
Synta
ti
 Theories and the Algebra of Re
ord Terms

Re
ently, many type systems for re
ords have been proposed. For most of them, the types


annot be des
ribed as the terms of an algebra. In this 
ase, type 
he
king, or type inferen
e

in the 
ase of �rst order type systems, 
annot be derived from existing algorithms.

We de�ne re
ord terms as the terms of an equational algebra. We prove de
idability of

the uni�
ation problem for re
ords terms by showing that its equational theory is synta
ti
.

We derive a 
omplete algorithm and prove its termination. We de�ne a notion of 
anoni
al

terms and approximations of re
ord terms by 
anoni
al terms, and show that approximations


ommute with uni�
ation. We also study generi
 re
ord terms, whi
h extend re
ord terms

to model a form of sharing between terms. We prove that the equational theory of generi


re
ord terms and that the 
orresponding uni�
ation algorithm always terminates.

Th�eories syntaxiques et Alg�ebres d'enregistrements

De nombreux syst�emes de types pour les enregistrements ont �et�e propos�es r�e
emment. Pour

la plupart d'entre eux les types ne peuvent pas être d�e
rits 
omme les termes d'une alg�ebre.

La v�eri�
ation de types, ou la synth�ese de type dans le 
as des syst�emes de types d'ordre un,

ne peuvent alors plus être d�eduits d'algorithmes 
onnus.

Nous d�e�nissons les termes �a enregistrements 
omme les termes d'une alg�ebre

�equationnelle. Nous prouvons la d�e
idabilit�e du probl�eme d'uni�
ation pour les termes

d'enregistrements en montrant que sa th�eorie est syntaxique. Nous en d�eduisons un algo-

rithme 
omplet et prouvons sa terminaison. Nous d�e�nissons une notion de termes 
ano-

niques et l'approximation d'un terme d'enregistrement par des formes 
anoniques, et nous

montrons que les approximations 
ommutent ave
 l'uni�
ation. Nous �etudions les termes

d'enregistrements g�en�eriques qui �etendent les termes d'enregistrements pour mod�eliser une

forme de partage entre les termes. Nous montrons que la th�eorie �equationnelle des termes

d'enregistrements g�en�erique est syntaxique ainsi que la terminaison de l'algorithme 
orres-

pondant.
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Introdu
tion

Type systems for re
ords have been studied extensively in re
ent years. For most of them the

types of re
ords are no longer terms of an algebra. Consequently, results about uni�
ation,

whi
h yield, for example, algorithms for type inferen
e in the 
ase of �rst order languages,


annot be reused, and the problems have to be studied again from the beginning. Type

inferen
e for ML 
an be de
omposed into two steps. The �rst step de
omposes ML programs

into uni�
ation 
onstraints; it needs to know very little about the stru
ture of types, as

opposed to the se
ond step whi
h resolves the uni�
ation 
onstrains. The author des
ribed

a type system for polymorphi
 extensible re
ords that uses terms of an algebra modulo

equations for its types [R�em93℄. Type inferen
e for ML with sorted equational theory on

types has been studied in [R�em92a℄. The 
onstru
tion of the re
ord algebra and its properties

have been studied in [R�em90℄ but had not been published in English yet. Here, the results

of [R�em90℄ are reviewed and their presentation is improved | the study is also extended to

generi
 re
ord terms.

Here, re
ord terms are studied for themselves, independently any parti
ular use. However,

we motivate some of the 
onstru
tions by their use as the types of a fun
tional language with

re
ord obje
ts. In this 
ontext we temporarily 
all them \re
ord types". They enable a

natural extension of fun
tional languages with re
ords. One interest of extending fun
tional

languages with re
ords is to have fun
tions that 
an operate polymorphi
ally on re
ords with

di�erent sets of �elds. Re
ords are produ
ts of variable size with labeled 
omponents. The

key idea is that types must re
e
t the stru
ture of values and therefore re
ord types must be

produ
ts of di�erent sizes with named 
omponents. Types of re
ords 
arry information on

all labels, but only a �nite number of labels have di�erent types, so type information 
an be

�nitely represented. More motivation 
an be found in [R�em93℄. Types of re
ords are often

de�ned by 
onstru
ting all �elds at on
e. This requires the introdu
tion of a 
olle
tion of

symbols fa

1

: ; : : : a

p

: g for all subsets of the set of labels (labels form a 
ountable set).

Re
ord types with di�erent sets of labels are 
ompletely in
ompatible types, whi
h makes

their uni�
ation quite diÆ
ult. On the 
ontrary, re
ord types are introdu
ed with a symbol

�( ) and built �eld by �eld with symbols (a : ; ) , ending with 
onstant symbol abs when

there are no more �elds to de�ne. Two re
ords types with some 
ommon set of �elds, for

instan
e (a : � ; (b : � ; �)) , and (a : � ; abs ) 
an share some stru
ture, namely the skeleton

� (a : ; ) . The �elds of re
ord types may be de�ned in any order, and 
ommutativity

equations are used to re-order �elds. Some other kind of equations are also be needed to

expand rows, for instan
e abs into (b : abs ; abs ) , so that the two re
ord types may be

uni�ed.

Re
ord types are thus types of an algebra taken modulo equations. Type inferen
e in ML

redu
es to uni�
ation problems. Uni�
ation in the empty theory is well known, but there is no

general algorithm for uni�
ation in an arbitrary equational theory. For some theories, there

may not even exist su
h algorithm, or the algorithm may be inherently ineÆ
ient. Se
tion 1

re
alls de�nitions and a few results about equational theories. Sin
e the basi
 problem is

rewriting proofs of equality between terms to proofs of a 
ertain shape, we introdu
e a

notation of equality relation that allows the manipulation of sets of proofs that share the

same pattern.

Fortunately, there is a 
lass of equational theories, 
alled synta
ti
 theories, for whi
h

there exists a uni�
ation algorithm quite similar to the free uni�
ation algorithm of Martelli-

Montanari [MM82℄. There is no known algorithm to de
ide whether a theory is synta
ti
.

The usual methods for proving synta
ti
ness do not apply either. Se
tion 2 brie
y introdu
es

synta
ti
ness, and develops a framework for studying synta
ti
ness properties of equational

theories. The main result of this se
tion is theorem 1; it gives a suÆ
ient 
ondition for
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synta
ti
ness and is used in se
tion 3 to prove that the theory of re
ord terms is synta
ti
.

The theory of re
ord terms is des
ribed in se
tion 3. It is shown to be synta
ti
; this

automati
ally provides a 
omplete uni�
ation semi-algorithm, and we prove its termination.

In fa
t re
ord terms have more stru
ture than required by their use as types of re
ord obje
ts.

In se
tion 4 we introdu
e 
anoni
al forms and show that re
ord terms 
an be approximated

by 
anoni
al forms. Approximations 
ommute with uni�
ation. In se
tion 5 we study an

extension of re
ord terms with more stru
ture, the generi
 re
ord terms, whi
h are used as

the types of proje
tions in the language Proje
tive ML [R�em92b℄.

The main results of this arti
le are theorem 6 in se
tion 3 and theorem 11 in se
tion 5,

whi
h states the de
idability of uni�
ation in the theories of re
ord terms and generi
 re
ord

terms, respe
tively. A se
ondary result is the existen
e of prin
ipal approximations for re
ord

terms and their 
ommutation with uni�
ation, stated by theorem 9. The method used for

proving theorem 1 and lemma 35 is also interesting and 
an probably be reused in other

situations.

1 Equational theories

This se
tion introdu
es the main de�nitions and some known results about uni�
ation in

equational theories.

1.1 Sorted Free Algebras

We are given a set K of atomi
 sorts, written �. Signatures are non-empty tuples of sorts,

written � for a one-element signature or �

1


 : : : �

p

) �

0

for longer ones. The integer p (zero

for a one element signature) is the arity of the signature. We are given a set of symbols C

and a mapping S from C to the set of signatures. The arity of a symbol f is the arity of its

signature, written %(f). The sort of a symbol is the right-most sort of its signature. Finally,

we are given a set of variables V with in�nitely many variables of every sort (V

�

)

�2K

. The

set of terms is the sorted free algebra T (V;S). The mapping S is also 
alled the signature of

the algebra. Variables are written with the letters �, �, 
, and Æ, and terms with the letters

� , �, and �.

The set of variables appearing in a term � is written V(�). We impli
itly 
oer
e a term �

into the set of its variables V(�) when a set of variables is required. For instan
e, two terms

are said to be disjoint if their sets of variables are disjoint. The top symbol of a non-variable

term � , written Top (�), is the symbol at the empty o

urren
e in � . For any symbol f of

arity p, we write f(T

p

) for the set of terms whose top symbol is f . The sort of a term is the

sort of its top symbol. Two terms of the same sorts are said homogeneous.

Substitutions are sort-respe
ting mappings of �nite domains from the set of variables to

the set of terms. They naturally extend to mappings from terms to terms by 
ompatibility

with the stru
ture of algebra. Substitutions are written with the letters �, �, and �. The

domain of a substitution �, written dom (�), is the set of variables that are not their own

images and the range of �, written im (�), is �(dom (�)). We say that a set of variables

is disjoint from a substitution if it is disjoint from both the domain and the range of the

substitution. We write � j

�

W for the restri
tion of substitution � to the set W , and � nW

for the restri
tion of � to the set V nW .

1.2 Equational theories

It is important to distinguish between the presentation of an equational theory and the

theory generated by the presentation. A presentation presentation of an equational theory
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is a set E of homogeneous pairs of terms 
alled axioms. A 
ongruen
e is an equivalen
e

that is 
ompatible with the stru
ture of algebra. The E-equality on T generated by the

presentation E, written =

E

, is the smallest 
ongruen
e 
ontaining all possible substitutions

of the axioms. The equational theory equational theory T =E is the quotient of T byE. Several

presentations may de�ne the same equational theory (for instan
e, if one presentation extends

the other with a pair of terms that 
an be proved equal in the equational theory the �rst).

We write q for an arbitrary axiom and q

l

and q

r

for its �rst and se
ond proje
tion,

respe
tively. We often assume that presentations are 
losed under symmetry, and we write

q

�1

for the axiom (q

r

; q

l

).

1.3 Equality relations

The basi
 notion in studying equational theories, and in parti
ular synta
ti
ness, is the

transformation of proofs. Equality relations are a formal way of manipulation proofs mat
hing

a 
ertain pattern. The 
orre
tness of a proof transformation 
an be formalized by the assertion

that one equality relation is a sub-relation of another.

We write �

=u

for the sub-term of � at the o

urren
e u. We write � [�=u℄ for the term

obtained from � by repla
ing the subterm at the o

urren
e u by �. Two terms � and � 
an

be proved equal in one step if there exists an axiom q, an o

urren
e u, and a substitution �

su
h that �

=u

is �(q

l

) and �

=u

is �(q

r

). In this 
ase, we write � �! �. When more information

is needed, we may write � ���!

q=u

�. The former relation is symmetri
, but the latter is not.

We formalize and extend this notation below, so that it 
an be rigorously used in proofs.

An equality step equality step is any sub-relation of �!. Arbitrary equality steps are

written ��!

X

, ��!

Y

, and ��!

Z

. An Equality relation is any 
omposition of equality steps. They

are sub-relations of =

E

. Arbitrary equality relations are written X , Y and Z.

We write for � the identity relation. We write X

Æ

and

Æ

��!

X

for equality steps, the union of

the relation X with the identity relation �. The 
omposition 
omposition equality relations

of two equality relations X and Y, written XY, relates any two terms � and � su
h that there

exists a term � satisfying � X �^ � Y �. The union of two equality relations relates any two

terms that 
an be proved equal by either of the relations.

If K is a totally ordered set and (X

k

)

k2K

is a sequen
e of equality relations equal to the

identity after some rank N , we write

(X

k

)

k2K

and

k 2 K

�������!

X

k

for equality steps,

the 
omposition of all relations taken in the in
reasing order. When X does not depend on

k we write X

K

(or

K

���!

X

) for short. We also write

X

�

for

[

q2IN

X

q

and

�

��!

X

for equality steps.

The E-equality is just

�

��!. For all terms � and � that are E-equal, there exists a sequen
e

of relations

i 2 [1; p℄

���������!

X

i

and a sequen
e of terms (�

i

)

i2[1;p�1℄

su
h that

� ���!

X

1

�

1

: : : ���!

X

i

�

i

: : : �����!

X

p�1

�

p�1

���!

X

p

�
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Exhibiting these relations and these terms realizes a proof of � =

E

�. We say that the proof

mat
hes the relation

i 2 [1; p℄

���������!

X

i

.

Given two equality relations X and Y, we write X�Y whenever X is a sub-relation of

Y. Being a sub-relation 
an also be understood as set in
lusion, viewing relations as their

graphs, as we often do.

1.4 Paths

O

urren
es are not enough pre
ise. They de�ne a subterm of a term, but are unable to

tell anything about the symbols en
ountered on the way from the root to the subterm. A

dire
tion dire
tion is a pair (f; x), also written f

x

, of a symbol f and an integer x. A path

path is a �nite sequen
e of dire
tions. We say that a path u equal to (f

i

; x

i

)

i2[1;p℄

is a path

in � , or that � 
ontains the path u, if

1. the o

urren
e (x

i

)

i2[1;p℄

is an o

urren
e in � , and

2. for all k in [1; p℄, the symbol f

p

is at the o

urren
e (x

i

)

i2[1;p�1℄

.

We write �

=u

for the subterm of � at the o

urren
e (x

i

)

i2[1;p℄

. We write � for the empty path.

Two paths are disjoint disjoint if neither is a pre�x of the other. For instan
e, the sequen
e

(f; 1)(g; 2) is a path, abbreviated as f

1

g

2

. The asso
iated o

urren
e is the sequen
e 12 of

length 2.

If q is the axiom (q

l

; q

r

) and u is a path, we write ���!

q=u

for the equality step that proves

� [�(q

l

)=u℄ =

E

� [�(q

r

)=u℄

for any term � 
ontaining u and any substitution �. If u is a path and � ���!

q=u

� a one step

proof, we get a proof �

=u

���!

q=�

�

=u

, 
alled the sub-proof at path u.

Paths are mu
h more pre
ise than o

urren
es; sometimes they are too pre
ise. An

o

urren
e u 
an be 
onsidered as the set of all paths whose o

urren
es are u. The union of

two equality steps ���!

q=u

and ���!

q=v

is an equality step. We write it �����!

q=u[v

. More generally, we

write ����!

q=U

for

[

u2U

���!

q=u

when U is a set of paths. By default, U is the set of all paths and 
an be omitted.

Proposition 1 For any disjoint sets of paths U and V , the two equality steps ��!

U

and ��!

V


ommute in T , that is

��!

U

��!

V

= ��!

V

��!

U

The following notations help in manipulating sets of paths:

- We identify a path u with the singleton fug.

- For any symbol f of non-zero arity p, we write for f for the set of paths f(f; x) j x 2

[1; %(f)℄g.

- For any integer p, we write p for the set of paths f(f; p) j f 2 C ^ %(f) � pg. For large

values of p, this set may be empty.
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- We write �� path for the path of length 1 
omposed of the set of all dire
tions.

- If U and V are sets of paths, we write UV for the 
on
atenation of U and V , 
omposed

of all the 
on
atenations of any path of U with any path of V .

- We write U

Æ

Æ path set for the union (� [ U).

- If K is a totally ordered set and (U

k

)

k2K

is a sequen
e of path sets equal to � after

some rank N , we write (U

k

)

k2K

for the 
on
atenation of all path sets (distin
t from �)

and taken in the in
reasing order. When U does not depend on k and K is �nite, we

write U

K

for short. We write U

�

for the union

S

k2IN

U

k

and 1 for (�

�

).

