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Abstract

We add functional continuations and prompts to a language

with an ML-style type system. The operators signi�cantly

extend and simplify the control operators in SML/NJ, and

can be themselves used to implement (simple) exceptions.

We prove that well-typed terms never produce run-time type

errors and give a module for implementing them in the latest

version of SML/NJ.

1 Introduction

Exceptions and continuations are two common means of al-

tering control in mostly functional call-by-value languages,

even in statically typed languages. All dialects of the ML

language, for instance, build in an exception mechanism, in-

cluding the ML of the LCF theorem prover [7], CAML [11],

and Standard ML (SML) [13]. The exception system of, e.g.,

SML, consists of three operations: one for declaring new ex-

ceptions, one for \raising" an exception (possibly with a

value), and one for \handling" raised exceptions. The sec-

ond construct, the continuation mechanism, can be added

in principle to any dialect of ML [3], but a full scale imple-

mentation is to our knowledge only a part of SML/NJ, the

New Jersey implementation of SML. The continuation mech-

anism consists of two primitives: callcc (call-with-current-

continuation) which rei�es the control stack as a function

and passes it to another function, and throw which invokes

a continuation on an argument. Both mechanisms, particu-

larly the exception mechanism, are useful: exceptions can be

used to recover from errors in an e�cient, elegant, and un-

cluttered way, and continuations can be used to implement

other control features, e.g., concurrency [19].

It is folklore (the authors know of no published proof)

that neither exceptions nor continuations can be expressed

as a macro in terms of the other (at least if no references

are present), even though they are closely related. In this

paper we provide a generalization of simple exceptions and

continuations in an ML-style type system. We prove that

the language is type-safe, i.e., evaluation of programs cannot

generate run-time type errors. There are two interesting and

important aspects of the type system. First, unlike the type
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system of SML/NJ, our system requires no new type con-

structor for continuations (we introduce one for prompts).

Second, the semantics of the language overcomes some of

the anomalies of callcc in the top-level interactive loop,

and allows a somewhat cleaner style of programming than

callcc.

The assignment of types for exceptions is generally well

understood, but the assignment of types for continuation-

based operations is not. Sitaram and Felleisen [24] were the

�rst to give a limited type system for continuation-based

operations. They added callcc into PCF, a simply-typed

language with basic arithmetic, and used the typing rule

A ` a : (� ! nat)! �

(callcc)

A ` (callcc a) : �

where A speci�es the types of free variables. The limitation

in the typing is obvious: only a continuation whose result

type is nat can be rei�ed. In essence, the problem of typing

callcc in PCF hinges on the fact that one must pick one

return type for continuations.

The type nat is a canonical choice in PCF, but not in

languages with more type structure. In a language with

ML-style polymorphism, callcc ought to have a polymor-

phic type with an arbitrary return type. Duba, Harper, and

MacQueen [3] have proposed adding a unary type construc-

tor cont for typing callcc which hides the return type of

the continuation. The type for callcc is

1

callcc : ('1a cont -> '1a) -> '1a

in their proposal, which is the type given in the SML/NJ

implementation. To invoke the continuation, one uses the

operation

throw : 'a cont -> 'a -> 'b

Although there are only two type variables in the type of

throw, in actuality three types are necessary to explain the

type of throw. For instance, in the expression

==> 5 > (1 + callcc (fn k =>

if s = "a" then throw k 2

else size s))

where ==> denotes the \prompt" of the interactive loop,

there is the argument type int of the continuation, which

must be the same as that expected by the context in which

it was rei�ed; there is the type int of the context in which

the throw is invoked; and there is the type bool of the value

1

Note that the type variable is imperative [8]; in SML/NJ this is

indicated by the number (\weakness") in the variable '1a. For the

moment, the reader need not worry about imperative variables.



returned to the prompt after a value is throw'n to the rei�ed

continuation. The third type is not directly represented in

the types for callcc and throw, but is rather \hidden" in

the abstract type constructor cont.

The failure to represent the prompt type can lead to

di�culty with the operational behavior of callcc. From

a theoretical standpoint, what Wright and Felleisen [28]

call \strong soundness" fails to hold. A language satis�es

strong soundness if the type obtained from evaluating an

expression is the type assigned statically; the absence of run-

time type errors is what Wright and Felleisen term \weak

soundness". One can see why the issue of strong soundness

arises in the following session of the SML/NJ interactive

loop:

==> val c = callcc (fn k=> fn x=>

throw k (fn y=> x+4));

val c = fn : int -> int

==> fun g () = 5 > (c 2);

val g = fn : unit -> bool

The value of g () should be a function that returns 2 + 4

given any integer (and probably also resets the value of g

to the previously declared value, if any), even though the

type system predicts the type bool. The same behavior

would happen any time a continuation is stored in some data

structure like a closure or reference cell. SML/NJ regards

this as an anomaly, and resolves the problem by placing

\prompt stamps" on rei�ed continuations and aborting with

a runtime exception if a continuation is invoked under a

prompt that does not match its stamp.

Our approach to typing callcc is simpler: we force the

missing prompt type to be included in the type of the rei�ed

continuation. If we were to modify the constructor cont, the

continuation k above would have a type like

(int -> int) cont (int -> int)

where the right side is the type of the prompt. This informa-

tion could be used in the typing of an expression that throw's

to this continuation. For instance, a top-level phrase yield-

ing a value of boolean type in which a value is throw'n to k

must be rejected as having a type error. A logical extension

of this idea is to allow the programmer to insert explicit con-

trol points representing his own prompts. This idea is not

new; Felleisen introduced �rst-class prompts in the untyped

setting [4]. It simpli�es matters to resume execution at the

control point marked by the prompt, thus leaving the is-

sue of whether to resume the computation within the rei�ed

control to the program. To make this work with types in the

way outlined above, such a rei�cation must carry the type

of the enclosing prompt. Our design is intended to make it

possible to check the correctness of this type statically. We

achieve this by requiring that prompts be typed and named|

for Felleisen's original prompts, in contrast, there is only a

single, untyped prompt [4]. The rei�ed control fragments

can then be treated as functions|that is, we do not need

the type constructor cont, only the function type construc-

tor ->.

Before beginning the formal treatment, let us see how

one example works. To begin with, we create a new prompt

by a gensym-like primitive operation new prompt:

==> val p = new_prompt (): int prompt

val p : int prompt

This prompt can be set at control points expecting an inte-

ger and used to delimit a control fragment that returns an

integer. Two more primitives are required: (set p in a)

which sets prompt p in expression a, and the primitive

(cupto p as k in b), which rei�es the control up to p and

binds this to k in the expression b. Thus,

==> 5 > (set p in 1 + (cupto p as k in 2 + (k 3)))

val it = false : bool

binds to k the control 1 + [ ] (the control up to the point

where the prompt was set), i.e., an int-expecting, int-

returning continuation), and evaluates (2 + (k 3)) in the

control context 5 > [ ] (not 5 > 1 + [ ]). When k is in-

voked as a function with 3 as its argument, the expression

5 > 2 + 1 + 3 is evaluated to false. The rei�cation k is

treated as the ordinary function fn x => 1 + x.

