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Abstract

We propose a projective lambda calculus as the ba-

sis for operations on records. Projections operate on

elevations, that is, records with defaults. This calcu-

lus extends lambda calculus while keeping its essential

properties . We build projective ML from this calculus

by adding the ML Let typing rule to the simply typed

projective calculus. We show that projective ML pos-

sesses the subject reduction property, which means that

well-typed programs can be reduced safely. Elevations

are practical data structures that can be compiled ef-

�ciently. Moreover, standard records are de�nable in

terms of projections.

Introduction

The importance of records in programming languages

is commonly accepted. There have been many propos-

als for adding records in strongly typed functional lan-

guages [Car84, Wan87, JM88, OB88, Oho90, R�em89,

R�em91, CM89, Car91, HP90a, HP90b]. However the

topic is still active and there is not yet a best solution.

Even for the most popular of them, ML, each imple-

mentation extends the core language with records of a

very di�erent kind.

For experts of record calculi, the multitude of works

converges continuously towards a better comprehension

of records, but it appears as a jungle of proposals for

the novice that can hardly understand their very insidi-

ous di�erences. There is a lack of a simple formalism in

which evaluation of row expressions could be described

concisely and precisely. Furthermore, in a typed lan-

guage, the typing rules often add technical restrictions

that increase the confusion. This work started as a

modest attempt to �nd a simple untyped record calcu-

lus in which most classical operations of records could

�
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be described. It ended in yet another proposal, but one

that subsumes some others.

In the simplest view of records, there are only two

operations. A record is a �nite collection of objects,

each component being addressed by name. The cre-

ation of a record takes as many name-object pairs as

there are components and creates the corresponding

record. The names used to address components are

called labels; a label together with its component is a

�eld. Reading information from a record takes a label

that de�nes a �eld in the record and returns the com-

ponent of that �eld. Thus the access of a component

in a record should only require that the label does de-

�ne a �eld in the record. Some type systems are more

drastic, and require that the labels of all other �elds of

the records be also given at access time. This makes it

impossible to use the same function to access the same

�eld in two records having that �eld in common, but

di�ering by other �elds | a feature that is highly de-

sirable.

The most popular extension of simple records is the

creation of a record from another one by adding one

�eld. This operation is called record extension. If the

component may already be de�ned in the argument

the extension is free, otherwise it is strict. Conversely,

record restriction creates a record from another one by

removing one of its �eld. As for extension, restriction

can be free or strict.

The most di�cult operation to type is still the con-

catenation of records that creates a record by combining

the �elds of two others [Wan89, HP90b]. Again, record

concatenation can be free or strict. There is also re-

cursive concatenation that recursively merges the com-

ponents of common �elds, provided they are records

themselves [OB88]. Record concatenation can be en-

coded with record extension, which gives one way of

typechecking record concatenation [R�em92d]. However,

none of the proposal for typing record concatenation is

fully satisfactory.

Between extension and concatenation, there exists

an intermediate operation that takes two records and

a label and builds a record by copying all the �elds of

the �rst record except for the given label whose �eld

is taken from the second one, whether it is de�ned or

not. That is, either the label is unde�ned in both the

second argument and the result or it is de�ned with



the same value in both records. This operation, called

modi�cation, is strictly more powerful than extension

and restriction, but much easier to type than concate-

nation, since it involves only one �eld. Other construc-

tions, such as the exchange or renaming of �elds are less

popular, though they easily typecheck in some systems.

We introduce a projective lambda calculus as the

basis for designing functional languages with records.

In the �rst section, we study the Projective Lambda

Calculus, written P�, extends the lambda calculus

while preserving the Church-Rosser property. There

is a simple projective type system for this calculus, for

which the subject reduction theorem holds. In the sec-

ond section, we extend the simple projective type sys-

tem with the ML Let typing rules and add concrete

data types to the language: this de�nes the language

we call projective ML. In the last section we elaborate

on the signi�cance of Projective ML from three di�erent

standpoints.

