
Implicit typing �a la ML for the join-calculus

�

C�edric Fournet

y

Cosimo Laneve

z

Luc Maranget

y

Didier R�emy

y

Abstract

We adapt the Damas-Milner typing discipline to the join-calculus. The

main result is a new generalization criterion that extends the polymor-

phism of ML to join-de�nitions. We prove the correctness of our typing

rules with regard to a chemical semantics. We also relate typed extensions

of the core join-calculus to functional languages.

1 Introduction

The distributed implementation of concurrent calculi with message passing raises

the problem of implementing communication channels, which �nally reduces to

the speci�cation of channel managers. In order to reect this need in the lan-

guage itself, a new formalism has been recently introduced : the join-calculus [2].

This calculus is similar to Milner's asynchronous �-calculus, except that the op-

erations of restriction, reception and replication are all combined into a single

receptor de�nition. Such a combination yields better control over communica-

tion. In [2, 3], we relied on this locality property to model realistic distributed

systems. In this paper, we propose a type system for the join-calculus whose

simplicity owes much to locality.

The join-calculus is quite expressive (a lot of examples may be found in [2, 3])

and has been turned into a programming language. A convenient syntax has been

provided for sequential composition, process migration and failure detection. A

distributed implementation is under way and would bene�t from static analyses

of programs. A good static semantics should of course rely on a type system.

The types we need should be expressive enough for most useful programs and

easy to understand for programmers.

This goal is achieved by adapting the Damas-Milner typing discipline devel-

oped for ML [1] to the join calculus. From the typing point of view, de�nitions

in the join-calculus are a generalized form of let expressions in ML and polymor-

phism can be introduced right after typechecking the clauses of a join-de�nition.

�

This work is partly supported by the ESPRIT CONFER-2 WG-21836

y

INRIA Rocquencourt, BP 105, 78153 Le Chesnay Cedex France.

z

Dipartimento di Scienze dell'Informazione, University of Bologna, Mura Anteo Zamboni

7, 40127 Bologna, Italy

However, synchronization on channels is more demanding than plain function

calls, as it interacts with polymorphism. Our main result is a generalization cri-

terion for the join-calculus that addresses this issue. We prove the correctness of

the resulting typing rules with regard to our concurrent semantics by adapting

standard techniques to the chemical framework. Thus, without any change, the

join calculus becomes a typed process calculus with implicit parametric poly-

morphism.

1.1 Polymorphism in the join-calculus

The join-calculus is essentially a name-passing calculus : port names are de�ned,

then used as addresses in messages that convey other names. These messages

are polyadic ; the type of a name carrying n objects of type �

1

, : : : , �

n

is written

h�

1

; : : : ; �

n

i. Traditional languages come with system-supplied primitives, which

can be used in the programming practice. Similarly, we could assume system-

supplied primitive names for a language based on the join-calculus, such as

print_int that outputs its integer argument on the console. Then,

def print_two_intshx,yi . print_inthxi j print_inthyi

de�nes a new name print_two_ints that prints two integers ; more precisely,

when the name print_two_ints receives a couple of arguments hx,yi, it acti-

vates two processes print_inthxi and print_inthyi running concurrently. The

type of the primitive print_int is hinti (i.e., a name that carries one integer)

and the type of the new name print_two_ints is hint; inti (i.e., a name that

carries two integers).

In this context, a name with a polymorphic type in the join-calculus is rem-

iniscent of a polymorphic function in ML : both don't need to perform fully

type-speci�c operations on their arguments. Thus, the types of the arguments

are not completely speci�ed and unspeci�ed parts are represented by type vari-

ables that stand for just any type. This framework is known as parametric

polymorphism. For instance, consider the following de�nition :

def applyhk,xi . khxi

The name apply takes two arguments k and x and activates the process khxi.

Thus, if x is of type � , then k must carry names of type � , i.e. be of type h�i.

The name apply can be given type hh�i; �i for any type � . As in ML, this is

emphasized by giving apply the type scheme 8�: hh�i; �i. Therefore apply can

take arguments as print_int and 4, by the call applyhprint_int,4i, thereby

instantiating � with the type int. Given another primitive print_string, an-

other legitimate invocation applyhprint_string,'foo'i would instantiate �

with the type string.

The join-calculus improves on ML by providing synchronization between join

patterns (several messages in parallel). Consider, for instance, a variant of apply

that receives k and x from di�erent sources.

def porthki j arghxi . khxi

The concurrent activation of the co-de�ned names port and arg �res khxi. The

names port and arg can be typed with hh�ii and h�i, respectively. Observe,

however, that names port and arg are correlated, which is reected by the

use of the same type variable � in their types. This forbids to give port and

arg the type schemes 8�: h�i and 8�: hh�ii. Otherwise, their types schemes

could be instantiated independently, loosing their correlation. Clearly, sending

the primitive print_string on port and an integer on arg would result in a

run-time type error : attempting to print an integer as a string.

