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Introduction

L'intelligence pour s'exercer a besoin d'un support linguistique. Ne serait-ce que pour devenir

un nez, il faut d'abord apprendre le langage des arômes. De cette primordialit�e du langage dans la

pens�ee, il n'est pas surprenant que les langages de programmation soient aussi un point d'articula-

tion entre la conception d'un logiciel et sa r�ealisation. Bien que la structure globale, les algorithmes

particuliers mis en oeuvre et le soin apport�e au codage soient des facteurs essentiels, le langage de

programmation est souvent lui-même d�eterminant pour la rapidit�e de la mise au point, la qualit�e

et la clart�e du code et la sûret�e du logiciel.

Les langages de programmation dits g�en�eraux, c'est-�a-dire non sp�ecialis�es �a certains types de

probl�emes, sont complets au sens de Turing. Cela veut dire qu'ils permettent d'�ecrire tous les

algorithmes calculables. Ils ne sont cependant pas tous �equivalents, car ils di��erent �enorm�ement

par leur expressivit�e, c'est-�a-dire leur capacit�e �a exprimer succintement certains algorithmes. Nous

sommes donc pouss�es �a une recherche |sans �n| de nouvelles structures de programmation, plus

abstraites, permettant de d�ecrire des algorithmes de fa�con plus concise. Nous ne recherchons pas

toutefois l'expressivit�e �a tout prix et nous nous e�or�cons de n'introduire que des constructions

g�en�erales, mais aussi simples et intuitives, modulaires, bien formalis�ees et sûres.

En contrepartie de la compl�etute des langages de programmation g�en�eraux, il faut abandonner

tout espoir de pouvoir d�ecider de propri�et�es importantes telles que la terminaison d'un programme,

ou ce qui est �equivalent, sa bonne ex�ecution. Mais il ne faut pas pour autant abandonner la sûret�e

de l'ex�ecution, sous pr�etexte de ne rien sacri�er �a l'expressivit�e. Il est possible et important de

conserver l'expressivit�e tout en se limitant �a une sous-classe d�ecidable des programmes qui s'�evaluent

normalement.

Apr�es une �etude approfondie du typage des enregistrements avec synth�ese des types, nous

proposons une extension du langage ML avec des objets et des classes, et les op�erations les plus

avanc�ees qui leurs sont associ�ees. Nous augmentons ainsi signi�cativement l'expressivit�e du langage

sans en perdre l'esprit.

Typage

Le typage est un outil g�en�eral permettant de d�e�nir, par un crit�ere simple et d�ecidable, un

sous-ensemble des expressions bien form�ees qui s'�evaluent correctement. Il consiste �a abstraire les

d�etails d'un programme, les valeurs particuli�eres prises par les arguments, et n'en retenir que leur

structure. Par exemple, on distingue les entiers de type int des châ�nes de caract�eres de type string,

mais on confond tous les entiers entre eux et toutes les châ�nes de caract�eres entre elles. Une fonction

sur les entiers a le type int! int. Le lien pr�ecis entre le r�esultat et l'argument est alors perdu, les

types des arguments et du r�esultat �etant uniquement retenus. Ainsi, les fonctions successeurs ou

pr�ed�ecesseurs ont toutes deux le type int ! int et, comme la preuve par neuf, le typage ne d�etectera

pas les erreurs de signe.
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Le polymorphisme param�etrique permet de donner �a une expression un ensemble de types ob-

tenus de fa�con uniforme. Ainsi, la fonction identit�e a pour type 8�:(�! �), ce qui signi�e qu'elle

a le type � ! � pour tout type � . Par exemple, elle a les types int! int et string ! string. Dans

les langages fonctionnels, les fonctions peuvent être pass�ees comme arguments d'autres fonctions

ou retourn�ees comme r�esultats. La fonction identit�e a donc aussi le type (int ! int) ! (int! int).

Le polymorphisme permet de retrouver une d�ependance entre le type du r�esultat et le type de

l'argument, mais moins pr�ecise bien sûr que le lien exact qui relie le r�esultat �a l'argument.

Le polymorphisme non param�etrique est dit ad hoc. Par exemple, le polymorphisme de surcharge

permet de regrouper sous un même nom plusieurs fonctions ayant des comportements di��erents. Le

choix de la fonction e�ectivement appliqu�ee est d�etermin�e statiquement par le type pr�ecis de l'argu-

ment, voire pendant le calcul par la valeur de l'argument. Dans ce travail, nous nous int�eresserons

plus particuli�erement au polymorphisme param�etrique et nous parlerons simplement de polymor-

phisme.

