
UNIT

�

E DE RECHERCHE

INRIA-ROCQUENCOURT

Institut National

de Recherche

en Informatique

et en Automatique

Domaine de Voluceau

Rocquencourt

B.P. 105

78153 Le Chesnay Cedex

France

T�el.:(1)39 63 55 11

Rapports de Recherche

N

�

1431

Programme 2

Calcul symbolique, Programmation

et G�enie logiciel

TYPE INFERENCE FOR

RECORDS IN A NATURAL

EXTENSION OF ML

Didier R�emy

Mai 1991

Type Inference for Records

in a Natural Extension of ML

Didier R�emy

�

Revised Version of Research Report MS-CIS-90-73, University of Pennsylvania.

To appear as INRIA Research Report number 1431, May 1991.

�

This work was partly supported by research grant NSF IRI86-10617.

1

Type Inference for Records

in a Natural Extension of ML

Abstract

We describe an extension of ML with records where inheritance is given by ML generic

polymorphism. All common operations on records but concatenation are supported, in par-

ticular the free extension of records. Other operations such as renaming of �elds are added.

The solution relies on an extension of ML, where the language of types is sorted and con-

sidered modulo equations, and on a record extension of types. The solution is simple and

modular and the type inference algorithm is e�cient in practice.

Inf�erence de Types pour les Objets Enregistrements

dans une Extension Naturelle de ML

Abstract

Nous pr�esentons une extension de ML avec des objets enregistrements o�u l'h�eritage est

obtenu �a partir du polymorphisme g�en�erique de ML. Toutes les op�erations usuelles sur les

enregistrements sauf la concat�enation, en particulier la libre extension des enregistrements,

sont r�ealis�ees. D'autres op�erations comme le renommage des champs sont ajout�ees. La

solution repose sur une extension de ML o�u les types sont munis de sortes et consid�er�es

modulo des �equations, et sur une extension des types �a des types-enregistrements. La solution

est simple et modulaire et l'algorithme d'inf�erence de types est e�cace en pratique.

1

Introduction

The aim of typechecking is to guarantee that well-typed programs will not produce runtime

errors. A type error is usually due to a programmer's mistake, and thus typechecking also

helps him in debugging his programs. Some programmers do not like writing the types of

their programs by hand. In the ML language for instance, type inference requires as little

type information as the declaration of data structures; then all types of programs will be

automatically computed.

Our goal is to provide type inference for labeled products, a data structure commonly

called records, allowing some inheritance between them: records with more labels should be

allowed where records with fewer labels are required.

After de�ning the operations on records and recalling related work, we �rst review the

solution for a �nite (and small) set of labels, which was presented in [R�em89], then we extend

it to a denumerable set of labels. In the last part we discuss the power and weakness of the

solution, we describe some variations, and suggest improvements.

Without records, data structures are built using product types, as in ML, for instance.

("Peter", "John", "Professor", 27, 5467567, 56478356, ("toyota", "old", 8929901))

With records one would write, instead:

fname = "Peter"; lastname = "John"; job = "Professor"; age = 27; id = 5467567;

license = 56478356; vehicle = fname = "Toyota"; id = 8929901; age = "old"gg

The latter program is de�nitely more readable than the former. It is also more precise, since

components are named. Records can also be used to name several arguments or several

results of a function. More generally, in communication between processes records permit

the naming of the di�erent ports on which processes can exchange information. One nice

example of this is the LCS language [Ber88], which is a combination of ML and Milner's

CCS [Mil80].

Besides typechecking records, the challenge is to avoid record type declarations and �x

size records. Extensible records introduced by Wand [Wan89, CM89] can be built from older

records by adding new �elds. This feature is the basis of inheritance in the view of objects

as records [Wan89, CM89].

The main operations on records are introduced by examples, using a syntax similar to

CAML syntax [CH89, Wei89]. Like variable names, labels do not have particular meanings,

though choosing good names (good is subjective) helps in writing and reading programs.

Names can, of course, be reused in di�erent records, even to build �elds of di�erent types.

This is illustrated in the following three examples:

let car = fname = "Toyota"; age = "old"; id = 7866g;;

let truck = fname = "Blazer"; id = 6587867567g;;

let person = fname = "Tim"; age = 31; id = 5656787g;;

Remark that no declaration is required before the use of labels. The record person is de�ned

on exactly the same �elds as the record car, though those �elds do not have the same intuitive

meaning. The �eld age holds values of di�erent types in car and in person.

All these records have been created in one step. Records can also be build from older

ones. For instance, a value driver can be de�ned as being a copy of the record person but with

one more �eld, vehicle, �lled with the previously de�ned car object.

let driver = fperson with vehicle = carg;;

Note that there is no sharing between the records person and driver. You can simply think as

if the former were copied into a new empty record before adding a �eld car to build the latter.

2

This construction is called the extension of a record with a new �eld. In this example the

newly de�ned �eld was not present in the record person, but that should not be a restriction.

For instance, if our driver needs a more robust vehicle, we write:

let truck driver = fdriver with vehicle = truckg;;

As previously, the operation is not a physical replacement of the vehicle �eld by a new value.

We do not wish the old and the new value of the vehicle �eld to have the same type. To

distinguish between the two kinds of extensions of a record with a new �eld, we will say that

the extension is strict when the new �eld must not be previously de�ned, and free otherwise.

A more general operation than extension is concatenation, which constructs a new record

from two previously de�ned ones, taking the union of their de�ned �elds. If the car has a

rusty body but a good engine, one could think of building the hybrid vehicle:

let repaired truck = fcar and truckg;;

This raises the question: what value should be assigned to �elds which are de�ned in both car

and truck? When there is a conict (the same �eld is de�ned in both records), priority could

be given to the last record. As with free extension, the last record would eventually overwrite

�elds of the �rst one. But one might also expect a typechecker to prevent this situation

from happening. Although concatenation is less common in the literature, probably because

it causes more trouble, it seems interesting in some cases. Concatenation is used in the

standard ML language [HMT91] when a structure is opened and extended with another one.

In the LCS language, the visible ports of two processes run in parallel are exactly the ports

visible in any of them. And as shown by Mitchell Wand [Wan89] multiple inheritance can be

coded with concatenation.

The constructions described above are not exhaustive but are the most common ones.

We should also mention the permutation, renaming and erasure of �elds. We described

how to build records, but of course we also want to read them. There is actually a unique

construction for this purpose.

let id x = x.id;; let age x = x.age;;

Accessing some �eld a of a record x can be abstracted over x, but not over a: Labels are not

values and there is no function which could take a label as argument and would access the

�eld of some �xed record corresponding to that label. Thus, we need one extraction function

per label, as for id and age above. Then, they can be applied to di�erent records of di�erent

types but all possessing the �eld to access. For instance,

age person, age driver;;

They can also be passed to other functions, as in:

let car info �eld = �eld car;; car info age;;

The testing function eq below should of course accept arguments of di�erent types provided

they have an id �eld of the same type.

let eq x y = equal x.id y.id;; eq car truck;;

These examples were very simple. We will typecheck them below, but we will also meet more

tricky ones.