By lack of space, most of the proofs have been omit-

ted, other are roughly sketched. See [R�em92b] for a

more thorough presentation.

1 The projective lambda calcu-

lus

In this section we introduce the untyped projective

lambda calculus. Then, we propose a simple type sys-

tem for this calculus, we prove the subject reduction

property and show that there are principal typings.

1.1 The calculus P�

The projective lambda calculus P� is the lambda cal-

culus extended with three constructions, namely the

elevation, the modi�cation and the projection. It is de-

�ned relatively to a denumerable collection of labels,

written with letters a and b.

M ::= x Variable

j �x: M Abstraction

jM M Application

j [M ] Elevation

jM [a = M ] Modi�cation

jM=a Projection

The intended meaning of these constructions is given by

the reduction rules of the projective lambda calculus.

Namely, the rules are the classical � rule:

(�x: M ) N �!M [x := N ] (�)

plus the following projective rules (P ):

[M ]=a �!M (Default)

M [a = N ]=a �! N (Access)

M [b = N ]=a �!M=a (Skip)

As opposed to records, elevations can be projected on

all labels.

The compatible closure of �! is written ����

-

.

The transitive closure of ����

-

is written ����

--

and

call �P -reduction.

Theorem 1 (Church-Rosser) The calculus �P is

Church-Rosser.

This means that if M �P -reduces to N and N

0

, then

there exists a term M

0

such that both N and N

0

�P -

reduces to M

0

.

Proof: The reductions � and P are Church-Rosser. The

reduction P is a rewriting system that has no critical

pair and is n�therien, thus it is Church-Rosser. The

reductions � and P commute, since the diagram

M ����

P

�����

-

N

j

j

�

�

�

�

�

�

�

j

?

�

�

�?

M

0

�������

P

��������

--

N

0

commutes (this is checked by considering the relative

positions of �- and P -redexes).

1.2 Projective types

Projective types extend the record types that have

been introduced in [R�em90, R�em92c] in order to get

a type system for the record extension of ML presented

in [R�em90, R�em91].

Record types are based on the idea that types of

records should carry information on all �elds saying for

every label either the �eld is present or absent [R�em89].

The way to deal with an in�nite collection of labels is

to give explicit information for a �nite number of �elds

and gather all information about other �elds in a tem-

plate, called a row. Record types allow sharing between

the same �elds of two rows, but do not allow sharing

between all �elds of the same row (except for ground

rows). When a type is coerced to a row, all projections

must be shared for the same reason that lambda bound

variables in ML cannot have polymorphic types.

� ::= type � and �

� type variable � and �

j � ! � arrow type

j [�] projection type

� ::= row type � and �

' row variable ' and  

j �) � arrow row

j a : � ; � de�ned row

j @ � shared row

In fact, rows are sorted according to the set of labels

that they cannot de�ne. We omit this distinction here.



The reader is referred to [R�em92c] for a more thorough

presentation.

The equality on types is de�ned by the following

axioms. Left commutativity:

a : � ; (b : � ; ') = b : � ; (a : � ; ')

simply means that the order of de�nition of rows does

not matter. Replication:

@ � = a : � ; @ �

means that shared rows are the same as rows de�ning

the same type on all labels. Distributivity of arrows:

@ �) @ � = @ (�! �)

and

(a : � ; ')) (a : � ;  ) = a : (�! �) ; (')  )

means that arrow rows are truly rows of arrows.

Lemma 1 The theory of projective types is regular,

unitary unifying and has a decidable uni�cation algo-

rithm.

Hint: The regularity directly follows from the shape

of the axioms. The theory of projective types is

shown syntactic by extending the method developed

in [R�em92c] for simple record terms. This is the dif-

�cult part of the proof. It is a consequence that the

rewrite rules given in the appendix A are sound and

complete. The termination of the algorithm is quite

standard. Then, since the rewrite rules never introduce

any disjunction, the theory is unitary.

The uni�cation algorithm is described in the ap-

pendix A.