For instan
e, (�1) denotes the set of all paths of length stri
tly greater than one.

The union of the equality steps ���!

q=u

and ���!

s=u

is an equality step; it is written �����!

q[s=u

.

That is, axioms are repla
ed by sets of axioms: If R is a subset of E, we write ����!

R=u

for the

equality step

[

q2R

�

���!

q=u

�

By default, R is E and 
an be omitted. For example, the expression

�

����!

�

k

1

Æ

��!

�

relates any

two terms that are provably equal with any number of steps at a path of length at least k

followed eventually by one step at the empty path.

The expression �!

Æ

�

���!

�1

���!

21

relates any two terms that are provably equal with one step

at the empty path followed by any number of steps at non-empty paths and one step in the

se
ond dire
t subterm.

1.5 Restri
tion of equality relations

In the following, we will be interested in transforming proofs inside a subset of T . This is

formalized by restri
tion of equality relations. The restri
tion of the equality step restri
tion

equality step ��!

X

to a subset H of T , noted ����!

Xj

�

H

is the relation ��!

X

\H

2

in H. The

restri
tion of the equality relation restri
tion equality relation X to a subset H of T , noted

X j

�

H, is the equality relation X \

�

���!

j

�

H

in H; it always relates terms that 
an be proved

equal in H. If H is a subset of T , if � and � are in T , and if all auxiliary terms are in H, we

say that the proof is a proof in Hproof in H.

The restri
tion to a set of termsH that is not 
losed underE-equality might be dangerous,

in the sense that 
ertain obvious properties in T might not hold in H. The reason is that

restri
tion of an equality relation as we de�ned it is not the restri
tion of the relation in the

usual meaning. If the set H is 
losed under E-equality, then the two notions 
oin
ide.

De�nition 1 A subset H of T is 
losed 
losed if it 
ontains all its subterms and satis�es

8�; � 2 H; 8u 2 dom (�); (�

=u

�! �) =) � [�=u℄ 2 H:

In the rest of the arti
le, we only allow the restri
tion of relations by 
losed subsets of T .

This does not imply that H is 
losed by E-equality (if � is not in H, then �[�

=u

℄ may not

be in H), but at least it has two interesting properties:

� A subproof of a proof in H at a de�ned o

urren
e is a proof in H.
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� Two steps at disjoint paths 
ommute.

These properties are highly desirable before any serious surgery on proofs 
an be done.

We write X �

H

Y for X j

�

H � Y j

�

H and we say that X is a sub-relation of Y in H. The

relation �

H

is re
exive and transitive.

1.6 Sorts and equational theories

Sorting terms is a 
ommon way of restri
ting the set of admissible terms. The addition of

sorts to an equational theory 
an have two e�e
ts on uni�
ation:

� Sin
e fewer terms 
an meet, diÆ
ult 
ases may sometimes disappear.

� There are fewer proofs, whi
h 
an be either helpful or harmful. In some parti
ular


ases, all proofs between valid terms are valid proofs.

The �rst situation is unavoidable, be
ause sorts are aimed at restri
ting the set of terms.

It 
an only make uni�
ation easier. The se
ond situation may have no e�e
t, if all proofs

between homogeneous terms are still permitted.

Let T be a set of terms, S a sort signature, and E an equational theory. We note T j

�

S

the restri
tion of T by the signature S. In general, axioms of E may violate the sorts. We

say that an axiom has sort � if both left and right hand sides of the axiom have sort �. We

write E j

�

S the set of well-sorted axioms for S.

We are interesting in the 
omparison of equality in the two theories (T j

�

S)=(E j

�

S) and

(T =E)j

�

S, that is, the 
omparison of the equality relations

�

�! \(T j

�

S)

2

�

�

and

�

��! \(T j

�

S)

2

.

In parti
ular, when these relations are equal, any uni�
ation algorithm for T =E also solves

uni�
ation in (T j

�

S)=(E j

�

S).

De�nition 2 We say that a signature � and a presentation E are 
ompatible 
ompatible if,

for all axioms q and all sorts �,

� ` q

l

:: � () � ` q

r

:: �:

Proposition 2 If the presentation E is regular and 
ompatible with the signature �, then

the algebras (T =E) j

�

� and (T j

�

�)=(E j

�

�) are isomorphi
.

Proof: We show that

�

�! \(T j

�

�)

2

�

�

and

�

��! \ (T j

�

�)

2

are equal. That is, any proof in

T of equality between two terms in T j

�

� has all intermediate subterms in T j

�

�, whi
h is a

straight-forward 
onsequen
e of the property

8� 2 T j

�

�; 8� 2 T ; � �! � =) � 2 T j

�

�

For some axiom q and some o

urren
e u, �=u mat
hes q

l

, that is, there exists some sub-

stitution � su
h that �

=u

is equal to �(q

l

). Sin
e � is in T j

�

�, both q

l

and the restri
tion

of substitution � to V(q

l

) are well sorted. The restri
tion of � to V(q

r

) is identi
al to its

restri
tion to V(q

l

) be
ause the theory is regular. Be
ause of 
ompatibility, q

r

has the same

sort as q

l

. Thus � [�(q

r

)=u℄, that is, � is well sorted.

The property is often used in one of the following two 
ases:

� The presentation E is well-sorted.

� The signature removes symbols in a way that is 
ompatible with E.
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2 Synta
ti
 theories

Synta
ti
 theories were introdu
ed by C. Kir
hner [Kir85℄.

Assumption In the rest of this arti
le, we assume that the theory is 
ollapse free, that is,

there is no axiom 
omposed of a variable on one side.

For any presentation E and any symbols f and g of respe
tive arities p and q, we write

E(f; g) the set E \ f(T

p

)� g(T

q

) of axioms whose top symbols are f and g, respe
tively.

De�nition 3 A pair of symbols (f; g) is synta
ti
 for the presentation E if, for all equal pairs

of terms of f(T ) � g(T ), there is a proof of their equality that uses at most one axiom at

the empty path. A presentation is synta
ti
 if all pairs of symbols are. A theory is synta
ti


synta
ti
 if there exists a synta
ti
 presentation of this theory su
h that all sets E(f; g) are

�nite for all pairs of symbols (f; g).

For a presentation to be synta
ti
 is equivalent to

�

��! �

�

���!

�1

Æ

��!

�

�

���!

�1

:

Let H be a 
losed subset of T . We say that a presentation is synta
ti
 in Hsynta
ti
 in H if

�

��! �

H

�

���!

�1

Æ

��!

�

�

���!

�1

:

We write Synt (H) when the presentation is synta
ti
 in H.

The presentation ff =

E

g; g =

E

hg is not synta
ti
, sin
e the pair (f; h) is not (but

the pair (f; g) is). However, the theory generated by the presentation is synta
ti
 sin
e the

addition of the axiom f =

E

h does not modify the theory and makes all pairs of symbols

synta
ti
. The empty theory and the theory ff(g(�)) =

E

g(�)g are synta
ti
, but the theory

ff(g(�)) =

E

f(�)g is not. Many examples 
an be found in [Kir85℄ and [KK89℄.

Some interesting questions are:

� Is a presentation synta
ti
?

� Is a theory synta
ti
?

� How to �nd a synta
ti
 presentation of a synta
ti
 theory.

� Minimalizing the set of axioms of a synta
ti
 presentation.

The de�nition of synta
ti
 theories is purely \synta
ti
," but a semanti
 
hara
terization was

later found by C. Kir
hner and F. Klay [KK89℄. T. Nipkow showed that some proof transfor-

mations by rewriting te
hniques were 
losely related to synta
ti
 presentations [Nip89℄. All

these studies help in understanding the se
ond problem. A 
ommon instan
e of the third

problem is the 
ompletion of a presentation into one that is synta
ti
; it has been thoroughly

addressed by C. Kir
hner. Our interest is only the �rst problem.

2.1 SuÆ
ient 
onditions for 
ommutativity

Proving that a presentation is synta
ti
 usually requires some rearrangement of equality

relations. The most frequent one is the 
ommutation of two equality steps. The suÆ
ient


onditions �ven in se
tion 2.2 require 
ommutativity of 
onse
utive equality steps of a 
ertain

shape. In general, two equality steps at disjoint paths 
ommute. Here, we study the 
ase

when one o

urren
e is pre�x of the other below.
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Lemma 3 Let H be a 
losed subset of T . Let q be an axiom su
h that there is a variable �

appearing exa
tly on
e in q

r

at the o

urren
e u and appearing k times in q

l

at o

urren
es

(u

j

)

j2[1;k℄

. Then for any axiom s and any o

urren
e v,

���!

q=�

����!

s=uv

�

H

j 2 [1; k℄

���������!

s=u

j

v

���!

q=�

:

Proof: A proof mat
hing ���!

q=�

����!

s=uv

is of the form

�(q

l

) ���!

q=�

�(q

r

) ����!

s=uv

�(q

r

)[�=uv℄:

Let � be q

r

=u

. From the proof

�(q

r

) ����!

s=uv

�(q

r

)[�=uv℄;

we 
an extra
t the proof at u,

�(�) ���!

s=v

�(�)[�=v℄;

and apply it to all disjoint o

urren
es (u

j

)

j2[1;q℄

of � in q

l

. Abbreviating �(�)[�=v℄ by �,

�(q

l

)

j 2 [1; k℄

���������!

s=u

j

v

�(q

l

)[�=u

j

℄

j2[1;k℄

:

The right hand side of the above proof is equal to (� n f�g+(� 7! �))(q

l

). Applying axiom q

at o

urren
e � gives (� n f�g+ (� 7! �))(q

r

), whi
h is (� n f�g)(q

r

)[�=u℄ sin
e u is the only

o

urren
e of � in q

r

(the linearity 
ondition of q

r

in � is needed here). By expansion of �,

this simpli�es into �(q

r

)[�=uv℄.

Corollary 4 Let H be a 
losed subset of T . If q is a 
ollapse-free axiom

1

su
h that there

exists one variable appearing exa
tly on
e in q

r

at the o

urren
e u, then for any axiom s,

���!

q=�

�����!

s=u1

�

H

�

�����!

s=�1

���!

q=�

Proof: It suÆ
es to noti
e that the o

urren
es (u

j

)

j2[1;q℄


annot be empty.

Corollary 5 Let H be a 
losed subset of T . If the presentation is 
ollapse-free and all axioms

are linear (regular and su
h that a variable o

urs at most on
e in ea
h side of axioms) of

depth less or equal to n, then

���!

q=�

������!

s=�

n

1

�

H

�����!

s=�1

���!

q=�

:

2.2 SuÆ
ient 
onditions for synta
ti
ness

Lemma 6 The property Synt (H) is equivalent to

�!

�

�

���!

�1

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

:

1

This 
ondition is important here. Though it is assumed to be true throughout this se
tion, it was not

needed for the pre
eding lemma.
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Proof: The above 
ondition is needed, sin
e it is an instan
e of the 
ondition Synt . We now

assume the 
ondition and prove Synt (H), that is,

�

��! �

�

���!

�1

Æ

��!

�

�

���!

�1

:

The equality relation

�

��! 
an be de
omposed into

[

k2IN

�

�

���!

�1

�

�!

�

�

���!

�1

�

k

�

:

The in
lusion

�

���!

�1

�

�!

�

�

���!

�1

�

k

�

�

���!

�1

Æ

��!

�

�

���!

�1

is shown for all k by an easy indu
tion on k.

Proposition 7 A suÆ
ient 
ondition for synta
ti
ness in H is

^

8

>

>

<

>

>

:

�!

�

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

;

�!

�

���!

�1

�

H

�

���!

�1

Æ

��!

�

:

This 
ondition was named �-
on
uen
e by Claude Kir
hner and proved in [Kir85℄. The proof

is very simple.

Proof: Under the given assumptions, the in
lusion

�!

�

k

���!

�1

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

for all k is easily shown by indu
tion on k. By taking the union over all integers, we get

[

k2IN

�!

�

k

���!

�1

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

That is,

�!

�

�

���!

�1

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

We 
on
lude by the lemma 6.

This proposition is 
omposed of two 
onditions. The �rst is usually 
he
ked for all possible


overings of axioms. The se
ond is 
ommutativity, and might be dedu
ed from lemma 3.

However, the lemma only applies if axioms are of depth at most one. For instan
e, if one

member of an axiom is of depth two, 
ommutativity might not hold when one o

urren
e is

pre�x of the other. If axioms are 
ollapse-free, linear, and of depth at most two, then the


ommutation

�!

�

����!

��1

�

�

����!

��1

Æ

��!

�

holds. Theorem 1 below generalizes proposition 7 to this 
ase.

Remark 1 For any in
reasing sequen
e (H

n

)

n2IN

of 
losed subsets of T ,

(8n 2 IN; X �

H

n

Y) implies X �

H

Y where H =

[

n2IN

H

n

In parti
ular this applies to the property Synt .
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De�nition 4 Let H be a 
losed subset of T . An ordering < is 
ompatible with the equality

relation on H if,

� for any term � in H and any subterm � of � we have � < � ,

� for all terms � , �, �

0

and �

0

in H, we have

�

�

Æ

��! �

0

^ �

Æ

��! �

0

^ � < �

�

=) �

0

< �

0

:

An equational theory is stri
t if a term is never E-equal to one of its subterms. If there exists

a 
ompatible ordering, the theory is ne
essarily stri
t. The last 
ondition is in fa
t equivalent

to

(� =

E

�

0

^ � =

E

�

0

) =) (� < � , � ;< �

0

)

In the following, we will always de�ne 
ompatible orderings by the means of a fun
tion from

terms to an ordered set, namely IN ; these fun
tions will always be 
onstant on E-equality


lasses.

Theorem 1 Let H be a 
losed subset of T with a well founded 
ompatible ordering, and su
h

that

�!

�

����!

��1

�

H

�

���!

�1

Æ

��!

�

(h

1

)

�!

�

�

Æ

��!

k

�

k2D

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

(h

2

)

Then Synt (H).

Proof: For any integer n, let H

n

be the subset of H 
omposed of all terms that do not start

any de
reasing sequen
e of length greater than n. All these sets are 
losed under ���!

j

�

H

. In

parti
ular, they are 
losed subsets of T , so properties (h

1

) and (h

2

) are valid in any (H

n

).

Any term smaller than a term in H

n+1

is in H

n

. The sequen
e is in
reasing and its limit is

H, thus Synt (H) holds if Synt (H

n

) holds for any n. We show Synt (H

n

) by indu
tion on n;

in fa
t, by lemma 6, it is enough to show that �!

�

�

���!

�1

�!

�

�

H

n

�

���!

�1

Æ

��!

�

�

���!

�1

holds.

The set H

0

is 
omposed of variables and 
onstant symbols. Thus, the only instan
e of

the premise is �!

�

�!

�

, for whi
h the in
lusion is satis�ed by the hypothesis (h

2

).

Let us assume the property Synt (H

n

) and prove Synt (H

n+1

). Let D be the set of all

dire
tions. A relation

�

���!

�1

in H

n+1


an be written as the 
omposition

�

�

���!

k1

�

k2D

sin
e disjoint o

urren
es 
ommute. For ea
h dire
tion k in D, the subproof at k is in H

n

.

Sin
e Synt (H

n

), it 
an be rewritten in H

n

so that it mat
hes

�

���!

�1

Æ

��!

�

�

���!

�1

:

Re-assembling all subproofs, we get a proof mat
hing

�

�

����!

k�1

Æ

��!

k�

�

����!

k�1

�

;

k2D
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whi
h is a proof in H

n+1

. It 
an be reordered as

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

:

k2D

We have shown that

�

���!