As a consequence, our generalization rule copes with synchronization in an

abstract way : a type variable cannot be generalized if it appears free in the type

of several co-de�ned names.

1.2 Overview

In section 2, we recall the syntax and semantics of the join-calculus and we

present the type system. The original RCHAM used in [3] has a defect as regards

typing ; we introduce a variant and we relate it to the original. In section 3, we

establish the main result : we prove subject reduction in a chemical setting and

we show that well-typed programs cannot go wrong at run-time. In section 4,

we briey discuss type inference, as implemented in our prototype compiler. In

section 5, we extend the join-calculus with support for functions and expressions,

an useful step towards an e�ective programming language. We generalize the

type system accordingly. This extension provides a good basis for a detailed

comparison with type systems for functional languages. In section 6, we compare

our work with other type systems that have been proposed for concurrent calculi.

2 The typed join-calculus

2.1 Syntax

While names already provide enough expressiveness [2], it is convenient here to

supplement names with constants that represent basic values 1, 2: : : ,'foo': : :

and primitives add, string_of_int, print, along with their basic types such as

int, string.

For names, we assume given a set of port names x 2 N and a set of constants

k 2 K. We use u 2 N [K to denote a name in general. For types, we assume

given a set of basic types b 2 T and a set of type variables �.

P ::= uhu

i

i21::p

i

j def D in P

j P j P

D ::= J . P

j D ^ D

J ::= xhx

i

i21::p

i

j J j J

� ::= b j � j h�

i

i21::p

i

� ::= � j 8�: �

A ::= ; j A+ (u : �)

B ::= ; j B + (u : �)

A process P is either a message, a de�ning process, or a parallel composition

of processes ; a de�nition D consists of one or several clauses J . P that as-

sociate a guarded process P to a speci�c message pattern J ; a join-pattern

J consists of one or several messages in parallel. We say that the pattern

J = : : : xhz

i

i21::p

i : : : de�nes the name x. We note dv(D) for the set of all

names that are de�ned in D.

Processes and de�nitions are known modulo renaming of bound variables, as

substitution performs �-conversion to avoid captures.

A type � is either a basic type, a type variable, or a message type conveying

a �xed number of types ; a type scheme � may quantify over type variables ; a

typing environment A associates type schemes to names, while a simple envi-

ronment B associates types to names. Given an environment A that already

associates a type scheme to a name u, the new environment A + (u : �) is well

formed and associates � to u.

Primitive names K are given with a primitive typing environment A

K

of

domain K.

2.2 Typing rules

There are three kinds of typing judgments :

A ` u : � the name u has type � in A ;

A ` P the process P is well-typed in A ;

A ` D :: B the de�nition D is well-typed in A with types B for its de�ned names.

The following rules describe valid proofs for our judgments. They are much

inspired by the typing rules for the (polyadic) �-calculus plus let rec, the real

innovation being the generalization in Def.

(Inst)

u : 8�

i

i21::n

: � 2 A

A ` u : � [�

i

=�

i

i21::n

]

(Par)

A ` P A ` Q

A ` P j Q

(Message)

A ` u : h�

i

i21::n

i (A ` u

i

: �

i

)

i21::n

A ` uhu

i

i21::n

i

(Rule)

A+ u

ij

: �

ij

i21::n;j21::m

i

` P

A ` x

1

hu

1j

j21::m

1

i j : : : x

n

hu

nj

j21::m

n

i . P :: (x

i

: h�

ij

j21::m

i

i)

i21::n

(And)

A ` D

1

:: B

1

A ` D

2

:: B

2

A ` D

1

^ D

2

:: B

1

�B

2

(Def)

A+B ` D :: B A+Gen(B;A) ` P

A ` def D in P

The rules use the following de�nitions :

� B

1

�B

2

is B

1

+B

2

, and requires B

1

and B

2

to be equal on dv(B

1

)\dv(B

2

).

� Gen(B;A) is the generalization of the simple environment B of the form

(x

i

: �

i

)

i21::n

with respect to A : let fv(A) be the set

S

(x:�)2A

fv(�) where

fv(�) contains the free variables of � ; let Bnx be the environment B with-

out the binding for x. Then Gen(B;A) is (x

i

: 8 (fv(�

i

)� fv(A+Bnx

i

)) :�

i

)

i21::n

.

2.3 Chemical Semantics

For our type system to be of some use, we must show its consistency with respect

to the semantics of the join-calculus.

This semantics is speci�ed as a reexive chemical abstract machine (RCHAM),

as in [2]. The state of the computation is a chemical soup D ` P that consists

of two multisets : active de�nitions D and running processes P .

