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Abstract

We analyze the way in which a result concerning the absence of runtime type errors can be

expressed when the semantics of a language is described using proof rules in what is sometimes

called a natural semantics. We argue that the usual way of expressing such results has conceptual

short-comings when compared with similar results for other methods of describing semantics.

These short-comings are addressed through a form of operational semantics based on proof

rules in what we call a partial proof semantics. A partial proof semantics represents steps

of evaluation using proofs with logic variables and subgoals. Such a semantics allows a proof-

theoretic expression of the absence of runtime type errors that addresses the problems with such

results for natural semantics. We demonstrate that there is a close correspondence between

partial proof semantics and a form of structural operational semantics that uses a grammar

to describe evaluation contexts and rules for the evaluation of redexes that may appear in

such contexts. Indeed, partial proof semantics can be seen as an intermediary between such

a description and one using natural semantics. Our study is based on a case treatment for

a language called RAVL for Records And Variants Language, which has a polymorphic type

system that supports exible programming with records and variants.

1 Runtime Type Errors in Natural Semantics

One of the primary purposes for imposing a type discipline on a programming language is to

ensure the absence of certain forms of data incompatibilities that might occur at runtime in the

evaluation of an ill-typed program. A characterisitic instance of such a problem occurs when a

procedure call is made on an actual parameter that fails to have the proper form demanded of

the formal parameter of the procedure. Such a guarantee of runtime safety can often be expressed

precisely and proved rigorously for a clean language design. One of the earliest examples of such a

treatment appeared in Milner's paper [Mil78] introducing the type system that forms the basis for

the Standard Meta-Language (SML) [MTH90, MT91]. Similar results have been stated and proved

for many subsequent language designs involving types and semantic speci�cations. The goal of this

paper is to study some of the relationships between various approaches to such results and use this

perspective as a basis for describing a new form of operational speci�cation for which it is possible

to provide a proof-theoretic expression of the guarantees obtained from the type correctness of a

program.
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A paper by Wright and Felleisen [WF91], which surveys some of the literature on results about

runtime type errors, can be taken as a background for our discussion in this paper, which focuses

on the form of such results for a semantics like the one given for the SML in [MTH90]. The term

natural semantics is sometimes used for this form of speci�cation, which is based on rules that look

like those of natural deduction (see the survey in [Gun91] for further discussion). For example,

the following natural semantics rules describe call-by-value evaluation and the evaluation of local

de�nitions (`let' bindings):

fun x M # fun x M

(Arrow)

M # fun x L N # V [V=x]L # U

M N # U

(App)

M # V [V=x]N # U

let x =M in N # U

(Let)

Basic judgements have the form M # U where M is a term (program) and U is a value (typically

de�ned as a term in a normal form) where U is to be viewed as the result of evaluating M . This

binary relation is de�ned to be the least relation satisfying a collection of rules such as those above.

For example, the App rule can be viewed as asserting that the result of applying M to N is U

provided three other judgments hold: M evaluates to a value fun x L and N to a value V such that

the result [V=x]L of substituting V for x in L evaluates to U . For sequential languages speci�ed in

this way it is possible to show that if M # U and M # V , then U and V are the same.

Given a semantics expressed in this form, a theorem about runtime type errors can be expressed

by providing rules illustrating when such errors arise and showing that type-correct programs do

not raise type errors (this approach is used in [ACPP91] for example). Such rules have two forms

that might be termed error origination and propogation rules. Here are typical examples:

M # U U is not a procedure

M N # error

(ErrOrig)

M # fun x L N # error

M N # error

(ErrProp)

where error is a distinguished value which does not have a type. The rule ErrOrig indicates that

an error is raised (originated) if the operatorM in an application M N is evaluated to a term that

fails to have the formM # fun x L for some L. The rule ErrProp indicates that if the evaluation

of an argument of a procedure raises an error, then the application also raises (propogates) an error.