Related work

Luca Cardelli has always claimed that functional languages should have record operations.

In 1986, when he designed Amber, his choice was to provide the language with records rather

than polymorphism. Later, he introduced bounded quanti�cation in the language FUN ,

3

which he extended to higher order bounded quanti�cation in the language QUEST. Bounded

quanti�cation is an extension of ordinary quanti�cation where quanti�ed variables range in

the subset of types that are all subtypes of the bound. The subtyping relation is a lattice on

types. In this language, subtyping is essential for having some inheritance between records.

A slight but signi�cant improvement of bounded quanti�cation has been made in [CCH

+

89]

to better consider recursive objects; a more general but less tractable system was studied

by Pavel Curtis [Cur87]. Today, the trend seems to be the simpli�cation rather than the

enrichment of existing systems [LC90, HP90, Car91]. For instance, an interesting goal was

to remove the subtype relation in bounded quanti�cation [HP90]. Records have also been

formulated with explicit labeled conjunctive types in the language Forsythe [Rey88].

In contrast, records in implicitly typed languages have been less studied, and the proposed

extensions of ML are still very restrictive. The language Amber [Car84, Car86] is monomor-

phic and inheritance is obtained by type inclusion. A major step toward combining records

and type inference has been Wand's proposal [Wan87] where inheritance is obtained from

ML generic polymorphism. Though type inference is incomplete for this system, it remains a

reference, for it was the �rst concrete proposal for extending ML with records having inheri-

tance. The year after, complete type inference algorithms were found for a strong restriction

of this system [JM88, OB88]. The restriction only allows the strict extension of a record.

Then, the author proposed a complete type inference algorithm for Wand's system [R�em89],

but it was formalized only in the case of a �nite set of labels (a previous solution given by

Wand in 1988 did not admit principal types but complete sets of principal types, and was

exponential in size in practice). Mitchell Wand revisited this approach and extended it with

an \and" operation

1

but did not provide correctness proofs. The case of an in�nite set of

labels has been addressed in [R�em90], which we review in this article.

1 A simple solution when the set of labels is �nite

Though the solution below will be made obsolete by the extension to a denumerable set of

labels, we choose to present it �rst, since it is very simple and the extension will be based on

the same ideas. It will also be a decent solution in cases where only few labels are needed.

And it will emphasize a method for getting more polymorphism in ML (in fact, we will not

put more polymorphism in ML but we will make more use of it, sometimes in unexpected

ways).

We will sketch the path from Wand's proposal to this solution, for it may be of some

interest to describe the method which we think could be applied in other situations. As

intuitions are rather subjective, and ours may not be yours, the section 1.1 can be skipped

whenever it does not help.

1.1 The method

Records are partial functions from a set L of labels to the set of values. We simplify the

problem by considering only three labels a, b and c. Records can be represented in three �eld

boxes, once labels have been ordered:

a b c

1

It can be understood as an \append" on association lists in lisp compared to the \with" operation which

should be understood as a \cons".

4 1 A SIMPLE SOLUTION WHEN THE SET OF LABELS IS FINITE

De�ning a record is the same as �lling some of the �elds with values. For example, we will

put the values 1 and true in the a and c �elds respectively and leave the b �eld unde�ned.

1 true

Typechecking means forgetting some information about values. For instance, it does not

distinguish two numbers but only remember them as being numbers. The structure of types

usually reects the structure of values, but with fewer details. It is thus natural to type record

values with partial functions from labels (L) to types (T), that is, elements of L �* T . We

�rst make record types total functions on labels using an explicitly unde�ned constant abs

(\absent"): L �! T [fabs g. In fact, we replace the union by the sum pre (T)+abs . Finally,

we decompose record types as follows:

L �! [1;Card (L)] �! pre (T) + abs

The �rst function is an ordering from L to the segment [1;Card (L)] and can be set once and

for all. Thus record types can be represented only by the second component, which is a tuple

of length Card (L) of types in pre (T) + abs . The previous example is typed by

1 true

�(pre (num) , abs , pre (bool))

A function :a reading the a �eld accepts as argument any record having the a �eld de�ned

with a value M , and returns M . The a �eld of the type of the argument must be pre (�) if �

is the type of M . We do not care whether other �elds are de�ned or not, so their types may

be anything. We choose to represent them by variables � and ". The result has type �.

:a : �(pre (�); �; ")! �

1.2 A formulation

We are given a collection of symbols C with their arities (C

n

)

n2IN

that contains at least an

arrow symbol ! of arity 2, a unary symbol pre and a nullary symbol abs . We are also given

two sorts type and �eld. The signature of a symbol is a sequence of sorts, written � for a

nullary symbol and �

1

: : :
 �

n

) � for a symbol of arity n. The signature S is de�ned by the

following assertions (we write S ` f :: � for (f; �) 2 S):

S ` pre :: type) �eld

S ` abs :: �eld

S ` �eld

card(L)

) type

S ` f

n

:: type

n

) type f 2 C n fpre ; abs ;�g

The language of types is the free sorted algebra T (S;V). The extension of ML with sorted

types is straightforward. We will not formalize it further, since this will be subsumed in

the next section. The inference rules are the same as in ML though the language of types

is sorted. The typing relation de�ned by these rules is still decidable and admits principal

typings (see next section for a precise formulation). In this language, we assume the following

primitive environment:

fg : � (abs ; : : :abs)

:a : � (�

1

: : : ; pre (�) : : : �

l

)! �

f with a = g : � (�

1

; : : :�

l

)! �! � (�

1

: : : ; pre (�); : : : �

l

)

Basic constants for �ML

fin

5

The constant fg is the empty record. The :a constant reads the a �eld from its argument,

we write r:a the application (:a) r. Similarly fr with a = Mg extends the records r on label

a with value M .

2 Extension to large records

Though the previous solution is simple, and perfect when there are only two or three labels

involved, it is clearly no longer acceptable when the set of labels is getting larger. This is

because the size of record types is proportional to the size of this set | even for the type of

the null record, which has no �eld de�ned. When a local use of records is needed, labels may

be fewer that ten and the solution works perfectly. But in large systems where some records

are used globally, the number of labels will quickly be over one hundred.

In any program, the number of labels will always be �nite, but with modular programming,

the whole set of labels is not known at the beginning (though in this case, some of the labels

may be local to a module and solved independently). In practice, it is thus interesting to

reason on an \open", i.e. countable, set of labels. From a theoretical point of view, it is the

only way to avoid reasoning outside of the formalism and show that any computation done

in a system with a small set of labels would still be valid in a system with a larger set of

labels, and that the typing in the latter case could be deduced from the typing in the former

case. A better solution consists in working in a system where all potential labels are taken

into account from the beginning.