�1

�

H

n+1

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

:

k2D

That is,

�

���!

�1

�

H

n+1

�

�

����!

��1

�

�

Æ

��!

k

�

k2D

�

�

����!

��1

�

:

Composing the step at the root on both sides, and then using (h

1

) and its symmetri
 image,

we get

�!

�

�

���!

�1

�!

�

�

H

n+1

�

���!

�1

Æ

��!

�

�

Æ

��!

k

�

k2D

Æ

��!

�

�

���!

�1

We 
on
lude by a simple 
ase analysis, using (h

2

).

Proposition 7 and theorem 1 have two 
onditions. The �rst is a 
ommutativity 
ondition,

and in general 
ould be dedu
ed from 
orollary 4. The se
ond has to be proved by hand.

However if the number of axioms is �nite, the number of possible 
ombinations of equality

steps mat
hing the premise is also �nite. Thus it is possible to study ea
h of them separately.

2.3 Example

The theory Cg where the only axiom is left 
ommutativity is well known to be synta
ti
. We

give a very short proof below. The axiom is:

x� (y � z) = y � (x� z)

The size of terms is un
hanged by E-equality, whi
h also de�nes a 
ompatible ordering on T .

The 
ondition h

1

is satis�ed sin
e the axiom is linear and the o

urren
e of non-variable terms

is at most 1 (
orollary 5). Two su

essive appli
ations of the axiom at the empty o

urren
e

annihilate ea
h other. Sin
e �!

�

�!

1

� ��!

21

�!

�

, the only remaining 
ase to 
onsider in order to

show (h

2

) is �!

�

�!

2

�!

�

, whi
h is equal to �!

2

�!

�

�!

2

. The proof s
hema for this relation and its

redu
tion is shown by the diagram below (any 
y
le is a subset of the identity relation).

� � (�� (
 � Æ))���

2

���

-

� � (
 � (�� Æ))

�

�

�

�

�� �

�

�

�

�R

�� (� � (
 � Æ)) 
 � (� � (�� Æ))

I�

�

2

�

� 	�

�

2

�

�

�� (
 � (� � Æ))

�

���

�

��� 
 � (�� (� � Æ))
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2.4 Uni�
ation in equational theories

In this se
tion we des
ribe how uni�
ation 
an be solved in synta
ti
 theories. The problem of

uni�
ation is, given a set of terms, to �nd a most general substitution that identi�es all terms

of the set. In fa
t, it is simpler to manipulate multi-sets of terms, 
alled multi-equations.

Sin
e the satis�ability of a multi-equation is often redu
ed to the satis�ability of several

multi-equations, it is also 
onvenient to generalize uni�
ation problems to 
onjun
tions of

multi-equations 
alled uni�
ands.

Uni�
ands are either multi-equations or 
onjun
tion or disjun
tion of uni�
ands. They

are written with letters U and V . Conjun
tion and disjun
tion of uni�
ands are written U^V

and U _ V , respe
tively. The set of solutions of a 
onjun
tion (respe
tively disjun
tion) of

uni�
ands is the interse
tion (respe
tively union) of the sets of solutions of the uni�
ands.

Thus it is possible to 
onsider uni�
ands equal modulo asso
iativity and 
ommutativity of

^ and _ and modulo distributivity of one over the other. Then uni�
ands 
an always be

written as disjun
tions of 
onjun
tions of multi-equations.

It is also very 
onvenient to restri
t the set of solutions of a uni�
and U by some set of

variables W . We write 9W � U for the uni�
and 
omposed of these restri
tions. The 9 a
ts

as a binder, and we 
onsider uni�
ands equal modulo renaming of variables bound by 9's,

ex
hange of 
onse
utive 9's, and removal of va
uous 9's. It is 
onvenient to add a uni�
and ?

that has no solution and whi
h is used to represent failure. Uni�
ands were �rst introdu
ed

by C Kir
hner [Kir85℄ and existential uni�
ands were used later by J.-P. Jouannaud and

C. Kir
hner [KJ90℄. A more abstra
t presentation of uni�
ands 
an be found in [R�em92b℄.

A 
omplete set of uni�ers for a uni�
and U is a set S of solutions of U su
h that any

other solution is an instan
e of at least one solution of S. An equational theory is unitary

unifying if any solvable 
onjun
tion of multi-equations admits a 
omplete set of solutions


omposed of a unique substitution. A general method for �nding 
omplete set of uni�ers of

a uni�
and U is to transform U into a simpler uni�
and that has exa
tly the same solutions.

Thus, solving a uni�
ation problem is done by building a 
hain of equivalent uni�
ands, ea
h

being obtained by rewriting the pre
eding one with a very simple rule.

Uni�
ation in the empty theory may be des
ribed by the rules of �gure 1. Fusion merges

� _= e ^ � _= e

0

------------------------------------------------------------------------------------------------------------------------------------------

g

�

� _= e _= e

0

(Fuse)

f(�

1

; : : : �

p

) _= f(�

1

; : : : �

p

) _= e

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

�

1

_= �

1

^ : : : �

p

_= �

p

^ f(�

1

; : : : �

p

) _= e

(De
ompose)

f(�

1

; : : : �

p

) _= g(�

1

; : : : �

q

) _= e

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

?

(Fail)if f 6= g,

(� 7! �)(e)

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

9� � (e ^ � _= �)

(Generalize)if � 2 V(e) n e n V(�) ^ � =2 V,

Figure 1: Rules for uni�
ation in the empty theory

two multi-equations that share a 
ommon term variable into a single multi-equation. Collision

redu
es a multi-equation that 
ontains two terms with di�erent top symbols to the empty

uni�
and ?. De
omposition splits a multi-equation that 
ontains two non-variable terms

with the same top symbol into a the 
onjun
tion of multi-equations 
omposed of equations

between the 
orresponding subterms. Generalization repla
es a non-empty o

urren
e of a

non-variable term � in e by a variable � and adds the equation � _= � . Generalization is
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used to redu
e the height of terms in a uni�
and and prevent dupli
ation of terms by other

rules. For instan
e, if the right terms premise in rule De
ompose were not variables, the


on
lusion would dupli
ate terms, whi
h 
ould prevent termination. It would be also possible

to fa
tor rules De
ompose and Generalize into a single rule that would not require any

term of the premise to be small. Below, we use an unrestri
ted form of generalization where

� may be a variable, 
alled U-Generalize.

The four rules above applied in any order redu
e any system of multi-equation to a


ompletely de
omposed one. A 
ompletely de
omposed uni�
and is one for whi
h no multi-

equation has more than one non-variable term. An equational theory is stri
t if a term 
an

never be a sub-term of an E-equal term. In a stri
t theory, it is immediate to write an

algorithm that tells whether a 
ompletely de
omposed uni�
and is solvable, and that returns

a prin
ipal uni�er if one exists. See [R�em92b℄ for more details or [Kir85, R�em90℄ for a more

thorough but slightly di�erent presentation.

In equational theories, de
omposition only �res for some pairs of symbols, 
alled de
om-

posable symbols. Collision �res only when the top symbols are in
ompatible. To be 
omplete,

there must be other transformations, 
alled mutations, that together with previous rules re-

du
e any uni�
and into a 
ompletely de
omposed uni�
and. Mutation may not exist if there

is no 
omplete set of rules that 
an be added to fusion and de
omposition and that terminate

on any input with a 
ompletely de
omposed system. Mutation often introdu
es disjun
tion

of uni�
ands.

Synta
ti
 theories have a very simple mutation that, moreover, 
an be automati
ally

dedu
ed from a synta
ti
 presentation of the theory. Multi-equations 
an always be redu
ed

by looking at the top symbol of terms, whi
h leads to eÆ
ient algorithms that are similar to

the Martelli-Montanari uni�
ation algorithm in the empty theory [MM82℄.

Mutation in synta
ti
 theories

In synta
ti
 theories, the mutation is a generalization of de
omposition and is derived from

the form of the axioms.

De�nition 5 Let E be a synta
ti
 theory. Let � and � be two non-variable terms. We de�ne

de
omposition of the equation � _= � to be the following system, written De
 (� _= �):

^

i2[1;p℄

�

�

=i

_= �

=i

�

We de�ne generalization of the equation � _= � to be the disjun
tion of systems

_

q2E(f;g)

0

�

9V(q) �

^

8

<

:

�

i

_= q

l

=i

i 2 [1; p℄

�

i

_= q

r

=j

j 2 [1; q℄

1

A

written Gen (� _= �), where the axioms of E(f; g) have been renamed so that they do not

share any variable with the terms � and �. We de�ne mutation of the equation � _= � to be

the disjun
tion of systems

_

(

Gen (� _= �) _De
 (� _= �) if Top (�) = Top (�)

Gen (� _= �) otherwise

This system is written Mut (� _= �).

Theorem 2 If E is a synta
ti
 presentation and � and � are two non variable terms, then

� _= �

------------------------------------------------------------

g

�

Mut (� _= �)
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Proof: The following is proved is [Kir85℄. We �rst show that the redu
tion is 
orre
t. Let

� and � be two terms and � a solution of the equation � _= �. We show that � satis�es

Mut (� _= �). We use the following remark

8�; � 2 T ; �

�

���!

�1

� =)

^

(

Top (�) = Top (�)

8i 2 [1; %(Top (�))℄; �

=i

=

E

�

=i

Sin
e the theory is synta
ti
, there exists a proof of the form

��

�

���!

�1

�

0

Æ

��!

�

�

0

�

���!

�1

��:

If there is no step at the empty o

urren
e, then the top symbols of � and � must be equal,

and the system De
 (� _= �) is satis�ed by �. If one axiom q is used at the empty o

urren
e,

it must be in E(Top (�

0

);Top (�

0

)), and there must be a substitution � of domain V(q) for

whi
h

�

0

= �(q

l

) and �

0

= �(q

r

)

The substitution � j

�

V(q) + � is a solution of the system

^

8

<

:

�

i

_= q

l

=i

i 2 [1; p℄

�

i

_= q

r

=j

j 2 [1; q℄

It follows from the remark that q is in E(Top (�);Top (�)) and � is a solution of Gen (� _= �).

Conversely, let us assume that � is a solution of Mut (� _= �). If it is a solution of

Gen (� _= �), then there is an axiom q of E(Top (�);Top (�)) and a substitution � su
h that

the substitution � j

�

V(q) + � is a solution of the system

^

(

�

i

_= q

l

=i

i 2 [1; p℄

�

i

_= q

r

=j

j 2 [1; q℄

By 
omposing the proofs of these equalities we get

(� j

�

V(q) + �)(�)

�

��! (� j

�

V(q) + �)(q

l

)

(� j

�

V(q) + �)(�)

�

��! (� j

�

V(q) + �)(q

r

)

whi
h simpli�es to

�(�)

�

��! �(q

l

) and �(�)

�

��! �(q

r

)

Thus �(�)

�

��! �(�). The 
ase where the top symbols are equal and � is a solution of

De
 (� _= �) is immediate.

To get an algorithm for solving uni�
ation, the existen
e of mutation is not suÆ
ient; the

termination of mutation together with the other rules must also be proved.

Remark 2 The presentation of left 
ommutativity in the previous se
tion is synta
ti
, but

the 
orresponding mutation does not provide a uni�
ation algorithm sin
e the mutation itself

might not terminate. A solution is proposed in [Kir85℄.
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3 Re
ord terms

Re
ord terms, used as types of re
ord obje
ts, enable a natural extension of fun
tional lan-

guages with re
ords. Re
ords are produ
ts of variable size with labeled 
omponents. The

key idea is that types must re
e
t the stru
ture of values and therefore re
ord types must be

produ
ts of di�erent sizes with named 
omponents. We �rst study a simpli�
ation of re
ord

terms obtained by forgetting labels and a

essing 
omponents by position instead of by name:

these stru
tures are in�nitary tuples.

3.1 In�nitary tuples

Let C be a set of symbols given with their arities (C

n

)

n2IN

. Let K be 
omposed of

� a sort Type and

� a 
ountable 
olle
tion of sorts (Row(n))

n2IN

.

Let � be the signature 
omposed of the following symbols, given with their sorts:

� ` � :: Row(0)) Type

� ` f

�

:: �

%(f)

) � f 2 C; � 2 K

� ` �

n

:: Type 
Row(n+ 1)) Row(n) n 2 IN

Let E be the set of axioms

f

Row(n)

(�

1

�

n

�

1

; : : : �

p

�

n

�

p

) = f

Type

(�

1

; : : : �

p

) �

n

f

Row(n+1)(�

1

;:::�

p

)

(f . n)

All axioms are 
ollapse-free, regular and linear.

Let V be a denumerable set of variables with in�nitely many variables of every sort.

De�nition 6 The algebra of in�nitary tuples is the equational theory T (�;V)=E.

The following two in�nitary tuples are E-equal

�

j

�

0

�

� �

�

f

Type

g

Row (1)

j j

j

� �

1

�

� �

�

� 


�

j

�

0

�

� �

�

f

Type

�

1

j

j
�

� �

�

� g

Type

g

Row (1)

j j

j

� 


Theorem 3 The presentation E is synta
ti
.

Proof: Lemma 7 is not suÆ
ient be
ause the 
ommutativity 
ondition is not satis�ed; for

instan
e the proof

f

Type

(�

i

)

I

�

n

f

Row(n)

�

(�

i

)

I

�

n+1

(


i

)

I

�

	�

�

�

�

� �

�

2

�

�R

f

Row(n+1)

�

�

i

�

n

(�

i

�

n+1




i

)

�

I

f

Type

(�

i

)

I

�

n

�

f

Type

(�

i

)

I

�

n+1

f

Row(n+1)

(


i

)

I

�
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where indexing expression

i2I

is written

I

for short, 
annot start with a step at the empty

o

urren
e.

Of 
ourse, this proof is subsumed by the proof below for re
ord terms. In parti
ular,

theorem 1 
an be used, leading to a shorter proof, but it would require 
ontrolling terms with

an ordering (as in the next se
tion). In fa
t there would be no instan
e of the relation

�!

�

�

Æ

��!

k

�

k2IN

�!

�

We give a dire
t proof. In fa
t we show that

�!

�

n

���!

�1

�!

�

�

n

���!

�1

by indu
tion on n. We will use the following remarks, whi
h are immediate 
onsequen
es of

the form of the axioms.

� Two su

essive steps at the empty o

urren
e must be inverse and they annihilate ea
h

other. This solves the initial 
ase (n is zero).

� Two appli
ations of axioms at disjoint o

urren
es, or at o

urren
es su
h that one is

pre�x of the other but at least too dire
tions shorter, 
ommute.

� A proof between two terms with the same top symbol 
annot have exa
tly one step at

the empty o

urren
e.

Let us assume that the property is true for n and 
onsider a proof mat
hing

�!

�

n+ 1

������!

�1

�!

�

We 
onsider the subproof of

n+ 1

������!

�1

at a dire
tion i.

If it does not start or end with an appli
ation of an axiom at the empty o

urren
e,

then this equality step 
ommutes with one of the equality steps at the empty o

urren
e in

the original proof. Thus the original proof is of the form �!

�

n

���!

�1

�!

�

1

���!

�1

, and by indu
tion

hypothesis it is also of the form

n

���!

�1

1

���!

�1

.

Otherwise, the subproof at o

urren
e i has at least two steps at the empty o

urren
e;

thus it mat
hes

�!

�

p

���!

�1

�!

�

q

��!

1

for some p and q whose sum is stri
tly smaller than n. By the indu
tion hypothesis, this

relation is a sub-relation of

p

���!