The chemical soup evolves according to two families of rules : Structural rules

*

)

are reversible (* is heating,) is cooling) ; they represent the syntactical

rearrangement of terms (heating breaks terms into smaller ones, cooling builds

larger terms from their components). Reduction rules �! consume speci�c

processes present in the soup, replacing them by some others ; they are the basic

computation steps. In the following, a generic rule will be denoted by the symbol

*

)

�!

, and we will write dv(D) for the union

S

D2D

dv(D).

Every rule applies on any matching subpart of the soup. More explicitly, for

every rule

*

)

�!

, we also have a context rule :

(Context)

D

1

` P

1

*

)

�!

D

2

` P

2

(fv(D) [fv(P)) \ dv(D

1

nD

2

[D

2

nD

1

) = ;

D [D

1

` P

1

[P

*

)

�!

D [D

2

` P

2

[P

A chemical semantics naturally induces a structural equivalence � on terms,

de�ned as the smallest structural congruence that contains

*

)

; this leads to a

more classical presentation of the semantics as term rewriting modulo equiva-

lence.

The original machine

In [2, 3], the chemical rules are :

` P

1

j P

2

*

)

` P

1

; P

2

S-Par

D

1

^ D

2

`

*

)

D

1

; D

2

` S-And

` def D in P

*

)

D ` P S-Def

J . P ` '(J) �! J . P ` '(P) R-�

` khu

i

i21::p

i �! ` P R-�

with the side-conditions :

� (S-Def) the names de�ned in D must not appear anywhere in solution but

in the reacting process and de�nition D and P . This condition is global ;

in combination with �-renaming it enforces lexical scoping.

� (R-�) '(�) substitute actual names for the received variables in J and P .

� (R-�) (u

i

i21::p

; P) 2 �

k

, where f�

k

; k 2 Kg is a family of primitive relations

that map names u

i

i21::p

to processes P .

We would expect every typing property to be preserved by the structural

equivalence, but this is not the case here. The trouble lies in the grouping of

de�nitions that changes outer bound occurrences into recursive ones. Given two

de�nitions D

1

and D

2

such that some names de�ned by D

1

occur free in D

2

,

but not the converse, we have

def D

1

in def D

2

in P � def D

1

^ D

2

in P

Unfortunately, the valid typing judgments for the names de�ned in D

1

and used

in D

2

are not the same on each side of the equivalence. Polymorphic typing can

be used in the left program and not in the right program. In fact, we run across

the classical limitation of typing for mutually-recursive functions.

The restricted machine

To solve this problem, we introduce a variant of the RCHAM that is better

suited to our typing purposes. In the new machine, de�nitions with several

clauses are not heated ; more speci�cally, the structural rule S-And disappears

and the reduction rule R-� is generalized :

` P

1

j P

2

*

)

0

` P

1

; P

2

S-Par

` def D in P

*

)

0

D ` P S-Def

� � � ^ J . P ^ � � � ` '(J) �!

0

� � � ^ J . P ^ � � � ` '(P) R-�'

` khu

i21::p

i �!

0

` P R-�

In the rule R-�' above, � � � ^ J . P ^ � � � stands for an active de�nition that

contains the clause J . P . This notation now expresses the commutativity and

the associativity of ^, which were conveyed more explicitly by the structural

rule S-And.

In addition, and for every chemical soup D ` P , we require every name to

be de�ned in exactly one de�nition of D :

8D;D

0

2 D; dv(D) \ dv(D

0

) = ;

We now relate this restricted machine to the original one. Let us �rst consider

machines that operate on completely diluted solutions (i.e., heating rules cannot

apply anymore). There is a straightforward correspondence between chemical

solutions of the two formalisms : processes are the same atoms ; de�nitions are

equivalent to the clauses that enter into it. Given this equivalence, �-reduction

is the same relation in both frameworks. In the general case, structural cooling

in the �rst machine may lead to more programs. However, we still have :

(�!) � (�!

0

) � (

S-And

*)

�

� (�!) � (

S-And

))

�

In the following, we use the restricted chemical machine without further discus-

sion. We drop the

0

notation and write �! and

*

)

for the restricted chemical

rules.

2.4 Type-checking solutions

Typing of programs easily extends to chemical solutions. First, we introduce a

judgment A ` D to state that the assumptions made in A on the names de�ned in

D are the same as if those names had been added in A after typing the de�nition

D. Precisely, we type D in the environment A extended (actually overridden)

with new assumptions B that must be exactly the typing environment produced

by D as in rule Def ; then, we check that the generalization of B in A is equal

to A restricted to dv(B), i.e. Gen(B;A) is a subset of A. Observe that A+B is

also (A n dv(B)) +B.