In the �rst part, we will illustrate the discussion above and describe the intuitions. Then

we formalize the solution in three steps. First we extend types with record types in a more

general framework of sorted algebras; record types will be sorted types modulo equations.

The next step describes an extension of ML with sorts and equations on types. Last, we

apply the results to a special case, re-using the same encoding as for the �nite case.

2.1 An intuitive approach

We �rst assume that there are only two labels a and b. Let r be the record fa = 1 ; b = trueg

and f the function that reads the a �eld. Assuming f has type � ! �

0

and r has type �, f

can be applied to r if the two types � and � are uni�able. In our example, we have

� = � (a : pre (�) ; b : �

b

) ;

� = � (a : pre (num) ; b : pre (bool)) ;

and �

0

is equal to �. The uni�cation of � and � is done �eld by �eld and their most general

uni�er is:

�

� 7! num

�

b

7! pre (bool)

If we had one more label c, the types � and � would be

� = � (a : pre (�) ; b : �

b

; c : �

c

) ;

� = � (a : pre (num) ; b : pre (bool) ; c : abs) :

and their most general uni�er

8

<

:

� 7! num

�

b

7! pre (bool)

�

c

7! abs

We can play again with one more label d. The types would be

� = � (a : pre (�) ; b : �

b

; c : �

c

; d : �

d

) ;

� = � (a : pre (num) ; b : pre (bool) ; c : abs ; d : abs) :

6 2 EXTENSION TO LARGE RECORDS

whose most general uni�er is:

8

>

>

>

<

>

>

>

:

� 7! num

�

b

7! pre (bool)

�

c

7! abs

�

d

7! abs

Since labels c and d do not appear neither in the expressions r nor in f , it is clear that �elds

c and d behave the same, and that all their type components in the types of f and r are equal

up to renaming of variables (they are isomorphic types). So we can guess the component of

the most general uni�er on any new �eld ` simply by taking a copy of its component on the c

�eld or on the d �eld. Instead of writing types of all �elds, we only need to write a template

type for all �elds whose types are isomorphic, in addition to the types of signi�cant �elds,

that is those which are not isomorphic to the template.

� = � (a : pre (�) ; b : �

b

; 1 : �

1

) ;

� = � (a : pre (num) ; b : pre (bool) ; 1 : abs) :

The expression � ((` : �

`

)

`2I

; 1 : �

1

) should be read as

Y

`2L

�

` :

�

�

`

if ` 2 I

�

`

otherwise, where �

`

is a copy of �

1

�

The most general uni�er can be computed without developing this expression, thus allowing

the set of labels to be in�nite. We summarize the successive steps studied above in this �gure:

Labels a b c d 1

� pre (�) �

b

�

c

�

d

�

1

� pre (num) pre (bool) abs abs abs

� � � pre (num) pre (bool) abs abs abs

This approach is so intuitive that it seems very simple. There is a di�culty though, due

to the sharing between templates. Sometimes a �eld has to be extracted from its template,

because it must be uni�ed with a signi�cant �eld.

The macroscopic operation that we need is the transformation of a template � into a copy

�

0

(the type of the extracted �eld) and another copy �

00

(the new template). We regenerate

the template during an extraction mainly because of sharing. But it is also intuitive that

once a �eld has been extracted, the retained template should remember that, and thus it

cannot be the same. In order to keep sharing, we must extract a �eld step by step, starting

from the leaves.

For a template variable �, the extraction consists in replacing that variable by two fresh

variables � and , more precisely by the term ` : � ; . This is exactly the substitution

� 7! ` : � ;

For a term f(�), assuming that we have already extracted �eld ` from �, i.e. we have

f(` : � ;), we now want to replace it by ` : f(�) ; f(). The solution is simply to ask it to

be true, that is to assume the axiom

f(` : � ;) = ` : f(�) ; f()

for every given symbol f but �.

2.2 Extending a free algebra with a record algebra 7

2.2 Extending a free algebra with a record algebra

The intuitions of previous sections are formalized by the algebra of record terms. The algebra

of record terms is introduced for an arbitrary free algebra; record types are an instance. The

record algebra was introduced in [R�em90] and revisited in [R�em92b]. We summarize it below

but we recommend [R�em92b] for a more thorough presentation.

We are given a set of variables V and a set of symbols C with their arities (C

n

)

n2IN

.

Raw terms

We call unsorted record terms the terms of the free unsorted algebra T

0

(D

0

;V) where D

0

is the set of symbols composed of C plus a unary symbol � and a collection of projection

symbols (` : ;) j ` 2 L of arity two. Projection symbols associate to the right, that is

(a : � ; b : � ; �

0

) stands for (a : � ; (b : � ; �

0

)).

Example 1 The expressions

� (a : pre (num) ; c : pre (bool) ; abs) and � (a : pre (b : num ; num) ; abs)

are raw terms. In section 2.4 we will consider the former as a possible type for the record

fa = 1 ; c = trueg but we will not give a meaning to the latter. There are too many raw

terms. The raw term fa : � ; �g ! � must also be rejected since the template composed of

the raw variable � should de�ne the a �eld on the right but should not on the left. We de�ne

record terms using sorts to constraint their formation. Only a few of the raw terms will have

associated record terms.

Record terms

Let L be a denumerable set of labels. Let K be composed of a sort type , and a �nite collection

of sorts (row (L)) where L range over �nite subsets of labels. Let S be the signature composed

of the following symbols given with their sorts:

S ` � :: Row(;)) Type

S ` f

K

:: K

n

) K f 2 C

n

; K 2 K

S ` (`

L

: ;) :: Type
 Row(L [f`g)) Row(L) ` 2 L; L 2 P

fin

(L n f`g)

The superscripts are parts of symbols, so that the signature S is not overloaded, that is,

every symbol has a unique signature. We write D the set of symbols in S.

De�nition 1 Record terms are the terms of the free sorted algebra T (S;V).

Example 2 The left term below is a record term. On the right, we drew a raw term with

the same structure.

�

�

�

�

� @

@

@

@

� (a : ;)

;

�

�

�

� @

@

@

@

f

Type

g

Row(fag)

j j

� (b : ;)

fag

�

�

�

� @

@

@

@

�

�

�

�

�

� @

@

@

@

� (a : ;)

�

�

�

� @

@

@

@

f g

j j

� (b : ;)

�

�

�

� @

@

@

@

�

8 2 EXTENSION TO LARGE RECORDS

Script erasure

To any record term, we associate the raw term obtained by erasing all superscripts of symbols.

Conversely, for any raw term �

0

, and any sort � there is at most one record term whose erasure

is �

0

. Thus any record term � of sort � is completely de�ned by its erasure �

0

and the sort

�. In the rest of the paper we will mostly use this convention. Moreover we usually drop the

sort whenever it is implicit from context.