One proves that a type-correct program does not raise a runtime error by showing that subject

reduction holds: that is, if M # U and M has type �, then U also has type �. From this it follows

that U is not error because error cannot have type �.

Although this approach does directly express the errors that are being avoided due to the type

correctness of a program, it does so in an ad hoc manner. To see what we mean by this, note that

the particular choice of error rules determines exactly what the theorem indicating the absence of

runtime errors actually means. For example, the rule

N # error

M N # error

(ErrProp-1)
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is not a consequence of ErrProp and adding it would therefore result in a stronger theorem

asserting that a type-correct program does not evaluate to error.

1

In formulating an assertion

about what runtime errors are avoided as a result of type correctness, attention must therefore be

paid to whether important origination or propogation rules may have been omitted; it is unclear

how such rules could be chosen mechanically. Similar decisions must also be made in the kind of

semantic formulation used by Milner [Mil78] and others.

This can be contrasted with the kind of result one may assert when a structural operational

semantics (SOS) is used to describe the operational semantics of programs. Under such a semantics,

there is a sequence of steps of evaluation (transitions)

M !M

1

! � � � !M

n

and M is said to evaluate to M

n

just in case M

n

is a value (one also shows that if U is a value,

then there is no N such that U ! N). In such a formulation, a theorem asserting that type correct

programs do not have runtime type errors says that if a sequence of relations such as those above

holds and M is type correct, then either M

n

!M

n+1

for some term M

n+1

, or M

n

is a value. This

means that either the evaluation sequence can be extended, or it cannot be extended and the last

term in the sequence is a normal form. In this way one rules out, for example, the possibility that

M

n

has the form V L where V is a value that is not a procedure because M

n

would then be a

non-value to which no rule applies.

Intuitively, type correctness of a term under a natural semantics assures that there is some rule

that can be applied to the term in searching for the value to which it evaluates. More generally, if

we are given a term M and a search is made for a proof of a proposition M # U for some value U ,

then an analogy with SOS suggests that the type correctness of M implies that the proof search

is never `blocked' on any of its subgoals. In the remaining sections of this paper we describe how

this can be viewed as the proper analogy to the case for a transition system by formalizing the

sense in which the search for a proof in natural semantics is like a transition semantics on `partially

completed' proofs, in a system we call a partial proof semantics. The absence of runtime type

errors in this setting is then described proof-theoretically by saying that a (legitimately formed)

partial proof of the evaluation of a well-typed program M is either total (that is, a proof that M

has a value U) or it can be developed further by applying additional proof steps to its subgoals.

We will illustrate how partial proof semantics can be viewed as an intermediary between natural

semantics|with which it shares the characteristic that computation is viewed as the search for a

proof|and a form of SOS that is de�ned by combining rules for the reduction of redexes with a

grammar for evaluation contexts.

Our treatment of partial proof semantics is done through a case illustration based on a language

called RAVL, which has a polymorphic type system that supports exible programming with records

and variants. This language is typical of new language proposals for which the absence of runtime

type errors is a key design issue. In RAVL, as in most similar languages for record calculi, the

type system is intended to ensure that a type-correct �eld selection from a record does not raise

a runtime error due to the absence of the �eld and ensure that a case analysis of a variant value

covers all of its possible cases.

1

This rule also has the operational signi�cance that an error is reported even if the evaluation of the operator

M diverges. If a similar propogation rule for the operator M is given, then the operational semantics for programs

would appear to be non-sequential.
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2 RAVL: A Language for Programming with Records and Vari-

ants

There has been considerable interest in developing programming languages with strong static type-

checking that provide a better treatment of programming with records than languages developed in

the 1970's. Seminal research of John Reynolds [Rey80] and Luca Cardelli [Car84, Car88] showed a

way to achieve this to a substantial degree using a subtyping relation on types. A more recent paper

of Mitchell Wand [Wan87] proposed another pleasing calculus for the manipulation of records. His

system used parametric polymorphism and the concept of a row variable to provide the desired

exibility and also o�ered the prospect of type inference. Subsequently there have been several

proposals for similar systems including the Machiavelli language of Atsushi Ohori [OBBT89], the

system of Didier R�emy [R�em89] and the ML

++

language of Jategaonkar and Mitchell [JM88].

