
Ambivalent Types for
Principal Type Inference

with GADTs

APLAS 2013, Melbourne

Jacques Garrigue & Didier Rémy

Nagoya University / INRIA

Garrigue & Rémy — Ambivalent Types 1/20

Generalized Algebraic Datatypes

– Algebraic datatypes allowing different type parameters for
different cases.

– Similar to inductive types of Coq et al.

type _ expr =

| Int : int -> int expr

| Add : (int -> int -> int) expr

| App : (’a -> ’b) expr * ’a expr -> ’b expr

App (Add, Int 3) : (int -> int) expr

– Able to express invariants and proofs

– Also provide existential types: ∃’a.(’a -> ’b) expr * ’a expr

– Available in Haskell since 2005, and in OCaml since 2012.
This paper describes OCaml’s approach.

Garrigue & Rémy — Ambivalent Types 2/20

GADTs and pattern-matching

– Matching on a constructor introduces local equations.

– These equations can be used in the body of the case.

– The parameter must be a rigid type variable.

– Existentials introduce fresh rigid type variables.

let rec eval : type a. a expr -> a = function

| Int n -> n (* a = int *)

| Add -> (+) (* a = int -> int -> int *)

| App (f, x) -> eval f (eval x) (* polymorphic recursion *)

(* ∃b, f : b -> a ∧ x : b *)

val eval : ’a expr -> ’a = <fun>

eval (App (App (Add, Int 3), Int 4));;

- : int = 7

Garrigue & Rémy — Ambivalent Types 3/20

Type inference

– Providing sound type inference for GADTs is not difficult.

– However, principal type inference for the unrestricted type

system is not possible.

We consider a simple setting where the only GADT is eq.

type (_,_) eq = Eq : (’a,’a) eq (* equality witness *)

let f (type a) (x : (a,int) eq) =

match x with Eq -> 1 (* a = int *)

– What should be the return type ?

– Both int and a are valid choices, and they are not compatible.

– Such a situation is called ambiguous.

Garrigue & Rémy — Ambivalent Types 4/20

Known solution : explicit types

A simple solution is to require that all GADT pattern-matchings be
annotated with rigid type annotations (containing only rigid type
variables).

let f (type a) x =

match (x : (a,int) eq) return int with Eq -> 1

If we allow some propagation of annotations this doesn’t sound too
painful:

let f : type a. (a,int) eq -> int

= fun Eq -> 1

Garrigue & Rémy — Ambivalent Types 5/20

Weaknesses of explicit types

– Annotating the matching alone is not sufficient:

let g (type a) x y =

match (x : (a,int) eq) return int with

Eq -> if y > 0 then y else 0

Here the type of y is ambiguous too.
Not only the input and result of pattern-matching must be
annotated, but also all free variables.

– Propagation does not always work, but if we try to use known
function types as explicit types too, we lose monotonicity:

let f : type a. (a,int) eq -> int =

fun x -> succ (match x with Eq -> 1)

If we replace the type of succ by ’a -> int, which is more
general than int -> int, this is no longer typable.

Garrigue & Rémy — Ambivalent Types 6/20

Rethinking ambiguity

Compare these two programs:

let f (type a) (x : (a,int) eq) =

match x with Eq -> 1 (* a = int *)

let f’ (type a) (x : (a,int) eq) =

match x with Eq -> true (* a = int *)

According to the standard definition of ambiguity, f is ambiguous,

but f’ is not, since there is no equation involving bool.

This seems strange, as they are very similar.

Is there another definition of ambiguity, which would allow choosing

f : ’a t -> int over f : ’a t -> ’a ?

Garrigue & Rémy — Ambivalent Types 7/20

Another definition of ambiguity

We redefine ambiguity as leakage of an ambivalent type.

– There is ambivalence if we need to use an equation inside the
typing derivation.

let g (type a) (x : (a,int) eq) (y : a) =

match x with Eq -> if true then y else 0

The typing rule for if mixes a and int into an ambivalent type.

– Ambivalence is propagated to all connected occurences.

– Type annotations stop its propagation.

– An ambivalent type is leaked if it occurs outside the scope of its

equation. It becomes ambiguous. Here, the typing rule for match

leaks the result of if outside of the scope of a = int.