1.3 A type system for P�

There are two kinds of typing judgements. A type as-

sertion is the binding of a variable x to a type, written

x :

T

� and a row assertion is the binding of a variable

x to a row �, written x :

R

�. A context is a list of

assertions with rightmost priority. Mixed contexts con-

tain both type and row assertions. Row contexts only

contain row assertions. Concatenation of contexts is

written by juxtaposition.

The judgement H `

T

M : � means that in the

mixed context H, the program M has type � . The

judgement H;K `

R

M : � means that in the mixed

context H and the row context K, the programM has

row �. The �rst set of typing rules are the ones of the

simply-typed lambda calculus:

x :

T

� 2 H

H `

T

x : � T-Var

H[x :

T

� ] `

T

M : �

H `

T

�x: M : � ! � T-Fun

H `

T

M : �! � H `

T

N : �

H `

T

M N : � T-App

The next set of rules deals with the elevations:

H `

T

M : [a : � ; �] H `

T

N : �

H `

T

M [a = N ] : [a : � ; �] Modify

H `

T

M : [a : � ; �]

H `

T

M=a : � Project

H; ; `

R

M : �

H `

T

[M ] : [�] Elevate

The �rst two rules are quite standard with record cal-

culi. The last one describes the typing of an elevation.

The elevated expression must be assigned a row. The

row context shall binds variables that will be introduced

during the typing of the current elevation, while previ-

ously bound variables are in the mixed context H. All

expressions can be elevated, thus we need to assign rows

to applications and abstractions as well:

x :

R

� 2 K

H;K `

R

x : � R-Var

H;K[x :

R

�] `

R

M : �

H;K `

R

�x: M : �) � R-Fun

H;K `

R

M : � ) � H;K `

R

N : �

H;K `

R

M N : � R-App

Sometimes, one might get a type when a row is required.

For instance, when a type derivation of �x: [x], the

variable x will be assigned a type � , but a row will be

expected when typing x in the elevation. The type �

can be lifted to a shared row.

HK `

T

M : �

H;K `

R

M : @ � Lift

Conversely, a variable bound to the row @ (� ) can be

used with type � :

x :

R

@ � 2 H

H `

T

x : � Drop-Var

Finally, since types are taken modulo E-equality:

H `

T

M : � � =

E

�

H `

T

M : � T-Equal

H `

R

M : � � =

E

�

H `

R

M : � R-Equal



We presented the previous set of rules (RT ) since there

are simple and very intuitive. There is a smaller and

more regular set (S), given in the appendix B, that are

equivalent to the rules (RT ). The judgements of (S)

are H;K `

S

: � were both H and K are row contexts

(where superscript

R

is omitted).

Lemma 2 The judgement H `

T

M : � is derivable if

and only if the judgement H; ; ` M : @ � is derivable

where x :

T

� in T is translated as x : @ � in S.

Hint: The proof is by successive transformations of

(RT ) into equivalent systems ending with (S). The

�rst step converts every type assertion x :

T

� in con-

texts into row assertions x :

R

@ (� ), replacing in the

derivations, every occurrence of the rule T-Var by a

rule Drop-Var. Rule T-Var is removed. The con-

verse of the Lift rule:

H;K `

R

M : @ �

HK `

T

M : � Drop

is derivable in (RT ), by an easy induction on the size of

the derivation of the premise and by cases on the last

rule of the derivation. It is added to (RT ).

Successively, rules Fun and App are removed,

record rules of (S) are added, then those of (RT ) can

be removed, rule Var is added and rule Drop-Var is

removed. Last, Drop and Lift are shown to be useful

only at the end of a derivation.

Lemma 3 (Stability by substitution) Typings are

stable by substitution.

This property is quite immediate in the case of the a

simple calculus.

The type inference problem is: given a triple H;K .

M : �, �nd all substitutions � such that �(H); �(K) `

M : �(�). The type system (S) has principal typings if

the set of solutions of every type inference problem is ei-

ther empty, or has a maximal element called a principal

solution, and if, in addition, there exists an algorithm

that takes a type inference problem as input and re-

turns a principal solution or an indication of failure if

no solution exists.

