
Syntati Theories and the Algebra of Reord Terms

Reently, many type systems for reords have been proposed. For most of them, the types

annot be desribed as the terms of an algebra. In this ase, type heking, or type inferene

in the ase of �rst order type systems, annot be derived from existing algorithms.

We de�ne reord terms as the terms of an equational algebra. We prove deidability of

the uni�ation problem for reords terms by showing that its equational theory is syntati.

We derive a omplete algorithm and prove its termination. We de�ne a notion of anonial

terms and approximations of reord terms by anonial terms, and show that approximations

ommute with uni�ation. We also study generi reord terms, whih extend reord terms

to model a form of sharing between terms. We prove that the equational theory of generi

reord terms and that the orresponding uni�ation algorithm always terminates.

Th�eories syntaxiques et Alg�ebres d'enregistrements

De nombreux syst�emes de types pour les enregistrements ont �et�e propos�es r�eemment. Pour

la plupart d'entre eux les types ne peuvent pas être d�erits omme les termes d'une alg�ebre.

La v�eri�ation de types, ou la synth�ese de type dans le as des syst�emes de types d'ordre un,

ne peuvent alors plus être d�eduits d'algorithmes onnus.

Nous d�e�nissons les termes �a enregistrements omme les termes d'une alg�ebre

�equationnelle. Nous prouvons la d�eidabilit�e du probl�eme d'uni�ation pour les termes

d'enregistrements en montrant que sa th�eorie est syntaxique. Nous en d�eduisons un algo-

rithme omplet et prouvons sa terminaison. Nous d�e�nissons une notion de termes ano-

niques et l'approximation d'un terme d'enregistrement par des formes anoniques, et nous

montrons que les approximations ommutent ave l'uni�ation. Nous �etudions les termes

d'enregistrements g�en�eriques qui �etendent les termes d'enregistrements pour mod�eliser une

forme de partage entre les termes. Nous montrons que la th�eorie �equationnelle des termes

d'enregistrements g�en�erique est syntaxique ainsi que la terminaison de l'algorithme orres-

pondant.
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Introdution

Type systems for reords have been studied extensively in reent years. For most of them the

types of reords are no longer terms of an algebra. Consequently, results about uni�ation,

whih yield, for example, algorithms for type inferene in the ase of �rst order languages,

annot be reused, and the problems have to be studied again from the beginning. Type

inferene for ML an be deomposed into two steps. The �rst step deomposes ML programs

into uni�ation onstraints; it needs to know very little about the struture of types, as

opposed to the seond step whih resolves the uni�ation onstrains. The author desribed

a type system for polymorphi extensible reords that uses terms of an algebra modulo

equations for its types [R�em93℄. Type inferene for ML with sorted equational theory on

types has been studied in [R�em92a℄. The onstrution of the reord algebra and its properties

have been studied in [R�em90℄ but had not been published in English yet. Here, the results

of [R�em90℄ are reviewed and their presentation is improved | the study is also extended to

generi reord terms.

Here, reord terms are studied for themselves, independently any partiular use. However,

we motivate some of the onstrutions by their use as the types of a funtional language with

reord objets. In this ontext we temporarily all them \reord types". They enable a

natural extension of funtional languages with reords. One interest of extending funtional

languages with reords is to have funtions that an operate polymorphially on reords with

di�erent sets of �elds. Reords are produts of variable size with labeled omponents. The

key idea is that types must reet the struture of values and therefore reord types must be

produts of di�erent sizes with named omponents. Types of reords arry information on

all labels, but only a �nite number of labels have di�erent types, so type information an be

�nitely represented. More motivation an be found in [R�em93℄. Types of reords are often

de�ned by onstruting all �elds at one. This requires the introdution of a olletion of

symbols fa
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: g for all subsets of the set of labels (labels form a ountable set).

Reord types with di�erent sets of labels are ompletely inompatible types, whih makes

their uni�ation quite diÆult. On the ontrary, reord types are introdued with a symbol

�( ) and built �eld by �eld with symbols (a : ; ) , ending with onstant symbol abs when

there are no more �elds to de�ne. Two reords types with some ommon set of �elds, for

instane (a : � ; (b : � ; �)) , and (a : � ; abs ) an share some struture, namely the skeleton

� (a : ; ) . The �elds of reord types may be de�ned in any order, and ommutativity

equations are used to re-order �elds. Some other kind of equations are also be needed to

expand rows, for instane abs into (b : abs ; abs ) , so that the two reord types may be

uni�ed.

Reord types are thus types of an algebra taken modulo equations. Type inferene in ML

redues to uni�ation problems. Uni�ation in the empty theory is well known, but there is no

general algorithm for uni�ation in an arbitrary equational theory. For some theories, there

may not even exist suh algorithm, or the algorithm may be inherently ineÆient. Setion 1

realls de�nitions and a few results about equational theories. Sine the basi problem is

rewriting proofs of equality between terms to proofs of a ertain shape, we introdue a

notation of equality relation that allows the manipulation of sets of proofs that share the

same pattern.

Fortunately, there is a lass of equational theories, alled syntati theories, for whih

there exists a uni�ation algorithm quite similar to the free uni�ation algorithm of Martelli-

Montanari [MM82℄. There is no known algorithm to deide whether a theory is syntati.

The usual methods for proving syntatiness do not apply either. Setion 2 briey introdues

syntatiness, and develops a framework for studying syntatiness properties of equational

theories. The main result of this setion is theorem 1; it gives a suÆient ondition for
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syntatiness and is used in setion 3 to prove that the theory of reord terms is syntati.

The theory of reord terms is desribed in setion 3. It is shown to be syntati; this

automatially provides a omplete uni�ation semi-algorithm, and we prove its termination.

In fat reord terms have more struture than required by their use as types of reord objets.

In setion 4 we introdue anonial forms and show that reord terms an be approximated

by anonial forms. Approximations ommute with uni�ation. In setion 5 we study an

extension of reord terms with more struture, the generi reord terms, whih are used as

the types of projetions in the language Projetive ML [R�em92b℄.

The main results of this artile are theorem 6 in setion 3 and theorem 11 in setion 5,

whih states the deidability of uni�ation in the theories of reord terms and generi reord

terms, respetively. A seondary result is the existene of prinipal approximations for reord

terms and their ommutation with uni�ation, stated by theorem 9. The method used for

proving theorem 1 and lemma 35 is also interesting and an probably be reused in other

situations.

1 Equational theories

This setion introdues the main de�nitions and some known results about uni�ation in

equational theories.

1.1 Sorted Free Algebras

We are given a set K of atomi sorts, written �. Signatures are non-empty tuples of sorts,

written � for a one-element signature or �

1


 : : : �

p

) �

0

for longer ones. The integer p (zero

for a one element signature) is the arity of the signature. We are given a set of symbols C

and a mapping S from C to the set of signatures. The arity of a symbol f is the arity of its

signature, written %(f). The sort of a symbol is the right-most sort of its signature. Finally,

we are given a set of variables V with in�nitely many variables of every sort (V

�

)

�2K

. The

set of terms is the sorted free algebra T (V;S). The mapping S is also alled the signature of

the algebra. Variables are written with the letters �, �, , and Æ, and terms with the letters

� , �, and �.

The set of variables appearing in a term � is written V(�). We impliitly oere a term �

into the set of its variables V(�) when a set of variables is required. For instane, two terms

are said to be disjoint if their sets of variables are disjoint. The top symbol of a non-variable

term � , written Top (�), is the symbol at the empty ourrene in � . For any symbol f of

arity p, we write f(T

p

) for the set of terms whose top symbol is f . The sort of a term is the

sort of its top symbol. Two terms of the same sorts are said homogeneous.

Substitutions are sort-respeting mappings of �nite domains from the set of variables to

the set of terms. They naturally extend to mappings from terms to terms by ompatibility

with the struture of algebra. Substitutions are written with the letters �, �, and �. The

domain of a substitution �, written dom (�), is the set of variables that are not their own

images and the range of �, written im (�), is �(dom (�)). We say that a set of variables

is disjoint from a substitution if it is disjoint from both the domain and the range of the

substitution. We write � j

�

W for the restrition of substitution � to the set W , and � nW

for the restrition of � to the set V nW .

1.2 Equational theories

It is important to distinguish between the presentation of an equational theory and the

theory generated by the presentation. A presentation presentation of an equational theory
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is a set E of homogeneous pairs of terms alled axioms. A ongruene is an equivalene

that is ompatible with the struture of algebra. The E-equality on T generated by the

presentation E, written =

E

, is the smallest ongruene ontaining all possible substitutions

of the axioms. The equational theory equational theory T =E is the quotient of T byE. Several

presentations may de�ne the same equational theory (for instane, if one presentation extends

the other with a pair of terms that an be proved equal in the equational theory the �rst).

We write q for an arbitrary axiom and q

l

and q

r

for its �rst and seond projetion,

respetively. We often assume that presentations are losed under symmetry, and we write

q

�1

for the axiom (q

r

; q

l

).

1.3 Equality relations

The basi notion in studying equational theories, and in partiular syntatiness, is the

transformation of proofs. Equality relations are a formal way of manipulation proofs mathing

a ertain pattern. The orretness of a proof transformation an be formalized by the assertion

that one equality relation is a sub-relation of another.

We write �

=u

for the sub-term of � at the ourrene u. We write � [�=u℄ for the term

obtained from � by replaing the subterm at the ourrene u by �. Two terms � and � an

be proved equal in one step if there exists an axiom q, an ourrene u, and a substitution �

suh that �

=u

is �(q

l

) and �

=u

is �(q

r

). In this ase, we write � �! �. When more information

is needed, we may write � ���!

q=u

�. The former relation is symmetri, but the latter is not.

We formalize and extend this notation below, so that it an be rigorously used in proofs.

An equality step equality step is any sub-relation of �!. Arbitrary equality steps are

written ��!

X

, ��!

Y

, and ��!

Z

. An Equality relation is any omposition of equality steps. They

are sub-relations of =

E

. Arbitrary equality relations are written X , Y and Z.

We write for � the identity relation. We write X

Æ

and

Æ

��!

X

for equality steps, the union of

the relation X with the identity relation �. The omposition omposition equality relations

of two equality relations X and Y, written XY, relates any two terms � and � suh that there

exists a term � satisfying � X �^ � Y �. The union of two equality relations relates any two

terms that an be proved equal by either of the relations.

If K is a totally ordered set and (X

k

)

k2K

is a sequene of equality relations equal to the

identity after some rank N , we write

(X

k

)

k2K

and

k 2 K

�������!

X

k

for equality steps,

the omposition of all relations taken in the inreasing order. When X does not depend on

k we write X

K

(or

K

���!

X

) for short. We also write

X

�

for

[

q2IN

X

q

and

�

��!

X

for equality steps.

The E-equality is just

�

��!. For all terms � and � that are E-equal, there exists a sequene

of relations

i 2 [1; p℄

���������!

X

i

and a sequene of terms (�

i

)

i2[1;p�1℄

suh that

� ���!

X

1

�

1

: : : ���!

X

i

�

i

: : : �����!

X

p�1

�

p�1

���!

X

p

�
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Exhibiting these relations and these terms realizes a proof of � =

E

�. We say that the proof

mathes the relation

i 2 [1; p℄

���������!

X

i

.

Given two equality relations X and Y, we write X�Y whenever X is a sub-relation of

Y. Being a sub-relation an also be understood as set inlusion, viewing relations as their

graphs, as we often do.

1.4 Paths

Ourrenes are not enough preise. They de�ne a subterm of a term, but are unable to

tell anything about the symbols enountered on the way from the root to the subterm. A

diretion diretion is a pair (f; x), also written f

x

, of a symbol f and an integer x. A path

path is a �nite sequene of diretions. We say that a path u equal to (f

i

; x

i

)

i2[1;p℄

is a path

in � , or that � ontains the path u, if

1. the ourrene (x

i

)

i2[1;p℄

is an ourrene in � , and

2. for all k in [1; p℄, the symbol f

p

is at the ourrene (x

i

)

i2[1;p�1℄

.

We write �

=u

for the subterm of � at the ourrene (x

i

)

i2[1;p℄

. We write � for the empty path.

Two paths are disjoint disjoint if neither is a pre�x of the other. For instane, the sequene

(f; 1)(g; 2) is a path, abbreviated as f

1

g

2

. The assoiated ourrene is the sequene 12 of

length 2.

If q is the axiom (q

l

; q

r

) and u is a path, we write ���!

q=u

for the equality step that proves

� [�(q

l

)=u℄ =

E

� [�(q

r

)=u℄

for any term � ontaining u and any substitution �. If u is a path and � ���!

q=u

� a one step

proof, we get a proof �

=u

���!

q=�

�

=u

, alled the sub-proof at path u.

Paths are muh more preise than ourrenes; sometimes they are too preise. An

ourrene u an be onsidered as the set of all paths whose ourrenes are u. The union of

two equality steps ���!

q=u

and ���!

q=v

is an equality step. We write it �����!

q=u[v

. More generally, we

write ����!

q=U

for

[

u2U

���!

q=u

when U is a set of paths. By default, U is the set of all paths and an be omitted.

Proposition 1 For any disjoint sets of paths U and V , the two equality steps ��!

U

and ��!

V

ommute in T , that is

��!

U

��!

V

= ��!

V

��!

U

The following notations help in manipulating sets of paths:

- We identify a path u with the singleton fug.

- For any symbol f of non-zero arity p, we write for f for the set of paths f(f; x) j x 2

[1; %(f)℄g.

- For any integer p, we write p for the set of paths f(f; p) j f 2 C ^ %(f) � pg. For large

values of p, this set may be empty.
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- We write �� path for the path of length 1 omposed of the set of all diretions.

- If U and V are sets of paths, we write UV for the onatenation of U and V , omposed

of all the onatenations of any path of U with any path of V .

- We write U

Æ

Æ path set for the union (� [ U).

- If K is a totally ordered set and (U

k

)

k2K

is a sequene of path sets equal to � after

some rank N , we write (U

k

)

k2K

for the onatenation of all path sets (distint from �)

and taken in the inreasing order. When U does not depend on k and K is �nite, we

write U

K

for short. We write U

�

for the union

S

k2IN

U

k

and 1 for (�

�

).

For instane, (�1) denotes the set of all paths of length stritly greater than one.

The union of the equality steps ���!

q=u

and ���!

s=u

is an equality step; it is written �����!

q[s=u

.

That is, axioms are replaed by sets of axioms: If R is a subset of E, we write ����!