Notice how similar these operations are to exceptions

and callcc, e.g., control behavior as provided by callcc

is achieved by setting a prompt at top level. In fact, the

operation that rei�es the continuation is a typed version of

Felleisen's \functional continuation" operator F [4], an op-

erator that captures continuations as functions whose ap-

plication does not necessarily abort the computation. In

terms of macro-expressiveness, F can express callcc and

other control operators. The new prompt and set opera-

tions, though, have direct analogs in the exceptions of ML:

new prompt declares a new prompt just like the keyword

exception generates a new exception value, and set marks

a breakpoint on the call stack just as try in CAML or handle

in SML marks a breakpoint (although these have a handler

associated with them). After �rst describing the syntax and

operational semantics of our language and proving that the

language is type safe, we show how to express a general-

ization of callcc and simple exceptions, and show how to

implement the operations in a manner as e�cient as the

implementation of callcc.

2 A Typed Language with Prompts

Table 1 de�nes the grammar of the language. The syntax

is that of a restricted version of the core of ML (without

base constants, references, and exceptions) with three ex-

tra constructs for manipulating the control 
ow of a pro-

gram: new prompt, set in , and cupto as in . The

language is based on primitive syntax classes of variables x

and prompts p. The construct new prompt returns a fresh

prompt; set in establishes a new dynamic extent for

the prompt to which the �rst subexpression evaluates and

runs the second subexpression; and cupto as in , where

cupto is an abbreviation for \control upto", rei�es a continu-

ation. The cupto operation binds its second subexpression|

which must be a variable|to the control up to the value of

its �rst subexpression|which much be a prompt|in the

scope of its third. Binding conventions for the �-calculus

portion of the language are the usual ones; we identify all

terms up to renaming of bound variables. We use the nota-

tion a[b=x] to denote the capture-free substitution of term b

for variable x in term a.

The typing rules for the language are given in Table 2.

Here, A stands for a type context whose syntax is given in

Table 1. The operation close(A; �) returns a type scheme

(8�

1

: : : �

n

: �), where f�

1

; : : : ; �

n

g is the set of type vari-

ables occurring free in � but not in A. The syntax re-

stricts the expression bound by let to be a value, i.e.,

an expression that causes no immediate subcomputation.

The type system becomes unsound if the syntax of let is

left unrestricted. This phenomenon|�rst pointed out by

Tofte [25, 26] in the context of typing references in ML|

has been well-documented in the case of continuations (cf.



Table 1: Syntax

a ::= Expression

v Value

j (a

1

a

2

) Application

j letval x = v in a Polymorphic let binding

j set a

1

in a

2

Set a prompt

j cupto a

1

as x in a

2

Reify control upto a prompt

v ::= Value

x Variable

j () Unit value

j new prompt Generate new prompt

j (�x: a) Abstraction

j p Prompts

� ::= Type

� Type variable

j unit Unit type

j (� ! �) Function type

j (� prompt) Type of prompts

� ::= 8�

1

: : : �

k

: � Type scheme

A ::= ; j A[x : �] j A[p : � ] Typing context

Table 2: Typing Rules.

x : 8�

1

: : : �

n

: � 2 A

(Var)

A ` x : � [�

1

=�

1

; : : : ; �

n

=�

n

]

(Unit)

A ` () : unit

p : � 2 A

(Prompt Const)

A ` p : (� prompt)

A[x : �

0

] ` a : �

1

(Fun)

A ` (�x: a) : (�

0

! �

1

)

A ` a

1

: �

2

! �

1

A ` a

2

: �

2

(App)

A ` (a

1

a

2

) : �

1

(Prompt)

A ` new prompt : (unit! � prompt)

A ` a

1

: (�

1

prompt) A[x : (�

0

! �

1

)] ` a

2

: �

1

(Cupto)

A ` cupto a

1

as x in a

2

: �

0

A ` a

1

: (� prompt) A ` a

2

: �

(Set)

A ` set a

1

in a

2

: �

A ` v : �

1

A[x : close(A; �

1

)] ` a

2

: �

2

(Let)

A ` letval x = v in a : �

2

Table 3: Operational Semantics.

E ::= Evaluation context

[ ] Hole

j (E a) j (v E) Application

j set E in a j set p in E Set

j cupto E as x in a Cupto

Redex reductions

((�x: a) v)=P �!

red

a[v=x]=P

letval x = v in a=P �!

red

a[v=x]=P

(new prompt ())=P �!

red

p=fpg [ P p 62 P

set p in v=P �!

red

v=P

set p in E

p

[cupto p as x in a]=P �!

red

(�x: a) (�y:E

p

[y])=P

Context reductions

a

0

=P

0

�!

red

a

1

=P

1

E[a

0

]=P

0

�! E[a

1

]=P

1



[8, 12, 28]). The type system adopts Wright's proposal [27]

(which was well-known to Tofte) of restricting the form of

let to \value-only polymorphism" rather than adding im-

perative type variables as the SML de�nition does. For bet-

ter readability we use the syntactic sugar (let x = a

1

in a

2

)

for ((�x: a

2

) a

1

) for the monomorphic let. Some familiar

facts follow immediately from the form of the type system. It

is not hard to see that every term has a unique typing deriva-

tion, and that one may easily derive an algorithm (based on

uni�cation) that derives a principal type.

A rewriting semantics in the style of [4] (a convenient

reformulation of structured operational semantics [15]) is

given in Table 3. The semantics is given in two parts: the

�rst part de�nes a collection of evaluation contexts, which

specify the positions in which a redex can be reduced, and

the second part speci�es a collection of rules de�ning a bi-

nary relation �!

red

for the reduction of redexes. Intuitively,

to do a step of evaluation on a term a, one �nds a context

E and a redex a

0

such that a � E[a

0

] and a

0

�!

red

a

1

;

then E[a

0

] �! E[a

1

]. Our redex reductions are of the

slightly more complex form a

0

=P

0

�!

red

a

1

=P

1

, meaning

\the redex a

0

with prompts P

0

reduces to expression a

1

with

prompts P

1

" so reductions in an evaluation context have the

form E[a

0

]=P

0

�! E[a

1

]=P

1

. The set P

i

|the current set

of allocated prompts|is much like a \store" in an opera-

tional semantics of references, and determines the previously

allocated prompts. Thus, the expression (new prompt ()) al-

locates a \fresh prompt" relative to the current P . Also,

in the redex rules, the notation E

p

denotes an evaluation

context in which the hole is not in the scope of a setting

of prompt p. The rules specify how to reify a continuation

and pass a value up to the nearest dynamically enclosing

prompt.