Example 3 The erasure of

�

�

a

;

: f

Type

(g

Type

) ;

�

c

fag

: f

Type

(�) ; h

Row(fa;cg)

��

is the raw term

� (a : f(g) ; c : f(�) ; h)

There is no record term whose erasure would be

� (a : f(b : g ; �) ; h)

Record algebra

The permutation and the extraction of �elds in record terms will be obtained by equations,

of left commutativity and distributivity respectively. Precisely, let E be the set of axioms

� Left commutativity. For any labels a and b and any �nite subset of labels L that do

not contain a and b,

a

L

: � ;

�

b

L[fag

: � ;

�

= b

L

: � ;

�

a

L[fbg

: � ;

�

� Distributivity. For any symbol f , any label a and any �nite subset of labels L that do

not contain a,

f

Row(L)

(fa

L

: �

1

; �

1

g; : : :fa

L

: �

p

; �

p

g) = a

L

: f

Type

(�

1

; : : :�

p

) ; f

Row(L[fag)

(�

1

; : : :�

p

)

With the raw notation the equations are written:

� Left commutativity. At any sort row (L), where L does not contain labels a and b:

a : � ; (b : � ;) = b : � ; (a : � ;)

� Distributivity. At any sort row (L) where L does not contain label a, and for any

symbol f :

f(fa : �

1

; �

1

g; : : :fa : �

p

; �

p

g) = a : f(�

1

; : : :�

p

) ; f(�

1

; : : :�

p

)

All axioms are regular, that is the set of variables of both sides of equations are always

identical.

Example 4 In the term

� (a : pre (num) ; c : pre (bool) ; abs)

we can replace abs by b : abs ; abs using distributivity, and use left commutativity to end

with the term:

� (a : pre (num) ; b : abs ; c : pre (bool) ; abs)

2.2 Extending a free algebra with a record algebra 9

In the term

� (a : pre (�) ; �)

we can substitute � by b : �

b

; c ; �

c

; " to get

� (a : pre (�) ; b : �

b

; c : �

c

; ")

which can then be uni�ed with the previous term �eld by �eld.

De�nition 2 The algebra of record terms is the algebra T (S;V) modulo the equational

theory E, written T (S;V)=E.

Uni�cation in the algebra of record terms has been studied in [R�em92b].

Theorem 1 Uni�cation in the record algebra is decidable and unitary (every solvable uni�-

cation problem has a principal uni�er).

A uni�cation algorithm is given in the appendix.

Instances of record terms

The construction of the record algebra is parameterized by the initial set of symbols C, from

which the signature S is deduced. The signature S may also be restricted by a signature S

0

that is compatible with the equations E, that is, a signature S

0

such that for all axioms r

and all sorts � of S

0

,

S

0

` r

l

:: � () S

0

` r

r

:: �

The algebra (T =E)j

�

S

0

and (T j

�

S

0

)=(Ej

�

S

0

) are then isomorphic, and consequently uni�cation

in (T j

�

S

0

)=(Ej

�

S

0

) is decidable and unitary, and solved by the same algorithm as in T =E. The

S

0

-record algebra is the restriction T (S;V)j

�

S

0

of the record algebra by a compatible signature

S

0

.

We now consider a particular instance of record algebra, where �elds are distinguished

from arbitrary types, and structured as in section 1. The signature S

0

distinguishes a constant

symbol abs and a unary symbol pre in C, and is de�ned with two sorts type and �eld :

S

0

` � :: �eld) type

S

0

` abs

�

:: �eld � 2 K

S

0

` pre :: type) �eld

S

0

` f

Type

:: type

%(f)

) type f 2 C n fabs ; pre g

S

0

` (`

L

: ;) :: �eld
 �eld) �eld ` 2 L; L 2 P

fin

(L n f`g)

The signature S

0

is compatible with the equations of the record algebra. We call record types

the S

0

-record algebra.

In fact, record types have a very simple structure. Terms of the sort Row(L) are either

of depth 0 (reduced to a variable or a symbol) or are of the form (a : � ; �

0

). By induction,

they are always of the form

(a

1

: �

1

; : : : a

p

; �

p

; �)

where � is either abs or a variable, including the case where p is zero and the term is reduced

to �. Record types are also generated by the pseudo-BNF grammar:

� ::= � j � ! � j ��

;

types

�

L

::= �

L

j abs

L

j a : ' ; �

L[fag

a =2 L rows

' ::= � j abs j pre (�) �elds

where �, �, and � are type variables, �, � and � are row variables and � and " are �eld

variables. We prefer the algebraic approach which is more general.

10 2 EXTENSION TO LARGE RECORDS

2.3 Extending the types of ML with a sorted equational theory

In this section we consider a sorted regular theory T =E for which uni�cation is decidable and

unitary. A regular theory is one whose left and right hand sides of axioms always have the

same set of variables. For any term � of T =E we write V(�) for the set of its variables. We

privilege a sort Type.

The addition of a sorted equational theory to the types of ML has been studied in [R�em90,

R�em92a]. We recall here the main de�nitions and results. The language ML that we study

is lambda-calculus extended with constants and a LET construct in order to mark some of

the redexes, namely:

M ::= Terms M, N

x Variable x, y

j c Constant c

j � x: M Abstraction

jM M Application

j let x = M inM Let binding

Letter W ranges over �nite set of variables. Type schemes are pairs noted 8W � � of a set of

variables and a term � . The symbol 8 is treated as a binder and we consider type schemes

equal modulo �-conversion. The sort of a type scheme 8W � � is the sort of � . Contexts as

sequences of assertions, that is, pairs of a term variable and a type. We write A the set of

contexts.

Every constant c comes with a closed type scheme 8W � � , written c : 8W � � . We write

B the collection of all such constant assertions. We de�ne a relation ` on A �ML � T and

parameterized by B as the smallest relation that satis�es the following rules:

x : 8W � � 2 A � : W ! T

(Var-Inst)

A `

S

x : �(�)

c : 8W � � 2 B � :W ! T

(Const-Inst)

A `

S

c : �(�)

A[x : �] `M : � � 2 T

(Fun)

A ` � x: M : � ! �

A `M : � ! � A ` N : �

(App)

A `M N : �

A `

S

M : � A[x : 8W � �] `

S

N : � W \ V(A) = ;

(Let-Gen)

A `

S

let x = M in N : �

A `M : � � =

E

�

(Equal)

A `M : �

They are the usual rules for ML except the rule EQUAL that is added since the equality on

types is taken modulo the equations E.

A typing problem is a triple of A � ML � T written A . M : � . The application of a

substitution � to a typing problem A . M : � is the typing problem �(A) .M : �(�), where

substitution of a context is understood pointwise and only a�ects the type part of assertions.

A solution of a typing problem A . M : � is a substitution � such that �(A) ` M : �(�).

It is principal if all other solutions are obtained by left composition with � of an arbitrary

solution.

Theorem 2 (principal typings) If the sorted theory T =E is regular and its uni�cation is

decidable and unitary, then the relation ` admits principal typings, that is, any solvable typing

problem has a principal solution.