Le typage est en g�en�eral modulaire. Par exemple, le type de l'application d'une expression �a une

autre peut être obtenu en typant s�epar�ement chacune des expressions puis en combinant les types

obtenus. Plus g�en�eralement, il est souhaitable de pouvoir calculer le type d'un programme �a partir

des types des di��erentes parties qui le composent.

Une propri�et�e int�eressante mais di�cile �a satisfaire, donc qui n'est pas toujours vraie, est l'exis-

tence de types minimaux pour tous les programmes. Un type est minimal pour une expression

lorsqu'il est correct et que tous les autres types corrects en sont des instances.

En�n, un syst�eme de typage doit être con�cu de fa�con �a garantir la correction de l'�evaluation.

Cela signi�e que l'�evaluation des expressions peut se poursuivre jusqu'�a l'obtention d'une valeur, ou

ind�e�niment, mais ne peut pas s'arrêter sur un calcul inachev�e. En g�en�eral, on montre la combinai-

son de deux propri�et�es simultan�ement plus fortes. D'une part le type d'un programme est pr�eserv�e

au cours du calcul (appel�e r�eduction du programme). D'autre part les seuls programmes bien typ�es

qui ne peuvent plus être r�eduits sont les valeurs.

Le syst�eme de types de ML poss�ede toutes les propri�et�es �enonc�ees ci-dessus. Il est simple, robuste

et en fait relativement puissant : nous verrons dans les chapitres suivants comment l'�etendre sans en

perdre l'essence. Dans [102], le syst�eme de type de ML est enrichi en munissant l'alg�ebre des types

d'une th�eorie �equationnelle. Cette extension pr�eserve l'harmonie et la simplicit�e de pr�esentation du

langage. De plus, on retrouve la version d'origine en consid�erant la th�eorie �equationnelle vide. Le

syst�eme de typage obtenu, plus riche, est �a la base du typage des enregistrements et des objets,

c'est-�a-dire de l'essentiel des travaux pr�esent�es ici.

En fait, la simplicit�e de cette extension repose sur un enrichissement en largeur. Les th�eories

�equationnelles permettent d'augmenter la structure des types sans passer �a l'ordre sup�erieur. L'en-

semble des types possibles est ensuite restreint par des sortes. L'usage des sortes est important car

en limitant les formes possibles des types, il simpli�e remarquablement le probl�eme de l'uni�cation

dans les th�eories �equationnelles consid�er�ees. La combinaison de ces deux techniques s'av�ere tr�es

e�cace. Elle est illustr�ee dans le chapitre 2 et appliqu�ee au typage des enregistrements.

Synth�ese des types et v�eri�cation de types

Dans le langage ML le typage est implicite, c'est-�a-dire que les types ne font pas partie des

programmes, mais sont synth�etis�es. C'est l'approche de Curry. D'autres langages sont, au contraire,

explicitement typ�es. Les expressions n'ont plus de sens si les informations de types sont retir�ees ; le

syst�eme de typage n'est alors utilis�e que pour v�eri�er la coh�erence des annotations de type : c'est

l'approche de Church.
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Cette di��erence n'est pas toujours essentielle. En e�et, la s�emantique d'un langage explicitement

typ�e manipule les types, mais en g�en�eral, les types ne participent pas activement �a la r�eduction. Il

est alors possible d'obtenir une pr�esentation �a la Curry par e�acement des informations de types

dans les expressions, puis en projetant la relation de r�eduction typ�ee dans l'ensemble des termes

non typ�es. Inversement, les expressions d'un langage �a la Curry peuvent être enrichies par des

informations de types, et poss�edent donc une pr�esentation naturelle �a la Church.