A few examples should make the behavior of the reduc-

tion semantics more apparent. For instance, the expression

let x = new prompt () in

set x in cupto x as k in (k (�z: z))

�rst allocates a fresh prompt, sets the dynamic scope to

be this prompt, rei�es the (empty) continuation as k, and

passes to k the identity function. The �nal result is thus the

identity function. At a high level, the formal steps are

(let x = new prompt () in

set x in cupto x as k in (k (�z:z))) = ;

�! set p in cupto p as k in (k (�z: z)) = fpg

�! (�k: k (�z: z)) (�x: x) = fpg

�! ((�x: x) (�z: z)) = fpg

�! (�z: z) = fpg

This expression is also well-typed in the language: the vari-

able x has type ((� ! �) prompt) and the continuation k

has type ((�! �)! (�! �)). Another example is that of

an abortive computation:

let x = new prompt () in

set x in cupto x as k in (�z: �y: y)

which aborts the computation and passes (�z: �y: y) to the

top-level.

There is actually more latitude in assigning operational

semantics to the language than it �rst appears. For instance,

any of the following rules preserve the strong type soundness

theorem below:

set p in E

p

[cupto p as x in a]=P

�!

red

set p in ((�x: a) (�y: E

p

[y]))=P

set p in E

p

[cupto p as x in a]=P

�!

red

set p in ((�x: a) (�y: set p in E

p

[y]))=P

The �rst rule grabs the functional continuation but leaves

the prompt p set in the continuation; this corresponds to

the operational semantics of Felleisen's F operation [4]. The

second rule also leaves the prompt p set, but also grabs the

\set" when the functional continuation is rei�ed; this corre-

sponds to the operational semantics of Danvy and Filinski's

shift operation [2]. It is easy to see how to simulate the �rst

rule in our semantics by adding a set before every body of a

cupto. Similarly, the second rule can be simulated using the

�rst. The other direction, though, seems not to be known|

that is, whether the weaker operational rules can simulate

the operational semantics we have given to cupto. There are

even further possibilities, including ones that erase all inter-

vening set's during a cupto [14]. We do not feel, though,

that there is a clear answer to the question of which opera-

tional rule is right; su�ce it to say that we have picked one,

and that the other rules lead to strong type soundness as

well.

3 Type Safety

We now show that reduction preserves typing and each well-

typed term never gets stuck at a run-time type error.

Type safety is a subtle issue because \getting stuck at a

run-time type error" is open to interpretation. Some exam-

ples of \run-time type error" require little justi�cation. For

instance, the non-well-typed term

((new prompt()) (new prompt()))=;

cannot be reduced past a form (p

1

p

2

)=fp

1

; p

2

g for some

prompts p

1

; p

2

; the result is obviously a run-time type er-

ror because of the attempt to apply a non-function to an

argument. But the issue is subtle in the presence of control

operations, and for our purposes not every \stuck" term will

be a run-time type error. For instance, the well-typed term

let x = new prompt () in cupto x as k in k = ;

reduces to (cupto p as k in k)=fpg with no further reduc-

tions possible|the continuation cannot be rei�ed since no

prompt has been set. The situation for exceptions in ML

is similar: well-typed terms can still result in an \uncaught

exception". In general one must accept the situation, e.g.,

the restrictions required to make it possible to determine

statically that there is no division by zero would probably

be unacceptable. We leave aside these concerns and adopt

an analog to the ML convention, i.e., the term above does

not represent a run-time type error. Theorem 9 provides a

precise expression of our assumptions.

We �rst need a few simple lemmas about the type sys-

tem that are essentially independent of control operations.

Proofs of the following lemmas can be found in, e.g., [18].

Lemma 1 (Type Substitution) If A ` a : � , then

A[�

0

=�] ` a : � [�

0

=�]:

Lemma 2 (Extension of Type Assignment) Let B be

any type assignment whose domain contains no free variables

of a. Then AB ` a : � i� A ` a : � .

A type scheme 8�

1

: : : �

n

: � is more general than a type

scheme 8�

1

: : : �

p

: �

0

if there are types �

1

, : : : �

n

such that

� [�

1

=�

1

] : : : [�

n

=�

n

] is equal to �

0

. Similarly, a type assign-

ment A is more general than a type assignment B if they

have the same domain D and, for all x 2 D the value A(x)

of A at x is more general than B(x).



Lemma 3 (Generalization of Type Assignment) If A

is more general than B and B ` a : � , then A ` a : � .

Lemma 4 (Term Substitution) Suppose A ` a

0

: �

0

and

A[x : 8�

1

: : : �

n

: �

0

] ` a : � , where �

1

; : : : ; �

n

are not free

in A. Then A ` a[a

0

=x] : � .

The proof of type safety for our particular language re-

quires a few de�nitions. A type assignment A is a prompt

assignment if A = ;[p

1

: �

1

] : : : [p

n

: �

n

], and A

0

is a

prompt extension of a prompt assignment A if A

0

is of

the form AA

00

where A

00

is a prompt assignment. Evaluation

of expressions may create new prompts but cannot change

the type of an expression; thus, we write a

0

=P

0

� a

1

=P

1

if P

1

contains P

0

and, for any prompt assignment A

0

with

prompts P

0

and any type � such that A

0

` a

0

: � , there ex-

ists a prompt extension A

1

of A

0

such that P

1

is the domain

of A

1

and A

1

` a

1

: � . It is not hard to see that the relation

� is re
exive and transitive. One may also easily prove the

following lemma by induction on the structure of evaluation

contexts.

Lemma 5 If a

0

=P

0

� a

1

=P

1

, then E[a

0

]=P

0

� E[a

1

]=P

1

.

The important step of reduction is the capture of the current

context up to a prompt. The context E used in a program

E[x] will be turned into a function �x:E[x]. The following

lemma will simplify the corresponding case in the proof of

subject reduction.

Lemma 6 Suppose A ` E[a

1

] : � . Then there exists a type

�

0

such that A ` a

1

: �

0

and, for any term a

2

such that

A ` a

2

: �

0

, we also have A ` E[a

2

] : � .

Proof: The proof is by induction on the form of the evalua-

tion context; it relies on the fact that the hole in an evalu-

ation context is not in the scope of any binding operation.

Here are three typical cases:

Case E = [:]: Then pick �

0

to be � .

Case E = (E

0

a

0

): From the hypothesis we know that

A ` E

0

[a

1

] : �

1

! � and A ` a

0

: �

1

. Thus, by the induction

hypothesis, there is a type �

0

such that A ` a

1

: �

0

, and, for

any a

2

such that A ` a

2

: �

0

, we have A ` E

0

[a

2

] : �

1

! � .

The statement now follows from the typing rule App.

Case E = (set E

0

in a

0

): From the hypothesis, we have

A ` E

0

[a

1

] : (� prompt) and A ` a

0

: � . Thus, by the

induction hypothesis, there is a type �

0

such that A ` a

1

: �

0

,

and, for any a

2

with A ` a

2

: �

0

, we have A ` E

0

[a

2

] :

(� prompt). The statement now follows from the typing

rule Set.