We introduce a new typing judgment A ` D ` P to state that the chemical

solution D ` P is well-typed in environment A. This happens when all de�ni-

tions and all processes are independently well typed in the same environment

A :

(Multi)

A+B ` D :: B Gen(B;A) � A

A ` D

(Soup)

8P 2 P ; A ` P 8D 2 D; A ` D

A ` D ` P

Typing chemical solutions simpli�es our proofs by avoiding some of the tech-

nicalities introduced by the more common formalism of term-rewriting modulo

structural equivalence. In particular, the chemistry treats structural rearrange-

ments and proper reductions in the same way. This simpli�cation has already

been pro�tably used in untyped concurrency theory.

3 Correctness of the evaluation

From a quite abstract point of view, let us assume that some evaluation steps

of a program P yields a new program P

0

. Typing and evaluation agree when

two facts hold : �rst, a typing derivation of P

0

can be constructed from a typing

derivation of P . Second, messages present in P

0

cannot cause \run-time type

errors" such as the addition of a string or sending one argument only on a binary

name (no type mismatch for primitives, no wrong arity for de�ned names).

3.1 Assumptions on primitives

For the reduction to be sound, we assume that the primitive reduction rela-

tions are consistent with the primitive typing environment A

K

introduced in

section 2.1. That is, for every typing environment A and for every k 2 K, we

have :

A+A

K

` khu

i

i21::p

i and (u

i

i21::p

; P) 2 �

k

) A+A

K

` P

In particular, the free names of P are either primitives or among the u

i

.

3.2 Basic properties for the typing

Lemma 1 (Useless variable) Let u be a name that is not free in P or D, nor

de�ned in D. Then we have :

A ` P , A+ (u : �) ` P

A ` D :: B , A+ (u : �) ` D :: B

Lemma 2 (Renaming of type variables) Let ' be a substitution on type

variables. We have :

A ` P) '(A) ` P

A ` D :: B) '(A) ` D :: '(B)

We say that a type 8 ��: � is more general than 8 ��

0

: �

0

if �

0

is of the form � [

�

�

00

=��].

This notion lifts to set of assumptions as follows : A

0

is more general than A if

A and A

0

have the same domain and for each u in their domain, A

0

(u) is more

general than A(u).

Lemma 3 (Generalization) If A ` P and A

0

is more general than A, then

A

0

` P .

Lemma 4 (Substitution of a name in a term) If A+ (u : �) ` P and A `

v : � then A ` P [v=u].

3.3 Subject reduction

Two environments A and A

0

agree when their restrictions to primitive names

are equal. We de�ne the relation � between RCHAMs as the preservation of

typings, that is, D ` P � D

0

` P

0

if for any typing environment A such that

A ` D ` P , there exists a typing environment A

0

such the A

0

` D

0

` P

0

and A

and A

0

agree.

Theorem 1 (subject-reduction) One-step chemical reductions preserve typ-

ings

Proof : In fact, we prove the stronger property that typing environments also

agree on variable names, except maybe on variable names that are de�ned in

either chemical soup but not in both.

That is, for every

*

)

�!

, let D ` P

*

)

�!

D

0

` P

0

and A ` D ` P . We show

that D

0

` P

0

is well-typed in an environment A

0

that possibly di�er from A only

on dv((D nD

0

) [(D

0

n D)). We prove this property by induction on the number

of applications of rule Context in the derivation of the one-step reduction.

Basic case : We �rst consider the basic case for every reaction rule.

Subcase S-Par : The reduction is ` P

1

j P

2

*

)

` P

1

; P

2

.

Heating : Clearly, if A ` P

1

j P

2

then A ` P

1

; P

2

by rules Par and Def.

Cooling : is as easy.

Subcase S-Def : The reduction is ` def D in P

*

)

D ` P .

Heating : Let us assume that A ` def D in P , that is, there is a derivation

ending with :

A+B ` D :: B A+Gen(B;A) ` P

(Def)

A ` def D in P

Clearly, Def and Soup give A+Gen(B;A) ` D ` P .

Cooling : Let A ` D ` P . Then A is of the form A

0

+Gen(B;A

0

) and we have

both A

0

+B ` D :: B and A

0

+Gen(B;A

0

) ` P . Thus, by Def, A

0

` def D in P .

In both cases, the two typing environments agree on primitive names and on

names de�ned both in the solution to the left and to the right of the structural

rule.

Subcase R-� : We �rst assume that D is J . Q. Therefore let A ` J . Q `

'(J), where J is of the form x

1

h�u

1

i j : : : x

n

h�u

n

i. By the rules Def, Soup and

Rule, the hypothesis A ` J . Q ` '(J) reduces to assume A = A

0

+Gen(B;A

0

)

and

A ` '(J) (1)

A

0

+B + (�u

i

: ��

i

)

i21::n

` P (2)

where B is (x

i

: h��

i

i)

i21::n

and Gen(B;A

0

) is (x

i

: 8 ��

i

: ��

i

)

i21::n

, where ��

i

is

equal to fv(��

i

) n (fv(A

0

) [fv(��

j

)

j 6=i

).

