach to
guarded algebraic data types. ACM Transactions on Programming Lan-
guages and Systems, 29(1), January 2007.

SR. Gabriel Scherer and Didier Rémy. Gadt meet subtyping. Long version,
available electronically. URL: http://gallium.inria.fr/~remy/gadts/.

http://research.microsoft.com/pubs/64040/gadtoop.pdf
http://research.microsoft.com/pubs/64040/gadtoop.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://gallium.inria.fr/~remy/gadts/

	GADT meet subtyping
	Motivation
	A formal setting
	Atomic subtyping
	The algebra of variances
	Variance assignment in ADTs
	Variance annotations in GADT

	Checking variances of GADT
	Expressing decomposability
	Variable occurrences
	Context zipping
	Syntactic decomposability

	Closed-world vs. open-world subtyping
	A better control on upward and downward-closure
	Subtyping constraints and variance assignment

	Future Work