Lemma 7 (Redex Contraction) If a

0

=P

0

�!

red

a

1

=P

1

,

then a

0

=P

0

� a

1

=P

1

.

Proof: Each case of redex reduction can be considered in-

dependently. Assume there is a prompt assignment A

0

with

prompts P

0

, a type � such that A

0

` a

0

: � ; we need to

exhibit a prompt extension A

1

of A

0

such that P

1

is the

domain of A

1

and A

1

` a

1

: � .

Case a

0

= ((�x: a) v) or (letval x = v in a): In both

cases the reduction steps for these forms do not change the

set of prompts. In each case, there exists a type �

1

and a list

W of type variables not in the free variables of A

0

such that

A

0

` v : �

1

and A

0

[x : 8W:�

1

] ` a : � . Since a

1

= a[v=x], it

follows from Lemma 4 that A

0

` a

1

: � .

Case a

0

= (new prompt ()): Note that A

0

` new prompt :

(unit ! �

0

prompt) and A

0

` () : unit. Suppose a

1

= p

where p 62 P

0

. If P

1

= P

0

[ fpg and A

1

= A

0

[p : �

0

], then

A

1

` a

1

: (�

0

prompt).

Case a

0

= (set p in v): Trivial.

Case a

0

= (set p in E

p

[cupto p as x in a]): The reduc-

tion step for setting a prompt does not introduce any new

prompts. Thus, A

0

` E

p

[cupto p as x in a] : � and A

0

` p :

(� prompt). Applying Lemma 6, there exists a type �

1

such

that A

0

` (cupto p as x in a) : �

1

(1) and A

0

` E

p

[a

1

] : �

for any expression a

1

such that A

0

` a

1

: �

1

(2). From (1)

it follows that A

0

[x : �

1

! � ] ` a : � and, consequently,

A

0

` �x: a : (�

1

! �)! � . Let y be a variable that appears

neither in the domain of A

0

nor in E

p

. By (2) and Lemma 2,

A

0

[y : �

1

] ` E

p

[y] : � , and hence A

0

` (�y: E

p

[y]) : (�

1

! �).

Thus, A

0

` (�x: a)(�y: E

p

[y]) : � follows.

Theorem 8 (Subject Reduction) If a

0

=P

0

�! a

1

=P

1

,

then a

0

=P

0

� a

1

=P

1

.

Proof: A simple combination of Lemmas 5 and 7.

Note that Theorem 8 does not hold without the value-only

restriction (or other restrictions on polymorphic let); see [8,

12, 28] for examples.

Theorem 9 (Value Halting) Suppose A is a prompt as-

signment with prompts P . If A ` a : � and a=P cannot

be reduced, then a is either a value or a term of the form

E

p

[cupto p as x in a

0

].

Proof: The proof is by induction on the size of a. The cases

when a = (), new prompt, p, and (�x: a

0

) are trivial, so con-

sider the remaining cases:

Case a = (a

1

a

2

): There must be a type �

2

such that A `

a

1

: (�

2

! �). By the induction hypothesis applied to a

1

=P ,

a

1

either is a value or has the form E

p

[cupto p as x in a

0

].

The latter implies a has the form E

p

[cupto p as x in a

0

],

so consider the case when a

1

is a value. By the induction

hypothesis applied to a

2

=P , a

2

either is a value or has the

form E

p

[cupto p as x in a

0

]. Again, the latter case means

that the lemma holds, so consider the case when a

2

is a

value too. Note that a

1

cannot be an abstraction, since a

cannot be reduced. Since a

1

has a functional type, it can

only be new prompt. Hence, a

2

is of type unit, and it must

be the value (). However, this is not possible since a cannot

be reduced. This rules out all cases but the case when a has

the form E

p

[cupto p as x in a

0

], so the statement holds.

Case a = (letval x = v in a

1

): Then a could be re-

duced, contradicting the hypothesis.

Case a = (set a

1

in a

2

): Then A ` a

1

: � prompt and

A ` a

2

: � . If a

1

is not a value, then it has the form

E

p

[cupto p as x in a

0

], and therefore a is also of the form

E

0

p

[cupto p as x in a

0

] where E

0

p

= (set E

p

in a

2

). If a

1

is

a value, a

1

must be a prompt q. Note that a

2

cannot be

a value, for otherwise a could be reduced. Thus, a

2

must

be E

p

[cupto p as x in a

0

] where p 6= q (otherwise a can be

reduced). It follows that a = E

0

p

[cupto p as x in a

0

] where

E

0

p

= (set q in E

p

).

Case a = (cupto a

1

as x in a

2

): Then A ` a

1

: �

1

prompt

and A[x : �

0

! �

1

] ` a

2

: �

1

. If a

1

is not a value, it must be

of the form E

p

[cupto p as y in a

0

] and so is a. Otherwise,

it must be a prompt q and E

p

must not set q. Thus a is of

the form E

q

[cupto q as x in a

2

] where E

q

= E

p

.



The following theorem then follows immediately from the

previous two theorems:

Theorem 10 (Type Safety) Suppose ; ` a : � . Then one

of the three following must happen:

1. There exists a value v and a prompt assignmentA with

prompts P such that a=; �!

�

v=P and A ` v : � ;

2. a=; �!

�

E

p

[cupto p as x in a

0

]=P ; or

3. The reduction sequence starting from a=; is in�nite.

4 Expressiveness

4.1 Simple exceptions

Simple exceptions are a simpli�cation of the exception

mechanism found in most ML variants. We add three new

syntactic forms to our language: new exn, which generates

a new internal name for an exception; (raise a

1

a

2

), which

raises an exception a

1

with value a

2

; and (handle a

1

a

2

a

3

),

which evaluates a

1

to exception h and a

2

to v

2

, and then

evaluates a

3

so that if exception h is raised with a value v,

the evaluation of a

3

aborts and handler v

2

is applied to v.

To describe the formal semantics, we need internal exception

names h, new evaluation contexts

(raiseE a) j (raise v E) j

(handleE a a

0

) j (handle v E a) j (handle v v

0

E)

and new redex rules

(new exn ())=X;P �!

red

h=fhg [X;P

h 62 X

(handle h v v

0

)=X;P �!

red

v

0

=X;P

(handle h v E

h

[raise h v

0

])=X;P �!

red

(v v

0

)=X;P

where X is a �nite set of exceptions and E

h

is an evaluation

context with no intervening (handle h v

00

E) expressions.

The new operations can also be typed|not surprisingly|

using typings similar to those in ML. If we add a new type

construction (� exn) to the syntax of types, the types of the

new operations are

(New Exception)

A ` new exn : (unit! � exn)

h : � 2 A

(Exception Const)

A ` h : (� exn)

A ` a

1

: (� exn) A ` a

2

: �

(Raise)

A ` (raise a

1

a

2

) : �

0

A ` a

1

: (� exn) A ` a

2

: (� ! �

0

) A ` a

3

: �

0

(Handle)

A ` (handle a

1

a

2

a

3

) : �

0

It is a simple exercise to extend the proof of Theorem 10 to

the enhanced language.