Theorem 2 (Principal typings) The type system of

P� has principal typings.

Hint: Type inference for P� is in the general framework

of extending the ML type system with an equational

theory on types. The comma that splits the contexts

into two parts is a detail, since the system (S) is still

syntax directed. The principal type property for such a

system holds in general whenever the axiomatic theory

on types is regular, unitary unifying and as a decidable

uni�cation algorithm [R�em90].

Type inference is based on the syntacticness of the

theory of projective types and the uni�cation algorithm

that follows. It proceeds exactly as for the language

with record extension presented in [R�em91].

The algorithm for type inference can be found in

the Appendix C for the language PML presented in the

next section.

1.4 Subject reduction

Subject reduction holds if reduction preserves typings:

for any program M and N , if M has type � in the

context H;K and �P -reduces to N , then N has type �

in context H;K.

Theorem 3 (Subject reduction) Subject reduction

holds in P�.

Hint: It is shown independently for all cases of reduc-

tion at the root, then it easily follows for deeper reduc-

tions. The di�cult case is Elevate. It uses the lemma

if HK; ; ` M : (a : � ; �) is derivable in S, then so is

HK; ; ` M : @ � which is proved with a little stronger

hypothesis by induction on the length of the derivation

of the premise and cases on the last rule that is not an

equality rule.

2 The language PML

Since the simply typed projective lambda calculus be-

haves nicely, we extend it to a full language, PML, in

two steps. We add the ML Let typing rule and then

concrete data types. In each case we check that the

principal type property and subject reduction still hold.

2.1 Let polymorphism

We extend the projective calculus with a let construc-

tion

M ::= : : : j let x = M in N

The let is syntactic sugar for marked redexes

(�x: N )

�

N

Thus, there is no special reduction rule for let redexes

but the (�) rule:

(�x: M )

�

N �! (x 7! N )(M ) (�)

Therefore the calculus remains Church-Rosser.

Types are extended with type schemes. Type

schemes are pairs of a set of variables and a type or

a row, written 8W � � or 8W � �. Formally, variables

should be annotated with their sorts, but the sorts can

be recovered from the occurrences of variables in their

scheme. We identify type schemes modulo�-conversion

of bound variables, and elimination of quanti�cation

over variables that are not free.



Type assertions now bind variables to type schemes.

The rules Var are changed to:

x : 8W � � 2 K dom (�) � W

H;K ` x : �(�)

x : 8W � @ � 2 H nK dom (�) � W

H;K ` x : @ �(�)

The Let rule is

H;K `M : �

H;K[x : V(�) n V(HK)] ` N : �

H;K ` let x = M in N : � Let

where V(�) is the set of free variables in � and V is

naturally extended to contexts.

The extension of P� with let binding does not in-

terfere with projections, and the substitution lemma,

and the principal typing property and subject reduc-

tion theorems easily extend to PML.

2.2 Concrete data types

The language is now parameterized by a �nite collection

of concrete data types. For sake of simplicity, we con-

sider a single two-constructor data type. We shall make

other simplifying assumptions on types below, but it is

possible to generalize to arbitrary data types.

The data type that we consider could be declared

in ML as:

type bar (�) = A j B of �

The syntax is extended with:

M ::= : : :

j A j B(M )

j match M with A)M j B(y) )M

The new reduction rules are:

(match A with A)M

j B(y) ) N ) �!M

(match B(L) with A)M

j B(y) ) N ) �! (� y: N ) L

These �-reductions are CR and commute with �P .

Therefore the language PML with sums is still Church-

Rosser.

Types are also extended with a symbol bar of arity

one.

� ::= : : : Old type

bar (� ) bar type

� ::= : : : Old row

bar (�) bar row

We should have used two di�erent symbols for bar types

and bar rows, but the context will distinguish them.