Garrigue & Rémy — Ambivalent Types 8/20

Using refined ambiguity

– Still need to annotate the scrutinee, but if we can type a case
without using the equation, there is no ambivalence.

let f (type a) (x : (a,int) eq) =

match x with Eq -> 1

val f : (’a,int) eq -> int

– Leaks can be fixed by local annotations.

let g (type a) (x : (a,int) eq) (y : a) =

match x with Eq -> if true then y else (0 : a)

val g : (’a,int) eq -> ’a -> ’a

Advantages

– More programs are accepted outright.

– Less pressure for a non-monotonous propagation algorithm.

– Particularly useful if matching appears nested.

Garrigue & Rémy — Ambivalent Types 9/20

Formalizing ambivalence

– The basic idea is simple: replace types by sets of types.

– Formalization is easy for monotypes alone.

◦ We just use the same rules for most cases.

◦ We can still use a substitutive Let rule for polymorphism.

– Polymorphic types are more difficult.

◦ We must track sharing inside them.

◦ Needed for polymorphic recursion, etc. . .

Garrigue & Rémy — Ambivalent Types 10/20

Set-based formalization (not in paper)

τ ::= a rigid variable
| eq(τ, τ) equality witness
| τ → τ | int other types

ζ ::= set of types τ
P ::= set of rigid variables a
Γ ::= ∅ | Γ, x : ζ | Γ, a | Γ, τ

.
= τ contexts

For ζ to be well-formed under a context Γ,

– It must be structurally decomposable:

ζ = P | ζ = {int} ∪ P | ζ = ζ1 → ζ2 ∪ P | ζ = eq(ζ1, ζ2) ∪ P
where ζ1 → ζ2 = {τ1 → τ2 | τ1 ∈ ζ1, τ2 ∈ ζ2} and eq(ζ1, ζ2) = . . .

– Its types must be compatible with each other under Γ.
I.e., for any ground instance θ of the rigid variables of Γ
satisfying its equations, θ(τ1) = θ(τ2).

Garrigue & Rémy — Ambivalent Types 11/20

Set-based rules

Var
x : ζ ∈ Γ

Γ ` x : ζ

App

Γ `M1 : ζ2 → ζ1 ∪ P Γ `M2 : ζ2

Γ `M1 M2 : ζ1

Let
Γ `M1 : ζ1 Γ ` [M1/x]M2 : ζ

Γ ` let x = M1 in M2 : ζ

Fun
Γ, x : ζ0 `M1 : ζ1

Γ ` fun x→M1 : ζ0 → ζ1 ∪ P

Ann
Γ `M : ζ1 τ ∈ ζ1 ∩ ζ2

Γ ` (M : τ) : ζ2

Use
Γ `M1 : {eq(τ1, τ2)} ∪ ζ1 Γ, τ1

.
= τ2 `M2 : ζ2

Γ ` use M1 : eq(τ1, τ2) in M2 : ζ2

All types must be well-formed in their context.

Garrigue & Rémy — Ambivalent Types 12/20

Polymorphism and type inference

– Move to a graph-based approach, to track sharing.

– Nodes are sets which may contain a normal type and

some rigid variables.

– Polymorphic types are graphs, where each node may

be polymorphic (i.e. allow the addition of rigid

variables).

Garrigue & Rémy — Ambivalent Types 13/20

Graph-based formalization (in paper)

The following specification of ambivalent types should be
understood as representing DAGs.

ρ ::= a | ζ → ζ | eq(ζ, ζ) | int

ψ ::= ε | ρ≈ ψ ζ ::= ψα σ ::= ∀(ᾱ) ζ

True variables are empty nodes: εα

Typing contexts contain node descriptions:

Γ ::= ∅ | Γ, x : σ | Γ, a | Γ, τ1
.

= τ2 | Γ, α :: ψ

Well-formedness ensures coherence: Γ ` ψα only if α :: ψ ∈ Γ

Example of type judgment:

a
.

= int, α :: a≈ int ` λ(x)x : ∀(γ) (a≈ intα → a≈ intα)γ

Garrigue & Rémy — Ambivalent Types 14/20

Substitution

Substitution discards the original contents of a node.