Simple exceptions di�er from exceptions in most ML

variants in three ways. First, exceptions are generated from

new exn rather than declared by the keyword exception.

This di�erence is inconsequential, since one may use let to

bind an exception to a name. Second, one may not handle

multiple exceptions in one handler. Again, the di�erence is

inconsequential, since one may use multiple handle expres-

sions to yield the same e�ect. Third, handlers must be given

with respect to a speci�c exception. For example, in most

ML variants one can write (handle a

2

a

3

) that catches

any exception raised during the evaluation of a

3

|even one

that is declared in a

3

. This di�erence is substantive; wild-

card patterns are a useful feature, giving the programmer

the ability to recover from arbitrary errors. On the other

hand, wildcard exceptions encourage some sloppiness in er-

ror handling, cause problems for reasoning about code, and

prevent certain compiler optimizations (John Reppy, per-

sonal communication, August 1994).

Simple exceptions are a redundant feature in our lan-

guage; we do not know about ML handlers with wildcard

expressions without assuming an extensible datatype in the

language.

2

That is, one may easily macro expand the three

primitives for simple exceptions into our base language with-

out exceptions but with new prompt, set, and cupto (i.e.,

simple exceptions do not change the \expressiveness", in the

sense of [5], of the language). Let [[a]] be the notation for

the translation of a term with simple exceptions to one with-

out. The translation of new exn is simply new prompt, i.e.,

[[new exn]] = new prompt. The translation of (raise a

1

a

2

)

is

let x

1

= [[a

1

]] in

let x

2

= [[a

2

]] in

cupto x

1

as k in x

2

where x

1

; x

2

; k are distinct fresh variables. The translation

of the term (handle a

1

a

2

a

3

) is

let x

1

= [[a

1

]] in

let x

2

= [[a

2

]] in

let p = new prompt () in

set p in

(�z: (cupto p as k in (x

2

z)))

(set x

1

in

let x

3

= [[a

3

]] in

cupto p as k in x

3

)

where x

1

; x

2

; z; p; k are distinct fresh variables. The trans-

lation of an exception constant h is a prompt constant with

the same name. Finally, the translation is homomorphic in

all of the other operations, e.g., [[(a

1

a

2

)]] = ([[a

1

]] [[a

2

]]).

The translation preserves types, although this must be

stated with some care. Let [[� ]] be the type � with every

occurrence of (�

0

exn) replaced recursively by ([[�

0

]] prompt).

Theorem 11 Suppose A ` a : � in the extended language,

and [[A]] is the type context with all types translated. Then

[[A]] ` [[a]] : [[� ]].

The proof is a simple induction on the original typing deriva-

tion. For instance, consider a = (handle a

1

a

2

a

3

) where a

1

has type � , a

2

has type (�

0

exn), and a

3

has type (�

0

! �).

To assign the right type to [[a]], let p : ([[� ]] prompt); then

one may assign the type [[� ]] to the cupto expression.

It is harder to state and prove a correctness theorem for

the translation with respect to reduction: the translation

of simple exceptions into the cupto mechanism means that

one must keep careful track of which cupto's and prompts

belong to simple exceptions and which are in the program

itself. For instance, in translating the term

set p in handle h (�x: ()) (cupto p as k in ())

2

An extensible datatype is an ML datatype where new construc-

tors can be added later. Indeed, the type exn is such an extensible

datatype in several implementations of ML, e.g., CAML or SML.

One can then simulate full exceptions with a unique \exception" car-

rying values of type exn and the wildcard handler becomes a regular

handler.



some of the cupto's belong to the handle but one does

not. To maintain the proper bookkeeping, we use a relation

a=X;P B a

0

=P

0

where a is a term possibly involving simple

exceptions and a

0

is a term without simple exceptions. The

de�nition implies that a=X;P B [[a

0

]]=X[P , although more

terms are related. One can then prove the following

Theorem 12 Suppose A is an exception context with ex-

ceptions X and B is a prompt context with prompts P , and

AB ` a : � in the exted language, and a=X;P B a

0

=P

0

.

Then

a=X;P �!

�

v=X

0

; P

0

i� a

0

=P

0

�!

�

v

0

=P

0

0

where v=X

0

; P

0

B v

0

=P

0

0

.

The theorem holds if the base language is extended with

other ML constructs such as if-then-else and numeric con-

stants.

4.2 Callcc

One could also add primitive operations for reifying and

invoking continuations. Since the language has �rst-class

prompts, the most natural way to add callcc to the lan-

guage is to add the forms (callccp a

1

a

2

), (throwp a

1

a

2

),

and (abortp a

1

a

2

). The �rst arguments to callccp and

abortp are the prompts delimiting the continuation to be

rei�ed or discarded. The semantics may be formalized by

enhancing the grammar of evaluation contexts with

(callccpE a)

and the redex rules with

(set p in E

p

[callccp p a])=P

�!

red

(set p in E

p

[a (�x:abortp p E

p

[x])])=P

(throwp v

1

v

2

)=P �!

red

(v

1

v

2

)=P

(set p in E

p

[abortp p a])=P �!

red

a=P

These operations can also be given types via the rules

A ` a

1

: � prompt A ` a

2

: �

(Abortp)

A ` abortp a

1

a

2

: �

A ` a

1

: �

0

prompt A ` a

2

: (� ! �

0

)! �

(Callccp)

A ` callccp a

1

a

2

: �

A ` a

1

: � ! �

0

A ` a

2

: �

(Throwp)

A ` throwp a

1

a

2

: �

0

Note the di�erence between the typing rule for throw in [3]

and SML/NJ and the typing rule for throwp here. A throw

expression in SML/NJ has any type. Syntactically this

is achieved by hiding the return type of the continuation

subexpression (the �rst subexpression). This is (weakly) se-

mantically sound because of the global invariant that all con-

tinuations captured with callcc start by aborting the compu-

tation and resuming somewhere else. Hence, it is clear that

the type of throw a

1

a

2

may be any type since the com-

putation of this expression will never return to the calling

context. A throwp expression, however, explicitly mentions

the return type �

0

of the continuation. In fact, the typing

rule is exactly the same as for function application, which is

how the operation is implemented.

As with simple exceptions, adding these continuation op-

erations is merely adding syntactic sugar; one can translate

terms with them to terms without. For instance, the trans-

lation of a term (abortp a

1

a

2

), denoted [[abortp a

1

a

2

]] as

above, is

let x

1

= [[a

1

]] in

cupto x

1

as k in [[a

2

]]

The de�nition of [[callccp a

1

a

2

]] is

let x

1

= [[a

1

]] in

cupto x

1

as k in

set x

1

in (k ([[a

2

]] (�x:abortp (k x))))

Finally, [[throwp a

1

a

2

]] = ([[a

1

]] [[a

2

]]). The translation is

correct, i.e., the analogs of Theorems 11 and 12 hold for

this translation.