�1

�!

�

q

��!

1

Re-
omposing this with the original proof, the problem redu
es to previous 
ase.

The mutation for the in�nitary tuple algebra:

f

Row(n)

(�

i

)

i2[1;p℄

_= (��

n


) _= e



g

�

9 (�

i

; 


i

)

i2[1;p℄

�

V

8

>

>

>

>

>

<

>

>

>

>

>

:

(��

n


) _= e

� _= f

Type

(�

i

)

i2[1;p℄


 _= f

Row(n+1)

(


i

)

i2[1;p℄

�

i

_= �

i

�

n




i

for i 2 [1; p℄

Mutate

For all other pairs of terms (�; �), if they have identi
al top symbols, they are de
omposable,

otherwise they produ
e a 
ollision. Mutation rules 
an be generalized as shown above.
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Theorem 4 Uni�
ation in the in�nitary tuple algebra is de
idable and unitary unifying.

Proof: The theory is stri
t (we 
an �nd a 
ompatible ordering as we will do below for re
ord

terms). Therefore, the rules of mutation, de
omposition, 
ollision, fusion and generalization

applied any order form a 
omplete semi-algorithm for uni�
ation. It is unitary sin
e mutation

does not introdu
e any disjun
tion. It remains to prove termination.

Let T

n

be the subsets of T restri
ted to the sorts Type and Row(k) for k smaller or equal

to n. Generalized de
ompositions and fusion are stable on the sets T

n

, and for a system of

uni�
ands they de
rease in the following lexi
ographi
 ordering:

� the number of symbols f

Row(n)

in the lexi
ographi
 order of in
reasing n,

� the number of all other symbols,

� the sum of heights of terms of the uni�
and,

� the number of multi-equations.

This guarantees the termination of the rewritting pro
ess.

Remark 3 The introdu
tion of an in�nite 
olle
tion of 
opies of the original set of symbols

C might be 
onsidered luxurious, while two 
opies Type and Row would seem suÆ
ient. The

main symbol � would have signature Type 
Row ) Row. The axioms would be

f

Row

(�

1

�

n

�

1

; : : : �

p

�

n

�

p

) = f

Type

(�

1

; : : : �

p

) � f

Row(�

1

;:::�

p

)

But even if the presentation remained synta
ti
, termination 
ould not be guaranteed as above.

Remark 4 We 
an 
onsider the set of raw terms, that is, the algebra T

0

built from the all

symbols C extended with a binary symbol � and a unary symbol �. To any term � in T there


orresponds a raw term obtained from � by removing all supers
ripts of symbols. Conversely,

for any raw term �

0

and any sort �, there is at most one term of sort � whose erasure is �

0

.

This allows us to de�ne a term of T by giving its erasure and its sort.

3.2 Re
ord terms

We generalize the theory of in�nitary tuples to the theory of re
ord terms, where 
omponents

are named. We des
ribe the theory and show that it is synta
ti
 and that uni�
ation is

de
idable.

The algebra of re
ord terms is de�ne relatively to a 
olle
tion of symbols given with their

arities (C

n

)

n2IN

. Let L be a 
ountable set of labels. Labels are written a, b, 
 and `, �nite

subset of L are written L and K the set of all of them is written P

f

(L). We also write a:L

for fag [ L.

Let K be the set 
omposed of

� a sort Type, and

� a �nite 
olle
tion of sorts (Row(L)

L2P

f

(L)

.

Let � be the signature 
omposed of the following symbols given with their sorts:

� ` � :: Row(;)) Type

� ` f

�

:: �

%(f)

) � f 2 C; � 2 K

� ` (`

L

: ; ) :: Type 
Row(`:L)) Row(L) ` 2 L; L 2 P

f

(L n f`g)

We de�ne proje
tion symbols to be all symbols

�

`

L

: ;

�

. We write D for the new set of

symbols.

Let E be the set of axioms 
omposed of:
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� Left 
ommutativity axioms. For any labels a and b and any �nite subset of labels L

that do not 
ontain them,

a

L

: � ;

�

b

a:L

: � ; 


�

= b

L

: � ;

�

a

b:L

: � ; 


�

(a . b; L)

� Distributivity axioms. For any symbol f , any label a and any �nite subset of labels L

that do not 
ontain a,

f

Row(L)

(a

L

: �

1

; �

1

; : : : a

L

: �

p

; �

p

) = a

L

: f

Type

(�

1

; : : : �

p

) ; f

Row(a:L)

(�

1

; : : : �

p

)

(f . a; L)

All axioms are 
ollapse-free, regular and linear.

Let V be a denumerable set of variables with in�nitely many variables of every sort.

De�nition 7 The algebra of re
ord terms (also 
alled the re
ord algebra) is the equational

theory T (�;V)=E.

Below are two E-equal re
ord terms:

�

j

(a

;

)

�

�

�

� �

�

�

�

f

Type

g

Row (fag)

j j

j

� (b

fag

)

�

�

�

� �

�

�

�

� 


�

j

(a

;

)

�

�

�

� �

�

�

�

f

Type

(b

fag

)

j

j

�

�

�

� �

�

�

�

� g

Type

g

Row (fag)

j j

j

� 


Theorem 5 The presentation E is synta
ti
.

Proof: Let T

n

be the subset of terms that use only the sorts Type or Row(L), where Card (L)

is at most n. The sequen
e of these sets is in
reasing and its union is T . Thus it is enough to

show Synt (T

n

) for any integer n. Let n be an integer. We show Synt (T

n

) using theorem 1.

Let �

n

be the usual size (sum of weights of symbols) where symbols are weighted as

follows. Symbols f

Row(L)

of arity q have a weigh of 2 � (n � CardL) + q. Symbols f

Type

weigh their arity q augmented by 1, and all other symbols weight 1. The size of a term is

stri
tly larger than the size of any of its subterms; the size is 
onstant on E-equality 
lasses.

Thus it de�nes a 
ompatible ordering in T

n

by � < � if �

n

(�) < �

n

(�).

The 
ondition (h

1

) is always satis�ed: left 
ommutativity axioms are of depth greater

than two, and so are distributivity axioms for symbols of non zero arity. Left distributivity

axioms for 
onstant symbols f are su
h that the equality relations �������!

f.a;L=�

����!

��1

are empty.

The 
ondition (h

2

) is

�!

�

�

Æ

��!

k

�

k2D

�!

�

�

H

�

���!

�1

Æ

��!

�

�

���!

�1

We show it for all instan
es of the premise:

���!

q=�

 

Æ

����!

s

k

=k

!

k2D

���!

t=�
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We write Z for the intermediate relation

 

Æ

����!

s

k

=k

!

k2D

Case Z is empty: The axioms q and t must be inverse and annihilate ea
h other, that is,

the equality relation is in
luded in the identity relation �.

Case q is (f . a; L): If f were of arity zero, S would be empty (�rst 
ase). The o

urren
e

1 in s is not possible, and s

2

must be another axiom (f . b; a:L), where b is distin
t from a.

Then t must be the axiom (a . b; L). We 
on
lude with:

����������!

f . a; L=�

������������!

f . b; a:L=2

����������!

a . b; L=�

�

i 2 [1; %(f)℄

������������!

a . b; L=i

����������!

f . b; L=�

������������!

f . a; b:L=2

Case q is (a . f; L): Then t must be (f . b; L). If a and b were equal, Z would be the

identity (�rst 
ase). At least one appli
ation of an axiom (a . b; L) at ea
h o

urren
e i

between 1 and the arity of f is needed to 
hange the symbols (a

L

: ; ) into (b

L

: ; ). We


on
lude with:

����������!

a . f; L=�

i 2 [1; %(f)℄

������������!

a . b; L=i

����������!

f . b; L=�

� ����������!

f . b; L=2

����������!

a . b; L=�

����������!

a . f; L=2

Case q is (a . b; L): If t is a distributivity axiom, then by symmetry we fall into one of the

pre
eding 
ase; otherwise it is an axiom (
 . b; L). Sin
e 1 is a variable o

urren
e of q, the

rule ����!

s

1

;1


ommutes with q, and we ignore this 
ase. If 
 and a were equal, the sequen
e Z

would be the identity (�rst 
ase). So t must be the axiom (a . 
; b:L). We 
on
lude with:

����������!

a . b; L=�

�����������!

a . 
; b:L=2

���������!

b . 
; L=�

� �����������!

b . 
; a:L=2

����������!

a . 
; L=�

�����������!

a . b; 
:L=2

Note that the two �rst in
lusions 
an be dedu
ed from the following 
y
le (any 
omposition

of six of these rules is a subset of the identity relation):

������

a . b; L; �

������

-

�

�

f . b; a:L; 2

�

�� �

�

a . f; b:L; 2

�

�R

I�

�

f . a; L; �

�

� 	�

�

b . f; L; �

�

�

�

������

i 2 [1; %(f)℄

b . a; L; i

������
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The last in
lusion rule forms the 
y
le:

������

a . 
; b:L; 2

������

-

�

�

�

a . b; L; �

�

�

�� �

�

�

b . 
; L; �

�

�

�R

I�

�

�


 . b; a:L; 2

�

�

� 	�

�

�

b . a; 
:L; 2

�

�

�

�

������

i 2 [1; %(f)℄


 . a; L; �

������

Sin
e the theory is synta
ti
, we automati
ally derive the mutation rule in the re
ord

term algebra:

f

Row(L)

(�

i

)

i2[1;p℄

_= a

L

: � ; � _= e



g

�

9 (�

i

; �

i

)

i2[1;p℄

�

V

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

a

L

: � ; � _= e

� _= f

Type

(�

i

)

i2[1;p℄

� _= f

Row(a:L)

(�

i

)

i2[1;p℄

�

i

_= a

L

: �

i

; �

i

for i 2 [1; p℄

Mutate(a . f)

a

L

: � ; � _= b

L

: � ; � _= e

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

9 
 �

V

8

>

>

<

>

>

:

b

L

: � ; � _= e

� _= b

a:L

: � ; 


� _= a

b:L

: � ; 


Mutate(a . b)

Theorem 6 Uni�
ation in the re
ord algebra is de
idable and unitary unifying.

Proof: The theory is stri
t (we exhibited a 
ompatible ordering). Therefore, the rules for

mutation, de
omposition, 
ollision, fusion and generalization applied any order a 
omplete

semi-algorithm for uni�
ation. The algorithm is unitary sin
e mutation does not introdu
e

any disjun
tion. It remains to prove termination.

All transformations are stable in the sets T

n

and de
rease in the following lexi
ographi


ordering:

� the number of symbols f

Row(L)

in the lexi
ographi
 order of de
reasing Card (L) (that

is, bigger sets 
ount less: mutate (a . f)),

� the number of symbols a

L

: ; 
ounted in the lexi
ographi
 order of de
reasing

Card (L) (mutate (a . b)),

� the number of other symbols (other mutations and de
omposition),

� the sum of heights of terms (generalization),

� the number of multi-equations (fusion).

This guarantees the termination of the pro
ess.
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3.3 Raw terms

Let C

0

be the set of symbols C extended with a symbol � and the 
olle
tion of symbols

(a : ; )

a2L

. Terms of the algebra T (C

0

;V) are 
alled raw terms. To any re
ord term, we

asso
iate the raw term obtained by erasing all supers
ripts of symbols. Conversely, for any

raw term �

0

and any sort �, there is at most one re
ord term whose erasure is �

0

. Thus any

re
ord term � of sort � is 
ompletely de�ned by its erasure �

0

and the sort �. In the rest of the

paper we will mostly use this notation and often drop the sort whenever it is impli
it from

the 
ontext.

Proje
tion symbols asso
iate to the right; that is, (a : � ; b : � ; �) stands for (a : � ;

b : � ; �). In formulas we sometimes write

�

(a

i

: �

i

)

i2[1;p℄

; �

�

for (a

1

: �

1

; : : : a

p

: �

p

; �).

3.4 Examples of Re
ord terms

When re
ord terms are used as types of re
ords in ML, the types of �elds must �rst say

whether the �eld is absent or present and in the last 
ase whether it is an arrow type or some

other stru
tured type. For instan
e, a type 
ould be � ! �(a : pre (�! �) ; �) . However,

types that would tell their stru
ture before telling that the �eld is de�ned must be forbidden:

� ! �a : �! �;� is should not be a 
orre
t type. These 
onstrains are, of 
ourse, realized

using sorts. The properties of the se
tion 1 allow re
ord terms to be restri
ted by a signature


ompatible with its equations, and still use the same uni�
ation algorithm.

We give two examples of restri
ted re
ord terms used as types in ML with re
ords. The

�rst instan
e distinguishes a 
onstant symbol abs and a unary symbol pre in C. The signature

�

0

on the two sorts type and �eld is:

�

0

` � :: �eld ) type

�

0

` abs

�

:: �eld � 2 K

�

0

` pre :: type ) �eld

�

0

` f

Type

:: type

%(f)

) type f 2 C n fabs ;pre g

�

0

` (`

L

: ; ) :: �eld 
 �eld ) �eld ` 2 L; L 2 P

f

(L n f`g)

The signature �

0

is 
ompatible with the equations of the re
ord algebra. We de�ne simple

re
ord terms as re
ord terms that are well sorted for �

0

. They have a very simple re
ord

stru
ture. Terms of the sort Row(L) are either of depth 0 (redu
ed to a variable or a symbol)

or are of the form (a : � ; �). By indu
tion, they are always of the form

(a

1

: �

1

; : : : a

p

: �

p

; �)

where � is either abs or a variable, in
luding the 
ase where p is zero and the term is redu
ed

to �.

The generality of re
ord term algebras is better justi�ed by 
omplex re
ords terms. The

problem with simple re
ord terms is the inability to merge two re
ords de�ned on di�erent

�elds. For instan
e, the two re
ord types � (a : pre (�) ; b : pre (�) ; abs ) and �(a : pre (�);

abs ) 
annot be uni�ed, sin
e on �eld b this would require pre (�) be uni�able with abs . A

solution is to separate the a

ess information from the stru
ture information in �elds. The

two re
ords 
ould be typed with � (a : pre :� ; b : pre :� ; abs :�) and � (a : pre :� ; abs :�) .

They do not yet unify. But if we write instead � (a : 


a

:� ; b : 


b

:� ; abs :�) and

� (a : 


0

a

:� ; abs :�

0

) , then they are uni�ed by the substitution:




a

7! 


0

a

� 7! � 


b

7! abs �

0

7! b : �

b

; �

Generi
 re
ord terms are well sorted re
ords terms for the following signature �

00

. Distin-

guishing two 
onstant symbols pre and abs and a binary symbol \:" in C, the signature �

00
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is de�ned on the three sorts type , 
ag , and �eld by:

�

00

` � :: �eld ) type

�

00

` abs

�

:: 
ag � 2 K

�

00

` pre

�

:: 
ag � 2 K

�

00

` :

�

:: 
ag 
 type ) �eld � 2 K

�

00

` f

Type

:: type

%(f)

) type f 2 C n fabs ;pre ; :g

�

00

` (`

L

: ; ) :: �eld 
 �eld ) �eld ` 2 L; L 2 P

f

(L n f`g)

The signature is still 
ompatible with the equations. Terms of the sort Row(L) 
an now have

a more 
omplex stru
ture su
h as

(a : � ; �):(b : � ; �

0

)

If a and b were equal, this would simplify into

(a : �:� ; �:�

0

)

We say that the latter is a 
anoni
al form but the former is not. In the next se
tion we study


anoni
al forms of re
ord terms in general.

4 Approximations of terms

The 
omplex re
ord type � (a : pre :� ; �) 
an intuitively be understood as the type of some

re
ord whose �eld a is present with type � and whose presen
e of other �elds is de�ned by �.