RAVL, the language introduced in this paper, is similar to languages studied in [R�em89, R�em90,

R�em93].

The new language is the Records And Variants Language|RAVL. Some of the basic design

goals of RAVL can be summarized as follows:

1. RAVL is `upwards compatible' with the functional core fragment of ML,

2. RAVL has a statically inferred polymorphic typing system,

3. type safety properties of RAVL are similar to those that hold for ML,

4. RAVL provides intuitive and exible constructs for the manipulation of records and variants.

As presented in this paper, RAVL is a theoretical language in the spirit of languages such as the

those studied by Cardelli and Milner. Nevertheless, RAVL can be implemented e�ciently and we

believe that an acceptable concrete syntax for it is also possible.

Syntax of types and terms.

We are given a collection of symbols L called labels which will be used as tags (in variants) and

�eld names (in records). We use the symbols a and b for labels and L for �nite sets of labels. The

typing system of RAVL is composed of four syntax classes: types, rows, attendances, and schemes.

The symbols used for the syntax classes can be summarized as follows:

� � and � range over types and �; �;  over type variables,

� �

L

ranges over rows and �

L

over row variables,

� ' and  range over attendances and � over attendance variables.

Types are de�ned inductively, based on a given collection F

1

; :::; F

n

of operators. These opera-

tors have a signature indicating the number of arguments of each operator and the sorts of the

arguments, where sorts are of types, rows and attendances.

� a type variable � is a type expression,

� � ! � is a type expression if � and � are type expressions,

� ��

;

is a type expression,
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� ��

;

is a type expression,

� F

i

(��

i

; ��

i

; �'

i

) is a type expression where F

i

is a type operator taking type arguments ��, row

arguments ��, and attendance arguments �' where

��

i

� �

1

; : : : ; �

l

i

and ��

i

� �

1

; : : : ; �

m

i

and �'

i

� '

1

; : : : ; '

n

i

Rows have the following de�nition:

� a row variable �

L

is a row,

� abs

L

is a row,

� a : ' ; �

L[fag

is a row if a =2 L, ' is an attendance and �

L

is a row.

Attendances have the following de�nition:

� an attendance variable � is an attendance,

� abs is an attendance,

� pre(�) is an attendance if � is a type.

The de�nition of RAVL is relative to a given collection of recursive type equations:

F

1

(��

1

; ��

1

; ��

1

) = F

1

(��

1

; ��

1

; ��

1

)

.

.

.

F

m

(��

m

; ��

m

; ��

m

) = F

m

(��

m

; ��

m

; ��

m

)

where F

i

(��

i

; ��

i

; ��

i

) is a type whose free variables lie among ��

i

; ��

i

; ��

i

. We write F

i

(��

i

; ��

i

; �'

i

) for

the type obtained by simultaneously substituting types ��

i

; ��

i

; �'

i

for variables ��

i

; ��

i

; ��

i

respectively

in this expression. As usual, a type scheme is either a type or a quanti�ed variable followed by a

type scheme. The syntax of types is summarized in a pseudo-BNF grammar in Table 1.

Table 1: Syntax of RAVL types

� ::= � j � ! � j ��

;

j ��

;

j F

i

(�

i

; r0

i

; f0

i

)

�

L

::= �

L

j abs

L

j a : ' ; �

L[fag

a =2 L

' ::= � j abs j pre(�)

s ::= � j 8�: s j 8�: s j 8 �: s

The rows are de�ned by a rule scheme in which L can be instantiated by any �nite set of labels.