R=u

for the

equality step

[

q2R

�

���!

q=u

�

By default, R is E and an be omitted. For example, the expression

�

����!

�

k

1

Æ

��!

�

relates any

two terms that are provably equal with any number of steps at a path of length at least k

followed eventually by one step at the empty path.

The expression �!

Æ

�

���!

�1

���!

21

relates any two terms that are provably equal with one step

at the empty path followed by any number of steps at non-empty paths and one step in the

seond diret subterm.

1.5 Restrition of equality relations

In the following, we will be interested in transforming proofs inside a subset of T . This is

formalized by restrition of equality relations. The restrition of the equality step restrition

equality step ��!

X

to a subset H of T , noted ����!

Xj

�

H

is the relation ��!

X

\H

2

in H. The

restrition of the equality relation restrition equality relation X to a subset H of T , noted

X j

�

H, is the equality relation X \

�

���!

j

�

H

in H; it always relates terms that an be proved

equal in H. If H is a subset of T , if � and � are in T , and if all auxiliary terms are in H, we

say that the proof is a proof in Hproof in H.

The restrition to a set of termsH that is not losed underE-equality might be dangerous,

in the sense that ertain obvious properties in T might not hold in H. The reason is that

restrition of an equality relation as we de�ned it is not the restrition of the relation in the

usual meaning. If the set H is losed under E-equality, then the two notions oinide.

De�nition 1 A subset H of T is losed losed if it ontains all its subterms and satis�es

8�; � 2 H; 8u 2 dom (�); (�

=u

�! �) =) � [�=u℄ 2 H:

In the rest of the artile, we only allow the restrition of relations by losed subsets of T .

This does not imply that H is losed by E-equality (if � is not in H, then �[�

=u

℄ may not

be in H), but at least it has two interesting properties:

� A subproof of a proof in H at a de�ned ourrene is a proof in H.
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� Two steps at disjoint paths ommute.

These properties are highly desirable before any serious surgery on proofs an be done.

We write X �

H

Y for X j

�

H � Y j

�

H and we say that X is a sub-relation of Y in H. The

relation �

H

is reexive and transitive.

1.6 Sorts and equational theories

Sorting terms is a ommon way of restriting the set of admissible terms. The addition of

sorts to an equational theory an have two e�ets on uni�ation:

� Sine fewer terms an meet, diÆult ases may sometimes disappear.

� There are fewer proofs, whih an be either helpful or harmful. In some partiular

ases, all proofs between valid terms are valid proofs.

The �rst situation is unavoidable, beause sorts are aimed at restriting the set of terms.

It an only make uni�ation easier. The seond situation may have no e�et, if all proofs

between homogeneous terms are still permitted.

Let T be a set of terms, S a sort signature, and E an equational theory. We note T j

�

S

the restrition of T by the signature S. In general, axioms of E may violate the sorts. We

say that an axiom has sort � if both left and right hand sides of the axiom have sort �. We

write E j

�

S the set of well-sorted axioms for S.

We are interesting in the omparison of equality in the two theories (T j

�

S)=(E j

�

S) and

(T =E)j

�

S, that is, the omparison of the equality relations

�

�! \(T j

�

S)

2

�

�

and

�

��! \(T j

�

S)

2

.

In partiular, when these relations are equal, any uni�ation algorithm for T =E also solves

uni�ation in (T j

�

S)=(E j

�

S).

De�nition 2 We say that a signature � and a presentation E are ompatible ompatible if,

for all axioms q and all sorts �,

� ` q

l

:: � () � ` q

r

:: �:

Proposition 2 If the presentation E is regular and ompatible with the signature �, then

the algebras (T =E) j

�

� and (T j

�

�)=(E j

�

�) are isomorphi.

Proof: We show that

�

�! \(T j

�

�)

2

�

�

and

�

��! \ (T j

�

�)

2

are equal. That is, any proof in

T of equality between two terms in T j

�

� has all intermediate subterms in T j

�

�, whih is a

straight-forward onsequene of the property

8� 2 T j

�

�; 8� 2 T ; � �! � =) � 2 T j

�

�

For some axiom q and some ourrene u, �=u mathes q

l

, that is, there exists some sub-

stitution � suh that �

=u

is equal to �(q

l

). Sine � is in T j

�

�, both q

l

and the restrition

of substitution � to V(q

l

) are well sorted. The restrition of � to V(q

r

) is idential to its

restrition to V(q

l

) beause the theory is regular. Beause of ompatibility, q

r

has the same

sort as q

l

. Thus � [�(q

r

)=u℄, that is, � is well sorted.

The property is often used in one of the following two ases:

� The presentation E is well-sorted.

� The signature removes symbols in a way that is ompatible with E.
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2 Syntati theories

Syntati theories were introdued by C. Kirhner [Kir85℄.

Assumption In the rest of this artile, we assume that the theory is ollapse free, that is,

there is no axiom omposed of a variable on one side.

For any presentation E and any symbols f and g of respetive arities p and q, we write

E(f; g) the set E \ f(T

p

)� g(T

q

) of axioms whose top symbols are f and g, respetively.

De�nition 3 A pair of symbols (f; g) is syntati for the presentation E if, for all equal pairs

of terms of f(T ) � g(T ), there is a proof of their equality that uses at most one axiom at

the empty path. A presentation is syntati if all pairs of symbols are. A theory is syntati

syntati if there exists a syntati presentation of this theory suh that all sets E(f; g) are

�nite for all pairs of symbols (f; g).

For a presentation to be syntati is equivalent to

�

��! �

�

���!

�1

Æ

��!

�

�

���!

�1

:

Let H be a losed subset of T . We say that a presentation is syntati in Hsyntati in H if

�

��! �

H

�

���!

�1

Æ

��!

�

�

���!

�1

:

We write Synt (H) when the presentation is syntati in H.

The presentation ff =

E

g; g =

E

hg is not syntati, sine the pair (f; h) is not (but

the pair (f; g) is). However, the theory generated by the presentation is syntati sine the

addition of the axiom f =

E

h does not modify the theory and makes all pairs of symbols

syntati. The empty theory and the theory ff(g(�)) =

E

g(�)g are syntati, but the theory

ff(g(�)) =

E

f(�)g is not. Many examples an be found in [Kir85℄ and [KK89℄.

Some interesting questions are:

� Is a presentation syntati?

� Is a theory syntati?

� How to �nd a syntati presentation of a syntati theory.

� Minimalizing the set of axioms of a syntati presentation.

The de�nition of syntati theories is purely \syntati," but a semanti haraterization was

later found by C. Kirhner and F. Klay [KK89℄. T. Nipkow showed that some proof transfor-

mations by rewriting tehniques were losely related to syntati presentations [Nip89℄. All

these studies help in understanding the seond problem. A ommon instane of the third

problem is the ompletion of a presentation into one that is syntati; it has been thoroughly

addressed by C. Kirhner. Our interest is only the �rst problem.

2.1 SuÆient onditions for ommutativity

Proving that a presentation is syntati usually requires some rearrangement of equality

relations. The most frequent one is the ommutation of two equality steps. The suÆient

onditions �ven in setion 2.2 require ommutativity of onseutive equality steps of a ertain

shape. In general, two equality steps at disjoint paths ommute. Here, we study the ase

when one ourrene is pre�x of the other below.
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Lemma 3 Let H be a losed subset of T . Let q be an axiom suh that there is a variable �

appearing exatly one in q

r

at the ourrene u and appearing k times in q

l

at ourrenes

(u

j

)

j2[1;k℄

. Then for any axiom s and any ourrene v,

���!

q=�

����!

s=uv

�

H

j 2 [1; k℄

���������!

s=u

j

v

���!

q=�

:

Proof: A proof mathing ���!

q=�

����!

s=uv

is of the form

�(q

l

) ���!

q=�

�(q

r

) ����!

s=uv

�(q

r

)[�=uv℄:

Let � be q

r

=u

. From the proof

�(q

r

) ����!

s=uv

�(q

r

)[�=uv℄;

we an extrat the proof at u,

�(�) ���!

s=v

�(�)[�=v℄;

and apply it to all disjoint ourrenes (u

j

)

j2[1;q℄

of � in q

l

. Abbreviating �(�)[�=v℄ by �,

�(q

l

)

j 2 [1; k℄

���������!

s=u

j

v

�(q

l

)[�=u

j

℄

j2[1;k℄

:

The right hand side of the above proof is equal to (� n f�g+(� 7! �))(q

l

). Applying axiom q

at ourrene � gives (� n f�g+ (� 7! �))(q

r

), whih is (� n f�g)(q

r

)[�=u℄ sine u is the only

ourrene of � in q

r

(the linearity ondition of q

r

in � is needed here). By expansion of �,

this simpli�es into �(q

r

)[�=uv℄.

Corollary 4 Let H be a losed subset of T . If q is a ollapse-free axiom

1

suh that there

exists one variable appearing exatly one in q

r

at the ourrene u, then for any axiom s,

���!

q=�

�����!

s=u1

�

H

�

�����!

s=�1

���!

q=�

Proof: It suÆes to notie that the ourrenes (u

j

)

j2[1;q℄

annot be empty.

Corollary 5 Let H be a losed subset of T . If the presentation is ollapse-free and all axioms

are linear (regular and suh that a variable ours at most one in eah side of axioms) of

depth less or equal to n, then

���!

q=�

������!

s=�

n

1

�

H

�����!

s=�1

���!

q=�

:

2.2 SuÆient onditions for syntatiness

Lemma 6 The property Synt (H) is equivalent to

�!

�

�

���!

�1

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

:

1

This ondition is important here. Though it is assumed to be true throughout this setion, it was not

needed for the preeding lemma.
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Proof: The above ondition is needed, sine it is an instane of the ondition Synt . We now

assume the ondition and prove Synt (H), that is,

�

��! �

�

���!

�1

Æ

��!

�

�

���!

�1

:

The equality relation

�

��! an be deomposed into

[

k2IN

�

�

���!

�1

�

�!

�

�

���!

�1

�

k

�

:

The inlusion

�

���!

�1

�

�!

�

�

���!

�1

�

k

�

�

���!

�1

Æ

��!

�

�

���!

�1

is shown for all k by an easy indution on k.

Proposition 7 A suÆient ondition for syntatiness in H is

^

8

>

>

<

>

>

:

�!

�

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

;

�!

�

���!

�1

�

H

�

���!

�1

Æ

��!

�

:

This ondition was named �-onuene by Claude Kirhner and proved in [Kir85℄. The proof

is very simple.

Proof: Under the given assumptions, the inlusion

�!

�

k

���!

�1

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

for all k is easily shown by indution on k. By taking the union over all integers, we get

[

k2IN

�!

�

k

���!

�1

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

That is,

�!

�

�

���!

�1

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

We onlude by the lemma 6.

This proposition is omposed of two onditions. The �rst is usually heked for all possible

overings of axioms. The seond is ommutativity, and might be dedued from lemma 3.

However, the lemma only applies if axioms are of depth at most one. For instane, if one

member of an axiom is of depth two, ommutativity might not hold when one ourrene is

pre�x of the other. If axioms are ollapse-free, linear, and of depth at most two, then the

ommutation

�!

�

����!

��1

�

�

����!

��1

Æ

��!

�

holds. Theorem 1 below generalizes proposition 7 to this ase.

Remark 1 For any inreasing sequene (H

n

)

n2IN

of losed subsets of T ,

(8n 2 IN; X �

H

n

Y) implies X �

H

Y where H =

[

n2IN

H

n

In partiular this applies to the property Synt .
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De�nition 4 Let H be a losed subset of T . An ordering < is ompatible with the equality

relation on H if,

� for any term � in H and any subterm � of � we have � < � ,

� for all terms � , �, �

0

and �

0

in H, we have

�

�

Æ

��! �

0

^ �

Æ

��! �

0

^ � < �

�

=) �

0

< �

0

:

An equational theory is strit if a term is never E-equal to one of its subterms. If there exists

a ompatible ordering, the theory is neessarily strit. The last ondition is in fat equivalent

to

(� =

E

�

0

^ � =

E

�

0

) =) (� < � , � ;< �

0

)

In the following, we will always de�ne ompatible orderings by the means of a funtion from

terms to an ordered set, namely IN ; these funtions will always be onstant on E-equality

lasses.

Theorem 1 Let H be a losed subset of T with a well founded ompatible ordering, and suh

that

�!

�

����!

��1

�

H

�

���!

�1

Æ

��!

�

(h

1

)

�!

�

�

Æ

��!

k

�

k2D

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

(h

2

)

Then Synt (H).

Proof: For any integer n, let H

n

be the subset of H omposed of all terms that do not start

any dereasing sequene of length greater than n. All these sets are losed under ���!

j

�

H

. In

partiular, they are losed subsets of T , so properties (h

1

) and (h

2

) are valid in any (H

n

).

Any term smaller than a term in H

n+1

is in H

n

. The sequene is inreasing and its limit is

H, thus Synt (H) holds if Synt (H

n

) holds for any n. We show Synt (H

n

) by indution on n;

in fat, by lemma 6, it is enough to show that �!

�

�

���!

�1

�!

�

�

H

n

�

���!

�1

Æ

��!

�

�

���!

�1

holds.

The set H

0

is omposed of variables and onstant symbols. Thus, the only instane of

the premise is �!

�

�!

�

, for whih the inlusion is satis�ed by the hypothesis (h

2

).

Let us assume the property Synt (H

n

) and prove Synt (H

n+1

). Let D be the set of all

diretions. A relation

�

���!

�1

in H

n+1

an be written as the omposition

�

�

���!

k1

�

k2D

sine disjoint ourrenes ommute. For eah diretion k in D, the subproof at k is in H

n

.

Sine Synt (H

n

), it an be rewritten in H

n

so that it mathes

�

���!

�1

Æ

��!

�

�

���!

�1

:

Re-assembling all subproofs, we get a proof mathing

�

�

����!

k�1

Æ

��!

k�

�

����!

k�1

�

;

k2D
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whih is a proof in H

n+1

. It an be reordered as

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

:

k2D

We have shown that

�

���!

�1

�

H

n+1

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

:

k2D

That is,

�

���!

�1

�

H

n+1

�

�

����!

��1

�

�

Æ

��!

k

�

k2D

�

�

����!

��1

�

:

Composing the step at the root on both sides, and then using (h

1

) and its symmetri image,

we get

�!

�

�

���!

�1

�!

�

�

H

n+1

�

���!

�1

Æ

��!

�

�

Æ

��!

k

�

k2D

Æ

��!

�

�

���!

�1

We onlude by a simple ase analysis, using (h

2

).