However, it is harder to understand the obje
ts that would have the re
ord type � equal to

� (a : pre :� ; (b : pre ; �):
) . Substituting 
 by (b : 


0

; 


00

) would lead to the E-equal re
ord

type � (a : pre :� ; b : pre :


0

; �:


00

) , whi
h is less general but has a more intuitive meaning.

The substitution 
 7! (b : 


0

; 


00

) does not impose any more stru
ture on the type of � . It

just \reads" information form � in the sense that any non-variable instan
e of 
 is ne
essarily

an instan
e of (b : 


0

; 


00

) .

Canoni
al terms are re
ord types in whi
h a symbol (a : ; ) 
an only o

ur below some

other symbol but (b : ; ) or the symbol �, and E-
anoni
al terms are those that are E-

equal to 
anoni
al terms. There are terms that are not E-
anoni
al. For instan
e, the term �

above is not. We �rst de�ne a 
lass of \reversible" substitutions 
alled expansions. Then we

show that any term 
an be transformed by expansion into a term that is E-
anoni
al. There

exist least E-
anoni
al expansions; however, expansions do not 
ommute with uni�
ation.

Allowing the reverse of expansions, 
alled 
ontra
tions, leads to E-
anoni
al approximations,

whi
h 
ommute with uni�
ation.

4.1 Expansions

De�nition 8 An elementary substitution of W is a substitution of the following form:

� � 7! a : � ; 
 is an elementary expansion of W if � is in W and � and 
 are not in W .

� � 7! � is an elementary renaming of W if � is in W and � is outside of W .

� � 7! � is an elementary fusion of W if � and � are in W .

� � 7! f(�

i

)

i2[1;p℄

is an elementary stru
turation of W if � is in W and �

i

are all outside

of W .
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A perfe
t 
omposition of W is any 
omposition �

1

Æ : : : �

p

su
h that there exists a sequen
e

(W

i

)

i2[0;p℄

of sets of variables satisfying:

1. W

0

=W ;

2. �

i

is an elementary substitution of W

i

;

3. W

i

is equal to V(�(W

i�1

)).

An expansion is a perfe
t 
omposition of elementary expansions. An �-expansion is a perfe
t


omposition of elementary expansions and renamings.

Notation

We write expansions with letters ',  , and �. We indi
ate elementary substitutions by a \̂"

a

ent: '̂, �̂. The notation

� : V ����

-

T

is not well adapted to des
ribe perfe
t 
ompositions. We write

V ��

�

��

-

W

for a perfe
t 
omposition � of V su
h that W is the set of variables of the image of V . We


an 
ompose them as follows:

V ��

�

��

-

W ��

�

��

-

W

0

We also draw diagrams with the 
onvention that 
ontinuous lines are universally quanti�ed

while dashed lines are existentially quanti�ed. For instan
e

V ���

�

��

-

W

j

j

�

�

�

�

�

'

j

?

�

�

�

�

�

?

 

W

0

����

�

������

-

:

is read \For any substitution � from V to W and any expansion from V to W

0

, there exist a

substitution � of W

0

and an expansion  of W su
h that � Æ ' and  Æ � are E-equal." All

diagrams 
ommutes modulo E-equality, ex
ept if expli
itly mentioned otherwise.

Lemma 8 Any substitution whose domain is in W 
an be written as a perfe
t 
omposition

of elementary substitutions of W .

Proof: The lemma is �rst shown for the substitution of a variable by a term, by indu
tion on

the size of the term. The general 
ase is then shown by indu
tion on the size of the domain

of the substitution.

Lemma 9 A substitution � is an expansion of W if and only if:

� all symbols of the image of � are proje
tion symbols;

� all variables of the image of � are outside of W ; and

� all terms of �(W ) are linear (a variable does noto

ur twi
e) and disjoint (no variable

is shared between two terms).
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Con
retely, an expansion ' is sum �

�2dom (')

('

�

) where '

�

are

� 7! a

1

: �

1

; : : : a

p

�

: �

p

�

; �

�

and expansions '

�

are pairwise disjoint.

Proof: Any su
h substitution is trivially an expansion. Conversely, the set of su
h substitu-

tions 
ontains elementary expansions and is 
losed by 
omposition with elementary expan-

sions.

Remark 5 The set of expansions is 
losed by E-equality. Proving the E-equality of two

expansions 
an always be done using left 
ommutativity axioms only.

Lemma 10 If � is a renaming of W and ' is an expansion of �(W ), then there exists an

expansion  of W and a renaming of  (W ) su
h that �Æ' and �Æ are equal, and 
onversely,

inverting the roles of renamings and expansions.

W ��

�

���

-

:

�

�

�

�

�

j

j

 

�

�

�

�

�

?

j

j

?

'

:
�����

�

������

-

:

W
����

�

������

-

:

j

j

�

�

�

�

�

'

j

j

?

�

�

�

�

�

?

 

:���

�

���

-

:

Proof: For the �rst diagram, the renaming � 
an be de
omposed into the sum of two renam-

ings �

0

equal to � j

�

W

0

and �

00

equal to � nW

0

where W

0

is �

�1

(dom (')). Take �

00

+!

�1

for �,

and ! Æ'Æ�

0

for  where ! renames variables of im (') away from all other variable involved.

For the se
ond diagram, the renaming � 
an be de
omposed into the sum of two renamings

�

0

equal to � j

�

W

0

and �

00

equal to � nW

0

, where W

0

is im ('). Take (�

0

Æ ') + !

�1

for  and

! Æ �

00

for �, where ! renames variables of im (!

00

) away form all other variables involved.

In both 
ases, it is easy to prove that  is an expansion, and so the diagram 
ommutes,

as required.

Lemma 11 If a perfe
t 
omposition of elementary substitutions is an �-expansion, then all

elementary substitutions are renamings or expansions.

Proof: Let � be the perfe
t 
omposition of W

0

.

W

0

��

�̂

1

��

-

W

1

� � � ���

�̂

p

��

-

W

p

If the sequen
e 
ontains a stru
turation � 7! f(�

i

)

i2[1;p℄

, then im (�) 
ontains the symbol f .

Otherwise it 
ontains a fusion (� 7! �), where � and � are in some W

i

. If � and � are the

images of distin
t variables �

0

and �

0

of W

0

, then the images by � of �

0

and �

0

will not be

disjoint. Otherwise, � and � are in the image of a 
ommon variable �

0

and �

1

Æ : : : �

i

will

not be linear. In all 
ases, � 
annot be an �-expansion.

Corollary 12 Two substitutions that perfe
tly 
ompose into an �-expansion are �-

expansions.

Lemma 13 For any set of variablesW , any elementary

substitution �̂ of W , and any expansion ' of W , there

exists an expansion  of �̂(W ) and a substitution � su
h

that  Æ �̂ and � Æ ' are E-equal on W , that is, the

diagram on the right 
ommutes modulo E-equality.

W ��

�̂

���

-

:

j

j

�

�

�

�

�

'

j

j

?

�

�

�

�

�

?

 

:
�����

�

������

-

:
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Proof: It is enough to show the lemma for substitutions with disjoint images '(W ) and �̂(W ).

The lemma then follows by introdu
ing a renaming � of the image of ' outside of the image

of �̂, applying the lemma to � Æ ' instead of ', and repla
ing the resulting substitution �

by � Æ �

�1

. Similarly, the images 
an be assumed disjoint from the domains without loss of

generality.

We �rst show the lemma for an expansion ' of the form

� 7! a

1

: �

1

; : : : a

p

: �

p

; �

0

If the domain of �̂ is not redu
ed to �, then the two substitutions 
ommute, and � is �̂, and

 is '. Otherwise we reason by 
ases on �̂:

� If �̂ is a renaming (� 7! �), then ' Æ �̂ for  and the identity for �.

� If �̂ is a fusion (� 7! �), then take � 7! '(�) for both � and  . Otherwise the image

of �̂ is outside of W .

� If �̂ is an expansion (� 7! a

j

: �

j

;�

0

) for j in [1; p

i

℄, take the renaming �

j

7! �

j

for �

and the expansion � 7! (a

k

: �

k

)

k2K

; �

0

where K is [1; p

i

℄ n fjg for  .

� If �̂ is an expansion (� 7! b : �

b

;�

0

), then take (�

0

7! (a

k

: �

k

)

k2[1;p

i

℄

; 


0

) for  and

the expansion (�

0

7! b : �

b

; 


0

) for �, where 


0

is a variable distin
t from all others.

� If �̂ is a stru
turation (� 7! f(�

j

)

j2[1;q℄

), then take the expansion

�

�

j

7! (a

k

: 


k

)

k2[1;p

i

℄

; 


0

�

j2[1;q℄

for  and the stru
turation

�

�

k

7! f(


k

)

i2[1;p℄

�

k2[0;p

i

℄

for �, where all variables 


k

are distin
t and distin
t from all others.

A general expansion ' is the disjoint sum �

i2[1;p℄

('

i

) of simple expansions. If it is not disjoint

from �̂, there exists one expansion ('

1

for instan
e) that has the same domain as �̂. Applying

the lemma with '

1

gives  

1

and �. Take  

1

+�

i2[2;p℄

('

i

) for  .

Remark 6 If �̂ is an expansion, then �̂ is an �-expansion.

Proposition 14 For any substitution � of W and any

expansion ' of W , there exists an expansion  of �(W )

and a substitution � of '(W ) su
h that  Æ � and � Æ '

are E-equal on W , that is, the diagram on the right


ommutes modulo E-equality.

W ��

�

���

-

:

j

j

�

�

�

�

�

'

j

j

?

�

�

�

�

�

?

 

:
�����

�

������

-

:

Proof: By indu
tion on the number of elementary substitutions that 
ompose �, we obtain

the following diagram:

W ��

�̂

1

����

-

: ���� � � � � � � :����

�̂

n

����

-

:

j

j

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

'

0

j

j

?

�

�

�

�

�

?

'

1

�

�

�

�

�

?

'

n�1

�

�

�

�

�

?

'

n

:
������

�

1

�������

-

: ���� � � � � � � :
��������

�

n

�������

-

:
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Corollary 15 If a uni�
and U admits a solution � outside of V(U), and ' is an expansion

of U , then there exists a solution � of '(U) and an expansion  of �(U) su
h that  Æ � and

� Æ ' are E-equal.

Corollary 16 For any expansions ' and  of W , there

exist two expansions '

0

of '(W ) and  

0

of  (W ) and a

renaming � su
h that � Æ '

0

Æ ' and  

0

Æ  are E-equal

on W , that is, the adjoining diagram 
ommutes modulo

E-equality.

Proof: By proposition 14, where � is an expansion, and

then by 
orollary 12, � must be an �-expansion.

W ��������

 

����������

-

:

j

j

�

�

�

�

�

'

j

j

?

�

�

�

�

�

?

 

0

:
�����

'

0

���������

-

:
��������

�

������

-

:

Theorem 7 Let U be a uni�
and and ' an expansion

of U into V . If � and � are prin
ipal uni�ers of U and

V , then there exists an �-expansion � Æ  of �(U) into

�(V ) su
h that � Æ' and � Æ Æ � are equal, that is, the

adjoining diagram 
ommutes modulo E-equality.

U ��

�

�����

-

:

j

j

�

�

�

�

�

'

j

?

�

�

�

�

�

?

� Æ  

V ��

�

�����

-

:

Proof: The proof is sket
hed in the adjoining diagram,

taken modulo E-equality. The existen
e of � and  fol-

lows from 
orollary 15. Sin
e � Æ ' is a solution of U

and � is the prin
ipal solution of U , the substitution �

0

must exist. Finally, the existen
e of �

00

is a 
onsequen
e

of the fa
t that � is a solution of V , sin
e �(V ) is equal

to  Æ �(U), whi
h is satis�ed, while � is a prin
ipal

solution of V . Sin
e �

00

Æ �

0

is an expansion, �

00

and, in

parti
ular �

00

are �-expansions.

U�������

�

��������

-

:

j

j

j

j

j

�

�

�

�

�

�

�

�

�

�

�

�

(1)

	

�

�

�

�

�

 

�

�

�

�

�

'

j

j

j

j

?

: (2)

�

�

�

�

�

�

�

�

�

�

�

?

?

�

0

�

�

�

�

�

�

�

�

�

�

�

�

(3)

I

I

I

�

�

�

�

�

�

00

�

�

�

�

�

V �������

�

��������

-

:

4.2 Canoni
al terms

In this se
tion we de�ne 
anoni
al terms and show that any term 
an be expanded into a


anoni
al term. We assume we are given an ordering on L that extends naturally to proje
tion

symbols.

De�nition 9 A re
ord term � is 
anoni
al if proje
tion symbols 
an only o

ur below a

symbol � or some other smaller proje
tion symbol.

8ux 2 dom (�); Top (�

=ux

) = (a : ; ) =) Top (�

=u

) 2 f�g [ f(a : ; ) j a < bg

A term is E-
anoni
al 
anoni
al E if it is E-equal to a 
anoni
al term.

A 
anoni
al expansion of � is a 
anoni
al term obtained by an expansion of � .

For instan
e, the term (a : � (a : � ; �

0

) ; b : �

0

; 
) is 
anoni
al, but the term

f(

�

a : � ; �

0

�

;

�

a : � ; b : �

0

; 


�

)

is not. The term (a : � ; �) : (b : � ; �

0

) of se
tion 3.4 is 
anoni
al.
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Notation

In general if Q is a set of terms (respe
tively a set of symbols) and � is a sort, we write Q

�

for the subset of Q of terms (respe
tively symbols) of the sort �.

If L is a �nite subset of labels, we write V

L

for the union V

Type

[ V

Row(L)

and V

�L

for

the union of all V

K

for all subsets K of L, C

�L

for the union of C

Type

and all C

Row (K)

for

all subsets K of L, and �

�L

for the restri
tion of the signature � j

�

C

�L

. We write T

L

for the

algebra T

L

(V

L

;�

�L

) and T

�L

the algebra T (V

�L

;�

�L

).

For instan
e, the term � equal to fa : � ; �

0

g is in T

fag

. The term � equal to (b : � ; �

0

)

is in T

0

fbg

, and the term � ! � is in T

�fa;bg

.

De�nition 10 For any �nite set of labels L we write

~

E

L

for the rewriting system obtained

by orienting the equations (a . b;K) if a and b are ordered and (f . a;K) for all subsets K

of L.

Lemma 17 For any �nite set of labels L, the rewriting system

~

E

L

is stable and terminates

in the set T

�L

.

Proof: We extend the total order on proje
tion symbols to a partial order on all symbols

by pla
ing proje
tion symbols before all other symbols. An ordered element in � is a pair

(u; v) of two non-variable o

urren
es of � su
h that u is a pre�x of v and the symbol at the

o

urren
e u is smaller than the symbol at o

urren
e v. Any step in
reases the number of

ordered elements. The size �

Card (L)

is 
onstant, whi
h provides a bound on the number of

o

urren
es of symbols of the term, and thus on the number of pairs of non-variable pre�x

o

urren
es.

Remark 7 The rewriting system

~

E

1

would not terminate, sin
e 
onstant symbols 
ould be

rewritten forever in terms of T

L

for in
reasing L.

Lemma 18 For any �nite set of labels L, all terms of

~

E

L

(T

L

) are 
anoni
al.

Proof: A term of

~

E

L

(T

L

) redu
es by

~

E

L

to some term where non-proje
tion symbols 
an only

have sorts Row(L). Su
h terms are trivially 
anoni
al.

Corollary 19 For any �nite set of labels L, all terms of T

L

are E-
anoni
al.