Because of the labels, the grammar for the language is context sensitive. The superscripts in row

expressions are intended to exclude expressions such as � (a : � ; a : �

0

; �

L

) in which a �eld is

de�ned twice or � (a : � ; �

L

) ! � (�

L

) in which L must be both ; and fag. All occurrences

of a given row variable should be preceded by the same set of labels (possibly in various di�erent

orders). The labels on the inside of a row can be omitted when the outermost superscript is given.
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In particular, this is the case for any row expression embedded in a type expression. Hence it will

be convenient to write � (a : � ; �); for example, rather than writing � (a : � ; �

fag

): Another way

of expressing the rules concerning the formation of such expressions is to treat the types as a sorted

algebra as in [R�em93]. Expressions for rows are taken modulo left commutativity,

�

a : ' ; b :  ; �

(fa;bg[L)

�

=

�

b :  ; a : ' ; �

(fa;bg[L)

�

and distributivity,

abs

L

=

�

a : abs ; abs

L[fag

�

Ordinarily we omit the labels on such expressions and write,

(a : ' ; b :  ; �) = (b :  ; a : ' ; �)

and

abs = a : abs ; abs

The language of expressions is de�ned by the BNF grammar in Table 2. The typing judgments

Table 2: Syntax of RAVL terms.

M ::= x j fun x M jM M j let x =M inM j intro [F

i

] M j elim [F

i

] M

j fg j fM with a= Mg jM n a jM:a

j a tag M j lastcaseM of a tag x)M j caseM of a tag x)M else x)M

have the form H ` M : s where H is a list of assertions x : s. The full list of rules is given

in Appendix A. The rules listed there fall into three groups. First of all, there are the rules for

the Damas-Milner type inference of ML. Second there are rules for the MacQueen-Sethi treatment

of recursive types using introduction and elimination constructors. And third there are rules for

records and variants that are special to RAVL.

Although RAVL is more expressive than ML, it is still possible to perform ML-style type

inference on terms. We omit details here; the result can be obtained from arguments in [R�em93]

and [R�em90].

Natural semantics.

A natural semantics presents the evaluation of a language through a set of rules for inferring

a binary relation between programs and values. This is often an intuitive and exible way to

describe an abstract evaluator for a language; in particular, such rules were used to provide the

formal de�nition of the ML Standard [MTH90]. We now sketch how one might describe a natural

semantics for RAVL. The goal is to de�ne a binary relation M # U between terms M and a special

class of terms U called values. Values are de�ned by the grammar in Table 3. We indicated in

the right column the name of the set of values of the corresponding shape. Letters U , V and W

range over values.
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Table 3: Syntax of values

U ::= A j I j R j B normal values U

A ::= fun x M function values A

I ::= intro [F ] U intro values I

R ::= fg j fR with a= Ug record values R

B ::= a tag U variant values B

The (non-error) rules given in the �rst section can be taken as rules for the semantics of RAVL.

Some further examples for the record part of the language would look as follows:

M # fR with a= Ug

M:a # U

(Project-1)

M # fR with b= V g R:a # U

M:a # U

(Project-2)

M # R N # U

fM with a = Ng # fR with a = Ug

(Extend)

3 Type Errors and SOS

As mentioned earlier, it is possible to formulate a good theorem concerning the absence of runtime

errors for a transition semantics of the right kind. Let us now look at an SOS for RAVL in the

style urged by Wright and Felleisen [WF91]. It can be seen as an instance of term rewriting in

which a grammar of evaluation contexts is used to control the order in which redexes in a term are

to be reduced. For RAVL, the evaluation contexts are listed in Table 4. (Our evaluation contexts

are slightly more general than left-to-right or right-to-left evaluation of application, but they do

describe call-by-value evaluation.) The SOS of RAVL is obtained by connecting these evaluation

contexts with reduction rules for redexes as given in Table 5 via the following rule:

M �!N

E[M ]�!E[N ]

which asserts that a term M

0

evaluates to N

0

(in one step) if there is an evaluation context E such

that M

0

; N

0

have the forms E[M ]; E[N ] respectively for terms M and N such that M �!N .