[ζ/α]ψα = ζ [ζ/α](ζ1 → ζ2)γ = ([ζ/α]ζ1 → [ζ/α]ζ2)γ

A substitution θ preserves ambivalence in a type ζ if and only if,

for any α ∈ dom(θ) and any node ψα inside ζ, we have

θ(ψ) ⊆ bθ(ψα)c

where for any ψα, bψαc = ψ. I.e. substitution preserves the structure

of types, possibly adding new elements to nodes.

This is similar to structural polymorphism (polymorphic variants).

Garrigue & Rémy — Ambivalent Types 15/20

Graph-based rules

Inst
Γ `M : ∀(α) [ψα0/α]σ ψ0 ⊆ ψ Γ ` ψγ

Γ `M : [ψγ/α]σ

Gen
Γ, α :: ψ `M : σ

Γ `M : ∀(α) σ

Var
` Γ x : σ ∈ Γ

Γ ` x : σ

App

Γ `M1 : ((ζ2 → ζ)≈ ψ)α Γ `M2 : ζ2

Γ `M1M2 : ζ

Let
Γ `M1 : σ1 Γ, x : σ1 `M2 : ζ2

Γ ` let x = M1 in M2 : ζ2

Fun
Γ, x : ζ0 `M : ζ

Γ ` λ(x)M : ∀(γ) (ζ0 → ζ)γ

Ann
Γ ` ∀(ftv(τ)) τ

Γ ` (τ) : ∀(ftv(τ)) *τ → τ+

Use
Γ ` (eq(τ1, τ2))M1 : ζ1 Γ, τ1

.
= τ2 `M2 : ζ2

Γ ` use M1 : eq(τ1, τ2) in M2 : ζ2

Garrigue & Rémy — Ambivalent Types 16/20

Ambiguity and principality

– Ambiguity is a decidable property of typing derivations.

– Principality is a property of programs, not directly verifiable.

– Our approach is to reject ambiguous derivations.

– The remaining derivations admit a principal one.

– Our type inference builds the most general and least ambivalent

derivation, and fails if it becomes ambiguous.

– By construction, our approach preserves monotonicity.

Garrigue & Rémy — Ambivalent Types 17/20

Comparison with OutsideIn

OutsideIn is a powerful constraint-based type inference algorithm
where information is not allowed to leak from GADT cases.

Comparison is difficult:

– GHC 7, up to 7.6.x implements a buggy version of OutsideIn,
which accepts some non-principal examples.
The bug is fixed in the development version.

– OutsideIn is essentially a constraint propagation strategy, which
is somehow orthogonal to ambiguity detection.

– OCaml has some form of propagation, which relies on
polymorphism, and is close to syntactic propagation.

– We compare OCaml 4.00 to the development version of GHC 7.

Garrigue & Rémy — Ambivalent Types 18/20

Comparison examples

– OCaml fails (while GHC 7 succeeds)

let f : type a. (a,int) eq -> a = fun x ->

let r = match x with Eq -> 1 in r

Error: This expression has type int but expected a

Insufficient propagation.

– GHC fails (while OCaml succeeds)

data Eqq a b where EQQ :: Eqq a a

f :: Eqq a Int -> ()

f x =

let z = case x of {EQQ -> True} in ()

Couldn’t match expected type ‘t0’ with actual type ‘Bool’

‘t0’ is untouchable inside the constraints (a ~ Int)

No external constraint on z.

Garrigue & Rémy — Ambivalent Types 19/20

Comparison

OCaml GHC

GADTs since 2012 since 2005

Type discipline ambiguity det. OutsideIn

Polymorphic let
√

−

Inference unification-based constraint-based

Principality
√

(1)

Monotonicity
√

−

Exhaustiveness check
√

−

Type-level functions −
√

(1) There is no principal type system, but OutsideIn only accepts

derivations that are principal in the unrestricted type system.

Garrigue & Rémy — Ambivalent Types 20/20

In the paper

– Full formalization of the polymorphic version of

ambiguity detection, using the graph-based approach.

– The inference algorithm and its principality proof are

available in the accompanying technical report.

http://gallium.inria.fr/~remy/gadts/