This gives us a means of 
omputing the 
anoni
al form of a term in T

L

.

De�nition 11 Let � be a term, and L be the smallest K su
h that � is in T

�K

. If ' is an

expansion of row variables of � into T

L

, then '(�) is 
alled a 
anoni
al expansion of � . Let

� be a substitution and L the smallest K su
h that im (�) is in T

�K

. If ' is an expansion of

variables of im (�) into T

L

, then ' Æ � is 
alled a 
anoni
al expansion of �.

It is 
lear that 
anoni
al expansions are E-
anoni
al. They are de�ned modulo a renaming

of variables that are introdu
ed by the expansion. In general, they are not the smallest E-


anoni
al expansions, even for a single term � of T

0

. For instan
e, if � is in T

L

, � is in V

L

(�),

and the label a is not in L, then the 
anoni
al expansion of (� 7! a : f ; f)(�) is in T

a:L

, but

there the E-
anoni
al term (� 7! f)(�) in T

L

obtained by the empty expansion.

The existen
e of E-
anoni
al forms is not enough. As 
omputed above, 
anoni
al forms

may be very large. Are there smallest E-
anoni
al forms? Do they 
ommute with uni�
ation?

That is, given a uni�
and W , an �-expansion ' that maps W to a the smallest 
anoni
al
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form W

0

, and two prin
ipal uni�ers � and �

0

of W and W

0

, are the smallest �-expansions

 (�(W )) and sx1

0

(�

0

(W

0

)) E-equal modulo renaming?

W ��

�

���

-

:���

 

����

-

:

j

j

�

�

�

�

�

'

j

?

�

�

�

�

�

�?

W

0

��

�

���

-

:���

�

����

-

:

The following example shows that this 
annot be the 
ase.

Example 8

f((a : g ; �) ; �) _= f(g; �)�����������

(� 7! g)

T

0

;

������������

-

f(g; �) _= f(g; �)

j

j

�

�

�

�

�

�

�

(� 7! (a : 
 ; Æ) )

j

j

?

T

0

fag

�

�

�

�

�

6

�

f((a : g ; �) ; (a : 
 ; Æ) ) _= f(g; (a : 
 ; Æ) )����

(� 7! g)

T

0

fag

����

-

f(g; (a : 
 ; Æ) ) _= f(g; (a : 
 ; Æ) )

This 
ounterexample removed any hope of providing the set of E-
anoni
al forms with a \sup"

operation that extends the \sup" in T . The pre
eding diagrams 
an be easily extended

to show that this operation would not be asso
iative. The problem 
omes from axioms

(f . a;K) for 
onstant symbols f . One solution to is to allow 
ontra
tion | the reverse

of expansion | while 
omputing 
anoni
al forms. These more general 
anoni
al forms are


alled approximations and are studied in the rest of this se
tion.

De�nition 12 An approximation of a substitution � (respe
tively of a term �) is an E-


anoni
al substitution � (respe
tively an E-
anoni
al term �) su
h that there exist two ex-

pansions ' and  su
h that  Æ � = ' Æ � (respe
tively '(�) =  (�)).

Approximations are 
alled 
ontra
tions when ' is the identity.

We �rst show that 
omputing approximations in T 
an be redu
ed to 
omputing approx-

imations in T

0

.

4.3 Approximations in T

Re
all that a substitution � is p-potent if �

p

is equal to �. It is potent if it is potent for

some p. Its 
omposition for high enough powers is written �

1

. A 1-potent substitution is

also said idempotent. An idempotent substitution is 
hara
terized by having disjoint domain

and image. We say that � is potent on W if the restri
tion of � to W is potent.

A substitution � is linear in a variable � if � appears at most on
e in the image of at most

one variable of the domain of �. By extension a substitution is linear in a set of variables W

if it is linear in all variables of W .

De�nition 13 A de
omposition of a substitution � is a pair, written de
W � �, of a set of

variables W disjoint from � and a substitution � potent on W su
h that (� j

�

W )

1

Æ (� nW )

is equal to �. A �-de
omposition of � is a de
omposition de
W � � su
h that � sends W to

�(T

0

) and V nW to T

0

. It is linear if � is linear on W . If � is potent on W , we also write

de
W � � for the substitution (� j

�

W )

1

Æ (� nW ) itself.
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For instan
e, the substitution � 7! fa : fb : � ; �g ; abs g ! fb : � ; �g 
an be de
omposed

into

de
 
; Æ � ^

8

>

<

>

:

� 7! 
 ! Æ


 7! fa : Æ ; abs g

Æ 7! fb : � ; �g

or de
 
; Æ; Æ

0

� ^

8

>

>

>

>

<

>

>

>

>

:

� 7! 
 ! Æ


 7! fa : Æ

0

; abs g

Æ 7! fb : � ; �g

Æ

0

7! fb : � ; �g

and the latter de
omposition is linear.

Lemma 20 Ea
h term has a linear �-de
omposition.

Proof: We 
an build a linear �-de
omposition for any term by indu
tion on the number of �

symbols. If � has no � symbol, then � is � andW is empty. Otherwise there exists a variable

� in the domain of � whose image is � [�(�)=�℄, where � has no � symbol and the variable

� is taken out of � and appears exa
tly on
e in � . By indu
tion, the substitution �

0

equal to

� n f�g+ � 7! � has a linear �-de
omposition de
W

0

� �

0

. Then de
W [ f�g � �

0

+ � 7! � is

a linear �-de
omposition of �.

The de
omposition de
W � � 
an be represented by annotating all o

urren
es of �

symbols in the image of � with distin
t variables of W .

Lemma 21 If � has a �-de
omposition then it has a linear one.

Proof: Let de
W � � be a �-de
omposition of �.

� If � sends two variables � and � two terms � and � that share a variable 
 of W , then

de
W [ f


0

g � � n f�g+ � 7! �[


0

=
℄, where 


0

is disjoint from �, is a de
omposition of

�.

� If � sends a variable � to a term � that 
ontains two o

urren
es u and v of the same

variable � in W , then de
W [ f�

0

g � � n f�g+ � 7! �[�

0

=v℄ where �

0

is disjoint from �

is a de
omposition of �.

Ea
h transformation in
reases the number of variables in W , whi
h is bound by the number

of � symbols in �. When no more transformations are possible, the de
omposition is linear.

Lemma 22 Let de
W � � and de
W

0

� �

0

be two �-de
ompositions of �, and �

0

. If there

exists a renaming � of W into W

0

and if �

0

and � Æ � Æ �

�1

are E-equal, then �

0

and � are

E-equal.

Proof: For a high enough p, the substitution �

0

is (�

0

j

�

W

0

)

p

Æ (� nW

0

), that is

(� Æ � Æ �

�1

j

�

�(W ))

p

Æ (� Æ � Æ �

�1

n �(W )) or (� Æ (� j

�

W ) Æ �

�1

)

p

Æ (� Æ (� nW ) Æ �

�1

)

After removing intermediate �

�1

and �, we get � Æ (� j

�

W )

p

Æ (� nW )Æ �

�1

whi
h is � Æ�Æ �

�1

.

Sin
e � is disjoint from �, it is equal to �.

The 
onverse is not true in general. But it is true if the de
ompositions are linear. Thus,

all linear �-de
ompositions are equal up to renaming of intermediate variables.

Lemma 23 Let de
W � � and de
W

0

� �

0

be two linear �-de
ompositions of � and �

0

. If �

0

and � are E-equal, then there exists a renaming � of W into W

0

su
h that �

0

and � Æ � Æ �

�1

are E-equal.
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Proof: We reason by indu
tion on the number of �-symbols in �. If � 
ontains no � symbol,

then neither does �

0

and both W and W

0

are empty; 
onsequently �

0

and � are E-equal.

Otherwise, there exists a variable � in the domain of � whose image by � is � [�(�

i

)=�

i

℄,

where � has no � symbol and variables �

i

are taken away from � and appear exa
tly on
e in

� . The term �

0

(�) is of the form �

0

[�(�

0

i

)=�

i

℄, where � and �

0

on one hand and �

i

and �

0

i

on

the other hand are E-equal. The substitutions � n f�g+ �

i

7! �

i

and �

0

n f�g+ �

i

7! �

0

i

are

E-equal. We name them respe
tively �

�

and �

0

�

. For ea
h i there must be a variable in W

whose image under � is �(�

i

). We 
an assume that it is �

i

without lost of generality. It is

easy to 
he
k that de
W n f�

i

g � � n f�g is a de
omposition of �

�

. Similarly for ea
h i there

is a variable �

0

i

in W

0

whose image under �

0

is �

0

i

, and su
h that de
W

0

n f�

0

i

g � � n f�g is a

de
omposition of �

0

�

. By the indu
tion hypothesis, there exists a substitution �

0

su
h that

the substitutions � n f�g and �

0

Æ (�

0

n f�g) Æ �

0

�1

are E-equal. The substitution � equal to

� + (� 7! �

i

) satis�es the lemma.

Lemma 24 For any linear �-de
omposition de
W � � of a substitution �, � is E-
anoni
al

if and only if � is.

Proof: For any substitution � and any substitution � of into �(T

0

), then � Æ � is E-
anoni
al

if and only if � and � are E-
anoni
al, sin
e S(� Æ �) and S(�)[S(�) are equal, where S(�

0

)

is the set of all pairs (f; (a : ; ) ) su
h that (a : ; ) o

urs dire
tly below some o

urren
e

of f in �

0

. This shows the lemma for 
anoni
ity instead of E-
anoni
ity. The general 
ase

follows from lemmas 22 and 23.

De�nition 14 The 
omposition of two �-de
ompositions de
W

1

� �

1

and de
W

2

� �

2

su
h that

W

1

is disjoint from �

2

and W

2

is disjoint from �

1

is the �-de
omposition de
W

1

;W

2

� �

1

Æ �

2

.

Lemma 25 The 
omposition of the �-de
ompositions of two substitutions is a �-de
omposi-

tion of their 
omposition.

Proof: We must 
he
k that for some high enough p,

(� j

�

U)

p

Æ (� n U) Æ (� j

�

V )

p

Æ (� n V ) = (� Æ � j

�

U [ V )

p

Æ (� Æ � n U n V )

where � is disjoint from V and � is disjoint from U . Sin
e im (�) is disjoint from U , the

substitution � Æ � n U n V is equal to (� n U) Æ (� n V ) and we are left with:

(� j

�

U)

p

Æ (� n U) Æ (� j

�

V )

p

= (� Æ � j

�

U [ V )

p

Æ (� n U)

Sin
e dom (� n U) is disjoint from dom (� j

�

V ), the substitution (� n U) Æ (� j

�

V ) is equal to

(� n U) + ((� n U) Æ (� j

�

V )) j

�

V , that is, (� Æ � j

�

V ) Æ (� n U). By indu
tion, we �nd that the

substitution (� n U) Æ (� j

�

V )

p

is E-equal to (� Æ � j

�

V )

p

Æ (� n U). Thus, we are left with:

(� j

�

U)

p

Æ (� Æ � j

�

V )

p

= (� Æ � j

�

U [ V )

p

whi
h holds sin
e � Æ � j

�

U [ V is equal to (� Æ � j

�

V ) + (� j

�

U).

The lemma is true even for non-linear �-de
ompositions. The 
omposition of linear �-

de
ompositions may not be linear. If de
W � � is a linear expansion of � and ' is an expansion

disjoint form W , then de
W � ' Æ � is a linear �-de
omposition of ' Æ �.

Lemma 26 Let de
W � � be a linear �-de
omposition of �. A substitution �

0

is an approx-

imation of � if and only if there exists a linear �-de
omposition of de
W � �

0

of �

0

su
h that

�

0

is an approximation of �.
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Proof: Assume that there exists a �-de
omposition de
W � �

0

of �

0

su
h that �

0

is an ap-

proximation of �. There exist two substitutions ' and '

0

su
h that ' Æ � and '

0

Æ �

0

are

E-equal. The substitution ' Æ� is equal to ' Æ (� j

�

W )

p

Æ (� nW ). By sort 
onsiderations, the

substitution ' is ne
essarily disjoint from W , and it is potent. Thus the above substitution

is also ((' Æ �) j

�

W )

p

Æ ((' Æ �) nW ). We get an E-equal substitution repla
ing ' Æ � by '

0

Æ �

0

whi
h is E-equal to '

0

Æ �

0

by the same reasoning.

Conversely, assume that �

0

is an approximation of �. Then there exists a linear ap-

proximation de
W � �

0

of �

0

. A similar 
al
ulus to the one above shows that substitution

de
W � ' Æ � is a linear �-de
omposition of ' Æ � and similarly de
W � '

0

Æ �

0

is a linear

�-de
omposition of '

0

Æ�

0

. The E-equality of ' Æ� and '

0

Æ�

0

and lemma 23 show that ' Æ �

and '

0

Æ �

0

are E-equal. Thus, '

0

is an approximation of '.

The lemma is not true if the de
ompositions are not linear. For instan
e, take

de
�

1

; �

2

�

8

>

<

>

:

� 7! �

1

! �

2

�

1

7! �(a : � ; 


1

)

�

2

7! �(


2

)

and de
�

1

�

(

� 7! �

1

! �

1

�

1

7! �(a : � ; 


1

)

for � and �

0

.

We are led to study approximations for substitutions in T

0

[�(T

0

).

4.4 Approximations in T

0

For simpli
ity of exposition, we study approximations of substitutions into T

0

, but all results

straightforwardly extend to approximations of substitutions into T

0

[�(T

0

).

De�nition 15 The 
onnexe 
omponents of a substitution � in T

0

is the partition of the

domain of � by the smallest equivalen
e �

�

that 
ontains all pairs � �

�

� su
h that images

of � and � by � share at least one row variable, i.e. V(�(�)) \ V(�(�)) n V

Type

6= ;.

A substitution is said to be 
onnexe if �

�

has only one 
onnexe 
omponent

The 
onnexe 
omponents of a substitution are preserved by expansion. Let (W

i

)

i2[1;p℄

be

the 
onnexe 
omponents of �. We write �

i

the restri
tions of � to W

i

. Then � is equal to

�

i2[1;p℄

�

i

. If � is idempotent, it is also the 
omposition �

1

Æ : : : �

p

in any order. If ' is an

expansion of �, then ' Æ � has the same 
onnexe 
omponents as � and the substitution '

i

perfe
tly 
omposes with �

i

, where '

i

is the restri
tion ' to im (�

i

). Conversely, if '

i

are

expansions that perfe
tly 
ompose with �

i

and are disjoint, then �

i2[1;p℄

'

i

is an expansion

that perfe
tly 
omposes with �.

Lemma 27 Let � and � be two substitutions in T

0

. The substitution � is an approximation

of � if and only if they have the same 
onnexe 
omponents and � j

�

W is an approximation of

� j

�

W on ea
h 
onnexe 
omponent W .

Proof: We �rst assume the existen
e of two expansions ' and  su
h that ' Æ � and  Æ �

are equal and � is E-
anoni
al. Sin
e expansion does not 
hange 
onnexe 
omponents, both

� and � have the same 
onnexe 
omponents (W

i

)

i2[1;p℄

. The substitution �

i

is of 
ourse E-


anoni
al sin
e the restri
tion of a E-
anoni
al substitution and su
h that  j

�

�(W

i

) Æ � j

�

W

i

and ' j

�

�(W

i

) Æ � j

�

(W

i

) are E-equal for ea
h 
onnexe 
omponent W

i

.