The symbol bar obeys the two distributivity axioms:

bar (a : �;') = a : bar (�); bar (')

@ (bar (�)) = bar (@ �)

We add the three typing rules:

H;K ` A : bar (�)

H;K ` M : �

H;K ` B(M ) : bar (�)

H;K ` L : bar (�)

H;K ` M : � H;K ` � y: N : � ) �

match L with A)M j B(y) ) N : �

Theorem 4 The language PML with sums has princi-

pal typings.

Theorem 5 Subject reduction holds for PML with

sums.

3 The three views of PML

Projective ML is a practical language of records with

default values. It is also a language in which all oper-

ations of classical records but concatenation are de�n-

able. Finally, computation inside elevations introduces

a new kind of polymorphism.

3.1 Records with default values

To the author's knowledge, this feature has never been

introduced in the literature before. Instead of start-

ing with empty records that can be extended with new

�elds, projective ML initially creates records with the

same default value on all �elds. Then a �nite number

of �elds can be modi�ed. Thus, all �elds are always

de�ned and can be read.

The introductory examples below have been type-

checked by a prototype typechecker written in Caml-

Light [Ler90]. The �rst examples are:

#type unit = Unit;;

#let r = [Unit];;

r : shared [unit]

#r/a;;

it : shared unit

#type bool = True j False;;

#let s = r [a = True];;

s : shared [a :bool; unit]

#s/a;;

it : shared bool

The a �eld of s cannot be removed, but it can be reset

to its default value. Whenever the types of �elds are

known statically, but not their presence, the attendance

can be dynamically checked:

#type �eld (�) = Absent j Present of �;;

#let r = [Abs] [a = Present (True)]

[b = Present (Unit)];;

r : shared [a :�eld (bool); b :�eld (unit); �eld (�)]



#let check x =

match x with Present y ) y

j Absent ) failwith "Absent �eld";;

check : �eld (�) ) �

#let v = check (r/a);;

v : shared bool

If the presence of �elds is stactically known, the two-

constructor data type can be replaced by two one-

constructor data types, leaving the typechecker check

attendances.

#type absent = Absent;;

#type present (�) = Present (�);;

#let get x = match x with Present y ) y;;

get :present (�) ) �

#[Absent][a = Present (true)][b = Present (unit)];;

it : shared [a :present (bool); b :present (unit); absent]

#let v = get (it/a);;

v : shared bool

Record with defaults are not just an untractable toy

feature. They can be compiled very e�ciently, as clas-

sical records [R�em92a].

3.2 Classical records

Continuing the example above, we show that classical

records are de�nable in projective ML. Precisely, clas-

sical record operations are just syntactic sugar for:

fg � [Absent]

fM with a = Ng � M [a = Present (N )]

(M:a) � get (M=a)

Many other constructions are programmable as well,

since projective ML allows the manipulation of �elds

whether they are present or absent.

M n a � M [a = Absent]

fM but a from Ng � M [a = N=a]

fexchange a and b in Mg � let u =M=a in

let v = M=b in

M [a = v][b = u]

Though e�ciency is not our main goal here, it is im-

portant to emphasize that dealing explicitly with the

presence of �elds does not cost anything. Since both

abs and pre data types have unique constructors, the

constructors need not be represented explicitly. That

is, the presence of �elds can be statically computed by

the typechecker. Even the default value Absent need

not be represented, since it is the only value in its type.

Thus the (very small) overhead for computing with el-

evations only costs when there are used.

Obviously, the projective implementation of stan-

dard records can be packed in an abstract data type or

a module so that the two types pre and abs and their

constructors are not visible outside, and the presence of

�elds cannot be manipulated by hand. But elevations

and projections will remain visible, can be used when-

ever defaults values in records are desirable, or also to

implement another variant of classical records.

3.3 Projection polymorphism

The last view of projective ML is quite unexpected. The

elevations are assigned rows that are in fact \template"

types. That is, they can be read on any component

by taking a copy of the template; therefore the type of

two projections will not be equal but isomorphic. For

instance, with classical records as in [R�em91] (or using

the syntactic sugar of the previous section) the function

that reads the a �eld of a record has type:

[a : pre � ;']! �

But this type can also be seen as

1

:

[a : pre � ; b : �; ]! �

With classical records, this polymorphism allows the

�nite representation of a potentially in�nite product of

types, and nothing more. In projective ML, we can �ll

the elevations with any value and even compute inside.