It is possible to show that the resulting reduction system is deterministic in the following sense.

Suppose

�

�! is the transitive closure of �!.

Theorem 1 If M

�

�!U and M

�

�!V for values U and V , then U and V are the same (up to

renaming of bound variables).

This result is proved by demonstrating local conuence. (The result is not di�cult because evalu-

ation contexts cannot be `embedded' within one another.) The following theorem states precisely

the desired property.

Theorem 2 If ` M : � and M

�

�!N and there is no term N

0

such that N �!N

0

, then N is a

value.
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Table 4: Evaluation Contexts

E ::= [ ]

j E M jM E j let x = E inM j intro [F

i

] E j elim [F

i

] E

j fE with a= Mg j fM with a= Eg j E n a j E:a

j a tag E j case E of a tag x)M else x)M j lastcase E of a tag x)M

Table 5: Redex Rules

(fun x M) V �![V=x]M

let x = V inM �![V=x]M

elim [F

i

] intro [F

i

] V �!V

fV with a = Ug:a�!U

fV with b = Ug:a�!V:a

fV with a = Ug n a�!V

fV with b = Ug n a�!fV n a with b = Ug

case a tag V of a tag x)M else y ) N �![V=x]M

case b tag V of a tag x)M else y ) N �![V=y]N

lastcase a tag V of a tag x)M �![V=x]M

It can be viewed as a guarantee of safety from runtime errors of type correct programs and proved

by demonstrating that subject reduction holds.

The more reduction contexts are permitted the stronger the Subject Reduction Lemma is, since

safe evaluation is an easy consequence of the reduction lemma. Thus it is interesting to prove

the subject reduction for a general semantics, even a non-deterministic one: the result for any

deterministic semantics is then obtained by restricting the evaluation contexts will be a corollary,

and the safe evaluation theorem will follow easily. For RAVL, we could have proved the subject

reduction lemma for the full calculus where all contexts are admissible.

4 Partial Proof Semantics

Let us turn now to the question of how a result such as 2 can be expressed for a system based on

proof rules (as opposed to transitions). To get the intuition for what we will capture rigorously,

consider how one might calculate the result of evaluating a program in a language described using

natural semantics. If, for example, an application M N is to be evaluated, then the last step of

the evaluation may come from an application of the rule App. This means that it is necessary

to calculate the values of M and N , then combine these into a term obtained from a substitution

involving these values, and then evaluate this term. The calculation therefore involves a subgoal

M # X where X is a variable whose value must be found, and a subgoal N # Y . This essentially
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corresponds to the clause in the grammar for evaluation contexts (given in Table 4) of the form

E ::= � � � j E M jM E j � � � Once values have been found for X and Y , we may view the situation

as that of a redex analogous to the �-reduction rule at the beginning of Table 5. In the semantics

we are about to describe, there are two relations written M # u and M + u. The �rst of these is

analogous to the clauses of the grammar for evaluation in SOS, and we call the rules that apply to

it search rules. The second is analogous to the rules for redex reduction in SOS and we call these

the redex rules. There are some rules for how the search and redex rules are combined. We call

this style of semantic description a Partial Proof Semantics (PPS).