Conversely, we assume that � and � have the same 
omponents (W

i

)

i2[1;p℄

, and that

� j

�

W

i

is an approximation of � j

�

W

i

on ea
h 
onnexe 
omponent W

i

. Therefore, there exists

expansions '

i

and  

i

su
h that  

i

Æ � j

�

W

i

and '

i

Æ� j

�

W

i

are E-equal. We 
an always 
hoose

them su
h that they are disjoint form ea
h other and from the 
ommon domain of � and �.

Then their respe
tive sums ' and  perfe
tly 
omposes. The substitution  Æ � and ' Æ� are

E-equal.
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We are left with the 
omputation of approximations on 
onnexe 
omponents.

4.5 Approximations on 
onnexe 
omponents in T

0

By 
orollary 19, we know that substitutions in T

0

L

are E-
anoni
al. Conversely, a 
onnexe

E-
anoni
al substitution � in T

0

is in fa
t always in a set T

0

L

for some L. Conne
tivity is

preserved by expansion. Therefore, any approximation � of � is also a 
onnexe E-
anoni
al

substitution, say �. It 
an be looked for among the substitutions whose range is in T

0

L

0

for some L

0

. When the approximation � is a 
ontra
tion of �, there exist an expansion '

that sends variables of V

Row (L

0

)

to terms of T

L

. The set L

0

is a subset of L. The smallest


ontra
tions are 
ontra
tions on a 
ontra
tion on label when L

0

is L n fag for some label

a. We show that any 
ontra
tion of a 
onnexe E-
anoni
al substitution 
an be obtained by

su

essive 
ontra
tions on labels, independently of the order in whi
h labels are 
hosen. The

pro
ess will end with a minimal approximation.

De�nition 16 If a term of T

0

is E-equal to (a : � ; �) we de�ne its proje
tion on a and its

residual on a as the terms � and � written �

=a

and �

na

, respe
tively. We re
ursively de�ne

the template of a term � , written �

=1

, as (�

na

)

=1

if � is equal to (a : � ; �) and � otherwise.

The proje
tion (respe
tively residual, template) of a substitution are raw substitutions of

the same domain that maps variables to the proje
tion (respe
tively residual, template) of

their substitution, when de�ned.

Lemma 28 Let � be a 
onnexe substitution into T

L

. It 
ontra
ts on label a if and only if

�

=a

is de�ned and is raw-isomorphi
 to �

=1

.

Let % be a raw-renaming from V

Row (L)

(im (�)) to V

Row (Lnfag)

. The 
ontra
tion of �

(up to renaming and E-equality) is the substitution %

�1

Æ (�

na

), whi
h is equal to � by the

expansion

�

a : %

a

Æ %

�1

; %

�1

�

, where %

a

is a raw-renaming that maps �

=1

to �

=a

disjoint

from �.

Proof: Both sides are immediate.

Corollary 29 Let � be a 
onnexe E-
anoni
al substitu-

tion. If it 
ontra
ts on label a and on label b separately,

then its 
ontra
tion on a 
ontra
ts on b and its 
ontra
-

tion on b 
ontra
ts on a, both ways ending with the same

substitution, up to renaming and E-equality.

Proof: The proof follows immediately from the fa
t that

�

nanb

and �

nbna

are de�ned simultaneously and then are

equal.

Z

A

A

A

A

A

A

�

A

A

A

A

A

AU

�

�

�

�

�

�

�

�

�

�

0

�

�

�

�

�

�

�

�

�

R

�

�

�

�

�

�

H

H

H

H

H

�

H

H

H

H

Hj

W

0

�������

� Æ '

0

b

��������

-

U

�

�

�

�

�

�

�

�

�

j

j

j

�

�

�

�

�

�

?

 

0

a

�

�

�

�

�

�

�R

j

j

?

'

a

V ����

 

b

����

-

W
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Corollary 30 Let � be an 
onnexe E-
anoni
al substi-

tution. If � and � are two 
ontra
tions of �, then there

is an approximation �

0

and two expansions '

0

and  

0

su
h that � is E-equal to '

0

Æ �

0

and � is E-equal to

 

0

Æ �

0

.

Proof: By lemma 9, any 
ontra
tion is 
omposed of 
on-

tra
tions on labels. Then repeatedly apply the previous

lemma.

Z

A

A

A

A

A

A

�

A

A

A

A

A

AU

�

�

�

�

�

�

�

�

�

�

0

�

�

�

�

�

�

�

�

�

R

�

�

�

�

�

�

H

H
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Corollary 31 Any 
onnexe E-
anoni
al substitution has a minimal 
ontra
tion.

Lemma 32 Any 
onnexe substitution has a minimal approximation, whi
h is the minimal


ontra
tion of a E-
anoni
al expansion.

Proof: If a substitution has two approximations, there exist expansions of the two approxi-

mations that are E-equal up to renaming. Thus both expansions are 
ontra
tion of a same


onnexe E-
anoni
al form, and are thus E-equal up to renaming.

4.6 Minimal approximations in T

Theorem 8 Any substitution � has a minimal approximation �

0

in T , whi
h 
an be 
omputed

as follows:

1. Find a linear �-de
omposition de
W � � of a �.

2. De
ompose � into 
onnexe 
omponents, �

i2[1;p℄

� j

�

W

i

.

3. For ea
h 
onnexe 
omponent:

(a) �nd an E-
anoni
al expansion �

i

of � j

�

W

i

,

(b) �nd a minimal 
ontra
tion �

i

of �

i

, by 
ontra
ting on all labels for whi
h the

proje
tion of �

i

is raw-isomorphi
 to the template of �

i

.

Take the substitution de
W � �

i2[1;p℄

(�

i

) for �

0

.

Proof: The algorithm and the theorem is a 
ombination of lemmas 32, 27, and 26.

In fa
t in step 1, the �-de
omposition de
W � � of � need not be linear. In this 
ase,

the approximations of � do not 
orrespond to approximations of �, but it 
an be shown that

minimal approximations do.

Finding a �-de
omposition and the 
onnexe 
omponents 
an always be done in linear

time. The expensive part of the algorithm is step 3b, whi
h looks for possible isomorphisms.

This is inherent to 
ontra
tion. Removing this step (that is, taking �

i

for �

i

) will 
ompute a

good approximation of � (it is a small 
anoni
al expansion of �). This is suÆ
ient in pra
ti
e.
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4.7 Minimal approximations and uni�
ation

The following theorem shows that uni�
ation 
ommutes with approximations. Therefore

uni�
ation 
an be done modulo approximations.

Theorem 9 If U

0

is a minimal approximation of a uni�
and U and � is a prin
ipal uni�er

of U , then U

0

has a prin
ipal uni�er �

0

and � and �

0

have the same minimal approximation

modulo renaming and E-equality.

Proof: The following diagram 
ommutes: the existen
e

of �

00

follows from 
orollary 15. Then the existen
e of

�

0

follows from the uni�er �

00

Æ '

0

of U

0

. Theorem 7

is applied twi
e to get the existen
e of  and  

0

. The

renamings 
an in fa
t be in
luded in the prin
ipal uni-

�ers �

0

and �

00

. The uni�
and V

00

and V

0

may not be

E-
anoni
al. However, V and V

0

have an identi
al E-


anoni
al form, and thus they have the same prin
ipal

E-
anoni
al approximation modulo renaming.

U ������

�

���������

-

V

j

j

�

�

�

�

�

j

j

j

j

j

j

?

'

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

?

 

U

0

�������

�

0

������ ����������

--

V

0

	�

�

'

0

�

�

	

	

�

�

�

�

�

 

0

�

�

�

�

�

U

00

����������

�

00

���������������

-

V

00

There are 
ases where the stru
ture of uni�
ands ensures that the prin
ipal uni�er is

E-
anoni
al. For instan
e, with the signature of re
ord terms �

0

of se
tion 3.4, all terms

are always E-
anoni
al. This is no longer the 
ase with the signature �

00

, as shown by the

examples at the beginning of this se
tion. However, for some input uni�
ands to the type

inferen
e algorithm, it is guaranteed that the output uni�
ands will be in 
anoni
al form.

Obviously, it is not suÆ
ient that the input uni�
and is E-
anoni
al.

De�nition 17 A uni�
and is separated if it 
an be written (by rearranging the multi-

equations) in the form 9W � U ^ V su
h that

1. all multi-equations of U are of the sort Type and those of V are of a row sort,

2. all row subterms of U and all type subterms of V are variables and their union is W ,

3. row variables of W are only variable terms in V ,

4. any pair of terms of V have disjoint or equal sets of row variables, and

5. all terms are E-
anoni
al.

A uni�
and is separable if it is equivalent to a separated uni�
and using only the

U-Generalize rule.

Lemma 33 (Separate) Let 9W � U ^9V(e) � (e^V ) be a separated 
anoni
al uni�
and and

let � be a prin
ipal E-uni�er of e su
h that its image is outside all bound or free variables

of the input uni�
and. Then, 9W � �(U) ^ �(V ) is an equivalent uni�
and in separated

E-
anoni
al form, up to reordering the multi-equations.

Proof: We �rst show that �(e) is E-
anoni
al. Ea
h term � of E is in some set T

L

�

for some

set of labels L

�

. Let L be the union of all sets L

�

. It is enough to show that �(e) is in T

L

.

Let � be a variable of �(e). For ea
h �, the variable � is in �(�); thus there exists a variable

�

�

su
h that � is in �(�

�

). Sin
e there is no � symbol in e, the variable �

�

is of sort L

�

;

therefore � has a sort Row(L) for some L greater than L

�

. The set L 
ontains L

�

, for any
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�. We know that there is a solution of the multi-equation in T

�L

; thus L 
annot be greater

than L, otherwise � would not be prin
ipal.

Ea
h term � of V either shares no row variable with e or has exa
tly the same row

variables as one term of e. In the former 
ase the image by � is un
hanged. In the latter


ase, the term �(�) has exa
tly the same row variables as �(e), i.e., it is in T

�L

and is thus

E-
anoni
al. The equivalen
e of the two uni�
ands is obvious.

Corollary 34 (Separate-bis) Let 9W;� � U ^9V(e) � (� = e^V ) be a separated 
anoni
al

uni�
and and let � be a prin
ipal E-uni�er of e su
h that its image is outside all bound or

free variables of the input uni�
and. Then 9W � �(U) ^ (� = �(e) ^ �(V )) is an equivalent

uni�
and in separated E-
anoni
al form.

Proof: Generalize the uni�
and into 9W;� � U ^ 9�;V(e) � (� = e ^ � = � ^ U) and apply

the previous lemma.

Theorem 10 A 
ompletely de
omposed form of a separable solvable uni�
and is separable.

Proof: Let U be the input uni�
and and V a 
ompletely de
omposed form. Let U

0

be a

separated uni�
and equivalent to U . Let V

0

be a separated, 
ompletely de
omposed uni�
and

obtained by the algorithm we des
ribe below. The uni�
ands V and V

0

are equivalent and


ompletely de
omposed. They are ne
essarily equal modulo unrestri
ted generalization.

To obtain an algorithm that solves separated uni�
ands, we restri
t the rule

Separate-Bis to the 
ase where e 
ontains more than one term. Applying De
ompose

for symbols of the sort Type and rules Separate, Separate-Bis, Generalize and Fuse

is stable on separated uni�
ands and terminates. Ea
h rule de
rease in the following lexi
o-

graphi
 order:

1. The number of symbols of the sort Type (de
omposition).

2. The sum of heights of row terms (generalization).

3. The number of multi-equations (fusion and �rst transformation).

4. The number of terms in row multi-equations (last transformation).

This guarantees the termination. Stability of separation rules is proved above. Stability is

obvious for all other rules.

For instan
e, with the signature of re
ord terms �

0

of se
tion 3.4, all terms are always

E-
anoni
al. This is no longer the 
ase with the signature �

00

, as shown by examples at

the beginning of the se
tion. However, the type inferen
e algorithm will only generate E-


anoni
al uni�
ands in disjoint form.

Of 
ourse, E-
anoni
al uni�
ands 
an be approximated by smaller uni�
ands, but this

has less interest in this 
ase, sin
e the 
ompletely de
omposed forms are automati
ally E-


anoni
al if the input uni�
ands are always separable. The type systems for languages with

re
ords presented in [R�em93℄ are based on signatures �

0

and �

00

, and the uni�
ands generated

by the type system are always separable, whi
h prevents us from 
omputingE-
anoni
al forms

at the end of type
he
king.
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5 Generi
 re
ord terms

In re
ord terms, row variables 
an always be substituted by rows with independent �elds;

the expansion \dupli
ates" row variables. For instan
e, in re
ord types of the form �(a :

� ; pre(�)), it is always possible to substitute � by b : �

b

; 
 : �




; �

0

. In some 
ases, it is useful

to express the fa
t that some part of a row must be shared on all �elds. Those parts need to

be of the sort type, and 
onsequently we need a new symbol � to inje
t types into rows. For

instan
e, let � be � ! �(a : � ; �(�)) . The variable � 
annot be repla
ed by a row de�ned

on b, but � is equal to �! �(a : � ; b : � ; �(�)) , whi
h is realized by non-linear idempotent

axioms asserting that �(�) is equal to b : � ; �(�).

This formalizes the algebra of generi
 re
ord terms. We 
an show that it is a de
idable

synta
ti
 theory, and derive a unitary unifying uni�
ation algorithm. Generi
 re
ord terms

provide a type system for a very raw view of re
ords [R�em92b℄. They also illustrate the treat-

ment of generi
 variables in ML, whi
h they generalizes to a degenerate form of interse
tion

types [Pie91℄.

5.1 Presentation of generi
 Re
ord Terms

As for re
ord terms, we �rst de�ne the unsorted generi
 re
ord terms, and restri
t them

later by a 
ompatible signature. We assume given a 
olle
tion of symbols with their arities

(C

n

)

n2IN

. Let L be a denumerable set of labels. Let K be 
omposed of

� a sort Type and

� a �nite 
olle
tion of sorts (Row(L)

L2P

f

(L)

.

Let � be the signature 
omposed of the following symbols, given with their sorts:

� ` � :: Row(;)) Type

� ` f

�

:: �

%(f)

) � f 2 C; � 2 K; %(f) 6= 0

� ` �

L

:: Type ) Row(L) L 2 P

f

(L)

� ` (`

L

: ; ) :: Type 
Row(`:L)) Row(L) ` 2 L; L 2 P

f

(L n f`g)

We write D for the new set of symbols. Let E be the following set of axioms:

� Left 
ommutativity. For any labels a and b and any �nite subset of labels L that


ontains neither a nor b,

a

L

: � ; b

a:L

: � ; 
 = b

L

: � ; a

b:L

: � ; 
 (a . b; L)

� Distributivity. For any symbol f , any label a and any �nite subset of labels L that do

not 
ontain a,

f

Row(L)

(a

L

: �

1

; �

1

; : : : a

L

: �

p

; �

p

) = a

L

: f

Type

(�

1

; : : : �

p

) ; f

Row(a:L)

(�

1

; : : : �

p

)

(f . a; L)

� Idempoten
e.

�

L

� = a

L

: � ; �

a:L

� (� . a; L)

� Distributivity.

�

L

�

f

Row(L)

(�

1

; : : : �

p

)

�

= f

Row(L)

(�

L

�

1

; : : : �

L

�

p

) (� . f; L)
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All axioms are 
ollapse-free and regular. The last axiom is not linear, but it is right-linear.