Observe that the derivation of the judgment (1) must have the shape :

A ` x

i

: h��

0

i

i A ` '(�u

i

) : ��

0

i

(Message)

A ` x

i

h'(�u

i

)i i 2 1::n

(Par)

A ` '(J) (3)

where types ��

0

i

are type instances �

i

(��

i

) of 8 ��

i

: �

i

, where �

i

ranges in ��

i

. Since

generalizable variables never occur in two di�erent bindings, the domains of �

i

's

are disjoint and we can de�ne the sum � of �

i

's for i in 1::n.

Now, applying the substitution ', which leaves A

0

unchanged, to the judg-

ment (2), we get :

A

0

+ (x

i

: h�(��

i

)i)

i21::n

+ (�u

i

: �(��

i

))

i21::n

` P

By lemma 3, we can generalize the assumptions of the above judgment as follows :

A+ (�u

i

: �(��

j

))

i21::n

` P

This judgment and the hypothesis A ` '(�u

i

) : ��

0

i

of (3) allow to derive, by the

name substitution lemma 4, A ` P ['(�u

j

)=�u

j

], i.e. A ` '(P).

We now consider the general case of a de�nition J . P ^ D. By the rules

Def and Soup, the hypothesis A ` J . P ^ D ` '(J) reduces to assuming

A = A

0

+Gen(B;A

0

) and

A

0

+B ` J . P ^D :: B A ` '(J)

By the leftmost judgment and the rule And it follows that B = B

0

� B

00

and

A

0

+ B

0

` J . P :: B

0

and A

0

+ B

00

` D :: B

00

. By lemma 1 applied to

A

0

+B

0

` J . P :: B

0

it follows A

0

+ B ` J . P :: B

0

. We reduce to the basic

case above by instantiating Rule with this last judgment.

Subcase R-� : By hypothesis.

Inductive case : We now prove the inductive step uniformly for the context

rules. We assume A ` D [D

1

` P [P

1

and D

1

` P

1

*

)

�!

D

2

` P

2

. By rule

Def and Soup, we know that D, D

1

, P , and P

1

are all well-typed in A. In

particular, A ` D

1

` P

1

. Therefore, by inductive hypothesis, there exists A

0

such that A

0

` D

2

` P

2

, i.e. A

0

` D

2

and A

0

` P

2

. By inductive hypothesis A

and A

0

agrees modulo names that are de�ned in D

1

and D

2

but not in both. Let

X be such set of names. Then names de�ned in D are disjoint from X , by the

condition in the premise of the rule (Context). Therefore A

0

` D by lemma 1

applied to A ` D. Furthermore, the side condition of the rule S-Def also forces

fv(P) to be disjoint from dv((D

1

nD

2

)[(D

2

nD

2

)). Thus, we also have A

0

` P ,

by lemma 1 applied to A ` P . Finally, A

0

` D [D

2

` P [P

2

follows by Soup.

3.4 No run-time errors

We state the correctness of a computation from what can be observed from

running chemical machines. When ill-formed messages are released in a solution

with a consistent set of primitives (see 3.1), there is no reduction that would

consume them, so they remain visible, exactly as barbs on free names in an

untyped setting. In this case the computation has failed.

De�nition 1 A chemical solution D ` P has failed when P contains either :

� A message khu

i

i21::n

i when no �-rule applies ;

� A message xhu

i

i21::n

i when x is not de�ned in D, or de�ned with arity

m 6=n.

Theorem 2 (Correct computation) A well-typed chemical machine cannot

fail through chemical reduction or equivalence. In particular, a typed program

cannot fail.

Proof : Neither kind of messages of the previous de�nition can appear in a well-

typed chemical soup ; chemical typing is preserved by chemical rewriting.

4 Type inference

Since types and typing rules are in essence those of ML, our type system also

allows for type inference. Precisely, there exists an algorithm that given a soup

D ` P and a typing environment A

0

that binds the free names of D and P with

the exception of the active names dv(D), returns a typing environment A of

domains dv(D) such that A

0

�A ` D ` P , or fails if no such typing environment

exists. Morever, if the algorithms succeeds, then A is principal, that is, for any

other typing environment A

0

of domain dv(D) such that A

0

�A

0

` D ` P , then

A is more general than A

0

.

The complete formalization is a straightforward adaptation of the one for

ML [1].

5 Functional constructs

In this section, we extend the join-calculus with functions and expressions and

we re�ne the type system accordingly. Such extensions turn the join-calculus

into a practical core language that can be seen as a concurrent extension of a

small call-by-value functional language with concurrent evaluation and join-call

synchronization.