Proposition 7 and theorem 1 have two onditions. The �rst is a ommutativity ondition,

and in general ould be dedued from orollary 4. The seond has to be proved by hand.

However if the number of axioms is �nite, the number of possible ombinations of equality

steps mathing the premise is also �nite. Thus it is possible to study eah of them separately.

2.3 Example

The theory Cg where the only axiom is left ommutativity is well known to be syntati. We

give a very short proof below. The axiom is:

x� (y � z) = y � (x� z)

The size of terms is unhanged by E-equality, whih also de�nes a ompatible ordering on T .

The ondition h

1

is satis�ed sine the axiom is linear and the ourrene of non-variable terms

is at most 1 (orollary 5). Two suessive appliations of the axiom at the empty ourrene

annihilate eah other. Sine �!

�

�!

1

� ��!

21

�!

�

, the only remaining ase to onsider in order to

show (h

2

) is �!

�

�!

2

�!

�

, whih is equal to �!

2

�!

�

�!

2

. The proof shema for this relation and its

redution is shown by the diagram below (any yle is a subset of the identity relation).

� � (�� ( � Æ))���

2

���

-

� � ( � (�� Æ))

�

�

�

�

�� �

�

�

�

�R

�� (� � ( � Æ))  � (� � (�� Æ))

I�

�

2

�

� 	�

�

2

�

�

�� ( � (� � Æ))

�

���

�

���  � (�� (� � Æ))
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2.4 Uni�ation in equational theories

In this setion we desribe how uni�ation an be solved in syntati theories. The problem of

uni�ation is, given a set of terms, to �nd a most general substitution that identi�es all terms

of the set. In fat, it is simpler to manipulate multi-sets of terms, alled multi-equations.

Sine the satis�ability of a multi-equation is often redued to the satis�ability of several

multi-equations, it is also onvenient to generalize uni�ation problems to onjuntions of

multi-equations alled uni�ands.

Uni�ands are either multi-equations or onjuntion or disjuntion of uni�ands. They

are written with letters U and V . Conjuntion and disjuntion of uni�ands are written U^V

and U _ V , respetively. The set of solutions of a onjuntion (respetively disjuntion) of

uni�ands is the intersetion (respetively union) of the sets of solutions of the uni�ands.

Thus it is possible to onsider uni�ands equal modulo assoiativity and ommutativity of

^ and _ and modulo distributivity of one over the other. Then uni�ands an always be

written as disjuntions of onjuntions of multi-equations.

It is also very onvenient to restrit the set of solutions of a uni�and U by some set of

variables W . We write 9W � U for the uni�and omposed of these restritions. The 9 ats

as a binder, and we onsider uni�ands equal modulo renaming of variables bound by 9's,

exhange of onseutive 9's, and removal of vauous 9's. It is onvenient to add a uni�and ?

that has no solution and whih is used to represent failure. Uni�ands were �rst introdued

by C Kirhner [Kir85℄ and existential uni�ands were used later by J.-P. Jouannaud and

C. Kirhner [KJ90℄. A more abstrat presentation of uni�ands an be found in [R�em92b℄.

A omplete set of uni�ers for a uni�and U is a set S of solutions of U suh that any

other solution is an instane of at least one solution of S. An equational theory is unitary

unifying if any solvable onjuntion of multi-equations admits a omplete set of solutions

omposed of a unique substitution. A general method for �nding omplete set of uni�ers of

a uni�and U is to transform U into a simpler uni�and that has exatly the same solutions.

Thus, solving a uni�ation problem is done by building a hain of equivalent uni�ands, eah

being obtained by rewriting the preeding one with a very simple rule.

Uni�ation in the empty theory may be desribed by the rules of �gure 1. Fusion merges

� _= e ^ � _= e

0

------------------------------------------------------------------------------------------------------------------------------------------

g

�

� _= e _= e

0

(Fuse)

f(�

1

; : : : �

p

) _= f(�

1

; : : : �

p

) _= e

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

�

1

_= �

1

^ : : : �

p

_= �

p

^ f(�

1

; : : : �

p

) _= e

(Deompose)

f(�

1

; : : : �

p

) _= g(�

1

; : : : �

q

) _= e

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

?

(Fail)if f 6= g,

(� 7! �)(e)

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

9� � (e ^ � _= �)

(Generalize)if � 2 V(e) n e n V(�) ^ � =2 V,

Figure 1: Rules for uni�ation in the empty theory

two multi-equations that share a ommon term variable into a single multi-equation. Collision

redues a multi-equation that ontains two terms with di�erent top symbols to the empty

uni�and ?. Deomposition splits a multi-equation that ontains two non-variable terms

with the same top symbol into a the onjuntion of multi-equations omposed of equations

between the orresponding subterms. Generalization replaes a non-empty ourrene of a

non-variable term � in e by a variable � and adds the equation � _= � . Generalization is



2.4 Uni�ation in equational theories 13

used to redue the height of terms in a uni�and and prevent dupliation of terms by other

rules. For instane, if the right terms premise in rule Deompose were not variables, the

onlusion would dupliate terms, whih ould prevent termination. It would be also possible

to fator rules Deompose and Generalize into a single rule that would not require any

term of the premise to be small. Below, we use an unrestrited form of generalization where

� may be a variable, alled U-Generalize.

The four rules above applied in any order redue any system of multi-equation to a

ompletely deomposed one. A ompletely deomposed uni�and is one for whih no multi-

equation has more than one non-variable term. An equational theory is strit if a term an

never be a sub-term of an E-equal term. In a strit theory, it is immediate to write an

algorithm that tells whether a ompletely deomposed uni�and is solvable, and that returns

a prinipal uni�er if one exists. See [R�em92b℄ for more details or [Kir85, R�em90℄ for a more

thorough but slightly di�erent presentation.

In equational theories, deomposition only �res for some pairs of symbols, alled deom-

posable symbols. Collision �res only when the top symbols are inompatible. To be omplete,

there must be other transformations, alled mutations, that together with previous rules re-

due any uni�and into a ompletely deomposed uni�and. Mutation may not exist if there

is no omplete set of rules that an be added to fusion and deomposition and that terminate

on any input with a ompletely deomposed system. Mutation often introdues disjuntion

of uni�ands.

Syntati theories have a very simple mutation that, moreover, an be automatially

dedued from a syntati presentation of the theory. Multi-equations an always be redued

by looking at the top symbol of terms, whih leads to eÆient algorithms that are similar to

the Martelli-Montanari uni�ation algorithm in the empty theory [MM82℄.

Mutation in syntati theories

In syntati theories, the mutation is a generalization of deomposition and is derived from

the form of the axioms.

De�nition 5 Let E be a syntati theory. Let � and � be two non-variable terms. We de�ne

deomposition of the equation � _= � to be the following system, written De (� _= �):

^

i2[1;p℄

�

�

=i

_= �

=i

�

We de�ne generalization of the equation � _= � to be the disjuntion of systems

_

q2E(f;g)

0

�

9V(q) �

^

8

<

:

�

i

_= q

l

=i

i 2 [1; p℄

�

i

_= q

r

=j

j 2 [1; q℄

1

A

written Gen (� _= �), where the axioms of E(f; g) have been renamed so that they do not

share any variable with the terms � and �. We de�ne mutation of the equation � _= � to be

the disjuntion of systems

_

(

Gen (� _= �) _De (� _= �) if Top (�) = Top (�)

Gen (� _= �) otherwise

This system is written Mut (� _= �).

Theorem 2 If E is a syntati presentation and � and � are two non variable terms, then

� _= �

------------------------------------------------------------

g

�

Mut (� _= �)
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Proof: The following is proved is [Kir85℄. We �rst show that the redution is orret. Let

� and � be two terms and � a solution of the equation � _= �. We show that � satis�es

Mut (� _= �). We use the following remark

8�; � 2 T ; �

�

���!

�1

� =)

^

(

Top (�) = Top (�)

8i 2 [1; %(Top (�))℄; �

=i

=

E

�

=i

Sine the theory is syntati, there exists a proof of the form

��

�

���!

�1

�

0

Æ

��!

�

�

0

�

���!

�1

��:

If there is no step at the empty ourrene, then the top symbols of � and � must be equal,

and the system De (� _= �) is satis�ed by �. If one axiom q is used at the empty ourrene,

it must be in E(Top (�

0

);Top (�

0

)), and there must be a substitution � of domain V(q) for

whih

�

0

= �(q

l

) and �

0

= �(q

r

)

The substitution � j

�

V(q) + � is a solution of the system

^

8

<

:

�

i

_= q

l

=i

i 2 [1; p℄

�

i

_= q

r

=j

j 2 [1; q℄

It follows from the remark that q is in E(Top (�);Top (�)) and � is a solution of Gen (� _= �).

Conversely, let us assume that � is a solution of Mut (� _= �). If it is a solution of

Gen (� _= �), then there is an axiom q of E(Top (�);Top (�)) and a substitution � suh that

the substitution � j

�

V(q) + � is a solution of the system

^

(

�

i

_= q

l

=i

i 2 [1; p℄

�

i

_= q

r

=j

j 2 [1; q℄

By omposing the proofs of these equalities we get

(� j

�

V(q) + �)(�)

�

��! (� j

�

V(q) + �)(q

l

)

(� j

�

V(q) + �)(�)

�

��! (� j

�

V(q) + �)(q

r

)

whih simpli�es to

�(�)

�

��! �(q

l

) and �(�)

�

��! �(q

r

)

Thus �(�)

�

��! �(�). The ase where the top symbols are equal and � is a solution of

De (� _= �) is immediate.

To get an algorithm for solving uni�ation, the existene of mutation is not suÆient; the

termination of mutation together with the other rules must also be proved.

Remark 2 The presentation of left ommutativity in the previous setion is syntati, but

the orresponding mutation does not provide a uni�ation algorithm sine the mutation itself

might not terminate. A solution is proposed in [Kir85℄.
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3 Reord terms

Reord terms, used as types of reord objets, enable a natural extension of funtional lan-

guages with reords. Reords are produts of variable size with labeled omponents. The

key idea is that types must reet the struture of values and therefore reord types must be

produts of di�erent sizes with named omponents. We �rst study a simpli�ation of reord

terms obtained by forgetting labels and aessing omponents by position instead of by name:

these strutures are in�nitary tuples.

3.1 In�nitary tuples

Let C be a set of symbols given with their arities (C

n

)

n2IN

. Let K be omposed of

� a sort Type and

� a ountable olletion of sorts (Row(n))

n2IN

.

Let � be the signature omposed of the following symbols, given with their sorts:

� ` � :: Row(0)) Type

� ` f

�

:: �

%(f)

) � f 2 C; � 2 K

� ` �

n

:: Type 
Row(n+ 1)) Row(n) n 2 IN

Let E be the set of axioms

f

Row(n)

(�

1

�

n

�

1

; : : : �

p

�

n

�

p

) = f

Type

(�

1

; : : : �

p

) �

n

f

Row(n+1)(�

1

;:::�

p

)

(f . n)

All axioms are ollapse-free, regular and linear.

Let V be a denumerable set of variables with in�nitely many variables of every sort.

De�nition 6 The algebra of in�nitary tuples is the equational theory T (�;V)=E.

The following two in�nitary tuples are E-equal

�

j

�

0

�

� �

�

f

Type

g

Row (1)

j j

j

� �

1

�

� �

�

� 

�

j

�

0

�

� �

�

f

Type

�

1

j

j
�

� �

�

� g

Type

g

Row (1)

j j

j

� 

Theorem 3 The presentation E is syntati.

Proof: Lemma 7 is not suÆient beause the ommutativity ondition is not satis�ed; for

instane the proof

f

Type

(�

i

)

I

�

n

f

Row(n)

�

(�

i

)

I

�

n+1

(

i

)

I

�

	�

�

�

�

� �

�

2

�

�R

f

Row(n+1)

�

�

i

�

n

(�

i

�

n+1



i

)

�

I

f

Type

(�

i

)

I

�

n

�

f

Type

(�

i

)

I

�

n+1

f

Row(n+1)

(

i

)

I

�
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where indexing expression

i2I

is written

I

for short, annot start with a step at the empty

ourrene.

Of ourse, this proof is subsumed by the proof below for reord terms. In partiular,

theorem 1 an be used, leading to a shorter proof, but it would require ontrolling terms with

an ordering (as in the next setion). In fat there would be no instane of the relation

�!

�

�

Æ

��!

k

�

k2IN

�!

�

We give a diret proof. In fat we show that

�!

�

n

���!

�1

�!

�

�

n

���!

�1

by indution on n. We will use the following remarks, whih are immediate onsequenes of

the form of the axioms.

� Two suessive steps at the empty ourrene must be inverse and they annihilate eah

other. This solves the initial ase (n is zero).

� Two appliations of axioms at disjoint ourrenes, or at ourrenes suh that one is

pre�x of the other but at least too diretions shorter, ommute.

� A proof between two terms with the same top symbol annot have exatly one step at

the empty ourrene.

Let us assume that the property is true for n and onsider a proof mathing

�!

�

n+ 1

������!

�1

�!

�

We onsider the subproof of

n+ 1

������!

�1

at a diretion i.

If it does not start or end with an appliation of an axiom at the empty ourrene,

then this equality step ommutes with one of the equality steps at the empty ourrene in

the original proof. Thus the original proof is of the form �!

�

n

���!

�1

�!

�

1

���!

�1

, and by indution

hypothesis it is also of the form

n

���!

�1

1

���!

�1

.

Otherwise, the subproof at ourrene i has at least two steps at the empty ourrene;

thus it mathes

�!

�

p

���!

�1

�!

�

q

��!

1

for some p and q whose sum is stritly smaller than n. By the indution hypothesis, this

relation is a sub-relation of

p

���!

�1

�!

�

q

��!

1

Re-omposing this with the original proof, the problem redues to previous ase.

The mutation for the in�nitary tuple algebra:

f

Row(n)

(�

i

)

i2[1;p℄

_= (��

n

) _= e



g

�

9 (�

i

; 

i

)

i2[1;p℄

�

V

8

>

>

>

>

>

<

>

>

>

>

>

:

(��

n

) _= e

� _= f

Type

(�

i

)

i2[1;p℄

 _= f

Row(n+1)

(

i

)

i2[1;p℄

�

i

_= �

i

�

n



i

for i 2 [1; p℄

Mutate

For all other pairs of terms (�; �), if they have idential top symbols, they are deomposable,

otherwise they produe a ollision. Mutation rules an be generalized as shown above.
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Theorem 4 Uni�ation in the in�nitary tuple algebra is deidable and unitary unifying.