For instan
e, the following are two E-equal re
ord terms:

f

Row(;)

�

�

�

� �

�

�

�

(b)

;

�

;

j

�

�

�

� �

�

�

�

� g

Row (fbg)

h

Type

�

�

�

� �

�

�

�

� �

(b)

;

�

�

�

� H

H

H

H

f

Type

f

Row(fbg)

�

� �

� �

� �

�

� h

Type

g

Row (fbg)

�

fbg

j

�

� �

�

� � h

Type

�

� �

�

� �

Let � be a de
reasing fun
tion on positive integers. Let � be the size fun
tion de�ned on

terms by:

�(a

L

: � ; �) = sup (�(�) + �(Card (L));�(�) + �(Card (L))� �(Card (a:L)))

�(f

K

(�

1

; : : : �

p

)) = sup

i2[1;p℄

(�

i

) + 1

�(�

L

(�)) = �(�) + �(Card (L))

The size � is 
onstant on E-equality 
lasses and de�nes a 
ompatible ordering on terms.

However, the ordering is not well-founded on T . Let T

n

be the subset of terms that uses

only the sorts Type and Row(L), where Card (L) is at most n. The previous ordering is


ompatible and well-founded on all subsets T

n

.

5.2 SuÆ
ient 
ondition for synta
ti
ness with non-linear axioms

The suÆ
ient 
ondition for synta
ti
ness given by of the-

orem 1 does not apply, sin
e the axioms (� . a; L) are

not linear and therefore the 
ondition (h

1

) is not al-

ways true. For instan
e, the adjoining proof, mat
h-

ing �!

�

�

��!

��

, 
annot be rewritten into a proof mat
h-

ing

�

���!

�1

Æ

��!

�

. However, it is still possible to show dire
tly

that the theory of generi
 re
ord terms is synta
ti
, fol-

lowing the stru
ture of the demonstration of theorem 1.

� (� (f) )

j

?

�

a : � (f) ; � (� (f) )

j

?

2

a : � (b ; f : f) ; �f

Lemma 35 The theory of generi
 re
ord terms is synta
ti
.

Proof: The proof follows the proof of theorem 1 until the use of 
onditions (h

1

) and (h

2

).

Then it resembles the proof of theorem 5, and using a tedious 
ase analysis as we did for

proving 
ondition (h

2

) of theorem 1.

The sequen
e of sets (T

k

)

k2IN

is in
reasing and its union is T . Thus it is enough to show

Synt (T

k

) on all T

k

. Let H be one of them.

For any integer n, let H

n

be the subset of H 
omposed of all the terms that do not start

any de
reasing sequen
e of length n. All these sets are 
losed under

�

���!

j

�

H

. In parti
ular, they

are 
losed subsets of T . Any term smaller than a term in H

n+1

is in H

n

. The sequen
e is

in
reasing, and its limit is H. We show Synt (H

n

) by indu
tion on n. In fa
t, it is enough to

show that

�!

�

�

���!

�1

�!

�

�

H

n

�

���!

�1

Æ

��!

�

�

���!

�1
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holds.

The set H

0

is 
omposed of variables and 
onstant symbols. Thus, the only instan
e of the

premise is �!

�

�!

�

, for whi
h the in
lusion is satis�ed, sin
e the two axioms must be inverses

and annihilate ea
h other.

Let us assume the property Synt (H

n

) and show Synt (H

n+1

). Let D be the set of all

dire
tions. A relation

�

���!

�1

in H

n+1


an be written as the 
omposition

�

�

���!

k1

�

k2D

sin
e disjoint o

urren
es 
ommute. For ea
h dire
tion k, the subproof at k is in H

n

. Sin
e

Synt (H

n

), it 
an be rewritten in H

n

so that it mat
hes

�

���!

�1

Æ

��!

�

�

���!

�1

Re-assembling all subproofs, we get a proof mat
hing

�

�

����!

k�1

Æ

��!

k

�

����!

k�1

�

k2D

whi
h is a proof in H

n+1

sin
e H

n+1

is 
losed. It 
an be reordered as

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

k2D

We have shown

�

���!

�1

�

H

n+1

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

k2D

Composing the step at the root on both sides, we get

�!

�

�

���!

�1

�!

�

�

H

n+1

�!

�

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

k2D

�!

�

and we are left with proving

��!

r;�

�

�

����!

k�1

�

k2D

�

Æ

��!

k

�

k2D

�

�

����!

k�1

�

k2D

��!

s;�

�

H

n+1

�

���!

�1

Æ

��!

�

�

���!

�1

We show this in
lusion 
ondition by 
ases on the outermost axioms r and s. We omit the

supers
ripts of symbols.

Case r is (� . a): The axiom s must be of the form (a . X), sin
e a : ; is the top symbol

of the term before the last step.

Sub
ase X is �: The proof is of the form:

�(�) �!

�

a : � ; �(�)

�

���!

11

a : � ; �(�)

�

���!

21

a : � ; �(�) �!

�

�(�)

A shorter proof is the subproof at o

urren
e 1 applied to �(�).
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Sub
ase X is b: The label b must be distin
t from a. The proof is of the form:

�(�) �!

�

a : � ; �(�)

�

�����!

R;11

a : �

0

; �(�)

�

�����!

S;21

a : �

0

; b : �

00

; � �!

�

b : �

00

; a : �

0

; �

The subproof

�(�)

�

����!

S;1

b : �

00

; �

at the o

urren
e 2 is in H

n�1

. Thus, it 
an be rewritten into a proof of the form

�(�)

�

�������!

T; 11

�(�) ��!

�

b : � ; �(�)

�

������!

P; 1�

�

������!

Q; 2�

b : �

00

; �

Putting the pie
es together, there is a proof mat
hing

�(�)

�

����!

11

�(�) ��!

�

b : � ; �(�)

�

���������!

P

�1

; 11

b : �

00

; �(�) ���!

22

b : �

00

; a : � ; �(�)

�

��������!

T

�1

; 21

b : �

00

; a : � ; �(�)

�

������!

R; 21

b : �

00

; a : �

0

; �(�)

�

������!

Q; 22

b : �

00

; a : �

0

; �

Sub
ase X is f : Then �rst term must be of the form f(�

1

; : : : �

p

). The proof is of the form

� (f(�

1

; : : : �

p

)) ��!

�

a : f(�

1

; : : : �

p

) ; � (f(�

1

; : : : �

p

))

�

�������!

R; 11

a : f(�

1

; : : : �

p

) ; � (f(�

1

; : : : �

p

))

�

��������!

S; 121

a : f(�

1

; : : : �

p

) ; f(�

1

; : : : �

p

) ��!

�

f(a : �

1

; �

1

; : : : a : �

p

; �

p

)

The subproof using axioms S at o

urren
e 1 is H

n

, and 
an be rewritten into a proof

mat
hing

� (f(�

1

; : : : �

p

))

�

�������!

T; 11

�

�

f(�

0

1

; : : : �

0

p

)

�

��!

�

f(�(�

0

1

); : : : �(�

0

p

))

 

�

�������!

P; �1

!

f(�

1

; : : : �

p

)

Again, the subproof using axioms R at o

urren
e 1 and the subproof using axioms T at

the o

urren
e 1 are in H

n

, and 
annot have exa
tly one axiom at the empty o

urren
e.

Therefore they are 
omposed of a su

ession of proofs in all dire
tions. Then we 
an prove:

� (f(�

1

; : : : �

p

)) ��!

�

f(�(�

1

); : : : �(�

p

))

�

��!

2

f(a : �

1

; �(�

1

); : : : a : �

p

; �(�

p

))

�

���������!

T; �211

f(a : �

1

; �(�

0

1

); : : : a : �

p

; �(�

0

p

))

�

���������!

P; �211

f(a : �

1

; �(�

1

); : : : a : �

p

; �(�

p

))

�

��������!

R; �11

f(a : �

1

; �(�

1

); : : : a : �

p

; �(�

p

))

Case r is (� . f): Then s must be an axiom (f . X).

Sub
ase X is �: The proof is of the form:

�(f(�)) �!

�

f(�(�

1

); : : : �(�

p

))

�

����!

�11

f(�(�

1

); : : : �(�

p

)) �!

�

�(f(�))

A shorter proof is the 
omposition of subproofs at o

urren
es i1 applied at o

urren
es 1i

to �(f(�)).
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Sub
ase X is a: The proof is of the form

�(f(�

1

; : : : �

p

)) ��!

�

f(�(�

1

); : : : �(�

p

))

�

��������!

R; �11

f(�(�

0

1

); : : : �(�

0

p

))

�

��������!

� . a; �

f(a : �

0

1

; �(�

0

1

); : : : a : �

0

p

; �(�

0

p

))

�

��������!

S; �11

f(a : �

1

; �(�

0

1

); : : : a : �

p

; �(�

0

p

))

�

���������!

T; �211

f(a : �

1

; �(�

1

); : : : a : �

p

; �(�

p

)) ��!

�

a : f(�

1

; : : : �

p

) ; f(�(�)

1

; : : : �(�)

p

)

Then, we 
an prove

�(f(�

1

; : : : �

p

)) ��!

�

a : f(�

1

; : : : �

p

) ; f(�(�); : : : �(�))

�

������������!

R [ S; 1�1

a : f(�

1

; : : : �

p

) ; f(�(�); : : : �(�))

�

������������!

R [ T; 2�1

a : f(�

1

; : : : �

p

) ; f(�(�); : : : �(�))

Sub
ase X is g: is not possible.

Case s is (a . �): This 
ase is symmetri
 to the 
ase r where is (� . a).

Case neither r is (� . X), nor is s (� . X): Then the axioms r and s are linear on the

right and left, respe
tively and 
ommutes with their right and left neighbors, so we get a

proof mat
hing:

�

�

����!

k�1

�

k2D

��!

r;�

�

Æ

��!

k

�

k2D

�!

�

�

�

����!

k�1

�

k2D

We show that the in
lusion

��!

r;�

�

Æ

��!

k

�

k2D

��!

s;�

�

H

n

�

���!

�1

Æ

��!

s;�

�

���!

�1

by 
ases on r and s.

Case r is (X . �) or s is � . X: The middle equality must be empty. The two axioms r

and s must be inverse and annihilate ea
h other.

Other 
ases: In the remaining 
ases, neither r nor s are � axioms. The middle axiom


annot be a � axiom. The remaining 
ases are then exa
tly those of the re
ord term algebra.

We derive the mutation in the re
ord term algebra (�gure 2): For all other pairs of terms

(�; �), if they have identi
al top symbols, they are de
omposable; otherwise they produ
e a


ollision.

Theorem 11 Uni�
ation in the generi
 re
ord algebra is de
idable and unitary unifying.

Proof: The theory is stri
t (we exhibited a 
ompatible ordering). Therefore, the rules muta-

tion, de
omposition, 
ollision, fusion and generalization applied any order form a 
omplete

semi-algorithm for uni�
ation. It is unitary sin
e mutation does not introdu
e any disjun
-

tion.

All transformations are stable in the sets T

n

and de
rease in the following lexi
ographi


ordering:

1. the number of symbols f

Row(L)

in the lexi
ographi
 order of de
reasing Card (L) (that

is, bigger sets 
ount less: mutate (a . f)),

2. the number of symbols a

L

: ; 
ounted in the lexi
ographi
 order of de
reasing

Card (L) (mutate (a . b)),
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f
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1

; : : : �

p
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�
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�

V

8
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>
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>
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:

�
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1

; : : : �
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�
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_= �
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Mutate(f . �)

Figure 2: Mutation in the generi
 algebra of re
ord terms

3. the number of other symbols (other mutations and de
omposition),

4. the sum of heights of terms (generalization),

5. the number of multi-equations (fusion).

Thus, applying the rules in any order always terminates.

6 Comparison with other work

In our approa
h, re
ords are terms of a sorted algebra modulo regular equations. We have

in�nitely many equations (indexed by labels), but all equations a
t lo
ally on terms, sin
e

the axioms are of depth at most 2.

In re
ord 
al
uli, it is possible to de�ne a re
ord s by adding a �eld (a = x) to the re
ord

r whether r already de�nes �eld a or not. It is tempting to re
e
t the stru
ture of re
ord

obje
ts into re
ord types and assign the type (a : � ; �) to s provided s has type �. In the


ase, where r already de�nes �eld a, it has a type of the form (a : �

0

; �) ; then s has type

(a : � ; (a : �

0

; �)) . The type 
omponent of r on �eld a is meaningless in the type of s, sin
e

the �eld of s is x. This 
an be realized by adding a non-regular absorption axiom

a : � ; a : �

0

; 
 = a : � ; 
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Su
h an axiom mu
h be treated 
arefully. This approa
h has been taken in two re
ent

proposals for re
ord terms, one by A. Hense and G. Smolka [HS92℄, the other by B.

Berthomieu [Ber93℄. Both approa
hes also restri
t terms to the equivalent of our 
anoni-


al terms. The notion of expansion is not based on distributivity equations; instead, it is

in
orporated in the substitutions themselves, using more 
omplex sorts to 
ontrol substitu-

tion.

For instan
e, the re
ord term a : � ; abs is 
oded as a : � ; �

abs

in Berthomieu's sys-

tem; the sort abs assigned to � restri
ts any substitution to be at least of the form

� 7! ` : abs ; �

abs

. The following E-equality in re
ord terms

a : � ; abs = a : � ; (b : abs ; abs )

is not an equality in Berthomieu's system [Ber93℄; the two equivalent terms are only in the

instan
e relation

a : � ; �

abs

< a : � ; (b : abs ; �

0abs

)

The right hand side is equal to the substitution of variable � of sort abs by b : abs ;�

0abs

in the left hand side. This is the smallest possible substitution for � as a result of its sort


onstraint. Berthomieu's approa
h is more 
omplex in the 
ase of simple re
ord algebras, but

it seems to simplify the treatment of generi
 re
ord algebras: the generi
 re
ord term

a : � ; � ! �(�)

would be represented in Berthomiue's system as

a : � ; 


8���!�

using the expli
it quanti�ers in sorts. Then, the variable 
 
an be repla
ed by ` : � ; 


08���!�

provided � is an instan
e of the type s
heme 8� � � ! �, that is, of the form � ! �. The

sorts are terms and 
an also be instantiated during uni�
ation. This is an additional diÆ
ulty

but also a gain of expressiveness.

We �nd the approa
h of Berthomieu quite interesting for the extension to generi
 re
ord

algebras, but we prefer our approa
h for simple re
ord terms, sin
e it �ts ni
ely in a known

framework.

Con
lusion

We introdu
ed a framework in whi
h synta
ti
ness of an equational presentation 
an be

studied more easily. We de�ned re
ord algebras over an initial set of symbols as the quotient

of a free sorted algebras by left 
ommutativity and distributivity axioms. We showed that

it is synta
ti
 and de
idable and we dedu
ed an eÆ
ient, unitary unifying algorithm for

uni�
ation. Many variants of re
ord algebras 
an be obtained by restri
ting the terms by a

signature that is 
ompatible with the equations. Di�erent instan
es have already been used

to provide type systems for languages with re
ords.

The extension of re
ord algebras to re
ursive types has not been addressed here. In pra
-

ti
e, the algorithm that we des
ribed also works with non-stri
t systems of multi-equations,

whi
h represent re
ursive terms. However, the notion of regular trees modulo equations has to

be de�ned before any 
orresponden
e between these and non-stri
t systems of multi-equations


an be studied. It seems that the algebra of re
ord terms is suÆ
iently 
onstrained by the

sorts that there would be a 
lose 
orresponden
e between the two, whi
h 
annot be expe
ted

in general.
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The extension of re
ord algebras to generi
 re
ord algebras is a diÆ
ult step. Even if

it 
an be extended to higher order generi
ity, it seems too diÆ
ult to be the right notion.

Making a 
loser 
onne
tion with the re
ord terms of Berthomieu is a promising approa
h.

The generality of re
ord algebras suggests that there should be other useful appli
ations.
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