5.1 Programming in the join-calculus

In practice, programmers feel uncomfortable with the non-deterministic behavior

of the \print two integer" example of the introduction ; they would often prefer

to print x, then y. The standard trick for enforcing sequential control is to use

continuation passing style. Indeed, our implementation provides a synchronous

print_int primitive that takes two arguments : an integer to be output, and a

continuation to be triggered thereafter. This continuation is used for synchro-

nization only ; it carries no argument, and has type hi. Thus, the type of the syn-

chronous print_int is hint; hii. The synchronous version of print_two_ints

also takes an extra continuation argument, and has type hint; int; hii :

def print_two_intshx,y,ki .

def kyhi . khi in

def kxhi . print_inthy,kyi in

print_inthx,kxi

The continuation passing style idiom is so common in process calculi that

it deserves a convenient syntax that avoids writing explicit continuations (see

also [8]). In our setting, continuation arguments are implicit in both primitive

names and user-de�ned names. The synchronous version of \print two integers"

becomes :

def print_two_intshx,yi .

print_inthxi ; print_inthyi ; reply to print_two_ints

The sequencing operator \;" avoids the de�nition of explicit continuations inside

the body of print_two_ints. The �nal call to continuation is left explicit. This

keeps the introduction of synchronous names simple and general, since a join-

calculus de�nition may introduce several synchronous names (and thus several

continuations) simultaneously. We write reply u

1

; :::u

p

to x by analogy to the

C return instruction. We also provide a sequencing binding let x

1

; :::x

p

=

e in P , where e is an expression, i.e. some kind of process with a continuation.

More generally, we do not refrain from the temptation of using h�

1

; : : : ; �

q

i !

h�

0

1

; : : : ; �

0

p

i as a convenient synonym for h�

1

; : : : ; �

q

; h�

0

1

; : : : ; �

0

p

ii. Hence, the type

of print_two_ints can be written hint,inti ! hi.

5.2 Functions as names

Port names can now be used in two di�erent manners : either asynchronously

or synchronously. The synchronous invocation of a name u is performed by

the new let x

i

i21::p

= uhu

j

j21::q

i in P construct. The other new construct

reply u

i

i21::p

to x is the asynchronous invocation of the continuation of x. At

run-time, it will �re the pending P of a matching let x

i

i21::p

= xhu

j

j21::q

i in P

construct.

P ::= uhu

i

i21::p

i

j def D in P

j P j P

j let x

i

i21::p

= uhu

j

j21::q

i in P

j reply u

i

i21::p

to x

� ::= b j � j h�

i

i21::p

i

j h�

j

j21::q

i ! h�

0

i

i21::p

i

� ::= � j 8�: �

Patterns, clauses and typing environments are as before. The sequencing oper-

ator \ ;" corresponds to the let construct with p = 0. There are two additional

typing rules for the new constructs :

(Let-Val)

A ` u : h�

j

j21::q

i ! h�

0

i

i21::p

i (A ` u

j

: �

j

)

j21::q

A+ (x

i

: �

0

i

)

i21::p

` P

A ` let x

i

i21::p

= uhu

j

j21::q

i in P

(Reply)

A ` x : h�

j

j21::q

i ! h�

0

i

i21::p

i (A ` u

i

: �

0

i

)

i21::p

A ` reply u

i

i21::p

to x

The typing rules guarantee that synchronous and asynchronous invocations

on the same name do not mix. Moreover, an user-de�ned name x must be

invoked synchronously when its de�nition includes type consistent occurrences

of the reply u

i

i21::p

to x construct.

Therefore, we give names an asynchronous or synchronous status. Name

status may be determined by typing, provided the following agreement : every

name whose synchronous usage is not detected by the type inference system is

considered asynchronous. In the following, we simply write f , instead of x, for

synchronous names.

5.3 A typed CPS encoding

As usual for process calculi, we translate functional names back to the initial join-

calculus. The translation applies to type correct programs and once synchronous

names have been identi�ed. Given a synchronous name f , we introduce the fresh

name �

f

for its continuation ; we also use the reserved name � for intermediate

continuations generated while translating lets. The call-by-value translation is :

fhu

i

i21::p

i

def

== fhu

i

i21::p

; �

f

i (in join-patterns J)

reply u

i

i21::p

to f

def

== �

f

hu

i

i21::p

i (in guarded processes P)

let x

i

i21::p

= fhu

j

j21::q

i in P

def

== def �hx

i

i21::p

i . P in fhu

j

j21::q

; �i

h�

j

j21::q

i ! h�

0

i

i21::p

i

def

== h�

j

j21::q

; h�

0

i

i21::p

ii

The two additional typing rules, once their operands have been translated,

are derived from the type system of section 2 :

(translated Let-Val)

A ` f : h�

j

j21::q

; h�

0

i

i21::p

ii (A ` u

j

: �

j

)

j21::q

A+ (x

i

: �

0

i

)

i21::p

` P

A ` def �hx

i

i21::p

i . P in fhu

j

j21::q

; �i

(translated Reply)

A ` f : h�

j

j21::q

; h�

0

i

i21::p

ii (A ` u

i

: �

0

i

)

i21::p

A ` �

f

hu

i

i21::p

i

5.4 A join-calculus-based language

A complete syntax for processes and expressions is :

P ::= uhE

i

i21::p

i

j def D in P

j P j P

j let x

i

i21::p

= E in P

j reply E

i

i21::p

to x

E ::= u

j uhE

i

i21::p

i

j def D in E

j let x

i

i21::p

. E in E

Clauses and de�nitions are as before.