Moreover, there is an algorithm that given a typing problem computes a principal solution

if one exists, or returns failure otherwise.

2.4 Typechecking record operations 11

An algorithm can be obtained by replacing free uni�cation by uni�cation in the algebra of

record terms in the core-ML type inference algorithm. A clever algorithm for type inference

is described in [R�em92b].

2.4 Typechecking record operations

Using the two preceding results, we extend the types of ML with record types assuming given

the following basic constants:

fg : � (abs)

:a : � (a : pre (�) ; �) ! �

f with a = g : � (a : � ; �) ! �! � (a : pre (�) ; �)

Basic constants for �ML

There are countably many constants. We write fa

1

= x

1

; : : :a

n

= x

n

g as syntactic sugar

for:

ffa

1

= x

1

; : : :a

n�1

= x

n�1

g with a

n

; x

n

g

We illustrate this system by examples in the next section.

The equational theory of record types is regular, and has a decidable and unitary uni-

�cation. It follows from theorems 2 and 1 that the typing relation of this language admits

principal typings, and has a decidable type inference algorithm.

3 Programming with records

We �rst show on simple examples how most of the constructions described in the introduction

are typed, then we meet the limitations of this system. Some of them can be cured by slightly

improving the encoding. Finally, we propose and discuss some further extensions.

3.1 Typing examples

A typechecking prototype has been implemented in the CAML language. It was used to

automatically type all the examples presented here and preceded by the # character. In

programs, type variables are printed according to their sort in S

0

. Letters �, � and � are

used for �eld variables and letters �, �, etc. are used for variables of the sort type . We start

with simple examples and end with a short program.

Simple record values can be built as follows:

#let car = fname = "Toyota"; age = "old"; id = 7866g;;

car :� (name :pre (string); id :pre (num); age :pre (string); abs)

#let truck = fname = "Blazer"; id = 6587867567g;;

truck :� (name :pre (string); id :pre (num); abs)

#let person = fname = "Tim"; age = 31; id = 5656787g;;

person :� (name :pre (string); id :pre (num); age :pre (num); abs)

Each �eld de�ned with a value of type � is signi�cant and typed with pre (�). Other �elds

are insigni�cant, and their types are gathered in the template abs . The record person can be

extended with a new �eld vehicle:

#let driver = fperson with vehicle = carg;;

driver :

� (vehicle :pre (� (name :pre (string); id :pre (num); age :pre (string); abs));

name :pre (string); id :pre (num); age :pre (num); abs)

This is possible whether this �eld was previously unde�ned as above, or de�ned as in:

12 3 PROGRAMMING WITH RECORDS

#let truck driver = fdriver with vehicle = truckg;;

truck driver :

� (vehicle :pre (� (name :pre (string); id :pre (num); abs)); name :pre (string);

id :pre (num); age :pre (num); abs)

The concatenation of two records is not provided by this system.

The sole construction for accessing �elds is the \dot" operation.

#let age x = x.age;;

age :� (age :pre (�); �) ! �

#let id x = x.id;;

id :� (id :pre (�); �) ! �

The accessed �eld must be de�ned with a value of type �, so it has type pre (�), and other

�elds may or may not be de�ned; they are described by a template variable �. The returned

value has type �. As any value, age can be sent as an argument to another function:

#let car info �eld = �eld car;;

car info :(� (name :pre (string); id :pre (num); age :pre (string); abs) ! �) ! �

#car info age;;

it :string

The function equal below takes two records both possessing an id �eld of the same type, and

possibly other �elds. For simplicity of examples we assume given a polymorphic equality

equal.

#let eq x y = equal x.id y.id;;

eq :� (id :pre (�); �) ! � (id :pre (�); �) ! bool

#eq car truck;;

it :bool

We will show more examples in section 3.3.

3.2 Limitations

There are two sorts of limitations, one is due to the encoding method, the other one results

from ML generic polymorphism. The only source of polymorphism in record operations is

generic polymorphism. A �eld de�ned with a value of type � in a record object is typed by

pre (�). Thus, once a �eld has been de�ned every function must see it de�ned. This forbids

merging two records with di�erent sets of de�ned �elds. We will use the following function

to shorten examples:

#let choice x y = if true then x else y;;

choice :� ! � ! �

Typechecking fails with:

#choice car truck;;

Typechecking error :collision between pre (string) and abs

The age �eld is unde�ned in truck but de�ned in car. This is really a weakness, since the

program

#(choice car truck).name;;

Typechecking error :collision between pre (string) and abs

which should be equivalent to the program

3.3 Flexibility and Improvements 13

#choice car.name truck.name;;

it :string

may actually be useful. We will partially solve this problem in section 3.3. A natural

generalization of the eq function de�ned above is to abstract over the �eld that is used for

testing equality

#let �eld eq �eld x y = equal (�eld x) (�eld y);;

�eld eq :(� ! �) ! � ! � ! bool

It is enough general to test equality on other values than records. We get a function equivalent

to the program eq de�ned in section 3.1 by applying �eld eq to the function id.

#let id eq = �eld eq id;;

id eq :� (id :pre (�); �) ! � (id :pre (�); �) ! bool

#id eq car truck;;

Typechecking error :collision between pre (string) and abs

The last example fails. This is not surprising since �eld is bound by a lambda in �eld eq, and

therefore its two instances have the same type, and so have both arguments x and y. In eq,

the arguments x and y are independent since they are two instances of id. This is nothing

else but ML generic polymorphism restriction. We emphasize that, as record polymorphism

is entirely based on generic polymorphism, the restriction applies drastically to records.

3.3 Flexibility and Improvements

The method for typechecking records is very exible: the operations on records have not

been �xed at the beginning, but at the very end. They are parameters that can vary in many

ways.

The easiest modi�cation is changing the types of basic constants. For instance, asserting

that f with a = g comes with type scheme:

f with a = g : � (a : abs ; �) ! �! � (a : pre (�) ; �)

makes the extension of a record with a new �eld possible only if the �eld was previously

unde�ned. This slight change gives exactly the strict version that appears in both attempts to

solve Wand's system [JM88, OB88]. Weakening the type of this primitive may be interesting

in some cases, because the strict construction may be easier to implement and more e�cient.

We can freely change the types of primitives, provided we know how to implement them

correctly. More generally, we can change the operations on records themselves. Since a de�ned

�eld may not be dropped implicitly, it would be convenient to add a primitive removing

explicitly a �eld from a record

n a : � (a : � ; �) ! � (a : abs ; �) ;

In fact, the constant f with a = g is not primitive. It should be replaced by the strict

version:

f with !a = g : � (a : abs ; �) ! �! � (a : pre (�) ; �) ;

and the n a constant, since the original version is the composition f n a with !a = g. Our

encoding also allows to type a function that renames �elds

rename

a b

: � (a : � ; b : " ; �) ! � (a : abs ; b : � ; �)

14 3 PROGRAMMING WITH RECORDS

The renamed �eld may be unde�ned. In the result, it is no longer accessible. A more primitive

function would just exchange two �elds

exchange

a$b

: � (a : � ; b : " ; �) ! � (a : " ; b : � ; �)

whether they are de�ned or not. Then the rename constant is simply the composition:

(n a) � exchange

a$b

More generally, the decidability of type inference does not depend on the speci�c signature

of the pre and abs type symbols. The encoding of records can be revised. We are going to

illustrate this by presenting another variant for type-checking records.