D'ailleurs les visions de Curry et de Church sont deux positions extrêmes. Bien souvent, nous

nous trouvons dans une situation interm�ediaire o�u certaines informations de types sont explicites

alors que d'autres restent implicites. La di��erence entre les deux approches n'est pas non plus abso-

lument rigoureuse. Prenons comme exemple le langage ML, pr�esent�e comme un langage o�u les types

sont enti�erement synth�etis�es. Il permet des d�eclarations de types concrets qui consistent �a introduire

un nouveau constructeur de type et des fonctions de construction et de destruction pour les valeurs

de ce type. L'utilisation d'une fonction de construction ainsi d�eclar�ee porte une information de type

implicite si �etroitement li�ee au constructeur que l'on pourrait consid�erer cette information comme

explicite. Dire qu'une construction du langage est explicitement ou implicitement typ�ee comporte

donc une part de convention. Il serait sans doute plus appropri�e de comparer la quantit�e d'infor-

mation de type port�ee, implicitement ou explicitement, par des constructions �equivalentes dans

des langages di��erents. Par exemple, les types concrets de ML sont typ�es plus explicitement que

les variantes polymorphes dans lesquelles les constructeurs sont des �etiquettes sans appartenance �a

un type particulier. De même, lorsqu'elles sont surcharg�ees les op�erations arithm�etiques sont plus

implicites que dans un langage o�u le symbole 1 est forc�ement un entier et le symbole + l'addition

des entiers. En e�et, cela reviendrait �a lire 1 comme (1:int) dans un langage avec surcharge.

La synth�ese des types dans le langage ML n'est donc pas totale. La di��erence entre la synth�ese

des types et leur v�eri�cation est aussi une di��erence de point de vue. Dire que ML est implicite-

ment typ�e c'est dire que l'on suit l'approche de Curry, mais on ne peut pas pour autant d�e�nir les

d�eclarations de types concrets sans introduire la notion de type. Inversement dire que le syst�eme

F est explicitement typ�e, c'est reconnâ�tre qu'une des constructions principales du langage, l'abs-

traction comporte obligatoirement une information de type.

L'augmentation de l'expressivit�e du syst�eme de typage, in�eluctable, rend la synth�ese des types

plus di�cile et n�ecessite plus d'annotations dans le programme source. Nous avons mentionn�e ci-

dessus le cas des variantes polymorphes et celui de la surcharge. C'est �evidemment le cas aussi pour

l'ajout de polymorphisme d'ordre sup�erieur, pour lequel il n'est plus possible de synth�etiser tous

les types. Au mieux, nous ne pouvons plus que faire de la synth�ese partielle des types. La di�cult�e

est alors de permettre de ne pas indiquer certains types tout en conservant la propri�et�e des types

minimaux.

Dans ces travaux nous choisissons la pr�esentation traditionnelle du langage ML en prenant le

point de vue de Curry. Dans le chapitre 7 nous �etendons ML avec des types d'ordre sup�erieur

tout en pr�eservant l'essence de ML, donc aussi l'approche �a la Curry. Toutefois, de plus en plus de

travaux s'orientent vers une approche typ�ee. Sur le plan th�eorique, cela permet de pr�esenter ML

comme un sous-ensemble d'un langage explicitement typ�e plus puissant (le syst�eme F). Sur le plan

pratique, cela permet de pr�eserver les types pendant la compilation (donc pendant une certaine

partie du calcul), même s'ils n'y participent pas activement.

Aussi, la fronti�ere entre ces deux styles qui a �et�e autrefois tr�es nette ne cesse aujourd'hui de

s'estomper. Plusieurs travaux r�ecents vont dans le sens d'un rapprochement des deux points de

vue, que ce soit en augmentant le langage ML avec des annotations de types explicites, ou en

introduisant de la synth�ese partielle des types dans le syst�eme F ou les langages qui en sont d�eriv�es

F

!

et F

!

<:

[96, 89, 37].



10 TABLE DES MATI

�

ERES

Les enregistrements pas �a pas

La notion d'enregistrement est extrêmement simple et se retrouve dans la plupart des langages

de programmation. Les enregistrements sont des produits �a champs nomm�es.

�

A la di��erence des

tuples, ils permettent d'acc�eder aux composantes par nom plutôt que par position. Dans toute leur

g�en�eralit�e, les enregistrements peuvent �egalement être construits en ajoutant de nouveaux champs

�a des enregistrements d�ej�a existants. Dans un langage non typ�e ils peuvent simplement être simul�es

par des listes d'associations cl�e-valeur. Les enregistrements sont donc une construction simple avec

une s�emantique simple. Leur typage monomorphe ne pose d'ailleurs aucune di�cult�e. Cependant,

une �etiquette ne peut plus appartenir qu'�a un seul type d'enregistrement dans tout le programme.

L'int�erêt, mais aussi les di�cult�es de typage, commencent avec les enregistrements polymorphes.