Again, expressions are only a convenient syntactic sugar, which can be re-

moved. This new translation amounts to introducing explicit bindings of the

kind of the previous section for all subexpressions, nested calls being translated

top-down, left-to-right.

reply E

i

i21::p

to f

def

== �

f

hE

i

i21::p

i (in guarded processes P)

uhE

i

i21::p

i

def

== (let x

i

= E

i

in)

i21::p

uhx

i

i21::p

i

let x = u in P

def

== P fx=ug

let x

i

i21::p

= fhE

j

j21::q

i in P

def

== def �hx

i

i21::p

i = P in fhE

j

j21::q

; �i

In practice, we introduce new typing judgments for expressions (A ` E :

�

i

i21::p

), along with new typing rules. The typing rules for expressions are

derived from the previous ones and are omitted.

5.5 A comparison with functional types

If we remove join-composition in patterns and parallel-composition in processes

from our language, we get a polyadic functional kernel similar to core-ML : both

the reductions and the typing rules do correspond. Let us consider in detail

how we would translate the let binder of ML. According to the let-bound

expression, there are two cases with distinct typing properties. When the syntax

su�ces to identify functions either directly or as aliases, we use a generalizing

de�nition :

[[let f(x) = e

1

in e

2

]] = def fhxi . reply e

1

to f in e

2

[[let g = let f(x) = e

1

in f in e

2

]] = def fhxi . reply x to f in e

2

[f=g]

For other values (e.g. function calls), we use a continuation message to convey

the result, which forces this result to be monomorphic. This restricts poly-

morphism to syntactic values and is thus equivalent to Wright's proposal for

ML [13] :

[[let x = f(u) in e

2

]] = def �hxi . e

2

in fhu; �i

Typing side-e�ects

The language as a whole is more expressive than ML ; it provides support for gen-

eral, concurrent programming, including imperative constructs and side-e�ects

as messages. For instance, reference cells need not be taken as primitives ; they

are programmable in the join-calculus using the following de�nition :

def refhxi .

def get hi j statehxi . statehxi j reply x to get

and sethyi j statehxi . statehyi j reply to set

in statehxi j reply get,set to ref in ...

Here, the state is kept local and, more importantly, both methods get and set

are returned in the same message. Since only one name ref has been de�ned,

its type h�! hhi ! h�i; h�i ! hiii, can obviously be generalized. And ref can

be used polymorphically :

let g1,s1 = refh'hello'i in

let g2,s2 = refh3i in ...

More generally, join-calculus de�nitions may describe protocols that involve so-

phisticated synchronization of numerous methods and/or partial states, but this

is largely independent of the typing, as long as side-e�ects are tracked using the

sharing of type variables.

This is in contrast with the classical approach in ML, where references are

introduced in a \pure" language as dangerous black boxes that cannot be given

polymorphic types, and that communicate with a global store by magic. In [14],

references are introduced as local stores that can be extruded. This is slightly

closer to the join-calculus, but again references are a new special construct. If

required, the store can still be identi�ed as some part of the chemical machine,

that consists of the instances of cell de�nitions on the left-hand-side, and of

their state messages on the right-hand-side. The approach taken in the join-

calculus is uniform and, by the way, it allows to type at least as much as ML

with references.

6 Related works for concurrent languages

In the area of name-passing process calculi, the �rst step was taken by Milner

in 1991 [6]. Milner introduced an improvement of the �-calculus, called polyadic

�-calculus, where channels are allowed to carry tuples of messages. Polyadicity

naturally supports a concept of \sorting", which is in our view a humble word

for typing. In the context of polyadic �-calculus, maintaining the type discipline

enforces channels to always carry tuples of the same length and nature.

The �rst extension of Milner's system has been undertaken by Pierce and

Sangiorgi. They distinguish between input-only, output-only, and input-output

channels. This extension naturally leads to recursive types with subtyping [7].

Since then more and more elaborate extensions have then been proposed and

experimented, mostly around the Pict language, a strongly-typed implementa-

tion of the �-calculus with support for functions and objects [8, 11]. Recently, a

further extension captures linearity information in channel types [4]. This pro-

vides a �ner account on communication patterns, and static type inference leads

to a more e�cient compilation.

The type systems of all these authors are usually more sophisticated than

ours. Some of this sophistication is due to the complexity of the �-calculus

semantics and is thus irrelevant in our case. Nevertheless, sophisticated static

analysis such as deadlock or linearity analysis would be useful in an optimizing

join-calculus compiler. We chose not to integrate such high-level analyses in the

basic type system.