We suggested that a good type system should allow some polymorphism on records values

themselves. We recall the example that failed to type

#choice car truck;;

Typechecking error :collision between pre (string) and abs

because the age �eld was de�ned in car but unde�ned in truck. We would like the result to

have a type with abs on this �eld to guarantee that it will not be accessed, but common,

compatible �elds should remain accessible. The idea is that a de�ned �eld should be seen

as unde�ned whenever needed. From the point of view of types, this would require that a

de�ned �eld with a value of type � should be typed with both pre (�) and abs .

Conjunctive types [Cop80] could possibly solve this problem, but they are undecidable in

general. Another attempt is to make abs of arity 1 by replacing each use of abs by abs (�)

where � is a generic variable. However, it is not possible to write 8 � � �(�) where � ranges

over abs and pre . The only possible solution is to make abs and pre constant symbols

by introducing an in�x �eld symbol \." and write abs :� and pre :� instead of abs (�) and

pre (�). It is now possible to write 8 " � (":�). Formally, the signature S

0

is replaced by the

signature S

00

given below, with a new sort ag :

S

00

` � :: �eld) type

S

00

` abs

�

:: ag � 2 K

S

00

` pre

�

:: ag � 2 K

S

00

` :

�

:: ag
 type) �eld � 2 K

S

00

` f

Type

:: type

%(f)

) type f 2 C n fabs ; pre ; :g

S

00

` (`

L

: ;) :: �eld
 �eld) �eld ` 2 L; L 2 P

fin

(L n f`g)

Record constants now come with the following type schemes:

fg : � (abs :�)

:a : � (a : pre :� ; �) ! �

f with a = g : � (a : � ; �) ! �! � (a : ":� ; �)

Basic constants for �ML

0

It is easy to see that system �ML

0

is more general than system �ML; any expression typeable

in the system �ML is also typeable in the system �ML

0

: replacing in a proof all occurrences

of abs by abs :� and all occurrence of pre (�) by pre :� (where � does not appear in the

proof), we obtain a correct proof in �ML

0

.

We show the types in the system �ML

0

of some of previous examples. Flag variables are

written ", � and �. Building a record creates a polymorphic object, since all �elds have a

distinct ag variable:

3.3 Flexibility and Improvements 15

#let car = fname = "Toyota"; age = "old"; id = 7866g;;

car :� (name :".string; id :�.num; age :�.string; abs.�)

#let truck = fname = "Blazer"; id = 6587867567g;;

truck :� (name :".string; id :�.num; abs.�)

Now these two records can be merged,

#choice car truck;;

it :� (name :".string; id :�.num; age :abs.string; abs.�)

forgetting the age �eld in car. Note that if the presence of �eld age has been forgotten, its

type has not: we always remember the types of values that have stayed in �elds. Thus, the

type system �ML

0

rejects the program:

#let person = fname = "Tim"; age = 31; id = 5656787g;;

person :� (name :".string; id :�.num; age :�.num; abs.�)

#choice person car;;

Typechecking error :collision between num and string

This is really a weakness of our system, since both records have common �eld name and

id, which might be tested on later. This example would be correct in the explicitly typed

language QUEST [Car89]. If we add a new collection of primitives

n a : � (a : � ; �) ! � (a : abs :� ; �) ;

then we can turn around the failure above by explicitly forgetting label age in both records

#choice (car n age) person;;

it :� (age :abs.num; name :".string; id :�.num; abs.�)

#choice car (person n age);;

it :� (age :abs.string; name :".string; id :�.num; abs.�)

#choice (car n age) (person n age);;

it :� (age :abs.�; name :".string; id :�.num; abs.�)

A more realistic example illustrates the ability to add annotations on data structures and

type the presence of these annotations. The example is run into the system �ML

0

, where we

assume given an in�x addition + typed with num ! num ! num.

#type tree (") = Leaf of num

j Node of fleft :pre.tree ("); right :pre.tree (");

annot :".num; abs.unitg

#;;

New constructors declared :

Node :� (left :pre.tree ("); right :pre.tree ("); annot :".num; abs.unit) ! tree (")

Leaf :num ! tree (")

The variable " indicates the presence of the annotation annot. For instance this annotation

is absent in the structure

#let winter = 'Node fleft = 'Leaf 1; right = 'Leaf 2 g;;

winter : tree (abs)

The following function annotates a structure.

16 3 PROGRAMMING WITH RECORDS

#let rec annotation =

function

Leaf n ! 'Leaf n, n

j Node fleft = r; right = sg !

let (r,p) = annotation r in

let (s,q) = annotation s in

'Node fleft = r; right = s; annot = p+qg, p+q;;

annotation :tree (") ! tree (�) * num

#let annotate x = match annotation x with y, ! y;;

annotate :tree (") ! tree (�)

We use it to annotate the structure winter.

#let spring = annotate winter;;

spring :tree (")

We will read a structure with the following function.

#let read = function 'Leaf n ! n j 'Node r ! r.annot;;

read :tree (pre) ! num

It can be applied to the value spring, but not to the empty structure winter.

#read winter;;

Typechecking error :collision between pre and abs

#read spring;;

it :num

But the following function may be applied to both winter and spring:

#let rec left =

function

'Leaf n ! n

j 'Node r ! left (r.left);;

left :tree (") ! num

#left winter;;

it :num

#left spring;;

it :num

3.4 Extensions

In this section we describe two possible extensions. The two of them have been implemented

in a prototype, but not completely formalized yet.

One important motivation for having records was the encoding of some object oriented

features into them. But the usual encoding uses recursive types [Car84, Wan89]. An extension

of ML with variant types is easy once we have record types, following the idea of [R�em89],

but the extension is interesting essentially if recursive types are allowed.

Thus it would be necessary to extend the results presented here with recursive types.

Uni�cation on rational trees without equations is well understood [Hue76, MM82]. In the

case of a �nite set of labels, the extension of theorem 2 to rational trees is easy. The in�nite

case uses an equational theory, and uni�cation in the extension of �rst order equational

theory to rational trees has no decidable and unitary algorithm in general, even when the

original theory has one. But the simplicity of the record theory let us conjecture that it can

be extended with regular trees.