Ceux-ci permettent de ne pas d�eclarer leur type pr�ealablement �a leur utilisation comme il faut le faire

dans le langage ML. Puisque les �etiquettes n'appartiennent plus �a un enregistrement particulier,

elles peuvent être utilis�ees librement pour construire des enregistrements, ou bien acc�eder �a leurs

composantes. On peut ainsi �ecrire une fonction d'acc�es polymorphe, c'est-�a-dire une fonction qui

projette sur une �etiquette �x�ee tout enregistrement d�e�ni sur cette �etiquette, ind�ependemment

des autres �etiquettes. On ne saurait parler d'enregistrements polymorphes sans cette construction

primordiale. Une autre op�eration, plus di�cile �a typer, est l'extension polymorphe. Elle permet

l'ajout d'un champ donn�e �a un enregistrement quelconque, que ce champ soit ou non d�e�ni dans

l'enregistrement initial. On parle alors d'enregistrements extensibles.

L'acc�es polymorphe est essentiel parce qu'il mod�elise l'envoi de messages dans la programmation

�a objets. L'op�eration d'extension, importante elle aussi, mod�elise l'h�eritage simple.

Les objets un grand pas

La notion de programmation avec objets est connue depuis longtemps. Elle a d'abord �et�e motiv�ee

par le besoin d'�ecrire les programmes de mani�ere plus modulaires, pour mieux les comprendre dans

leur ensemble, les corriger plus facilement, ou les adapter, mais aussi pour pouvoir r�eutiliser certaines

composantes dans des contextes di��erents.

La notion de module est apparue avec des motivations tr�es similaires. Dans leur r�ealisation

les modules sont assez �eloign�es des objets, bien qu'ils reposent sur des m�ecanismes analogues : les

structures d'enregistrements, l'abstraction de type, le sous-typage.

D'apparence simple, les objets (au sens de la programmation �a objets) sont r�eellement com-

pliqu�es. Cela peut surprendre le novice qui ne connâ�t des objets que leur popularit�e, mais surpren-

dra moins le lecteur averti plus conscient de la multitude et de la complexit�e des m�ecanismes mis

en �uvre.

Un objet comporte avant tout des donn�ees, passives, pr�esent�ees en g�en�eral comme un enregis-

trement. Ce sont les variables d'instance dans le jargon des langages �a objets. Celles-ci peuvent être

acc�ed�ees directement, comme les champs d'un enregistrement. Les donn�ees peuvent aussi être exa-

min�ees indirectement, en invoquant une m�ethode de l'objet. Les m�ethodes peuvent être vues comme

des fonctions op�erant sur les donn�ees de l'objet, donc qui re�coivent l'objet lui-même en argument.

Elles sont ajout�ees �a l'enregistrement des variables d'instance comme des champs suppl�ementaires.

Cela permet aux m�ethodes d'appeler d'autres m�ethodes du même objet. Ainsi, l'envoi d'un mes-

sage �a un objet, (on dit aussi l'invocation d'une m�ethode d'un objet) consiste �a s�electionner la

fonction correspondante puis lui passer l'objet en argument. Cela induit une forme de r�ecursivit�e

qui introduit beaucoup de di�cult�es : le type d'un objet est celui d'une structure d'enregistrement

dont certaines composantes, les m�ethodes, ont des types fonctionnels de domaine le type de l'objet
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lui-même. C'est donc un type r�ecursif.

D'autres op�erations sur les objets viennent en compliquer davantage le concept. Par exemple, une

forme d'h�eritage est en g�en�eral r�ealis�ee par l'interm�ediaire des classes. Les classes sont des mod�eles

d'objets, c'est-�a-dire des objets abstraits par rapport aux valeurs particuli�eres des donn�ees (variables

d'instance). Les objets sont alors cr�e�es par instanciation des classes. L'h�eritage est un m�ecanisme

qui permet de construire de nouvelles classes �a partir de classes d�ej�a existantes. La combinaison de

l'h�eritage et de la r�ecursion n�ecessite un m�ecanisme suppl�ementaire, la liaison tardive, qui permet

aux appels r�ecursifs entre les m�ethodes d'être r�esolus �a la cr�eation de l'objet plutôt qu'�a leur

d�e�nition. D'autres constructions moins fondamentales n'en sont pas moins di�ciles, comme par

exemple la possibilit�e de cacher des m�ethodes a posteriori, et ne sont pas encore enti�erement r�esolus.