As an example, let us consider the rules associated with application in a partial proof semantics

for RAVL. Here are the search and redex rules respectively:

M # v N # w v w + u

M N # u

(App-S)

[V=x]M # u

(fun x M) V + u

(App-R)

The variables u; v; w range over a syntax class of partial values that consists either of values U

(as given by the grammar in Table 3) or logic variables X . The idea being that a logic variable

represents an unknown value which will be determined through the resolution of subgoals of the

proof. A rule of the form

V + V

(Value)

indicates that a value is related to itself. Two additional rules apply to the formation of subgoals,

which are leaves of a partial evaluation tree in which the result of evaluation is a variable:

M # X M + X

(Subgoal)

The full set of PPS rules for RAVL is given in the appendix. Some de�nitions are needed to

make the rules clear. The grammar of terms for RAVL is expanded to include a new syntax class

of logic variables which are denoted by X; Y; Z. Here is an example of a program in the expanded

grammar

fX with a = Y g

A term with no logic variables is said to be a total program; these are the ones whose semantics

particularly interests us. Similarly, let us refer to values as de�ned in Table 3 as total values. Recall

that letters U , V and W range over total values. As in the table, letters such as A; I; R;B range

over speci�c shapes of values. It can be shown that types and values match with one another:

values of function types are function values, values of recursive types are intro values, and so on.

Logic variables are drawn from a new syntax class; letters X , Y and Z range over logic variables.

A Partial value is a total value or logic variable:

u ::= X j U

Total values are partial values that do not contain any logic variables.

A partial proof is viewed as a way of representing intermediate steps in the search for a proof

5

of a relation of the form M + V where

5

has no logic variables. A proof is said to be total if

it has no logic variables; otherwise it is said to be partial. It can be shown that the conclusion of
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a proof

5

has the form M # V or M + U where U is a total value if, and only if,

5

has no logic

variables. A subgoal is a leaf of the form M # X or M + X where M is total; it can also be shown

that a proof has subgoals if, and only if, it has logic variables. In PPS, the search for a proof can

be viewed as a sequence of proofs:

5

1

�!

5

2

�! � � ��!

5

n

where

5

1

is a partial proof of the form

M + X

and each

5

i+1

can be obtained by resolving or extending subgoals in

5

i

. The search is to be

viewed as complete (terminated) if the proof

5

n

is total; its conclusion will have the form M + U

where U is a (total) value.

Some examples may help to illustrate the idea. The following is a partial proof with two logic

variables:

ffg with a= fun x xg # X X:a + Y

ffg with a= fun x xg:a # Y

A re�nement of this partial proof can be obtained by carrying out further steps on the left subgoal:

5

ffg with a= fun x xg:a + Y

ffg with a= fun x xg:a # Y

where

5

is

fg # fg fun x x # fun x x

ffg with a= fun x xg + ffg with a= fun x xg

ffg with a= fun x xg # ffg with a= fun x xg

When the logic variable Y is replaced by the total value fun x x in accordance with redex rule

Project-R-1, then the proof becomes total.

By constrast, let us consider the search for a proof of a program that is not type correct. The

�rst step in the partial evaluation of fg (fun x x) is the following partial proof:

fg # X fun x x # Y X Y + Z

M N # Z

This can be extended to:

fg # fg fun x x # fun x x fg (fun x x) + Z

M N # Z

Although this proof is not total, its remaining subgoal does not match any of the rules; there is no

way of re�ning further to a total proof or even continuing the e�ort to resolve the subgoal. The

theorem asserting absence of runtime errors for PPS says that this situation does not occur for

type-correct programs.

Some care must be taken about the names of logic variables in subgoals when stating the desired

result about the resolution of subgoals in a partial proof involving a type-correct program. There

10



is a problem that can occur if the same variable is used in two di�erent subgoals. For example, a

partial proof that has the form

M # X N # X X X + Z

M N # Z

is an instance of APP-S, but an unwanted connection is made between the results of evaluating M

and N . A simple technical restriction resolves this problem. A partial proof is said to be linear if

the logic variables appearing in its subgoals are all distinct. Putting this another way, linear proofs

are those in which each logic variable appears in exactly one subgoal. The following lemmas and

theorem now express the desired conclusion in a manner similar to that used for SOS.

Lemma 1 (Conuence) Let M be a RAVL term and suppose tere are proofs

5

M # U

5

0

M # U

0

;

Then U = U

0

and

5

=

5

0

.