The basic theory of polymorphic extensions of Milner's sort discipline for

�-calculus has been developed by Turner in his PhD thesis [11]. We recall that

Turner's polymorphism is explicit : inputs and outputs are always annotated

with sorts. For example, the �-calculus process x[y; z] j x[u;w]: u[w] is tagged

as follows :

x[int; y; z] j x[�;u :" �;w : �]: u[�;w] :

Consequently, explicit abstraction and application of types are interleaved with

communication : in the above example the sort � in the output u[�;w] depends

on the message received on the channel x. This commitment to explicit polymor-

phism in �-calculus follows from the absence of a place where sort generalization

may occur.

Typing �a la ML for concurrent languages is not new. Proposals have been de-

�ned for languages which combine functional and concurrent primitives (among

the others, Concurrent ML [9] and Facile [10]). An analogous approach has

recently been taken by Vasconcelos for an extension of �-calculus with agent

names [12]. In these languages channels are always monomorphic, and polymor-

phism is only allowed under functional abstractions. This enables to param-

eterize processes by arguments of di�erent types. However, two processes can

never communicate values of di�erent types on the same channel, which restricts

the expressiveness of the language. In particular, it is impossible to implement

polymorphic services. As a simpli�ed example, consider a computing server :

def runhf,x,ri . fhx,ri in : : :

This de�nes a channel run of type hh�,h�ii,�,h�ii to which expensive requests

can be sent together with a channel to receive the result (in the distributed join

calculus, the location of the server would also be passed to f so that f can choose

to migrate to the server before intensive computing.)

There is apparently no way to de�ne such a service in CML, Facile, or the

language proposed in [12]. In fact, this limitation has been known in CML. The

solution would be to use �rst-order, explicit existential types such as in [5]. Then,

the channel run could be given the monomorphic type 9�,�.hh�,h�ii,�,h�ii.

Unsurprisingly, the translation of the example in PICT would give run a similar

type.

7 Conclusion

We have typed the join-calculus using traditional parametric polymorphism.

Thereby, we demonstrate that successful concepts and techniques now familiar

in functional programming carries over to concurrent programming.

This experience strengthens our con�dence both in the join-calculus and in

parametric polymorphism. The join-calculus is a practical concurrent program-

ming language because it support a simple, convenient and well established typ-

ing paradigm. ML polymorphism is not bound to ML ; it can sustain signi�cant

changes in the language semantics, provided lexical scoping is maintained and

generalization points are clearly identi�ed.

References

[1] L. Damas and R. Milner. Principal type schemes for functional programs.

In Proceedings on Principles of Programmining Languages, pages 207 { 212,

1982.

[2] C. Fournet and G. Gonthier. The reexive chemical abstract machine and

the join-calculus. In 23rd ACM Symposium on Principles of Programming

Languages (POPL'96), 1996.

[3] C. Fournet, G. Gonthier, J.-J. L�evy, L. Maranget, and D. R�emy. A calculus

of mobile agents. In 7th International Conference on Concurrency Theory

(CONCUR'96), 1996. LNCS 1119.

[4] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linear types and pi-

calculus. In 23rd ACM Symposium on Principles of Programming Lan-

guages (POPL'96), 1996.

[5] K. L�aufer and M. Odersky. An extension of ML with �rst-class abstract

types. In Proceedings of the ACM SIGPLAN Workshop on ML and its

Applications, 1992.

[6] R. Milner. The polyadic �-calculus : a tutorial. In Bauer, Brawer, and

Schwichtenberg, editors, Logic and Algebra of Speci�cation. Springer Verlag,

1993.

[7] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In

Logic in Computer Science, pages 187 { 215, 1993.

[8] B. Pierce and D. Turner. Pict : a programming language based on the

pi-calculus, 1995. To appear.

[9] J. H. Reppy. Concurrent ML : Design, application and semantics. In Pro-

gramming, Concurrency, Simulation and Automated Reasoning, pages 165

{ 198, 1992. LNCS 693.

[10] B. Thomsen. Polymorphic sorts and types for concurrent functional pro-

grams. Technical Report ECRC-93-10, European Computer-Industry Re-

search Center, Munich, Germany, 1993.

[11] D. N. Turner. The �-calculus : Types, polymorphism and implementation.

PhD thesis, LFCS, University of Edinburgh, 1995.

[12] V. T. Vasconcelos. Predicative polymorphism in the �-calculus. In Proceed-

ings of 5th Conference on Parallel Architectures and Languages (PARLE

94), 1994. LNCS.

[13] A. K. Wright. Polymorphism for imperative languages without imperative

types. Technical Report 93-200, Rice University, February 1993.

[14] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.

Information and Computation, 115(1) :38{94, 1994.