5 Implementation

To complete the argument that prompts and cupto are sim-

pler and easier to use than callcc, we show that the cupto

can be implemented as e�ciently (in an asymptotic sense)

as callcc.

Our operations|including multiple prompts|can be im-

plemented as a module in SML/NJ with the signature in

Table 4. Other implementations of functional continuation

operators appear in the literature: for instance, Filinski [6]

shows how to encode control operators with callcc and one

reference cell under the assumption that there is one prompt.

The module provides a way to translate complete programs

in our language to SML programs. The module has three

primitives new_prompt, set and cupto that implement the

constructs of the same name. Since there is no macro facility

in SML, the user of the module must adopt the conventions

[[set a

1

in a

2

]] = set [[a

1

]] (fn () => [[a

2

]])

[[cupto a

1

as x in a

2

]] = cupto [[a

1

]] (fn x => [[a

2

]])

The other constructs of our language can be translated di-

rectly into SML/NJ, e.g., [[()]] = () and 1

[[�x:a]] = (fn x =>[[a]]):

Appendix A gives an implementation in SML/NJ. Our en-

coding is clearly of the same 
avor as the untyped encoding

of shift and reset [22] into Scheme with callcc, but it is

not easy to relate them in a precise way, since the languages

that they encode are also di�erent.

Notice that the signature involves weak type variables

(cf. [10, 26]). If SML were modi�ed to have value-only poly-

morphism, the signature of this module would be identical

but without the \weaknesses" on the type variables. The

weaknesses never cause a problem in translating programs

in our language to SML, since our language has \value-only"

polymorphic let.

The encoding of multiple prompts is more di�cult than

that of a single prompt, since we have to push on the same

control stack continuations to prompts of possibly di�erent

types. The elements of the stack are variant types. Since we

do not know in advance the number of prompts that will be

de�ned, we need an open variant type. Some ML variants,

among them SML, provide one built-in extensible datatype

of exception values. The generativity of exception decla-

rations allows one to de�ne a function that returns a new

exception (holding a value of �xed but arbitrary type) each

time it is called. Any locally extensible datatype could re-

place the use of exceptions; we never use exception handling

or raising except for reporting errors. This is a practical jus-

ti�cation for giving extensible datatypes full status in ML;

we have met a more theoretical justi�cation in Section 4.

Assuming that we already have an e�cient implemen-

tation of callcc, i.e., the cost of callcc and throw are



Table 4: Signature for Prompts.

signature PROMPT =

sig

exception Uncaught_prompt (* to report uncaught prompt *)

type 'a prompt

val new_prompt : unit -> '1a prompt

val set : '1a prompt -> (unit -> '1a) -> '1a

val cupto : '1a prompt -> (('2b -> '1a) -> '1a) -> '2b

end

constant, the encoding yields an e�cient implementation of

cupto. The conditions are clearly met by most cps compila-

tion strategies, such as those used in SML/NJ. Given such

an e�cient implementation, the cost of new_prompt and set

is clearly constant. The cost of cupto may, however, be

proportional to the size of the control stack. The cost of

applying a continuation is also proportional to the small

piece of control stack stored in the closure of that continu-

ation; a similar cost, of course, exists with the more tradi-

tional throw. Each of the above operations takes constant

time for programs that use a single prompt. In particular,

this is the case for all programs with only callcc, whether

they have been straightforwardly rewritten with cupto's, or

linked with a module that implements callcc and throw

with cupto's. Moreover, the small factor by which the cost

is increased in the simulation might be compensated by the

conciseness of programs using cupto rather than callcc.

For stack-based compilation strategies, callcc is an ex-

pensive operation; since our simulation relies on callcc, the

simulated operations will also be expensive. We could easily

extend the simulation to implement a \restoring" cupto, so

that the common pattern

(cupto x as k in set x in k a)

is directly implemented in terms of callcc. Programs using

only callcc should run about as fast with primitive callcc

as with callcc simulated with restoring cupto. Replacing

callcc by cupto thus should not decrease performance.

On the other hand, it is quite di�cult to predict whether

programming with functional continuations would be more

e�cient than programming with usual, aborting continua-

tions. The obvious reason is that such a judgement depends

on programming styles and therefore it is very subjective.

Another important factor is the quality of the implementa-

tion of continuations.

Clearly, one cannot obtain better performance when sim-

ulating functional continuations with aborting continuations.

When setting a prompt, the simulation rei�es the current

continuation (i.e., copies the current stack) and continues

with a quasi-empty stack. Later, when control is rei�ed

up to the prompt, the current stack represents the context

up to the prompt. A primitive implementation of cupto's

would certainly mark the stack when setting a prompt so

that copying the context from the root to the prompt is

avoided.

Since continuations can express callcc, one may pro-

gram with functional continuations using only total continu-

ations. Capturing a functional continuation cannot be faster

than capturing a total continuation of the same size. How-

ever, in many examples (see the next section), callcc's come

in pairs with some little protocol that actually implements

functional continuations. Thus, we now consider the prob-

lem of comparing programs written with cupto's with their

counterpart in terms of callcc. That is, we compare the

e�ciency of our simulation to a primitive implementation of

cupto.

For sake of simpli�cation, we consider a restoring cupto

and the following scenario (context and stack can be inter-

changed, according to which one provides better intuitions):

the execution starts in an empty stack which grows to a

control point E

1

where a prompt is set. The evaluation con-

tinues with a

1

and reaches a control point E

1

[set p in E

2

[ ]]

where the context up to p is rei�ed as k and evaluation con-

tinues (i.e., the mark and the context k are left on the stack)

with a

2

. The whole program is of the form E

1

[set p in a

1

]

where a

1

is itself

E

2

[cupto x as k in set x in k a

2

]:

The comparison of performances naturally depends on

the quality of the compilation of continuations. Let us call

an implementation \naive" if it always copies the part of

stack corresponding to the context that is rei�ed. With a

naive implementation of continuations, primitive functional

continuations are clearly more e�cient than simulated ones:

both E

1

and E

2

are copied by the simulation while only

E

2

is copied with a primitive implementation. There are

also \smart" implementations that copy the stack lazily,

i.e., just before the stack is popped. Given support from

the garbage collector, this may avoid copies of rei�ed con-

tinuations that have become unreachable at the time when

copying should occur. We do not know whether smart com-

pilation would equally bene�t to both the simulated and the

primitive cupto. It might also be the case that if prompts

are set frequently, cutting up the stack would become un-

necessary in the case of prompts, i.e., a naive primitive im-

plementation of cupto might run as e�ciently as a smart

implementation of callcc.

Queinnec and Serpette have described an implementa-

tion of functional continuations [17] that never copies the

stack. Roughly, their idea is to freeze some active part of

the stack, and jump over that part until it becomes garbage.

However, their semantics di�ers from ours since prompts are

erased from the context during rei�cation (see Section 7). It

is not clear that their compilation schema can be applied to

our semantics, and, if the schema can be applied, whether

one obtains good performance. Moreover, their method re-

quires garbage collection on the stack and it penalizes block

allocation. This makes the implementation closer to a stack-

less implementation, and performance should be comparable

to the case of CPS-implementations.