Another extension, which was sketched in [R�em89], partially solves the restrictions due

to ML polymorphism. Because subtyping polymorphism goes through lambda abstractions,

it could be used to type some of the examples that were wrongly rejected. ML type inference

with subtyping polymorphism has been �rst studied by Mitchell in [Mit84] and later by Mishra

and Fuh [FM88, FM89]. The LET -case has only been treated in [Jat89]. But as for recursive

3.4 Extensions 17

types, subtyping has never been studied in the presence of an equational theory. Although the

general case of merging subtyping with an equational theory is certainly di�cult, we believe

that subtyping is compatible with the axioms of the algebra of record types. We discuss

below the extension with subtyping in the �nite case only. The extension in the in�nite case

would be similar, but it would rely on the previous conjecture.

It is straightforward to extend the results of [FM89] to deal with sorted types. It is thus

possible to embed the language �ML

fin

into a language with subtypes �ML

�

. In fact, we

use the language �ML

0

�

that has the signature of the language �ML

0

for a technical reason

that will appear later. The subtype relation we need is closed structural subtyping. Closed

2

structural subtyping is de�ned relatively to a set of atomic coercions as the smallest E-

reexive (i.e. that contains =

E

) and transitive relation � that contains the atomic coercions

and that satis�es the following rules [FM89]:

� � � �

0

� �

0

� ! �

0

� � ! �

0

�

1

� �

1

; : : : �

p

� �

p

f(�

1

; : : : �

p

) � f(�

1

; : : :�

p

)

f 2 C n f!g

In �ML

0

�

, we consider the unique atomic coercion pre � abs . It says that if a �eld is de�ned,

it can also be view as unde�ned. We assign the following types to constants:

fg : � (abs :�

1

; : : :abs :�

l

)

:a : � (�

1

: : : ; pre :� : : :�

l

)! �

f with a = g : � (�

1

; : : :�

l

)! �! � (�

1

: : : ; pre :�; : : :�

l

)

Basic constants for �ML

0

�

If the types look the same as without subtyping, they are taken modulo subtyping, and are

thus more polymorphic. In this system, the program

let id eq = �eld eq id;;

is typed with:

id eq :fid :pre.�; �g ! fid :pre.�; �g ! bool

This allows the application modulo subtyping id eq car truck. The �eld age is implicitly for-

gotten in truck by the inclusion rules. However we still fail with the example choice person car

The presence of �elds can be forgotten, yet their types cannot, and there is a mismatch be-

tween num and string in the old �eld of both arguments. A solution to this failure is to use

the signature S

0

instead of S

00

. However the inclusion relation now contains the assertion

pre (�) � abs which is not atomic. Such coercions do not de�ne a structural subtyping

relation. Type inference with non structural inclusion has not been studied successfully yet

and it is surely di�cult (the di�culty is emphasized in [R�em89]). The type of primitives

for records would be the same as in the system �ML

fin

, but modulo the non-structural

subtyping relation.

Conclusion

We have described a simple, exible and e�cient solution for extending ML with operations

on records allowing some sort of inheritance. The solution uses an extension of ML with a

2

In [FM89], the structural subtyping is open. With open structural subtyping only some of the atomic

coercions are known, but there are potentially many others that can be used (opened) during typechecking of

next phrases of the program. Closed subtyping is usually easier than closed one.

18 A UNIFICATION ON RECORD TYPES

If � 2 V(�) ^ � 2 e n V ,

U ^ (� 7! �)(e)

--;

U ^ 9� � (e ^ � = �)

(Generalize)

U ^ a : � ; �

0

= abs = e

--;

U ^

V

8

<

:

abs = e

� = abs

�

0

= abs

U ^ a : � ; �

0

= b : � ; �

0

= e

---;

U ^ 9 �

V

8

>

<

>

:

b : � ; �

0

= e

�

0

= b : � ;

�

0

= a : � ;

(Mutate)

U ^ f(�

1

; : : : �

p

) = f(�

1

; : : :�

p

) = e

--;

U ^

V

(

f(�

1

; : : :�

p

) = e

�

i

= �

i

; i 2 [1; p]

(Decompose)

U ^ � = e ^ � = e

0

--;

U ^ � = e = e

0

(Fuse)

Figure 1: Rewriting rules for record-type uni�cation

sorted equational theory over types. An immediate improvement is to allow recursive types

needed in many applications of records.

The main limitation of our solution is ML polymorphism. In many cases, the problem can

be solved by inserting retyping functions. We also propose structural as a more systematic

solution. But it is not clear yet whether we would want such an extension, for it might not

be worth the extra cost in type inference.

Acknowledgments

I am grateful for interesting discussions with Peter Buneman, Val Breazu-Tannen and Carl

Gunter, and particularly thankful to Xavier Leroy and Benjamin Pierce whose comments on

the presentation of this article were very helpful.

A Uni�cation on record types

The algorithm is an adaptation of the one given in [R�em92b], which we recommend for

a more thorough presentation. It is described by transformations on uni�cands that keep

unchanged the set of solutions. Multi-equations are multi-sets of terms, written �

1

= : : : �

p

,

and uni�cands are systems of multi-equations, that is, multi-sets of multi-equations, with

existential quanti�ers. Systems of multi-equations are written U . The union of systems of

multi-equations (as multi-sets) is written U ^ U

0

and 9� � U is the existential quanti�cation

of � in U . Indeed, 9 acts as a binder and systems of multi-equations are taken modulo �-

conversion, permutation of consecutive binders, and 9� � U is assumed equal to U whenever

� is not free in U . We also consider both uni�cands U ^ 9� � U

0

and 9� � U ^ U

0

equal

whenever � is not in U . Any uni�cand can be written 9W � U where W is a set of variables,

and U do not contain any existantial.

The algorithm reduces a uni�cand into a solved uni�cand in three steps, or fails. The

�rst step is described by rewriting rules of �gure 1. Rewriting always terminate. A uni�cand

that cannot be transformed anymore is said completely decomposed if no multi-equation has

more than one non-variable terms, and the algorithm pursues with the occur check while

REFERENCES 19

instantiating the equations by partial solutions as described below, otherwise the uni�cand

is not solvable and the algorithm fails.

We say that a multi-equation e

0

is inner a multi-equation e if there is at least a variable

term of e

0

that appears in a non-variable term of e, and we write e

0

<� e. We also write

U

0

6<� U for

8e

0

2 U

0

; 8e 2 U; e

0

6<� e

The system U is independent if U 6<� U .

The second step applies the rule

If e ^ U 6<� e,

e ^ U

--;

e ^ ê(U)

(Replace)

until all possible candidates e have �red the rule once, where ê is the trivial solution of e that

sends all variable terms to the non-variable term if it exists, or to any (but �xed) variable

term otherwise. If the resulting system U is independent (i.e. U 6<� U), then the algorithm

pursues as described below; otherwise it fails and U is not solvable.

Last step eliminates useless existential quanti�ers and singleton multi-equations by re-

peated application of the rules:

If � =2 e ^ U ,

9� � (� = e ^ U)

--;

e ^ U

f�g ^ U

---;

U

(Garbage)

This always succeeds, with a system 9W � U that is still independent. A principal solution

of the system is

^

U , that is, the composition, in any order, of the trivial solutions of its multi-

equations. It is de�ned up to a renaming of variables in W . The soundness and correctness

of this algorithm is described in [R�em92b].