The identity function elevation [�x: x] has type [' )

']. Taking its projection on two arbitrary �elds gives

twice the same value but with two isomorphic types

�! � and � ! �. The program,

(�x: x x) (�x: x) (1)

cannot be written in ML without a Let. In projective

ML one can write:

(�x: x=a x=b) [�x: x] (2)

which has type �! �. It can be argued that this is not

exactly the same program, and that, if program trans-

formations are allowed, then the following ML program

also computes the same result.

(�xy: x y) (�x: x) (�x: x) (3)

This is certainly true, but the program (3) is much big-

ger than the program (1) and duplicates some of the

code. The expression (2) is almost as small as the ex-

pression (1) and takes less time to typecheck (for bigger

example of course, since all examples here are too small

to allow any comparison). In (3), the body of �x: x is

typed twice, but it is typed only once in (2) before the

resulting type is duplicated by uni�cation.

Moreover, if we consider a variant of PML without

the possibility of modifying elevations,

M ::= x j �x: M jM M j [M ] jM=a

1

In [R�em92c] we de�ne canonical forms and show that both

type have the same canonical form, though they are not equal

(the latter is less general).



then projections always access the default value of el-

evations (since they could not be modi�ed). Elevation

and projection can both be implemented as empty code.

They only modi�es the types (they are called retyping

functions), and helps the typechecker as if they were

type annotations. The elevation indicates that an ex-

pression may be used later with di�erent types, and

thus should be typed with a row. The projection re-

quires the use of a copy of the row template instead

of the row itself. The copy is kept inside the row for

constraint propagation.

Breaking the expression (2), the subexpression

(�x: x=a x=b) has type:

[a : � ! �; b : � ]! � (4)

There are obvious similarities with conjunctive

types [Cop80, Pie91]. This expression would have the

conjunctive type

(� ! � ^ � )! � (5)

Projective ML di�ers from conjunctive types by nam-

ing the conjunctions, but also in some deeper way. The

projection, which correspond to the expansion in con-

junctive types, is much more restrictive than the ex-

pansion. An interesting comparison would be with the

decidable restriction of conjunctive types that has been

recently proposed by Coppo and Denzianni [CG92].

There is an important limitation in the type system

of projective ML: it is a two-level design. Elevations

inside elevations get typed with shared rows and pro-

jective polymorphism is lost. A strati�ed version with

types, rows, rows of rows, etc. composing an in�nite

row tower can be imagined. The author has actually

worked on such a version but has not proved yet that

it is correct.

Another form of this limitation of projective poly-

morphism is its failure to cross elevations. The best

type for �x: [x] is @ � ) [@ �], while we would expect

') [']. Variables in elevations that are bound outside

of the current elevation in which they appear can only

have shared rows.

Projective polymorphism combines nicely with

generic polymorphism. The two concepts are orthog-

onal. Here is an example that combines both:

let F = � f: � x; y: f=a x; f=b y in

F [I] (I;K); F [K] (I;K)

where I and K are abbreviations for �x: x and �xy: x.

It is typeable in projective ML.

Conclusions

We have introduced Projective ML, and shown that it

is a type-safe language. Projective ML exceeds ML on

two opposite �elds.

� Elevations, modi�cations and projections are ex-

tensible records with defaults. With only three

operations that can be compiled very e�ciently,

they provide the ML language with enough power

to de�ne all variants of classical records.

� Projective ML brings in the type system a re-

stricted form of conjunctive polymorphism.