Proof: The theory is strit (we an �nd a ompatible ordering as we will do below for reord

terms). Therefore, the rules of mutation, deomposition, ollision, fusion and generalization

applied any order form a omplete semi-algorithm for uni�ation. It is unitary sine mutation

does not introdue any disjuntion. It remains to prove termination.

Let T

n

be the subsets of T restrited to the sorts Type and Row(k) for k smaller or equal

to n. Generalized deompositions and fusion are stable on the sets T

n

, and for a system of

uni�ands they derease in the following lexiographi ordering:

� the number of symbols f

Row(n)

in the lexiographi order of inreasing n,

� the number of all other symbols,

� the sum of heights of terms of the uni�and,

� the number of multi-equations.

This guarantees the termination of the rewritting proess.

Remark 3 The introdution of an in�nite olletion of opies of the original set of symbols

C might be onsidered luxurious, while two opies Type and Row would seem suÆient. The

main symbol � would have signature Type 
Row ) Row. The axioms would be

f

Row

(�

1

�

n

�

1

; : : : �

p

�

n

�

p

) = f

Type

(�

1

; : : : �

p

) � f

Row(�

1

;:::�

p

)

But even if the presentation remained syntati, termination ould not be guaranteed as above.

Remark 4 We an onsider the set of raw terms, that is, the algebra T

0

built from the all

symbols C extended with a binary symbol � and a unary symbol �. To any term � in T there

orresponds a raw term obtained from � by removing all supersripts of symbols. Conversely,

for any raw term �

0

and any sort �, there is at most one term of sort � whose erasure is �

0

.

This allows us to de�ne a term of T by giving its erasure and its sort.

3.2 Reord terms

We generalize the theory of in�nitary tuples to the theory of reord terms, where omponents

are named. We desribe the theory and show that it is syntati and that uni�ation is

deidable.

The algebra of reord terms is de�ne relatively to a olletion of symbols given with their

arities (C

n

)

n2IN

. Let L be a ountable set of labels. Labels are written a, b,  and `, �nite

subset of L are written L and K the set of all of them is written P

f

(L). We also write a:L

for fag [ L.

Let K be the set omposed of

� a sort Type, and

� a �nite olletion of sorts (Row(L)

L2P

f

(L)

.

Let � be the signature omposed of the following symbols given with their sorts:

� ` � :: Row(;)) Type

� ` f

�

:: �

%(f)

) � f 2 C; � 2 K

� ` (`

L

: ; ) :: Type 
Row(`:L)) Row(L) ` 2 L; L 2 P

f

(L n f`g)

We de�ne projetion symbols to be all symbols

�

`

L

: ;

�

. We write D for the new set of

symbols.

Let E be the set of axioms omposed of:
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� Left ommutativity axioms. For any labels a and b and any �nite subset of labels L

that do not ontain them,

a

L

: � ;

�

b

a:L

: � ; 

�

= b

L

: � ;

�

a

b:L

: � ; 

�

(a . b; L)

� Distributivity axioms. For any symbol f , any label a and any �nite subset of labels L

that do not ontain a,

f

Row(L)

(a

L

: �

1

; �

1

; : : : a

L

: �

p

; �

p

) = a

L

: f

Type

(�

1

; : : : �

p

) ; f

Row(a:L)

(�

1

; : : : �

p

)

(f . a; L)

All axioms are ollapse-free, regular and linear.

Let V be a denumerable set of variables with in�nitely many variables of every sort.

De�nition 7 The algebra of reord terms (also alled the reord algebra) is the equational

theory T (�;V)=E.

Below are two E-equal reord terms:

�

j

(a

;

)

�

�

�

� �

�

�

�

f

Type

g

Row (fag)

j j

j

� (b

fag

)

�

�

�

� �

�

�

�

� 

�

j

(a

;

)

�

�

�

� �

�

�

�

f

Type

(b

fag

)

j

j

�

�

�

� �

�

�

�

� g

Type

g

Row (fag)

j j

j

� 

Theorem 5 The presentation E is syntati.

Proof: Let T

n

be the subset of terms that use only the sorts Type or Row(L), where Card (L)

is at most n. The sequene of these sets is inreasing and its union is T . Thus it is enough to

show Synt (T

n

) for any integer n. Let n be an integer. We show Synt (T

n

) using theorem 1.

Let �

n

be the usual size (sum of weights of symbols) where symbols are weighted as

follows. Symbols f

Row(L)

of arity q have a weigh of 2 � (n � CardL) + q. Symbols f

Type

weigh their arity q augmented by 1, and all other symbols weight 1. The size of a term is

stritly larger than the size of any of its subterms; the size is onstant on E-equality lasses.

Thus it de�nes a ompatible ordering in T

n

by � < � if �

n

(�) < �

n

(�).

The ondition (h

1

) is always satis�ed: left ommutativity axioms are of depth greater

than two, and so are distributivity axioms for symbols of non zero arity. Left distributivity

axioms for onstant symbols f are suh that the equality relations �������!

f.a;L=�

����!

��1

are empty.

The ondition (h

2

) is

�!

�

�

Æ

��!

k

�

k2D

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

We show it for all instanes of the premise:

���!

q=�

 

Æ

����!

s

k

=k

!

k2D

���!

t=�
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We write Z for the intermediate relation

 

Æ

����!

s

k

=k

!

k2D

Case Z is empty: The axioms q and t must be inverse and annihilate eah other, that is,

the equality relation is inluded in the identity relation �.

Case q is (f . a; L): If f were of arity zero, S would be empty (�rst ase). The ourrene

1 in s is not possible, and s

2

must be another axiom (f . b; a:L), where b is distint from a.

Then t must be the axiom (a . b; L). We onlude with:

����������!

f . a; L=�

������������!

f . b; a:L=2

����������!

a . b; L=�

�

i 2 [1; %(f)℄

������������!

a . b; L=i

����������!

f . b; L=�

������������!

f . a; b:L=2

Case q is (a . f; L): Then t must be (f . b; L). If a and b were equal, Z would be the

identity (�rst ase). At least one appliation of an axiom (a . b; L) at eah ourrene i

between 1 and the arity of f is needed to hange the symbols (a

L

: ; ) into (b

L

: ; ). We

onlude with:

����������!

a . f; L=�

i 2 [1; %(f)℄

������������!

a . b; L=i

����������!

f . b; L=�

� ����������!

f . b; L=2

����������!

a . b; L=�

����������!

a . f; L=2

Case q is (a . b; L): If t is a distributivity axiom, then by symmetry we fall into one of the

preeding ase; otherwise it is an axiom ( . b; L). Sine 1 is a variable ourrene of q, the

rule ����!

s

1

;1

ommutes with q, and we ignore this ase. If  and a were equal, the sequene Z

would be the identity (�rst ase). So t must be the axiom (a . ; b:L). We onlude with:

����������!

a . b; L=�

�����������!

a . ; b:L=2

���������!

b . ; L=�

� �����������!

b . ; a:L=2

����������!

a . ; L=�

�����������!

a . b; :L=2

Note that the two �rst inlusions an be dedued from the following yle (any omposition

of six of these rules is a subset of the identity relation):

������

a . b; L; �

������

-

�

�

f . b; a:L; 2

�

�� �

�

a . f; b:L; 2

�

�R

I�

�

f . a; L; �

�

� 	�

�

b . f; L; �

�

�

�

������

i 2 [1; %(f)℄

b . a; L; i

������
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The last inlusion rule forms the yle:

������

a . ; b:L; 2

������

-

�

�

�

a . b; L; �

�

�

�� �

�

�

b . ; L; �

�

�

�R

I�

�

�

 . b; a:L; 2

�

�

� 	�

�

�

b . a; :L; 2

�

�

�

�

������

i 2 [1; %(f)℄

 . a; L; �

������

Sine the theory is syntati, we automatially derive the mutation rule in the reord

term algebra:

f

Row(L)

(�

i

)

i2[1;p℄

_= a

L

: � ; � _= e



g

�

9 (�

i

; �

i

)

i2[1;p℄

�

V

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

a

L

: � ; � _= e

� _= f

Type

(�

i

)

i2[1;p℄

� _= f

Row(a:L)

(�

i

)

i2[1;p℄

�

i

_= a

L

: �

i

; �

i

for i 2 [1; p℄

Mutate(a . f)

a

L

: � ; � _= b

L

: � ; � _= e

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

9  �

V

8

>

>

<

>

>

:

b

L

: � ; � _= e

� _= b

a:L

: � ; 

� _= a

b:L

: � ; 

Mutate(a . b)

Theorem 6 Uni�ation in the reord algebra is deidable and unitary unifying.

Proof: The theory is strit (we exhibited a ompatible ordering). Therefore, the rules for

mutation, deomposition, ollision, fusion and generalization applied any order a omplete

semi-algorithm for uni�ation. The algorithm is unitary sine mutation does not introdue

any disjuntion. It remains to prove termination.

All transformations are stable in the sets T

n

and derease in the following lexiographi

ordering:

� the number of symbols f

Row(L)

in the lexiographi order of dereasing Card (L) (that

is, bigger sets ount less: mutate (a . f)),

� the number of symbols a

L

: ; ounted in the lexiographi order of dereasing

Card (L) (mutate (a . b)),

� the number of other symbols (other mutations and deomposition),

� the sum of heights of terms (generalization),

� the number of multi-equations (fusion).

This guarantees the termination of the proess.
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3.3 Raw terms

Let C

0

be the set of symbols C extended with a symbol � and the olletion of symbols

(a : ; )

a2L

. Terms of the algebra T (C

0

;V) are alled raw terms. To any reord term, we

assoiate the raw term obtained by erasing all supersripts of symbols. Conversely, for any

raw term �

0

and any sort �, there is at most one reord term whose erasure is �

0

. Thus any

reord term � of sort � is ompletely de�ned by its erasure �

0

and the sort �. In the rest of the

paper we will mostly use this notation and often drop the sort whenever it is impliit from

the ontext.

Projetion symbols assoiate to the right; that is, (a : � ; b : � ; �) stands for (a : � ;

b : � ; �). In formulas we sometimes write

�

(a

i

: �

i

)

i2[1;p℄

; �

�

for (a

1

: �

1

; : : : a

p

: �

p

; �).

3.4 Examples of Reord terms

When reord terms are used as types of reords in ML, the types of �elds must �rst say

whether the �eld is absent or present and in the last ase whether it is an arrow type or some

other strutured type. For instane, a type ould be � ! �(a : pre (�! �) ; �) . However,

types that would tell their struture before telling that the �eld is de�ned must be forbidden:

� ! �a : �! �;� is should not be a orret type. These onstrains are, of ourse, realized

using sorts. The properties of the setion 1 allow reord terms to be restrited by a signature

ompatible with its equations, and still use the same uni�ation algorithm.

We give two examples of restrited reord terms used as types in ML with reords. The

�rst instane distinguishes a onstant symbol abs and a unary symbol pre in C. The signature

�

0

on the two sorts type and �eld is:

�

0

` � :: �eld ) type

�

0

` abs

�

:: �eld � 2 K

�

0

` pre :: type ) �eld

�

0

` f

Type

:: type

%(f)

) type f 2 C n fabs ;pre g

�

0

` (`

L

: ; ) :: �eld 
 �eld ) �eld ` 2 L; L 2 P

f

(L n f`g)

The signature �

0

is ompatible with the equations of the reord algebra. We de�ne simple

reord terms as reord terms that are well sorted for �

0

. They have a very simple reord

struture. Terms of the sort Row(L) are either of depth 0 (redued to a variable or a symbol)

or are of the form (a : � ; �). By indution, they are always of the form

(a

1

: �

1

; : : : a

p

: �

p

; �)

where � is either abs or a variable, inluding the ase where p is zero and the term is redued

to �.

The generality of reord term algebras is better justi�ed by omplex reords terms. The

problem with simple reord terms is the inability to merge two reords de�ned on di�erent

�elds. For instane, the two reord types � (a : pre (�) ; b : pre (�) ; abs ) and �(a : pre (�);

abs ) annot be uni�ed, sine on �eld b this would require pre (�) be uni�able with abs . A

solution is to separate the aess information from the struture information in �elds. The

two reords ould be typed with � (a : pre :� ; b : pre :� ; abs :�) and � (a : pre :� ; abs :�) .

They do not yet unify. But if we write instead � (a : 

a

:� ; b : 

b

:� ; abs :�) and

� (a : 

0

a

:� ; abs :�

0

) , then they are uni�ed by the substitution:



a

7! 

0

a

� 7! � 

b

7! abs �

0

7! b : �

b

; �

Generi reord terms are well sorted reords terms for the following signature �

00

. Distin-

guishing two onstant symbols pre and abs and a binary symbol \:" in C, the signature �

00
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is de�ned on the three sorts type , ag , and �eld by:

�

00

` � :: �eld ) type

�

00

` abs

�

:: ag � 2 K

�

00

` pre

�

:: ag � 2 K

�

00

` :

�

:: ag 
 type ) �eld � 2 K

�

00

` f

Type

:: type

%(f)

) type f 2 C n fabs ;pre ; :g

�

00

` (`

L

: ; ) :: �eld 
 �eld ) �eld ` 2 L; L 2 P

f

(L n f`g)

The signature is still ompatible with the equations. Terms of the sort Row(L) an now have

a more omplex struture suh as

(a : � ; �):(b : � ; �

0

)

If a and b were equal, this would simplify into

(a : �:� ; �:�

0

)

We say that the latter is a anonial form but the former is not. In the next setion we study

anonial forms of reord terms in general.

4 Approximations of terms

The omplex reord type � (a : pre :� ; �) an intuitively be understood as the type of some

reord whose �eld a is present with type � and whose presene of other �elds is de�ned by �.

However, it is harder to understand the objets that would have the reord type � equal to

� (a : pre :� ; (b : pre ; �):) . Substituting  by (b : 

0

; 

00

) would lead to the E-equal reord

type � (a : pre :� ; b : pre :

0

; �:

00

) , whih is less general but has a more intuitive meaning.

The substitution  7! (b : 

0

; 

00

) does not impose any more struture on the type of � . It

just \reads" information form � in the sense that any non-variable instane of  is neessarily

an instane of (b : 

0

; 

00

) .

Canonial terms are reord types in whih a symbol (a : ; ) an only our below some

other symbol but (b : ; ) or the symbol �, and E-anonial terms are those that are E-

equal to anonial terms. There are terms that are not E-anonial. For instane, the term �

above is not. We �rst de�ne a lass of \reversible" substitutions alled expansions. Then we

show that any term an be transformed by expansion into a term that is E-anonial. There

exist least E-anonial expansions; however, expansions do not ommute with uni�ation.