The Replace step is actually not necessary, and a principal solution can be directly read

from a completely decomposed form provided the transitive closure of the inner relation on

the system is acyclic (see [R�em92b] for details).

With the signature S

00

the only change to the algorithm is the addition of the mutation

rules:

a : � ; �

0

= pre = e

---;

V

8

>

<

>

:

pre = e

� = pre

�

0

= pre

a : � ; � =

1

:

2

= e

---;

9�

1

�

2

�

1

�

2

�

V

8

>

>

>

>

>

<

>

>

>

>

>

:

1

:

2

= e

� = �

1

:�

2

� = �

1

:�

2

1

= a : �

1

:�

1

2

= a : �

2

:�

2

Note that in the �rst mutation rule, all occurrences of pre in the conslusion (the right hand

side) of the rewriting rule have di�erent sorts and the three equations could not be merged

into a multi-equation. They surely will not be merged later since a common constant cannot

�re fusion of two equations (only a variable can). As all rules are well sorted, rewriting keeps

uni�cands well sorted.

References

[Ber88] Bernard Berthomieu. Une implantation de CCS. Technical Report 88367, LAAS,

7, Avenue du Colonnel Roche, 31077 Toulouse, France, d�ecembre 1988.

[Car84] Luca Cardelli. A semantics of multiple inheritance. In Semantics of Data Types,

volume 173 of Lecture Notes in Computer Science, pages 51{68. Springer Verlag,

1984. Also in Information and Computation, 1988.

20 REFERENCES

[Car86] Luca Cardelli. Amber. In Combinators and Functional Programming Languages,

volume 242 of Lecture Notes in Computer Science, pages 21{47. Spinger Verlag,

1986. Proceedings of the 13th Summer School of the LITP.

[Car89] Luca Cardelli. Typefull programming. In IFIP advanced seminar on Formal

Methods in Programming Langage Semantics, Lecture Notes in Computer Science.

Springer Verlag, 1989.

[Car91] Luca Cardelli. Extensible records in a pure calculus of subtyping. Private Com-

munication, 1991.

[CCH

+

89] Peter Canning, William Cook, Walter Hill, Walter Oltho�, and John C. Mitchell.

F-Bounded polymorphism for object oriented programming. In The Fourth In-

ternational Conference on Functional Programming Languages and Computer Ar-

chitecture, 1989.

[CH89] Guy Cousineau and G�erard Huet. The CAML Primer. BP 105, F-78 153 Le

Chesnay Cedex, France, 1989.

[CM89] Luca Cardelli and John C. Mitchell. Operations on records. In Fifth International

Conference on Mathematical Foundations of Programming Semantics, 1989.

[Cop80] Mario Coppo. An extended polymorphic type system for applicative languages.

In MFCS '80, volume 88 of Lecture Notes in Computer Science, pages 194{204.

Springer Verlag, 1980.

[Cur87] Pavel Curtis. Constrained Quanti�cation in Polymorphic Type Analysis. PhD

thesis, Cornell, 1987.

[FM88] You-Chin Fuh and Prateek Mishra. Type inference with subtypes. In ESOP '88,

volume 300 of Lecture Notes in Computer Science, pages 94{114. Springer Verlag,

1988.

[FM89] You-Chin Fuh and Prateek Mishra. Polymorphic subtype inference: Closing the

theory-practice gap. In TAPSOFT'89, 1989.

[HMT91] Robert Harper, Robin Milner, and Mads Tofte. The de�nition of Standard ML.

The MIT Press, 1991.

[HP90] Robert W. Harper and Benjamin C. Pierce. Extensible records without subsump-

tion. Technical Report CMU-CS-90-102, Carnegie Mellon University, Pittsburg,

Pensylvania, February 1990.

[Hue76] G�erard Huet. R�esolution d'�equations dans les langages d'ordre 1; 2; : : : ; !. Th�ese

de doctorat d'�etat, Universit�e Paris 7, 1976.

[Jat89] Lalita A. Jategaonkar. ML with extended pattern matching and subtypes. Mas-

ter's thesis, MIT, 545 Technology Square, Cambridge, MA 02139, August 89.

[JM88] Lalita A. Jategaonkar and John C. Mitchell. ML with extended pattern matching

and subtypes. In Proceedings of the 1988 Conference on LISP and Functional

Programming, 1988.

[LC90] Giuseppe Longo and Luca Cardelli. A semantic basis for QUEST. In Proceedings

of the 1990 Conference on LISP and Functional Programming, 1990.

REFERENCES 21

[Mil80] Robin Milner. A calculus of communicating systems. In Lecture Notes in Com-

puter Science, volume 230. Springer Verlag, 1980.

[Mit84] John C. Mitchell. Coercion and type inference. In Eleventh Annual Symposium

on Principles Of Programming Languages, 1984.

[MM82] Alberto Martelli and Ugo Montanari. An e�cient uni�cation algorithm. ACM

Transactions on Programming Languages and Systems, 4(2):258{282, 1982.

[OB88] Atsushi Ohori and Peter Buneman. Type inference in a database langage. In

ACM Conference on LISP and Functional Programming, pages 174{183, 1988.

[R�em89] Didier R�emy. Records and variants as a natural extension of ML. In Sixteenth

Annual Symposium on Principles Of Programming Languages, 1989.

[R�em90] Didier R�emy. Alg�ebres Tou�ues. Application au Typage Polymorphe des Objects

Enregistrements dans les Langages Fonctionnels. Th�ese de doctorat, Universit�e

de Paris 7, 1990.

[R�em92a] Didier R�emy. Extending ML type system with a sorted equational theory. Tech-

nical report, BP 105, F-78 153 Le Chesnay Cedex, BP 105, F-78 153 Le Chesnay

Cedex, 1992. To appear. Also in [R�em90], chapter 3.

[R�em92b] Didier R�emy. Syntactic theories and the algebra of record terms. Technical report,

BP 105, F-78 153 Le Chesnay Cedex, BP 105, F-78 153 Le Chesnay Cedex, 1992.

To appear. Also in [R�em90], chapter 2.

[Rey88] John C. Reynolds. Preliminary design of the programming language Forsythe.

Technical Report CMU-CS-88-159, Carnegie Mellon University, Pittsburgh, Penn-

sylvania, June 1988.

[Wan87] Mitchell Wand. Complete type inference for simple objects. In Second Symposium

on Logic In Computer Science, 1987.

[Wan89] Mitchell Wand. Type inference for record concatenation and multiple inheritance.

In Fourth Annual Symposium on Logic In Computer Science, pages 92{97, 1989.

[Wei89] Pierre Weis. The CAML Reference Manual. BP 105, F-78 153 Le Chesnay Cedex,

France, 1989.