Des enregistrements aux objets il n'y a qu'un pas

Dans l'ensemble des travaux pr�esent�es ici, enregistrements et objets sont intimement li�es. Dans

un premier temps nous nous sommes attach�es �a mieux comprendre les objets. Pour cela nous en

avons d'abord �etudi�e une version d�egrad�ee : les objets enregistrements. Notre motivation �etait

alors que les m�ecanismes fondamentaux de la programmation avec objets devaient correspondre

aux op�erations d'acc�es et d'extension dans les enregistrements. Cela a abouti sur des outils et des

techniques robustes, n�ecessaires autant pour le typage des objets que pour celui des enregistrements.

Poursuivant dans cette direction, nous avons �etudi�e les objets vus comme des enregistrements.

Cette exp�erience largement positive, nous a permis d'exprimer toutes les constructions importantes

des langages �a objets. Au del�a de notre attente, nous avons aussi pu mettre en �uvre facilement

des m�ecanismes r�eput�es di�ciles comme l'h�eritage multiple. Cela n'a �et�e possible qu'en s'appuyant

fortement sur l'ensemble des outils mis au point pour les enregistrements. Il est aussi int�eressant

de remarquer qu'en retour, ce travail a augment�e notre compr�ehension des objets et notre habilet�e

�a les expliquer.

Une fois le terrain d�ebroussaill�e, munis des bons outils et de concepts simpli��es, nous avons alors

pris la direction inverse, et propos�e des op�erations primitives sur les objets. Le langage Objective

ML est une extension �a objets puissante et parfaitement int�egr�ee au langage ML, malgr�e toutes les

di�cult�es impos�ees par la synth�ese des types en ML. Cela a facilit�e l'�elimination des points rugueux

de la proposition pr�ec�edente, notamment ceux reli�es �a l'a�chage des types et le report d'erreurs, en

utilisant un m�ecanisme d'abr�eviation automatique. Puis, nous avons �a nouveau enrichi cette base

solide avec des m�ethodes polymorphes pour donner aux classes param�etriques toute leur puissance.

Mais il restait une derni�ere �etape importante : refaire le chemin inverse jusqu'au point de

d�epart, les enregistrements, et se demander quel autre chemin aurait �et�e possible. C'est cette sorte

d'introspection fructueuse que nous proposons dans le chapitre 8. En nous lib�erant de la contrainte

de la synth�ese des types, mais en conservant le lien �etroit entre objets et enregistrements nous

proposons d'uni�er le concept de classe �a celui d'objet.

Ainsi, la th�ese que nous d�efendons dans ce m�emoire est que les objets sont une forme enrichie

des enregistrements. Nous justi�ons alors a posteriori le terme objets-enregistrements puisque les

enregistrements deviennent une forme d�eg�en�er�ee des objets. Notre th�ese ne contredit pas l'id�ee plus

traditionnelle que les objets sont des enregistrements de fonctions. Mais les objets ne sont pas que

cela.

Le plus court chemin des objets aux enregistrements que nous pr�esentons dans ce m�emoire s'ap-

puie sur un ensemble de travaux publi�es dans des conf�erences ou des journaux. Chacun approfondit

une ou plusieurs des notions d�ecrites ci-dessus. Ces articles, pr�esent�es dans l'ordre chronologique le

sont aussi dans l'ordre logique des d�ependances. Chaque travail s'appuie en e�et sur une partie en
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g�en�eral assez grande des travaux pr�ec�edents et en prolonge certains aspects ou en explore des voies

nouvelles.

Le langage ML est le t�emoin de cette unit�e th�ematique. L'ensemble des travaux est motiv�e par

le souhait d'ajouter des objets �a ML, qui sera r�ealis�e dans le chapitre 6. Support de ces travaux, le

langage ML en est donc aussi le premier b�en�e�ciaire in �ne. Mais chaque �etape interm�ediaire lui

o�re aussi des applications importantes : les objets enregistrements dans le chapitre 2, le typage de

la concat�enation des enregistrements dans le chapitre 4 qui syst�ematise un style de programmation,

ou encore le polymorphisme d'ordre sup�erieur dans le chapitre 7.