The curiosity of Projective ML is that both features are

almost independent but one still need the other. The

most intriguing of the two is projective polymorphism,

for which more investigation is still needed.
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A Uni�cation on projective

types

We describe the uni�cation algorithm by transforma-

tion rules on uni�cands (multi-sets of equations). The

formalism is the one of [R�em92c] in general, improved

with existential uni�cands [KJ90]. A multi-equation

is a multi-set of terms written �

1

_= : : : �

n

. A solu-

tion of a multi-equation is a substitution that uni�es all

the terms of the multi-equation. A multi-set of multi-

equations is noted U

1

^ : : :U

p

. Its solutions are the

substitutions that satisfy all the multi-equations. We

also use existential uni�cands, written 9�:U , whose so-

lutions are the restrictions of the solutions of U on vari-

ables distinct from �. Indeed, 9 acts as a binder, and

existential uni�cands are equal modulo �-conversion.

Consecutive binders can be exchanged, and 9�:U is

equal to U whenever � is not free in U . We identify

uni�cands modulo the previous equalities.

Two uni�cands U and U

0

are equivalent, and we

write U �� U

0

if they have the same set of solutions.

The relation �� is obviously an equivalence. It is also a

congruence, that is, parts of uni�cands can be replaced

by equivalent parts. We also write ? and > for uni�-

cands that are respectively equivalent to the empty set

and the set of all substitutions.

The input of the uni�cation algorithm is a multi-

set of equations. The output will be failure or a most

general solution of the input uni�cand. It proceeds in

three steps. All of these steps are described by trans-

formations of uni�cands that are equivalences.



Most of the transformations are valid for both types

and rows. We write � and � for terms and � for vari-

ables that can be of both kinds. The �rst step is the

generalization:

e _= �[�]

9�: e _= �[�] ^ � _= �

Generalize

An iteration of this rule will transform any system into

one that contains only small terms (terms of height at

most one).

The second step is only de�ned on small uni�cands,

and keeps them small. The mutation of uni�cands is

one of the four following transformations (f is a symbol

of arity p and I is the segment of integers [1; p]):

a : � ; � _= f(�

i

)

I

9 (�

i

)

I

('

i

)

I

:

^

8

>

<

>

:

� _= f (�

i

)

I

� _= f ('

i

)

I

�

i

_= a :�

i

;'

i

i 2 I

Mut

a.f

a : � ; � _= b :�; �

9':

V

�

� _= b :�;'

� _= a : � ;'

Mut

a.b

@ (� ) _= a :�;�

9�:

V

�

� _= � _= �

� _= @ (�)

Mut

@ .b

@ (� ) _= f (�

i

)

I

9 (�

i

)

I

:

V

(

� _= f (�

i

)

I

�

i

_= @ (�

i

) i 2 I

Mut

f.@

For all other pairs of terms (�; �), if they have identical

top symbols, they are decomposable, that is

� _= �

V

I

(�

=i

_= �

=i

)

Decompose

otherwise they produce a collision

� _= �

V

I

(�

=i

_= �

=i

)

Collision

All mutation, decomposition and collision rules can

be generalized to rules where the premise is a multi-

equation rather than an equation: for any mutation

rule

� _= �

Q

we build the generalized mutation rule:

e _= � _= �

e _= X ^Q

The fusion of multi-equations is:

� _= e ^ � _= e

0

� _= e _= e

0

Fuse

Applying the generalized mutation and the fusion in

any order always terminates on small uni�cands. Unif-

icands that cannot be reduced are necessarily in canon-

ical forms, that is, completely decomposed and fused.

The last step does the occur check on canonical unif-

icands while instantiating the equations by partial so-

lutions. On canonical uni�cands Q, we say that the

multi-equation e

0

is directly inner the multi-equation e

if there is at least a variable term of e

0

that appears

in a non variable term of e. We note <�

Q

its transitive

closure. The occur check is the rule

Q

?