This is stronger in some sense that the equivalent lemma for SOS approach, since the proofs are

also identi�ed. Di�erent choices of reduction order are expressed as di�erent ways in which parts

of the proof are completed. Local conuence could be proved for the full calculus, but the proof

would be more di�cult than that for SOS since redexes can be embbeded. Local conuence and

determinism are not required for type safety, but they are useful properties of the semantics. The

operational semantics of RAVL does not speci�y the order of evaluation between the argument

and the function, but the Conuence Lemma says it is still deterministic. For languages with

states or concurrency, leaving the order of evaluation unspeci�ed would make the semantics non-

deterministic: a program in such a language could return several answers.

The two central results are the following:

Lemma 2 (Subject reduction) If M : � and

5

M # u

; then all of the total programs in

5

are

well-typed. Also, if u is total, then u : �.

Theorem 3 (Safe evaluation) Suppose ` M : � and

5

M # u

is linear. If there is no

5

0

that

extends

5

such that

5

0

M : u

0

; then

5

is total (which implies that u is also total).

5 Discussion and Acknowledgements

Of course, it can be shown that the SOS and PPS speci�cations of RAVL are equivalent. The

primary di�erence between them is that PPS rules derive an evaluation relation while SOS describes

the evaluation relation as the transitive closure of the `redex reduction' relation. It is possible to

modify the SOS description so that rules are used to serve the role of evaluation contexts. For

example, the following pair of rules would su�ce in place of the clause E ::= � � � j E M jM E j � � �

from Table 4:

M �!M

0

M N �!M

0

N

N �!N

0

M N �!M N

0
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The resulting formulation would then be more like the ones in [Plo81]; the connection between SOS

rules and those of PPS would be less clear, however.

The primary signi�cance of PPS comes from the ability to express intermediate stages in the

search for a proof of an evaluation relationM + U . PPS proofs are similar in spirit to the goal stack

structures in goal-directed theorem proving; they di�er in allowing only a very restricted form of

proposition and in the fact that the theorem to be proved is not known before the proof is complete

(because the result of evaluation is constructed along with the proof). Ideally we would have

prefered to retain the natural semantics rules and simply introduce logic variables and subgoals for

them, but technical di�culties force the distinction between search and redex rules. To see where

the problem arises, suppose we had expressed the App-S as follows:

M # v N # w v w # u

M N # u

(App-S')

Then the same rule would again be applicable to its right-most hypothesis v w # u allowing an

in�nite regress of partial resolutions of the application into subgoals. This would permit an in�nite

proof search that does not arise from a divergent evaluation and invalidate the property that a

total proofs are uniquely determined by their conclusions.

Some of the basic ideas in PPS have appeared in other work on programming languages and

their semantics. A paper by Howe [How91] studies the meta-theory of natural semantic proofs.

His work includes the notion of a logic variables in natural semantics and the linearity restriction.

Howe also makes a restriction on proof search that has basically the same e�ect as our use of two

relations # and +. A somewhat similar idea is embodied in logic programming constructs such as

the freeze, constrain, and in wait declarations [Nai85]. These constructs restrain the use of a clause

until logic variables have been instantiated.

What is the merit of PPS relative to the other approaches to the semantics of programming

languages? We have stressed that PPS provides a link between natural semantics and SOS for

RAVL, but more work will be necessary to determine its robustness as a speci�cation technique

for other kinds of languages. For example, the presentation of SOS using evaluation contexts is

convenient for describing the semantics of control features: does PPS share or lack this property?

What about the semantics of state or concurrency? These are questions that will occupy our future

investigations of PPS as a speci�cation formalism.