Cette �etude va, bien sûr, au del�a du langage ML. D'une part parce que les extensions propos�ees

sugg�erent et incitent �a une meilleure int�egration du langage ML avec un syst�eme de types d'ordre

sup�erieur. D'autre part, la simplicit�e et l'expressivit�e du typage des objets en Objective ML renforce

l'id�ee que l'utilisation des types-enregistrements et du polymorphisme des variables de rang�ee doit

être privil�egi�ee par rapport au sous-typage qui peut être ajout�e ult�erieurement. On peut donc

esp�erer au-del�a du langage ML une simpli�cation des calculs d'objets primitifs avec typage explicite.

Notations

Comme certains chapitres ont �et�e �ecrits en collaboration avec d'autres personnes, les nota-

tions et les conventions typographiques changent donc forc�ement d'un chapitre �a un autre. Nous

avons toutefois essay�e de les uniformiser autant que possible. Il reste n�eanmoins des di��erences de

notations ou de style incompatible d'un chapitre �a l'autre, et les notations doivent toujours être

comprises en prenant le chapitre comme unit�e.



Chapitre 1

Un raccourci

Ce chapitre est un survol, en langue fran�caise, du reste du m�emoire, compos�e d'articles en

langue anglaise. Toutefois, pour �eviter un simple r�esum�e des di��erents articles, nous avons choisi

un style plus informel et un contenu technique plus l�eger permettant de d�ecrire plus librement les

intuitions qui sous-tendent les id�ees d�eveloppe�es. Nous nous permettons �egalement de pr�esenter

certains chapitres principalement au travers d'exemples.

�

A la di��erence des autres chapitres �ecrits

dans l'ordre chronologique et ins�er�es sans \retouches", nous pro�tons ici du recul qui nous est o�ert

pour mettre l'accent sur les points les plus importants ou simplement moins connus. Nous esp�erons

que ce m�elange de raccourcis et de d�etours aidera le lecteur sans le perdre, et lui montrera ces

travaux sous une lumi�ere l�eg�erement di��erente.

1.1 Le langage ML

Avant d'�etudier plusieurs extensions sophistiqu�ees de ML, nous nous devons de commencer par

un bref rappel sur le langage ML lui-même. Sans apport technique, ce rappel permet d'introduire

quelques notations, un peu de vocabulaire et le formalisme qui se retrouveront dans tous les chapitres

suivants. Nous en pro�tons �egalement pour mettre en avant les principes du langage sur lesquels

s'appuient les di��erentes extensions.

Nous pouvons restreindre notre �etude au noyau ML, compos�e du �-calcul avec constantes et

d'une construction de liaison.

a ::= z j fun (x) a j a a j let x = a in a z ::= x j c

Les identi�cateurs, d�esign�es par la lettre z, regroupent les variables x et les constantes c. Cette

d�ecomposition permet de factoriser une partie de la pr�esentation. Par de nombreux aspects, no-

tamment pour tout ce qui concerne le typage, les constantes se comportent comme des variables.

D'autres constructions, notamment des constructions imp�eratives, sont n�ecessaires dans un vrai

langage de programmation. A�n qu'elles puissent être facilement ajout�ees ult�erieurement, nous

choisissons une s�emantique d'appel par valeur. La plupart des r�esultats qui seront pr�esent�es restent

valides, parfois apr�es adaptation, pour une strat�egie de r�eduction arbitraire (par exemple, le cha-

pitre 4 se place dans un cadre plus g�en�eral). Cependant, pour l'�etude du typage, la param�etrisation

de la s�emantique par une strat�egie de r�eduction particuli�ere apporte peu, tout en compliquant

notablement la pr�esentation.

Dans le �-calcul sans constante les valeurs sont les fonctions. En pr�esence de constantes, il faut

leur ajouter les valeurs construites et les primitives partiellement appliqu�ees. Pour les d�e�nir de

13
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fa�con param�etrique, nous attribuons �a chaque constante une arit�e �xe k et nous distinguons les

constructeurs C des primitives f . Une constante d'arit�e k est une valeur si elle est appliqu�ee au

moins de k fois. Un constructeur d'arit�e k appliqu�e k fois est aussi une valeur. (Il serait possible

d'utiliser la notion habituelle d'arit�e, plus rigide, qui impose exactement k applications, mais celle-

ci compliquerait la formalisation en obligeant une forme d'application n-aire. Aussi nous pr�ef�erons

cette forme plus tol�erante, qui par ailleurs est assez naturelle et revient �a autoriser les applications

partielles pour les constantes.)

c

k

::= C

k

j f

k

Constantes d'ordre k.