Allowing the reverse of expansions, alled ontrations, leads to E-anonial approximations,

whih ommute with uni�ation.

4.1 Expansions

De�nition 8 An elementary substitution of W is a substitution of the following form:

� � 7! a : � ;  is an elementary expansion of W if � is in W and � and  are not in W .

� � 7! � is an elementary renaming of W if � is in W and � is outside of W .

� � 7! � is an elementary fusion of W if � and � are in W .

� � 7! f(�

i

)

i2[1;p℄

is an elementary struturation of W if � is in W and �

i

are all outside

of W .
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A perfet omposition of W is any omposition �

1

Æ : : : �

p

suh that there exists a sequene

(W

i

)

i2[0;p℄

of sets of variables satisfying:

1. W

0

=W ;

2. �

i

is an elementary substitution of W

i

;

3. W

i

is equal to V(�(W

i�1

)).

An expansion is a perfet omposition of elementary expansions. An �-expansion is a perfet

omposition of elementary expansions and renamings.

Notation

We write expansions with letters ',  , and �. We indiate elementary substitutions by a \̂"

aent: '̂, �̂. The notation

� : V ����

-

T

is not well adapted to desribe perfet ompositions. We write

V ��

�

��

-

W

for a perfet omposition � of V suh that W is the set of variables of the image of V . We

an ompose them as follows:

V ��

�

��

-

W ��

�

��

-

W

0

We also draw diagrams with the onvention that ontinuous lines are universally quanti�ed

while dashed lines are existentially quanti�ed. For instane

V ���

�

��

-

W

j

j

�

�

�

�

�

'

j

?

�

�

�

�

�

?

 

W

0

����

�

������

-

:

is read \For any substitution � from V to W and any expansion from V to W

0

, there exist a

substitution � of W

0

and an expansion  of W suh that � Æ ' and  Æ � are E-equal." All

diagrams ommutes modulo E-equality, exept if expliitly mentioned otherwise.

Lemma 8 Any substitution whose domain is in W an be written as a perfet omposition

of elementary substitutions of W .

Proof: The lemma is �rst shown for the substitution of a variable by a term, by indution on

the size of the term. The general ase is then shown by indution on the size of the domain

of the substitution.

Lemma 9 A substitution � is an expansion of W if and only if:

� all symbols of the image of � are projetion symbols;

� all variables of the image of � are outside of W ; and

� all terms of �(W ) are linear (a variable does notour twie) and disjoint (no variable

is shared between two terms).
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Conretely, an expansion ' is sum �

�2dom (')

('

�

) where '

�

are

� 7! a

1

: �

1

; : : : a

p

�

: �

p

�

; �

�

and expansions '

�

are pairwise disjoint.

Proof: Any suh substitution is trivially an expansion. Conversely, the set of suh substitu-

tions ontains elementary expansions and is losed by omposition with elementary expan-

sions.

Remark 5 The set of expansions is losed by E-equality. Proving the E-equality of two

expansions an always be done using left ommutativity axioms only.

Lemma 10 If � is a renaming of W and ' is an expansion of �(W ), then there exists an

expansion  of W and a renaming of  (W ) suh that �Æ' and �Æ are equal, and onversely,

inverting the roles of renamings and expansions.

W ��

�

���

-

:

�

�

�

�

�

j

j

 

�

�

�

�

�

?

j

j

?

'

:
�����

�

������

-

:

W
����

�

������

-

:

j

j

�

�

�

�

�

'

j

j

?

�

�

�

�

�

?

 

:���

�

���

-

:

Proof: For the �rst diagram, the renaming � an be deomposed into the sum of two renam-

ings �

0

equal to � j

�

W

0

and �

00

equal to � nW

0

where W

0

is �

�1

(dom (')). Take �

00

+!

�1

for �,

and ! Æ'Æ�

0

for  where ! renames variables of im (') away from all other variable involved.

For the seond diagram, the renaming � an be deomposed into the sum of two renamings

�

0

equal to � j

�

W

0

and �

00

equal to � nW

0

, where W

0

is im ('). Take (�

0

Æ ') + !

�1

for  and

! Æ �

00

for �, where ! renames variables of im (!

00

) away form all other variables involved.

In both ases, it is easy to prove that  is an expansion, and so the diagram ommutes,

as required.

Lemma 11 If a perfet omposition of elementary substitutions is an �-expansion, then all

elementary substitutions are renamings or expansions.

Proof: Let � be the perfet omposition of W

0

.

W

0

��

�̂

1

��

-

W

1

� � � ���

�̂

p

��

-

W

p

If the sequene ontains a struturation � 7! f(�

i

)

i2[1;p℄

, then im (�) ontains the symbol f .

Otherwise it ontains a fusion (� 7! �), where � and � are in some W

i

. If � and � are the

images of distint variables �

0

and �

0

of W

0

, then the images by � of �

0

and �

0

will not be

disjoint. Otherwise, � and � are in the image of a ommon variable �

0

and �

1

Æ : : : �

i

will

not be linear. In all ases, � annot be an �-expansion.

Corollary 12 Two substitutions that perfetly ompose into an �-expansion are �-

expansions.

Lemma 13 For any set of variablesW , any elementary

substitution �̂ of W , and any expansion ' of W , there

exists an expansion  of �̂(W ) and a substitution � suh

that  Æ �̂ and � Æ ' are E-equal on W , that is, the

diagram on the right ommutes modulo E-equality.

W ��

�̂

���

-

:

j

j

�

�

�

�

�

'

j

j

?

�

�

�

�

�

?

 

:
�����

�

������

-

:
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Proof: It is enough to show the lemma for substitutions with disjoint images '(W ) and �̂(W ).

The lemma then follows by introduing a renaming � of the image of ' outside of the image

of �̂, applying the lemma to � Æ ' instead of ', and replaing the resulting substitution �

by � Æ �

�1

. Similarly, the images an be assumed disjoint from the domains without loss of

generality.

We �rst show the lemma for an expansion ' of the form

� 7! a

1

: �

1

; : : : a

p

: �

p

; �

0

If the domain of �̂ is not redued to �, then the two substitutions ommute, and � is �̂, and

 is '. Otherwise we reason by ases on �̂:

� If �̂ is a renaming (� 7! �), then ' Æ �̂ for  and the identity for �.

� If �̂ is a fusion (� 7! �), then take � 7! '(�) for both � and  . Otherwise the image

of �̂ is outside of W .

� If �̂ is an expansion (� 7! a

j

: �

j

;�

0

) for j in [1; p

i

℄, take the renaming �

j

7! �

j

for �

and the expansion � 7! (a

k

: �

k

)

k2K

; �

0

where K is [1; p

i

℄ n fjg for  .

� If �̂ is an expansion (� 7! b : �

b

;�

0

), then take (�

0

7! (a

k

: �

k

)

k2[1;p

i

℄

; 

0

) for  and

the expansion (�

0

7! b : �

b

; 

0

) for �, where 

0

is a variable distint from all others.

� If �̂ is a struturation (� 7! f(�

j

)

j2[1;q℄

), then take the expansion

�

�

j

7! (a

k

: 

k

)

k2[1;p

i

℄

; 

0

�

j2[1;q℄

for  and the struturation

�

�

k

7! f(

k

)

i2[1;p℄

�

k2[0;p

i

℄

for �, where all variables 

k

are distint and distint from all others.

A general expansion ' is the disjoint sum �

i2[1;p℄

('

i

) of simple expansions. If it is not disjoint

from �̂, there exists one expansion ('

1

for instane) that has the same domain as �̂. Applying

the lemma with '

1

gives  

1

and �. Take  

1

+�

i2[2;p℄

('

i

) for  .

Remark 6 If �̂ is an expansion, then �̂ is an �-expansion.

Proposition 14 For any substitution � of W and any

expansion ' of W , there exists an expansion  of �(W )

and a substitution � of '(W ) suh that  Æ � and � Æ '

are E-equal on W , that is, the diagram on the right

ommutes modulo E-equality.

W ��

�

���

-

:

j

j

�

�

�

�

�

'

j

j

?

�

�

�

�

�

?

 

:
�����

�

������

-

:

Proof: By indution on the number of elementary substitutions that ompose �, we obtain

the following diagram:

W ��

�̂

1

����

-

: ���� � � � � � � :����

�̂

n

����

-

:

j

j

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

'

0

j

j

?

�

�

�

�

�

?

'

1

�

�

�

�

�

?

'

n�1

�

�

�

�

�

?

'

n

:
������

�

1

�������

-

: ���� � � � � � � :
��������

�

n

�������

-

:
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Corollary 15 If a uni�and U admits a solution � outside of V(U), and ' is an expansion

of U , then there exists a solution � of '(U) and an expansion  of �(U) suh that  Æ � and

� Æ ' are E-equal.

Corollary 16 For any expansions ' and  of W , there

exist two expansions '

0

of '(W ) and  

0

of  (W ) and a

renaming � suh that � Æ '

0

Æ ' and  

0

Æ  are E-equal

on W , that is, the adjoining diagram ommutes modulo

E-equality.

Proof: By proposition 14, where � is an expansion, and

then by orollary 12, � must be an �-expansion.

W ��������

 

����������

-

:

j

j

�

�

�

�

�

'

j

j

?

�

�

�

�

�

?

 

0

:
�����

'

0

���������

-

:
��������

�

������

-

:

Theorem 7 Let U be a uni�and and ' an expansion

of U into V . If � and � are prinipal uni�ers of U and

V , then there exists an �-expansion � Æ  of �(U) into

�(V ) suh that � Æ' and � Æ Æ � are equal, that is, the

adjoining diagram ommutes modulo E-equality.

U ��

�

�����

-

:

j

j

�

�

�

�

�

'

j

?

�

�

�

�

�

?

� Æ  

V ��

�

�����

-

:

Proof: The proof is skethed in the adjoining diagram,

taken modulo E-equality. The existene of � and  fol-

lows from orollary 15. Sine � Æ ' is a solution of U

and � is the prinipal solution of U , the substitution �

0

must exist. Finally, the existene of �

00

is a onsequene

of the fat that � is a solution of V , sine �(V ) is equal

to  Æ �(U), whih is satis�ed, while � is a prinipal

solution of V . Sine �

00

Æ �

0

is an expansion, �

00

and, in

partiular �

00

are �-expansions.

U�������

�

��������

-

:

j

j

j

j

j

�

�

�

�

�

�

�

�

�

�

�

�

(1)

	

�

�

�

�

�

 

�

�

�

�

�

'

j

j

j

j

?

: (2)

�

�

�

�

�

�

�

�

�

�

�

?

?

�

0

�

�

�

�

�

�

�

�

�

�

�

�

(3)

I

I

I

�

�

�

�

�

�

00

�

�

�

�

�

V �������

�

��������

-

:

4.2 Canonial terms

In this setion we de�ne anonial terms and show that any term an be expanded into a

anonial term. We assume we are given an ordering on L that extends naturally to projetion

symbols.

De�nition 9 A reord term � is anonial if projetion symbols an only our below a

symbol � or some other smaller projetion symbol.

8ux 2 dom (�); Top (�

=ux

) = (a : ; ) =) Top (�

=u

) 2 f�g [ f(a : ; ) j a < bg

A term is E-anonial anonial E if it is E-equal to a anonial term.

A anonial expansion of � is a anonial term obtained by an expansion of � .

For instane, the term (a : � (a : � ; �

0

) ; b : �

0

; ) is anonial, but the term

f(

�

a : � ; �

0

�

;

�

a : � ; b : �

0

; 

�

)

is not. The term (a : � ; �) : (b : � ; �

0

) of setion 3.4 is anonial.
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Notation

In general if Q is a set of terms (respetively a set of symbols) and � is a sort, we write Q

�

for the subset of Q of terms (respetively symbols) of the sort �.

If L is a �nite subset of labels, we write V

L

for the union V

Type

[ V

Row(L)

and V

�L

for

the union of all V

K

for all subsets K of L, C

�L

for the union of C

Type

and all C

Row (K)

for

all subsets K of L, and �

�L

for the restrition of the signature � j

�

C

�L

. We write T

L

for the

algebra T

L

(V

L

;�

�L

) and T

�L

the algebra T (V

�L

;�

�L

).

For instane, the term � equal to fa : � ; �

0

g is in T

fag

. The term � equal to (b : � ; �

0

)

is in T

0

fbg

, and the term � ! � is in T

�fa;bg

.

De�nition 10 For any �nite set of labels L we write

~

E

L

for the rewriting system obtained

by orienting the equations (a . b;K) if a and b are ordered and (f . a;K) for all subsets K

of L.

Lemma 17 For any �nite set of labels L, the rewriting system

~

E

L

is stable and terminates

in the set T

�L

.

Proof: We extend the total order on projetion symbols to a partial order on all symbols

by plaing projetion symbols before all other symbols. An ordered element in � is a pair

(u; v) of two non-variable ourrenes of � suh that u is a pre�x of v and the symbol at the

ourrene u is smaller than the symbol at ourrene v. Any step inreases the number of

ordered elements. The size �

Card (L)

is onstant, whih provides a bound on the number of

ourrenes of symbols of the term, and thus on the number of pairs of non-variable pre�x

ourrenes.

Remark 7 The rewriting system

~

E

1

would not terminate, sine onstant symbols ould be

rewritten forever in terms of T

L

for inreasing L.

Lemma 18 For any �nite set of labels L, all terms of

~

E

L

(T

L

) are anonial.

Proof: A term of

~

E

L

(T

L

) redues by

~

E

L

to some term where non-projetion symbols an only

have sorts Row(L). Suh terms are trivially anonial.

Corollary 19 For any �nite set of labels L, all terms of T

L

are E-anonial.

This gives us a means of omputing the anonial form of a term in T

L

.

De�nition 11 Let � be a term, and L be the smallest K suh that � is in T

�K

. If ' is an

expansion of row variables of � into T

L

, then '(�) is alled a anonial expansion of � . Let

� be a substitution and L the smallest K suh that im (�) is in T

�K

. If ' is an expansion of

variables of im (�) into T

L

, then ' Æ � is alled a anonial expansion of �.

It is lear that anonial expansions are E-anonial. They are de�ned modulo a renaming

of variables that are introdued by the expansion. In general, they are not the smallest E-

anonial expansions, even for a single term � of T

0

. For instane, if � is in T

L

, � is in V

L

(�),

and the label a is not in L, then the anonial expansion of (� 7! a : f ; f)(�) is in T

a:L

, but

there the E-anonial term (� 7! f)(�) in T

L

obtained by the empty expansion.