6 Programming Examples

In this section we brie
y describe two small examples that

give the 
avor of how to use our operations and the im-



plementation in SML/NJ: traversing a tree and coroutines.

Nothing about the examples is really original or complex: in-

deed, neither example makes use of multiple, named prompts

in the same way that the encoding of exceptions does. Nev-

ertheless, the examples do illustrate how one programs with

functional continuations in a typed setting.

6.1 Traversing a Tree

The �rst example, a small toy example suggested to us by

Matthias Felleisen, demonstrates how functional continua-

tions can express computations more succinctly than they

can be expressed using callcc. Given an element of the

SML datatype

datatype tree =

Null | Cell of int | Pair of tree * tree

of binary trees with values at all internal nodes, we want to

write two functions

get_first : tree -> answer

get_next : unit -> answer

that walk down the tree and output the values of the nodes,

one at a time. Answers are elements of the datatype

datatype answer = None | Some of int

For instance, given the tree

val tree =

Pair (Pair (Cell 1, Null), Pair (Cell 2, Cell 3))

the following output is required:

- get_next ();

val it = None : answer

- get_first tree;

val it = Some 1 : answer

- get_next ();

val it = Some 2 : answer

- get_next ();

val it = Some 3 : answer

- get_next ();

val it = None : answer

There is a very simple and generic solution, provided two

functions start and suspend that, respectively, start the

toplevel computation and suspend the evaluation of the com-

putation, returning to toplevel, and a reference resume, that

contains the suspended computation where to resume next:

fun walk Null = None

| walk (Cell i) = suspend (Some i)

| walk (Pair (t1,t2)) = (walk t1; walk t2)

fun get_first t = start (fn () => walk t)

fun get_next () = start (fn () => !resume None)

The implementation of the functions start and resume is

straightforward with �rst-class prompts and functional con-

tinuation operations:

local

val toplevel = new_prompt(): answer prompt

in

val resume = ref (fn (x:answer) => x)

fun start f = set toplevel f

fun suspend v =

cupto toplevel (fn k => ((resume := k); v))

end

This can be encoded directly into SML/NJ using callcc

instead of our control operations without going through our

implementation.

local

val exit = ref (fn (x:answer) => x)

in

val resume = ref (fn (x:answer) => x)

fun start f =

callcc (fn toplevel =>

(exit := throw toplevel; f(); !exit None))

fun suspend v =

callcc (fn rest =>

(resume := (fn x => throw rest x); !exit v))

end

While the encoding with prompts and functional continua-

tions is rather natural, the encoding with aborting contin-

uations is di�cult to write (especially if written directly)

and also harder to understand. The example illustrates the

coupling of the two aborting continuations exit and resume

that are replaced by a single functional continuation resume

in the cupto version of the code.

6.2 Coroutines

The tree traversal example is not convincing: one can solve

the problem by producing answers in a lazy stream without

using continuations at all. The simulation of coroutines is a

more interesting and practical example.

Suppose we want to implement the following signature

of coroutines:

signature COROUTINES =

sig

val coroutine: (unit -> unit) -> unit

val fork: (unit -> unit) -> unit

val yield: unit -> unit

val exit: unit -> unit

end

The function coroutine establishes a context for running

coroutine expressions; the other operations are the obvious

functions. For instance, one would write

coroutine (fn () => (fork (exit); exit()))

for forking a trivial process and then exiting, which would

yield control to the child process just created.

The implementation uses an internal prompt to estab-

lish the scope of the coroutine function, and relies on the

simulation above (Section 5) and a module for queues:

structure Coroutines:COROUTINES =

struct

open Prompt

open Queue

val p = new_prompt (): unit prompt

val readyQ:(unit -> unit) queue = mkQueue ()

fun coroutine f = set p f

fun dispatch () =

(dequeue readyQ ()) handle Dequeue => ()

fun exit () =

cupto p (fn k => coroutine dispatch)

fun yield () =

cupto p (fn k => (enqueue (readyQ,k);

coroutine dispatch))

fun fork f =

enqueue (readyQ,fn () => (f (); exit ()))

end



Notice that the state of a running coroutine is saved as a

function in the queue when doing a yield.

The implementation of the same policy for fork using

callcc is more complicated, and it seems to require a trick.

The following code is slightly modi�ed from [20]:

structure Coroutines:COROUTINES =

struct

open Queue

val readyQ:unit cont queue = mkQueue ()

fun coroutine f = (f ()) handle Dequeue => ()

fun dispatch () = throw (dequeue readyQ) ()

fun exit () = dispatch ()

fun fork f =

let val newThread =

callcc (fn k1 =>

(callcc (fn k2 => (throw k1 k2));

f (); exit ()))

in enqueue (readyQ, newThread)

end

fun yield () =

callcc (fn k => (enqueue (readyQ,k);

dispatch ()))

end

The two callcc's are necessary to get the right behavior

from fork. The parent process must grab a continuation

that represents the child process's continuation and put the

child's continuation in the queue. The continuation k1 is

the continuation that sets newThread to the child continu-

ation, puts the continuation into the queue, and continues.

The continuation k2, on the other hand, is the continuation

that calls f and exit and continues with the rest of the pro-

gram, which is the child's continuation. This pattern of two

callcc's is quite common: the implementation of Concur-

rent ML, for instance, uses 4 instances of double callcc's (8

total) out of 28 callcc's. Implementing a di�erent forking

policy|where the child starts immediately|is easier

fun fork f =

callcc (fn oldThread =>

(enqueue (readyQ,oldThread);

f ();

exit ()))

but is also quite easy using cupto:

fun fork f =

(enqueue (readyQ,fn () => (f (); exit ()));

yield ())

Functional control operators make the implementation of

coroutines simpler because one can separate the manage-

ment of queues from the processes by prompts.

7 Comparison with Previous Work

We have already seen, in Section 2, how the operational se-

mantics of our control operations compares with Felleisen's

F and Danvy and Filinski's shift operation. Many other

choices of functional continuation operations are possible,

e.g., Hieb and Dybvig's spawn [9] and Queinnec and Ser-

pette's splitter [17]. See [16, 14] for a detailed comparison

of the operational semantics of these operations.