We would like to acknowledge some remarks of Val Breazu-Tannen that inspired us to think

about the problem of expressing freedom from runtime errors in natural semantics style and useful

conversations with Amy Felty, Elsa Gunter, Doug Howe, Myra VanInwegen, Xavier Leroy, Luc

Maranget, and Fernando Pereira. Gunter's research was partially supported by NSF grant INT-

8819598 and by an ONR Young Investigator grant.
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A Typing Rules for RAVL

H ` M : s

H ` M : 8�: s

H ` M : s

H ` M : 8�: s

H ` M : s

H `M : 8�: s

(All-Intro)�; �; � =2 H

H `M : 8�: s

H ` M : [�=�]s

H ` M : 8�: s

H ` M : ['=�]s

H ` M : 8�: s

H ` M : [�=�]s

(All-Elim)

(Var)

H ` x : H(x)

H[x : �] ` M : �

(Fun)

H ` fun x M : � ! �

H ` M : � ! � H ` N : �

(App)

H ` M N : �

H ` M : s H[x : s] ` N : �

(Let)

H ` let x = M in N : �

H `M : � � = �

(Equal)

H ` M : �

H ` M : F

i

(��

i

; ��

i

; �'

i

)

(Rec-I)

H ` intro [F

i

] M : F

i

(��

i

; ��

i

; �'

i

)

H ` M : F

i

(��

i

; ��

i

; �'

i

)

(Rec-E)

H ` elim [F

i

] M : F

i

(��

i

; ��

i

; �'

i

)

(Empty)

H ` fg : � (abs)

H ` M : � (a : abs ; �) H ` N : �

(Extend)

H ` fM with a= Ng : � (a : pre(�) ; �)

H ` M : � (a : � ; �)

(Restrict)

H ` M n a : � (a : abs ; �)

H ` M : � (a : pre(�) ; �)

(Project)

H ` M:a : �

H ` M : �

(Tag)

H ` a tag M : �(a : pre(�) ; �)

H ` L : �(a : pre(�) ; abs) H[x : �] ` M : �

(Lastcase)

H ` lastcase L of a tag x)M : �

H ` L : �(a : pre(�) ; �) H[x : �] `M : � H[y : �(a : ' ; �)] ` N : �

(Case)

H ` case L of a tag x)M else y ) N : �

B Partial Proof Semantics for RAVL

B.1 Search rules

fun x M + w

(Fun-S)

fun x M # w

M # v N # w v w + u

(App-S)

M N # u

M # v let x = v in N + u

(Let-S)

let x = M in N # u

M # v intro [F

i

] v + w

(Intro-S)

intro [F

i

] M # w

M # v elim [F

i

] v + u

(Elim-S)

elim [F

i

] M # u

fg + w

(Empty-S)

fg # w

M # u N # v fu with a = vg + w

(Extend-S)

fM with a = Ng # w

M # v v n a + u

(Restrict-S)

M n a # u

M # v v:a + u

(Project-S)

M:a # u

M # v a tag v + w

(Tag-S)

a tag M # w

L # v case v of a tag x)M else y ) N + u

(Case-S)

case L of a tag x)M else y ) N # u

L # v lastcase v of a tag x)M + u

(Lastcase-S)

lastcase L of a tag x)M # u
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B.2 Redex rules

[V=x]M # u

(App-R)

(fun x M ) V + u

[V=x]M # u

(Let-R)

let x = V inM + u

(Elim-R)

elim [F

i

] (intro [F

i

] U ) + U fV with a= Ug:a + U

V:a + u

(Project-R)

fV with b= Ug:a + u

fg n a + fg fV with a= Ug n a + V

V n a + v fv with b = Ug + w

(Restrict-R)

fV with b= Ug n a + w

[V=x]M # u

case a tag V of a tag x)M else y ) N + u

(Case-R)a 6= b

[b tag V=y]N # u

case b tag V of a tag x)M else y ) N + u

[V=x]M # u

lastcase a tag V of a tag x)M + u

(Lastcase-R)

B.3 Other rules

(Subgoal-S)

M # X

(Subgoal-R)

M + X

(Value)

V + V
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