The existene of E-anonial forms is not enough. As omputed above, anonial forms

may be very large. Are there smallest E-anonial forms? Do they ommute with uni�ation?

That is, given a uni�and W , an �-expansion ' that maps W to a the smallest anonial
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form W

0

, and two prinipal uni�ers � and �

0

of W and W

0

, are the smallest �-expansions

 (�(W )) and sx1

0

(�

0

(W

0

)) E-equal modulo renaming?

W ��

�

���

-

:���

 

����

-

:

j

j

�

�

�

�

�

'

j

?

�

�

�

�

�

�?

W

0

��

�

���

-

:���

�

����

-

:

The following example shows that this annot be the ase.

Example 8

f((a : g ; �) ; �) _= f(g; �)�����������

(� 7! g)

T

0

;

������������

-

f(g; �) _= f(g; �)

j

j

�

�

�

�

�

�

�

(� 7! (a :  ; Æ) )

j

j

?

T

0

fag

�

�

�

�

�

6

�

f((a : g ; �) ; (a :  ; Æ) ) _= f(g; (a :  ; Æ) )����

(� 7! g)

T

0

fag

����

-

f(g; (a :  ; Æ) ) _= f(g; (a :  ; Æ) )

This ounterexample removed any hope of providing the set of E-anonial forms with a \sup"

operation that extends the \sup" in T . The preeding diagrams an be easily extended

to show that this operation would not be assoiative. The problem omes from axioms

(f . a;K) for onstant symbols f . One solution to is to allow ontration | the reverse

of expansion | while omputing anonial forms. These more general anonial forms are

alled approximations and are studied in the rest of this setion.

De�nition 12 An approximation of a substitution � (respetively of a term �) is an E-

anonial substitution � (respetively an E-anonial term �) suh that there exist two ex-

pansions ' and  suh that  Æ � = ' Æ � (respetively '(�) =  (�)).

Approximations are alled ontrations when ' is the identity.

We �rst show that omputing approximations in T an be redued to omputing approx-

imations in T

0

.

4.3 Approximations in T

Reall that a substitution � is p-potent if �

p

is equal to �. It is potent if it is potent for

some p. Its omposition for high enough powers is written �

1

. A 1-potent substitution is

also said idempotent. An idempotent substitution is haraterized by having disjoint domain

and image. We say that � is potent on W if the restrition of � to W is potent.

A substitution � is linear in a variable � if � appears at most one in the image of at most

one variable of the domain of �. By extension a substitution is linear in a set of variables W

if it is linear in all variables of W .

De�nition 13 A deomposition of a substitution � is a pair, written deW � �, of a set of

variables W disjoint from � and a substitution � potent on W suh that (� j

�

W )

1

Æ (� nW )

is equal to �. A �-deomposition of � is a deomposition deW � � suh that � sends W to

�(T

0

) and V nW to T

0

. It is linear if � is linear on W . If � is potent on W , we also write

deW � � for the substitution (� j

�

W )

1

Æ (� nW ) itself.
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For instane, the substitution � 7! fa : fb : � ; �g ; abs g ! fb : � ; �g an be deomposed

into

de ; Æ � ^

8

>

<

>

:

� 7!  ! Æ

 7! fa : Æ ; abs g

Æ 7! fb : � ; �g

or de ; Æ; Æ

0

� ^

8

>

>

>

>

<

>

>

>

>

:

� 7!  ! Æ

 7! fa : Æ

0

; abs g

Æ 7! fb : � ; �g

Æ

0

7! fb : � ; �g

and the latter deomposition is linear.

Lemma 20 Eah term has a linear �-deomposition.

Proof: We an build a linear �-deomposition for any term by indution on the number of �

symbols. If � has no � symbol, then � is � andW is empty. Otherwise there exists a variable

� in the domain of � whose image is � [�(�)=�℄, where � has no � symbol and the variable

� is taken out of � and appears exatly one in � . By indution, the substitution �

0

equal to

� n f�g+ � 7! � has a linear �-deomposition deW

0

� �

0

. Then deW [ f�g � �

0

+ � 7! � is

a linear �-deomposition of �.

The deomposition deW � � an be represented by annotating all ourrenes of �

symbols in the image of � with distint variables of W .

Lemma 21 If � has a �-deomposition then it has a linear one.

Proof: Let deW � � be a �-deomposition of �.

� If � sends two variables � and � two terms � and � that share a variable  of W , then

deW [ f

0

g � � n f�g+ � 7! �[

0

=℄, where 

0

is disjoint from �, is a deomposition of

�.

� If � sends a variable � to a term � that ontains two ourrenes u and v of the same

variable � in W , then deW [ f�

0

g � � n f�g+ � 7! �[�

0

=v℄ where �

0

is disjoint from �

is a deomposition of �.

Eah transformation inreases the number of variables in W , whih is bound by the number

of � symbols in �. When no more transformations are possible, the deomposition is linear.

Lemma 22 Let deW � � and deW

0

� �

0

be two �-deompositions of �, and �

0

. If there

exists a renaming � of W into W

0

and if �

0

and � Æ � Æ �

�1

are E-equal, then �

0

and � are

E-equal.

Proof: For a high enough p, the substitution �

0

is (�

0

j

�

W

0

)

p

Æ (� nW

0

), that is

(� Æ � Æ �

�1

j

�

�(W ))

p

Æ (� Æ � Æ �

�1

n �(W )) or (� Æ (� j

�

W ) Æ �

�1

)

p

Æ (� Æ (� nW ) Æ �

�1

)

After removing intermediate �

�1

and �, we get � Æ (� j

�

W )

p

Æ (� nW )Æ �

�1

whih is � Æ�Æ �

�1

.

Sine � is disjoint from �, it is equal to �.

The onverse is not true in general. But it is true if the deompositions are linear. Thus,

all linear �-deompositions are equal up to renaming of intermediate variables.

Lemma 23 Let deW � � and deW

0

� �

0

be two linear �-deompositions of � and �

0

. If �

0

and � are E-equal, then there exists a renaming � of W into W

0

suh that �

0

and � Æ � Æ �

�1

are E-equal.



30 4 APPROXIMATIONS OF TERMS

Proof: We reason by indution on the number of �-symbols in �. If � ontains no � symbol,

then neither does �

0

and both W and W

0

are empty; onsequently �

0

and � are E-equal.

Otherwise, there exists a variable � in the domain of � whose image by � is � [�(�

i

)=�

i

℄,

where � has no � symbol and variables �

i

are taken away from � and appear exatly one in

� . The term �

0

(�) is of the form �

0

[�(�

0

i

)=�

i

℄, where � and �

0

on one hand and �

i

and �

0

i

on

the other hand are E-equal. The substitutions � n f�g+ �

i

7! �

i

and �

0

n f�g+ �

i

7! �

0

i

are

E-equal. We name them respetively �

�

and �

0

�

. For eah i there must be a variable in W

whose image under � is �(�

i

). We an assume that it is �

i

without lost of generality. It is

easy to hek that deW n f�

i

g � � n f�g is a deomposition of �

�

. Similarly for eah i there

is a variable �

0

i

in W

0

whose image under �

0

is �

0

i

, and suh that deW

0

n f�

0

i

g � � n f�g is a

deomposition of �

0

�

. By the indution hypothesis, there exists a substitution �

0

suh that

the substitutions � n f�g and �

0

Æ (�

0

n f�g) Æ �

0

�1

are E-equal. The substitution � equal to

� + (� 7! �

i

) satis�es the lemma.

Lemma 24 For any linear �-deomposition deW � � of a substitution �, � is E-anonial

if and only if � is.

Proof: For any substitution � and any substitution � of into �(T

0

), then � Æ � is E-anonial

if and only if � and � are E-anonial, sine S(� Æ �) and S(�)[S(�) are equal, where S(�

0

)

is the set of all pairs (f; (a : ; ) ) suh that (a : ; ) ours diretly below some ourrene

of f in �

0

. This shows the lemma for anoniity instead of E-anoniity. The general ase

follows from lemmas 22 and 23.

De�nition 14 The omposition of two �-deompositions deW

1

� �

1

and deW

2

� �

2

suh that

W

1

is disjoint from �

2

and W

2

is disjoint from �

1

is the �-deomposition deW

1

;W

2

� �

1

Æ �

2

.

Lemma 25 The omposition of the �-deompositions of two substitutions is a �-deomposi-

tion of their omposition.

Proof: We must hek that for some high enough p,

(� j

�

U)

p

Æ (� n U) Æ (� j

�

V )

p

Æ (� n V ) = (� Æ � j

�

U [ V )

p

Æ (� Æ � n U n V )

where � is disjoint from V and � is disjoint from U . Sine im (�) is disjoint from U , the

substitution � Æ � n U n V is equal to (� n U) Æ (� n V ) and we are left with:

(� j

�

U)

p

Æ (� n U) Æ (� j

�

V )

p

= (� Æ � j

�

U [ V )

p

Æ (� n U)

Sine dom (� n U) is disjoint from dom (� j

�

V ), the substitution (� n U) Æ (� j

�

V ) is equal to

(� n U) + ((� n U) Æ (� j

�

V )) j

�

V , that is, (� Æ � j

�

V ) Æ (� n U). By indution, we �nd that the

substitution (� n U) Æ (� j

�

V )

p

is E-equal to (� Æ � j

�

V )

p

Æ (� n U). Thus, we are left with:

(� j

�

U)

p

Æ (� Æ � j

�

V )

p

= (� Æ � j

�

U [ V )

p

whih holds sine � Æ � j

�

U [ V is equal to (� Æ � j

�

V ) + (� j

�

U).

The lemma is true even for non-linear �-deompositions. The omposition of linear �-

deompositions may not be linear. If deW � � is a linear expansion of � and ' is an expansion

disjoint form W , then deW � ' Æ � is a linear �-deomposition of ' Æ �.

Lemma 26 Let deW � � be a linear �-deomposition of �. A substitution �

0

is an approx-

imation of � if and only if there exists a linear �-deomposition of deW � �

0

of �

0

suh that

�

0

is an approximation of �.
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Proof: Assume that there exists a �-deomposition deW � �

0

of �

0

suh that �

0

is an ap-

proximation of �. There exist two substitutions ' and '

0

suh that ' Æ � and '

0

Æ �

0

are

E-equal. The substitution ' Æ� is equal to ' Æ (� j

�

W )

p

Æ (� nW ). By sort onsiderations, the

substitution ' is neessarily disjoint from W , and it is potent. Thus the above substitution

is also ((' Æ �) j

�

W )

p

Æ ((' Æ �) nW ). We get an E-equal substitution replaing ' Æ � by '

0

Æ �

0

whih is E-equal to '

0

Æ �

0

by the same reasoning.

Conversely, assume that �

0

is an approximation of �. Then there exists a linear ap-

proximation deW � �

0

of �

0

. A similar alulus to the one above shows that substitution

deW � ' Æ � is a linear �-deomposition of ' Æ � and similarly deW � '

0

Æ �

0

is a linear

�-deomposition of '

0

Æ�

0

. The E-equality of ' Æ� and '

0

Æ�

0

and lemma 23 show that ' Æ �

and '

0

Æ �

0

are E-equal. Thus, '

0

is an approximation of '.

The lemma is not true if the deompositions are not linear. For instane, take

de�

1

; �

2

�

8

>

<

>

:

� 7! �

1

! �

2

�

1

7! �(a : � ; 

1

)

�

2

7! �(

2

)

and de�

1

�

(

� 7! �

1

! �

1

�

1

7! �(a : � ; 

1

)

for � and �

0

.

We are led to study approximations for substitutions in T

0

[�(T

0

).

4.4 Approximations in T

0

For simpliity of exposition, we study approximations of substitutions into T

0

, but all results

straightforwardly extend to approximations of substitutions into T

0

[�(T

0

).

De�nition 15 The onnexe omponents of a substitution � in T

0

is the partition of the

domain of � by the smallest equivalene �

�

that ontains all pairs � �

�

� suh that images

of � and � by � share at least one row variable, i.e. V(�(�)) \ V(�(�)) n V

Type

6= ;.

A substitution is said to be onnexe if �

�

has only one onnexe omponent

The onnexe omponents of a substitution are preserved by expansion. Let (W

i

)

i2[1;p℄

be

the onnexe omponents of �. We write �

i

the restritions of � to W

i

. Then � is equal to

�

i2[1;p℄

�

i

. If � is idempotent, it is also the omposition �

1

Æ : : : �

p

in any order. If ' is an

expansion of �, then ' Æ � has the same onnexe omponents as � and the substitution '

i

perfetly omposes with �

i

, where '

i

is the restrition ' to im (�

i

). Conversely, if '

i

are

expansions that perfetly ompose with �

i

and are disjoint, then �

i2[1;p℄

'

i

is an expansion

that perfetly omposes with �.

Lemma 27 Let � and � be two substitutions in T

0

. The substitution � is an approximation

of � if and only if they have the same onnexe omponents and � j

�

W is an approximation of

� j

�

W on eah onnexe omponent W .

Proof: We �rst assume the existene of two expansions ' and  suh that ' Æ � and  Æ �

are equal and � is E-anonial. Sine expansion does not hange onnexe omponents, both

� and � have the same onnexe omponents (W

i

)

i2[1;p℄

. The substitution �

i

is of ourse E-

anonial sine the restrition of a E-anonial substitution and suh that  j

�

�(W

i

) Æ � j

�

W

i

and ' j

�

�(W

i

) Æ � j

�

(W

i

) are E-equal for eah onnexe omponent W

i

.

Conversely, we assume that � and � have the same omponents (W

i

)

i2[1;p℄

, and that

� j

�

W

i

is an approximation of � j

�

W

i

on eah onnexe omponent W

i

. Therefore, there exists

expansions '

i

and  

i

suh that  

i

Æ � j

�

W

i

and '

i

Æ� j

�

W

i

are E-equal. We an always hoose

them suh that they are disjoint form eah other and from the ommon domain of � and �.

Then their respetive sums ' and  perfetly omposes. The substitution  Æ � and ' Æ� are

E-equal.
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We are left with the omputation of approximations on onnexe omponents.