With one exception, none of these papers consider type

systems for functional continuations. The sole exception is

Queinnec and Serpette's paper [17] on splitter, abort, and

call/pc. These operations di�er in some respects from our

three operations of new prompt, set, and cupto. Using a

notation similar to ours, the types of the operations are

splitter : (� prompt! �)! �

abort : � prompt! (unit! �)! �

0

call=pc : � prompt! ((�

0

! �)! �

0

)! �

0

The splitter operation sets a new prompt and runs the

body. If abort is ever called with that prompt and an argu-

ment (a thunk), the prompt is erased and the thunk is called

in the continuation before the splitter. If call/pc is ever

invoked with a function, the continuation up to the prompt

is rei�ed and all its internal prompts are unset before it is

passed as an argument. Using our notation and operations

for clarity, the operational semantics can be expressed by

the rules

(splitter a)=P �!

red

(set p in (a p))=P [ fpg; p 62 P

(set p in E

p

[abort p a]) �!

red

(a ())

(set p in E

p

[call=pc p a])

�!

red

(set p in hE

p

i[a (�x: E

p

[x])])

where hEi stands for the context E where all prompts have

been unset, i.e., hset p in Ei is E and the transformation

is homomorphic on other constructs (only prompts can be

in the position of p, since set in expressions are all in-

troduced by the reduction rule for splitter). We do not

know if they proved a type soundness theorem as we have:

the paper [17] does not state the theorem nor attempt to

prove it, but using our proof technique it is easy to carry

out.

Appart from this signi�cant di�erence, Queinnec and

Serpette's splitter also comes closest to ours in adding

multiple prompts. Others, notably Sitaram and Felleisen [22]

and Danvy and Filinski [2], have added multiple prompts

and control operations to languages to obtain more control.

The di�erence between these operations and our language

(and Queinnec and Serpette's) is important: prompts in our

proposal are hidden in an abstract type that only the com-

piler can manipulate, whereas in [2, 22] the representations

of prompts are known to the programmer (as integers). The

hidden representation of prompts is essential for implement-

ing exceptions in a correct manner: the implementation gen-

erates fresh prompts that programmers cannot cupto. Also,

having a special type of prompts makes it easy to incorpo-

rate prompts into a language like ML; we otherwise would

need some cumbersome naming scheme for in�nite sets of

prompts at each type.

Aside from the rigorous treatment of types, the single

identi�ably new feature in our proposal is the decomposition

of declaring a new prompt from setting a prompt, and the

corresponding ability to set a prompt more than once. This

is again used in our encoding of exceptions, but we know of

no other natural examples which require one to set a prompt

more than once.

8 Discussion

We have shown how to incorporate primitives for �rst-class

prompts and the rei�cation of control up to a prompt in a

statically-typed language. Let us consider brie
y the the-

oretical, programming, and compilation issues related to

these primitives.

We believe that the primary theoretical bene�t of using

named, typed prompts arises in the simple proof of strong

soundness. In fact, our choice of constructs can be used to

simplify proofs of strong soundness for other control opera-

tions. For instance, to prove strong soundness for callcc,



Wright and Felleisen [28] consider only expressions that do

not contain an abort. Given their way of expressing the

semantics of callcc, this is essentially equivalent to ruling

out expressions containing continuations rei�ed relative to a

di�erent top-level. The restriction works because any con-

tinuations rei�ed in the course of the evaluation of a given

expression must all be relative to the top-level for that ex-

pression. Our typing gives a way to explain the strong

soundness for callcc more perspicuously: when the user

types an expression, the interactive top-level loop simply

creates a fresh prompt (with the type of the expression) and

set's; all callcc's are then done via cupto's to this fresh

prompt.

To determine whether named, typed prompts are useful

in programming requires some experience in writing pro-

grams. In the untyped case, prompts add signi�cant expres-

sive power [23, 21]; we believe the examples of [21] could

be typed in our system. We also conjecture that many

applications that currently uses callcc (such as various

threads packages or CML) could bene�t|for instance, the

explicit prompt mechanism may simplify the implementa-

tion of threads in a interactive top-level loop. At the very

least, the sense in which callcc can be easily encoded in our

language should ensure that switching to explicit prompts

will cost little.

A challenge left open by this work is still an e�cient

direct implementation of the operations, especially for stack-

based compilation strategies.

Although our operations have better typing and pro-

gramming properties than callcc in a language like ML,

there is still the larger question of whether inexpensive,

continuation-based operations are really necessary. Concur-

rency operations can be easily built using continuations, but

there are not very many other good examples of programs

that need continuations, and continuations are di�cult to

use for the non-expert programmer. It may well be that

concurrency primitives are more fundamental and impor-

tant than continuation operations, but until the right set of

primitives is found it may be best to build in continuation

operations.
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A Implementation of Prompts with Callcc in SML/NJ

The following code implements the signature of Table 4.

structure Prompt : PROMPT =

struct

exception Uncaught_prompt

exception Core_dumped

type 'a cont = 'a General.cont

val throw = General.throw

val callcc = General.callcc

type 'a control = 'a cont * exn list

type 'a prompt =

{In : ((bool * 'a cont)->exn),

Out: ((bool * 'a cont)->'a cont * exn list)

-> (exn -> 'a control)

-> exn -> 'a control}

fun new_prompt () =

let exception Sharp of (bool * '1a cont)

fun In (b,c) = Sharp (b,c)

fun Out yes no x =

case x

of Sharp p => yes p | z => no z

in ({In = In, Out = Out} : '1a prompt)

end

The key idea of this encoding is to use a stack of control

points (called pc for \prompt and continuation"):

val stack = ref ([]: exn list)

fun push pc = stack := pc :: !stack

fun pop () =

case !stack

of [] => raise Uncaught_prompt

| pc :: rest => (stack := rest; pc)

To set a prompt, the current continuation is captured and

transformed into a control point associated with prompt p

that is pushed on the control stack. The expression is run

and control resumes at the control point found on top of the

control stack, which must be a p prompt.

fun set (p: '1a prompt) e =

callcc (fn normal_cont =>

let val _ =

push (#In p (true,normal_cont))

val v = e()

val (effective_continuation, _) =

#Out p

(fn (b,c) => (c,[]))

(fn sc => raise Core_dumped)

(pop())

in

throw effective_continuation v

end)

When capturing control, the stack of control will be copied

up to the corresponding prompt. Fake prompts (b is false)

are ignored.

fun pop_control (p:'a prompt) =

let fun pop_it control =

#Out p

(fn (b,c) =>

if b then (c, control)

else pop_it (#In p (b,c):: control))

(fn pc => pop_it (pc :: control))

(pop())

in pop_it [] end

When a control is used as a function the saved control stack

will be appended to the top of the current control stack.

fun push_control (pc :: control) =

(push pc; push_control control)

| push_control [] = ()

In more detail, the \cupto" �rst captures the control stack

up to the �rst occurrence of the prompt p, and retrieves

the continuation abort to jump to this point. Then it cap-

tures the current continuation x, aborts to the prompt and

keeps running in an environment where control stands for

the following function: when given a value v it captures the

current continuation as after and pushes it on the control

stack as a fake p prompt, since it is used as a return address,

but not to stop control. Then, the saved control is pushed

on the control stack and computation jumps to position x.

Later, when reaching prompt p, computation will resume at

position after instead of abort.



fun cupto p f =

let val (abort, control) = pop_control p

in callcc (fn x =>

throw abort

(f (fn v =>

callcc (fn after =>

let val _ =

push (#In p (false, after))

val _ = push_control control

in

throw x v

end))))

end

end (* struct *)
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