Occurif e <�

Q

e,

Otherwise, we can apply the rule:

e ^Q

e ^ ê(Q)

Replaceif e 6<� Q,

where ê is the trivial solution of e that sends all vari-

able terms of e to the non variable term if it exists, or

to any variable term otherwise. The Replace rule is

completed by the elimination of useless existentials

9�: (� _= e ^Q)

e ^Q

Restrictif � =2 e \Q,

The succession of the three steps either fails or ends

with a system 9W:Q where all multi-equations are inde-

pendent. A principal solution of the system is

^

Q, that

is, the composition, in any order, of the trivial solutions

of its multi-equations. It is de�ned up to a renaming of

variables in W .

The last step may be reduced to the occur check,

and the equations in the uni�cand need not be instan-

tiated by rule Replace, since the canonical uni�cand

itself is a good and compact representation of a princi-

pal uni�er.

Although it is described in a more general frame-

work, the algorithm is very close to the one of Martelli-

Montanari for empty theories [MM82], some of the col-

lisions have been replaced by mutations in a way that

copies the axioms of the theory. This is a property of

syntactic theories [Kir86, KK89]. Proving the correct-

ness of the algorithm is reduced to proving the syntac-

ticness of the theory and the termination of the second

step. Proving the termination is standard, but proving

that the theory is syntactic is the di�cult part.

The second step may not be restricted to small

terms. In this case the generalized mutation and de-

composition rules need to include the minimum of gen-

eralization so that there is enough sharing to ensure the

termination.



B A simpler set of typing rules

for the projective calculus

The judgements are of the form H;K ` M : �, where

H and K are row assertions. The typing rules, called

(S) are:

x : @ � 2 H nK

H;K ` x : @ �

x : � 2 K

H;K ` x : � Var

H;K[x : �] ` M : �

H;K ` �x: M : �) � Fun

H;K ` M : � ) � H;K ` N : �

H;K `M N : � App

HK; ; ` M : �

H;K ` [M ] : @ [�] Elevate

H;K ` N : @ (�)

H;K ` M : @ [a : � ; �]

H;K ` M [a = N ] : @ [a : � ; �] Modify

H;K ` [M ] : @ [a : � ; �]

H;K ` M=a : @ � Project

H;K ` M : � � =

E

�

H;K ` M : � Equal

C Type inference

The above set of rules is completed with:

H;K `M : �

H;K[x : 8 (V(�) n V(HK)) � �] ` N : �

H;K ` let x = M in N : � Let

The rules are not exactly those of ML. The two rules

Modify and Project can be treated as application

of constants. The rule equal, due to an extended type

equality, does not add any di�culty, provided that the

theory is regular and has a decidable and unitary uni�-

cation algorithm [R�em90]. The only di�erence with ML

(extended with equations on types) is the mark in the

context. However, the position of the mark is rigid, and

the type inference algorithms of ML very easily extends

to the system S. We describe the algorithm in terms

of uni�cands. The substitution lemma (that extends

to PML) allows to consider type inference problems as

uni�cands, written H;K . M : �, whose solutions are

the substitutions � such that �(H); �(K) ` M : �(�) is

a valid judgement. We give below equivalence transfor-

mations of these uni�cands.

Case Var: If x : @ � is in H nK, and � is a renaming

of variables of V(� ) outside of �, then

H;K . x : �

9V(�(� )): � = �(� )

T-Var

If x : � is in K, and is a renaming of variables of V(�)

outside of �, then

H;K . x : �

9V(�(�)): � = �(�)

R-Var

If x is not in HK, then H;K . x : � is not solvable.

Case App:

H;K .MN : �

9 :H;K .M :  ^H;K . N :  ) �

App

Case Fun:

H;K . �x: M : �

9' :H;K[x : '] .M :  ^ � = ')  

Fun

Case Let: If � is outside of HK and 9W:Q is a

solvable independent uni�cand equivalent to H;K.M :

�, then

H;K . let x =M in N : �

9W:H;K[x :

^

Q(�)] . N : �

Let

If H;K.M : � is not solvable, then neither is H;K.

let x = M in N : �.

Case Elevate:

H;K . [M ] : �

9�:HK; ; .M : � ^ @ � _= �

Elevate

The above rules applied in any order either fail or re-

duce any type inference problem to a uni�cation prob-

lem.