4.5 Approximations on onnexe omponents in T

0

By orollary 19, we know that substitutions in T

0

L

are E-anonial. Conversely, a onnexe

E-anonial substitution � in T

0

is in fat always in a set T

0

L

for some L. Connetivity is

preserved by expansion. Therefore, any approximation � of � is also a onnexe E-anonial

substitution, say �. It an be looked for among the substitutions whose range is in T

0

L

0

for some L

0

. When the approximation � is a ontration of �, there exist an expansion '

that sends variables of V

Row (L

0

)

to terms of T

L

. The set L

0

is a subset of L. The smallest

ontrations are ontrations on a ontration on label when L

0

is L n fag for some label

a. We show that any ontration of a onnexe E-anonial substitution an be obtained by

suessive ontrations on labels, independently of the order in whih labels are hosen. The

proess will end with a minimal approximation.

De�nition 16 If a term of T

0

is E-equal to (a : � ; �) we de�ne its projetion on a and its

residual on a as the terms � and � written �

=a

and �

na

, respetively. We reursively de�ne

the template of a term � , written �

=1

, as (�

na

)

=1

if � is equal to (a : � ; �) and � otherwise.

The projetion (respetively residual, template) of a substitution are raw substitutions of

the same domain that maps variables to the projetion (respetively residual, template) of

their substitution, when de�ned.

Lemma 28 Let � be a onnexe substitution into T

L

. It ontrats on label a if and only if

�

=a

is de�ned and is raw-isomorphi to �

=1

.

Let % be a raw-renaming from V

Row (L)

(im (�)) to V

Row (Lnfag)

. The ontration of �

(up to renaming and E-equality) is the substitution %

�1

Æ (�

na

), whih is equal to � by the

expansion

�

a : %

a

Æ %

�1

; %

�1

�

, where %

a

is a raw-renaming that maps �

=1

to �

=a

disjoint

from �.

Proof: Both sides are immediate.

Corollary 29 Let � be a onnexe E-anonial substitu-

tion. If it ontrats on label a and on label b separately,

then its ontration on a ontrats on b and its ontra-

tion on b ontrats on a, both ways ending with the same

substitution, up to renaming and E-equality.

Proof: The proof follows immediately from the fat that

�

nanb

and �

nbna

are de�ned simultaneously and then are

equal.

Z

A

A

A

A

A

A

�

A

A

A

A

A

AU

�

�

�

�

�

�

�

�

�

�

0

�

�

�

�

�

�

�

�

�

R

�

�

�

�

�

�

H

H

H

H

H

�

H

H

H

H

Hj

W

0

�������

� Æ '

0

b

��������

-

U

�

�

�

�

�

�

�

�

�

j

j

j

�

�

�

�

�

�

?

 

0

a

�

�

�

�

�

�

�R

j

j

?

'

a

V ����

 

b

����

-

W
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Corollary 30 Let � be an onnexe E-anonial substi-

tution. If � and � are two ontrations of �, then there

is an approximation �

0

and two expansions '

0

and  

0

suh that � is E-equal to '

0

Æ �

0

and � is E-equal to

 

0

Æ �

0

.

Proof: By lemma 9, any ontration is omposed of on-

trations on labels. Then repeatedly apply the previous

lemma.

Z

A

A

A

A

A

A

�

A

A

A

A

A

AU

�

�

�

�

�

�

�

�

�

�

0

�

�

�

�

�

�

�

�

�

R

�

�

�

�

�

�

H

H

H

H

H

�

H

H

H

H

Hj

W

0

�������

� Æ '

0

��������

-

U

�

�

�

�

�

�

�

�

�

j

j

j

�

�

�

�

�

�

?

 

0

�

�

�

�

�

�

�R

j

j

?

'

V ����

 

����

-

W

Corollary 31 Any onnexe E-anonial substitution has a minimal ontration.

Lemma 32 Any onnexe substitution has a minimal approximation, whih is the minimal

ontration of a E-anonial expansion.

Proof: If a substitution has two approximations, there exist expansions of the two approxi-

mations that are E-equal up to renaming. Thus both expansions are ontration of a same

onnexe E-anonial form, and are thus E-equal up to renaming.

4.6 Minimal approximations in T

Theorem 8 Any substitution � has a minimal approximation �

0

in T , whih an be omputed

as follows:

1. Find a linear �-deomposition deW � � of a �.

2. Deompose � into onnexe omponents, �

i2[1;p℄

� j

�

W

i

.

3. For eah onnexe omponent:

(a) �nd an E-anonial expansion �

i

of � j

�

W

i

,

(b) �nd a minimal ontration �

i

of �

i

, by ontrating on all labels for whih the

projetion of �

i

is raw-isomorphi to the template of �

i

.

Take the substitution deW � �

i2[1;p℄

(�

i

) for �

0

.

Proof: The algorithm and the theorem is a ombination of lemmas 32, 27, and 26.

In fat in step 1, the �-deomposition deW � � of � need not be linear. In this ase,

the approximations of � do not orrespond to approximations of �, but it an be shown that

minimal approximations do.

Finding a �-deomposition and the onnexe omponents an always be done in linear

time. The expensive part of the algorithm is step 3b, whih looks for possible isomorphisms.

This is inherent to ontration. Removing this step (that is, taking �

i

for �

i

) will ompute a

good approximation of � (it is a small anonial expansion of �). This is suÆient in pratie.
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4.7 Minimal approximations and uni�ation

The following theorem shows that uni�ation ommutes with approximations. Therefore

uni�ation an be done modulo approximations.

Theorem 9 If U

0

is a minimal approximation of a uni�and U and � is a prinipal uni�er

of U , then U

0

has a prinipal uni�er �

0

and � and �

0

have the same minimal approximation

modulo renaming and E-equality.

Proof: The following diagram ommutes: the existene

of �

00

follows from orollary 15. Then the existene of

�

0

follows from the uni�er �

00

Æ '

0

of U

0

. Theorem 7

is applied twie to get the existene of  and  

0

. The

renamings an in fat be inluded in the prinipal uni-

�ers �

0

and �

00

. The uni�and V

00

and V

0

may not be

E-anonial. However, V and V

0

have an idential E-

anonial form, and thus they have the same prinipal

E-anonial approximation modulo renaming.

U ������

�

���������

-

V

j

j

�

�

�

�

�

j

j

j

j

j

j

?

'

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

?

 

U

0

�������

�

0

������ ����������

--

V

0

	�

�

'

0

�

�

	

	

�

�

�

�

�

 

0

�

�

�

�

�

U

00

����������

�

00

���������������

-

V

00

There are ases where the struture of uni�ands ensures that the prinipal uni�er is

E-anonial. For instane, with the signature of reord terms �

0

of setion 3.4, all terms

are always E-anonial. This is no longer the ase with the signature �

00

, as shown by the

examples at the beginning of this setion. However, for some input uni�ands to the type

inferene algorithm, it is guaranteed that the output uni�ands will be in anonial form.

Obviously, it is not suÆient that the input uni�and is E-anonial.

De�nition 17 A uni�and is separated if it an be written (by rearranging the multi-

equations) in the form 9W � U ^ V suh that

1. all multi-equations of U are of the sort Type and those of V are of a row sort,

2. all row subterms of U and all type subterms of V are variables and their union is W ,

3. row variables of W are only variable terms in V ,

4. any pair of terms of V have disjoint or equal sets of row variables, and

5. all terms are E-anonial.

A uni�and is separable if it is equivalent to a separated uni�and using only the

U-Generalize rule.

Lemma 33 (Separate) Let 9W � U ^9V(e) � (e^V ) be a separated anonial uni�and and

let � be a prinipal E-uni�er of e suh that its image is outside all bound or free variables

of the input uni�and. Then, 9W � �(U) ^ �(V ) is an equivalent uni�and in separated

E-anonial form, up to reordering the multi-equations.

Proof: We �rst show that �(e) is E-anonial. Eah term � of E is in some set T

L

�

for some

set of labels L

�

. Let L be the union of all sets L

�

. It is enough to show that �(e) is in T

L

.

Let � be a variable of �(e). For eah �, the variable � is in �(�); thus there exists a variable

�

�

suh that � is in �(�

�

). Sine there is no � symbol in e, the variable �

�

is of sort L

�

;

therefore � has a sort Row(L) for some L greater than L

�

. The set L ontains L

�

, for any
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�. We know that there is a solution of the multi-equation in T

�L

; thus L annot be greater

than L, otherwise � would not be prinipal.

Eah term � of V either shares no row variable with e or has exatly the same row

variables as one term of e. In the former ase the image by � is unhanged. In the latter

ase, the term �(�) has exatly the same row variables as �(e), i.e., it is in T

�L

and is thus

E-anonial. The equivalene of the two uni�ands is obvious.

Corollary 34 (Separate-bis) Let 9W;� � U ^9V(e) � (� = e^V ) be a separated anonial

uni�and and let � be a prinipal E-uni�er of e suh that its image is outside all bound or

free variables of the input uni�and. Then 9W � �(U) ^ (� = �(e) ^ �(V )) is an equivalent

uni�and in separated E-anonial form.

Proof: Generalize the uni�and into 9W;� � U ^ 9�;V(e) � (� = e ^ � = � ^ U) and apply

the previous lemma.

Theorem 10 A ompletely deomposed form of a separable solvable uni�and is separable.

Proof: Let U be the input uni�and and V a ompletely deomposed form. Let U

0

be a

separated uni�and equivalent to U . Let V

0

be a separated, ompletely deomposed uni�and

obtained by the algorithm we desribe below. The uni�ands V and V

0

are equivalent and

ompletely deomposed. They are neessarily equal modulo unrestrited generalization.

To obtain an algorithm that solves separated uni�ands, we restrit the rule

Separate-Bis to the ase where e ontains more than one term. Applying Deompose

for symbols of the sort Type and rules Separate, Separate-Bis, Generalize and Fuse

is stable on separated uni�ands and terminates. Eah rule derease in the following lexio-

graphi order:

1. The number of symbols of the sort Type (deomposition).

2. The sum of heights of row terms (generalization).

3. The number of multi-equations (fusion and �rst transformation).

4. The number of terms in row multi-equations (last transformation).

This guarantees the termination. Stability of separation rules is proved above. Stability is

obvious for all other rules.

For instane, with the signature of reord terms �

0

of setion 3.4, all terms are always

E-anonial. This is no longer the ase with the signature �

00

, as shown by examples at

the beginning of the setion. However, the type inferene algorithm will only generate E-

anonial uni�ands in disjoint form.

Of ourse, E-anonial uni�ands an be approximated by smaller uni�ands, but this

has less interest in this ase, sine the ompletely deomposed forms are automatially E-

anonial if the input uni�ands are always separable. The type systems for languages with

reords presented in [R�em93℄ are based on signatures �

0

and �

00

, and the uni�ands generated

by the type system are always separable, whih prevents us from omputingE-anonial forms

at the end of typeheking.
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5 Generi reord terms

In reord terms, row variables an always be substituted by rows with independent �elds;

the expansion \dupliates" row variables. For instane, in reord types of the form �(a :

� ; pre(�)), it is always possible to substitute � by b : �

b

;  : �



; �

0

. In some ases, it is useful

to express the fat that some part of a row must be shared on all �elds. Those parts need to

be of the sort type, and onsequently we need a new symbol � to injet types into rows. For

instane, let � be � ! �(a : � ; �(�)) . The variable � annot be replaed by a row de�ned

on b, but � is equal to �! �(a : � ; b : � ; �(�)) , whih is realized by non-linear idempotent

axioms asserting that �(�) is equal to b : � ; �(�).

This formalizes the algebra of generi reord terms. We an show that it is a deidable

syntati theory, and derive a unitary unifying uni�ation algorithm. Generi reord terms

provide a type system for a very raw view of reords [R�em92b℄. They also illustrate the treat-

ment of generi variables in ML, whih they generalizes to a degenerate form of intersetion

types [Pie91℄.

5.1 Presentation of generi Reord Terms

As for reord terms, we �rst de�ne the unsorted generi reord terms, and restrit them

later by a ompatible signature. We assume given a olletion of symbols with their arities

(C

n

)

n2IN

. Let L be a denumerable set of labels. Let K be omposed of

� a sort Type and

� a �nite olletion of sorts (Row(L)

L2P

f

(L)

.

Let � be the signature omposed of the following symbols, given with their sorts:

� ` � :: Row(;)) Type

� ` f

�

:: �

%(f)

) � f 2 C; � 2 K; %(f) 6= 0

� ` �

L

:: Type ) Row(L) L 2 P

f

(L)

� ` (`

L

: ; ) :: Type 
Row(`:L)) Row(L) ` 2 L; L 2 P

f

(L n f`g)

We write D for the new set of symbols. Let E be the following set of axioms:

� Left ommutativity. For any labels a and b and any �nite subset of labels L that

ontains neither a nor b,

a

L

: � ; b

a:L

: � ;  = b

L

: � ; a

b:L

: � ;  (a . b; L)

� Distributivity. For any symbol f , any label a and any �nite subset of labels L that do

not ontain a,

f

Row(L)

(a

L

: �

1

; �

1

; : : : a

L

: �

p

; �

p

) = a

L

: f

Type

(�

1

; : : : �

p

) ; f

Row(a:L)

(�

1

; : : : �

p

)

(f . a; L)

� Idempotene.

�

L

� = a

L

: � ; �

a:L

� (� . a; L)

� Distributivity.

�

L

�

f

Row(L)

(�

1

; : : : �

p

)

�

= f

Row(L)

(�

L

�

1

; : : : �

L

�

p

) (� . f; L)
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All axioms are ollapse-free and regular. The last axiom is not linear, but it is right-linear.

For instane, the following are two E-equal reord terms:

f

Row(;)

�

�

�

� �

�

�

�

(b)

;

�

;

j

�

�

�

� �

�

�

�

� g

Row (fbg)

h

Type

�

�

�

� �

�

�

�

� �

(b)

;

�

�

�

� H

H

H

H

f

Type

f

Row(fbg)

�

� �

� �

� �

�

� h

Type

g

Row (fbg)

�

fbg

j

�

� �

�

� � h

Type

�

� �

�

� �

Let � be a dereasing funtion on positive integers. Let � be the size funtion de�ned on

terms by:

�(a

L

: � ; �) = sup (�(�) + �(Card (L));�(�) + �(Card (L))� �(Card (a:L)))

�(f

K

(�

1

; : : : �

p

)) = sup

i2[1;p℄

(�

i

) + 1

�(�

L

(�)) = �(�) + �(Card (L))

The size � is onstant on E-equality lasses and de�nes a ompatible ordering on terms.

However, the ordering is not well-founded on T . Let T

n

be the subset of terms that uses

only the sorts Type and Row(L), where Card (L) is at most n. The previous ordering is

ompatible and well-founded on all subsets T

n

.

5.2 SuÆient ondition for syntatiness with non-linear axioms

The suÆient ondition for syntatiness given by of the-

orem 1 does not apply, sine the axioms (� . a; L) are

not linear and therefore the ondition (h

1

) is not al-

ways true. For instane, the adjoining proof, math-

ing �!

�

�

��!

��

, annot be rewritten into a proof math-

ing

�

���!

�1

Æ

��!

�

. However, it is still possible to show diretly

that the theory of generi reord terms is syntati, fol-

lowing the struture of the demonstration of theorem 1.

� (� (f) )

j

?

�

a : � (f) ; � (� (f) )

j

?

2

a : � (b ; f : f) ; �f

Lemma 35 The theory of generi reord terms is syntati.

Proof: The proof follows the proof of theorem 1 until the use of onditions (h

1

) and (h

2

).

Then it resembles the proof of theorem 5, and using a tedious ase analysis as we did for

proving ondition (h

2

) of theorem 1.

The sequene of sets (T

k

)

k2IN

is inreasing and its union is T . Thus it is enough to show

Synt (T

k

) on all T

k

. Let H be one of them.

For any integer n, let H

n

be the subset of H omposed of all the terms that do not start

any dereasing sequene of length n. All these sets are losed under

�

���!

j

�

H

. In partiular, they

are losed subsets of T . Any term smaller than a term in H

n+1

is in H

n

. The sequene is

inreasing, and its limit is H. We show Synt (H

n

) by indution on n. In fat, it is enough to

show that

�!

�

�

���!

�1

�!

�

�

H

n

�

���!

�1

Æ

��!

�

�

���!

�1
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holds.

The set H

0

is omposed of variables and onstant symbols. Thus, the only instane of the

premise is �!

�

�!

�

, for whih the inlusion is satis�ed, sine the two axioms must be inverses

and annihilate eah other.

Let us assume the property Synt (H

n

) and show Synt (H

n+1

). Let D be the set of all

diretions. A relation

�

���!

�1

in H

n+1

an be written as the omposition

�

�

���!

k1

�

k2D

sine disjoint ourrenes ommute. For eah diretion k, the subproof at k is in H

n

. Sine

Synt (H

n

), it an be rewritten in H

n

so that it mathes

�

���!

�1

Æ

��!

�

�

���!

�1

Re-assembling all subproofs, we get a proof mathing

�

�

����!

k�1

Æ

��!

k

�

����!

k�1

�

k2D

whih is a proof in H

n+1

sine H

n+1

is losed. It an be reordered as

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

k2D

We have shown

�

���!

�1

�

H

n+1

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

k2D

Composing the step at the root on both sides, we get

�!

�

�

���!

�1

�!

�

�

H

n+1

�!

�

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

k2D

�!

�

and we are left with proving

��!

r;�

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

k2D

��!

s;�

�

H

n+1

�

���!

�1

Æ

��!

�

�

���!

�1

We show this inlusion ondition by ases on the outermost axioms r and s. We omit the

supersripts of symbols.

Case r is (� . a): The axiom s must be of the form (a . X), sine a : ; is the top symbol

of the term before the last step.

Subase X is �: The proof is of the form:

�(�) �!

�

a : � ; �(�)

�

���!

11

a : � ; �(�)

�

���!

21

a : � ; �(�) �!

�

�(�)

A shorter proof is the subproof at ourrene 1 applied to �(�).



5.2 SuÆient ondition for syntatiness with non-linear axioms 39

Subase X is b: The label b must be distint from a. The proof is of the form:

�(�) �!

�

a : � ; �(�)

�

�����!

R;11

a : �

0

; �(�)

�

�����!

S;21

a : �

0

; b : �

00

; � �!

�

b : �

00

; a : �

0

; �

The subproof

�(�)

�

����!

S;1

b : �

00

; �

at the ourrene 2 is in H

n�1

. Thus, it an be rewritten into a proof of the form

�(�)

�

�������!

T; 11

�(�) ��!

�

b : � ; �(�)

�

������!

P; 1�

�

������!

Q; 2�

b : �

00

; �

Putting the piees together, there is a proof mathing

�(�)

�

����!

11

�(�) ��!

�

b : � ; �(�)

�

���������!

P

�1

; 11

b : �

00

; �(�) ���!

22

b : �

00

; a : � ; �(�)

�

��������!

T

�1

; 21

b : �

00

; a : � ; �(�)

�

������!

R; 21

b : �

00

; a : �

0

; �(�)

�

������!

Q; 22

b : �

00

; a : �

0

; �

Subase X is f : Then �rst term must be of the form f(�

1

; : : : �

p

). The proof is of the form

� (f(�

1

; : : : �

p

)) ��!

�

a : f(�

1

; : : : �

p

) ; � (f(�

1

; : : : �

p

))

�

�������!

R; 11

a : f(�

1

; : : : �

p

) ; � (f(�

1

; : : : �

p

))

�

��������!

S; 121

a : f(�

1

; : : : �

p

) ; f(�

1

; : : : �

p

) ��!

�

f(a : �

1

; �

1

; : : : a : �

p

; �

p

)

The subproof using axioms S at ourrene 1 is H

n

, and an be rewritten into a proof

mathing

� (f(�

1

; : : : �

p

))

�

�������!

T; 11

�

�

f(�

0

1

; : : : �

0

p

)

�

��!

�

f(�(�

0

1

); : : : �(�

0

p

))

 

�

�������!

P; �1

!

f(�

1

; : : : �

p

)

Again, the subproof using axioms R at ourrene 1 and the subproof using axioms T at

the ourrene 1 are in H

n

, and annot have exatly one axiom at the empty ourrene.

Therefore they are omposed of a suession of proofs in all diretions. Then we an prove:

� (f(�

1

; : : : �

p

)) ��!

�

f(�(�

1

); : : : �(�

p

))

�

��!

2

f(a : �

1

; �(�

1

); : : : a : �

p

; �(�

p

))

�

���������!

T; �211

f(a : �

1

; �(�

0

1

); : : : a : �

p

; �(�

0

p

))

�

���������!

P; �211

f(a : �

1

; �(�

1

); : : : a : �

p

; �(�

p

))

�

��������!

R; �11

f(a : �

1

; �(�

1

); : : : a : �

p

; �(�

p

))

Case r is (� . f): Then s must be an axiom (f . X).

Subase X is �: The proof is of the form:

�(f(�)) �!

�

f(�(�

1

); : : : �(�

p

))

�

����!

�11

f(�(�

1

); : : : �(�

p

)) �!

�

�(f(�))

A shorter proof is the omposition of subproofs at ourrenes i1 applied at ourrenes 1i

to �(f(�)).
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Subase X is a: The proof is of the form

�(f(�

1

; : : : �

p

)) ��!

�

f(�(�

1

); : : : �(�

p

))

�

��������!

R; �11

f(�(�

0

1

); : : : �(�

0

p

))

�

��������!

� . a; �

f(a : �

0

1

; �(�

0

1

); : : : a : �

0

p

; �(�

0

p

))

�

��������!

S; �11

f(a : �

1

; �(�

0

1

); : : : a : �

p

; �(�

0

p

))

�

���������!

T; �211

f(a : �

1

; �(�

1

); : : : a : �

p

; �(�

p

)) ��!

�

a : f(�

1

; : : : �

p

) ; f(�(�)

1

; : : : �(�)

p

)

Then, we an prove

�(f(�

1

; : : : �

p

)) ��!

�

a : f(�

1

; : : : �

p

) ; f(�(�); : : : �(�))

�

������������!

R [ S; 1�1

a : f(�

1

; : : : �

p

) ; f(�(�); : : : �(�))

�

������������!

R [ T; 2�1

a : f(�

1

; : : : �

p

) ; f(�(�); : : : �(�))

Subase X is g: is not possible.

Case s is (a . �): This ase is symmetri to the ase r where is (� . a).

Case neither r is (� . X), nor is s (� . X): Then the axioms r and s are linear on the

right and left, respetively and ommutes with their right and left neighbors, so we get a

proof mathing:

�

�

����!

k�1

�

k2D

��!

r;�

�

Æ

��!

k

�

k2D

�!

�

�

�

����!

k�1

�

k2D

We show that the inlusion

��!

r;�

�

Æ

��!

k

�

k2D

��!

s;�

�

H

n

�

���!

�1

Æ

��!

s;�

�

���!

�1

by ases on r and s.

Case r is (X . �) or s is � . X: The middle equality must be empty. The two axioms r

and s must be inverse and annihilate eah other.

Other ases: In the remaining ases, neither r nor s are � axioms. The middle axiom

annot be a � axiom. The remaining ases are then exatly those of the reord term algebra.

We derive the mutation in the reord term algebra (�gure 2): For all other pairs of terms

(�; �), if they have idential top symbols, they are deomposable; otherwise they produe a

ollision.

Theorem 11 Uni�ation in the generi reord algebra is deidable and unitary unifying.

Proof: The theory is strit (we exhibited a ompatible ordering). Therefore, the rules muta-

tion, deomposition, ollision, fusion and generalization applied any order form a omplete

semi-algorithm for uni�ation. It is unitary sine mutation does not introdue any disjun-

tion.

All transformations are stable in the sets T

n

and derease in the following lexiographi

ordering:

1. the number of symbols f

Row(L)

in the lexiographi order of dereasing Card (L) (that

is, bigger sets ount less: mutate (a . f)),

2. the number of symbols a

L

: ; ounted in the lexiographi order of dereasing

Card (L) (mutate (a . b)),
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f

Row(L)

(�

i

)

i2[1;p℄

_= a

L

: � ;  _= e

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

9�

i

; 

i

i2[1;p℄

�

V

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

a

L

: � ;  _= e

� _= f

Type

(�

1

; : : : �

p

)

 _= f

Row(a:L)

(

1

; : : : 

p

)

�

i

_= a

L

: �

i

; 

i

i 2 [1; p℄

Mutate(a . f)

a

L

: � ; � _= b

L

: � ; � _= e

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

9  �

V

8

>

>

<

>

>

:

b

L

: � ; � _= e

� _= b

a:L

: � ; 

� _= a

b:L

: � ; 

Mutate(a . b)

a

L

: � ; � _= �

L

(�) _= e

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

�

L

(�) _= e ^ � _= � ^ � _= �

a:L

(�)

Mutate(� . b)

f

Row(L)

(�

1

; : : : �

p

) _= �

L

(�) _= e



g

�

9 (�)

i2[1;p℄

�

V

8

>

>

<

>

>

:

�

L

(�) _= e

� _= f

Type

(�

1

; : : : �

p

)

�

i

_= �

L

(�

i

) i 2 [1; p℄

Mutate(f . �)

Figure 2: Mutation in the generi algebra of reord terms

3. the number of other symbols (other mutations and deomposition),

4. the sum of heights of terms (generalization),

5. the number of multi-equations (fusion).

Thus, applying the rules in any order always terminates.

6 Comparison with other work

In our approah, reords are terms of a sorted algebra modulo regular equations. We have

in�nitely many equations (indexed by labels), but all equations at loally on terms, sine

the axioms are of depth at most 2.

In reord aluli, it is possible to de�ne a reord s by adding a �eld (a = x) to the reord

r whether r already de�nes �eld a or not. It is tempting to reet the struture of reord

objets into reord types and assign the type (a : � ; �) to s provided s has type �. In the

ase, where r already de�nes �eld a, it has a type of the form (a : �

0

; �) ; then s has type

(a : � ; (a : �

0

; �)) . The type omponent of r on �eld a is meaningless in the type of s, sine

the �eld of s is x. This an be realized by adding a non-regular absorption axiom

a : � ; a : �

0

;  = a : � ; 
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Suh an axiom muh be treated arefully. This approah has been taken in two reent

proposals for reord terms, one by A. Hense and G. Smolka [HS92℄, the other by B.

Berthomieu [Ber93℄. Both approahes also restrit terms to the equivalent of our anoni-

al terms. The notion of expansion is not based on distributivity equations; instead, it is

inorporated in the substitutions themselves, using more omplex sorts to ontrol substitu-

tion.

For instane, the reord term a : � ; abs is oded as a : � ; �

abs

in Berthomieu's sys-

tem; the sort abs assigned to � restrits any substitution to be at least of the form

� 7! ` : abs ; �

abs

. The following E-equality in reord terms

a : � ; abs = a : � ; (b : abs ; abs )

is not an equality in Berthomieu's system [Ber93℄; the two equivalent terms are only in the

instane relation

a : � ; �

abs

< a : � ; (b : abs ; �

0abs

)

The right hand side is equal to the substitution of variable � of sort abs by b : abs ;�

0abs

in the left hand side. This is the smallest possible substitution for � as a result of its sort

onstraint. Berthomieu's approah is more omplex in the ase of simple reord algebras, but

it seems to simplify the treatment of generi reord algebras: the generi reord term

a : � ; � ! �(�)

would be represented in Berthomiue's system as

a : � ; 

8���!�

using the expliit quanti�ers in sorts. Then, the variable  an be replaed by ` : � ; 

08���!�

provided � is an instane of the type sheme 8� � � ! �, that is, of the form � ! �. The

sorts are terms and an also be instantiated during uni�ation. This is an additional diÆulty

but also a gain of expressiveness.

We �nd the approah of Berthomieu quite interesting for the extension to generi reord

algebras, but we prefer our approah for simple reord terms, sine it �ts niely in a known

framework.

Conlusion

We introdued a framework in whih syntatiness of an equational presentation an be

studied more easily. We de�ned reord algebras over an initial set of symbols as the quotient

of a free sorted algebras by left ommutativity and distributivity axioms. We showed that

it is syntati and deidable and we dedued an eÆient, unitary unifying algorithm for

uni�ation. Many variants of reord algebras an be obtained by restriting the terms by a

signature that is ompatible with the equations. Di�erent instanes have already been used

to provide type systems for languages with reords.

The extension of reord algebras to reursive types has not been addressed here. In pra-

tie, the algorithm that we desribed also works with non-strit systems of multi-equations,

whih represent reursive terms. However, the notion of regular trees modulo equations has to

be de�ned before any orrespondene between these and non-strit systems of multi-equations

an be studied. It seems that the algebra of reord terms is suÆiently onstrained by the

sorts that there would be a lose orrespondene between the two, whih annot be expeted

in general.



43

The extension of reord algebras to generi reord algebras is a diÆult step. Even if

it an be extended to higher order generiity, it seems too diÆult to be the right notion.

Making a loser onnetion with the reord terms of Berthomieu is a promising approah.

The generality of reord algebras suggests that there should be other useful appliations.
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