v ::= fun (x) a j C

k

a

1

: : : a

k

j c

k

a

1

: : : a

q

si q < k

Nous donnons une s�emantique op�erationnelle �a petits pas pour ML. Elle est d�e�nie par un ensemble

de contextes d'�evaluation et des r�egles de r�eduction. Les contextes d'�evaluation E sont d�e�nis par

la grammaire suivante :

E ::= [] j E a j v E Contextes d'�evaluation

Les radicaux sont de la forme (�

v

) ou (�). La �-r�eduction est d�e�nie par la r�egle :

(fun (x) a) v

�

v

�! v[a=x]

qui est une version restreinte de la r�egle (�) �a une strat�egie d'appel par valeur. Les �-r�eductions

sont d�e�nies par des r�egles de la forme

f

k

v

1

: : : v

k

�

�! a

et donn�ees en param�etre, d�e�nissant ainsi la s�emantique des primitives. La relation de r�eduction

�! est la fermeture des relations (�

v

) et (�) par la r�egle de congruence :

a

1

�! a

2

E[a

1

] �! E[a

2

]

On note

�

�! la fermeture transitive de �! (Par abus, on note aussi parfois simplement �! pour

�

�!).

Les types sont les variables, les 
�eches et les types construits. Les types sont donc param�etr�es

par un ensemble de symboles de types donn�es avec leur arit�e. Les sch�emas de types sont des types

quanti��es par un ensemble de variables. Les environnements de types sont des fonctions partielles

des variables dans les sch�emas de types.

� ::= � j � ! � j g(�� ) Types

� ::= 8��:� Sch�emas de type

A ::= ; j A� (z 7! �) Environnements de typage

Un jugement de typage est de la forme A ` a : � et signi�e que dans le contexte A, le programme

a a le type � . Nous donnons une pr�esentation du typage dirig�ee par la syntaxe dans la �gure 1.1.

Le syst�eme de typage est aussi param�etr�e par un environnement initial A

0

de domaine l'ensemble

des constantes.

Il est possible de montrer la correction de la s�emantique vis �a vis du typage �a condition toutefois

que les s�emantiques statiques et dynamiques des constantes soient coh�erentes.

La correction du typage s'exprime par deux propri�et�es (�a elles deux plus fortes que la cor-

rection) : auto-r�eduction et progression. La propri�et�e d'auto-r�eduction signi�e que les typages sont

pr�eserv�es par r�eduction. D�e�nissons le typage d'une expression a comme l'ensemble des paires (A; �)

telles que A ` a : � , et notons � le transfert naturel de la relation d'inclusion sur les ensembles de

typages en une relation d'inclusion sur les expressions.
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(Var-Inst)

z : 8��:�

0

2 A

A ` z : �

0

[��=��]

(Fun)

A� (x 7! �

2

) ` a : �

1

A ` fun (x) a : �

2

! �

1

(App)

A ` a

1

: �

2

! �

1

A ` a

2

: �

2

A ` a

1

a

2

: �

1

(Gen-Let)

A ` a

1

: �

1

A� (x 7! Gen(�

1

; A)) ` a

2

: �

2

A ` let x = a

1

in a

2

: �

2

L'expression Gen(�;A) est la g�en�eralisation du type � dans l'environnement A. C'est le sch�ema de

types obtenu en quanti�ant toutes les variables qui sont libres dans � mais pas dans A.

Fig. 1.1: R�egles de typage pour le noyau ML.

Th�eor�eme 1 (Auto-r�eduction) Les typages sont pr�eserv�es par r�eduction (la relation � est une

sous-relation de �!).

Th�eor�eme 2 (Progression) Les expressions bien typ�ees qui ne sont pas des valeurs peuvent être

r�eduites.

Ces deux th�eor�emes d�ependent �evidemment du choix des �-r�egles. Ils sont valides pourvu que

les deux hypoth�eses suivantes soient satisfaites.

1. Auto-r�eduction � est une sous relation de �,

2. Progression Une expression bien typ�ee de la forme f

k

v

1

: : : v

k

peut toujours se r�eduire par

une �-r�egle.

Une autre propri�et�e importante pour le langage ML est l'existence de types principaux et d'un

algorithme qui les calcule. Les syst�emes de typage que nous consid�erons v�eri�ent tous le lemme

suivant.

Lemme 1 (Stabilit�e par substitution) Si A ` a : � est un jugement valide, alors pour toute

substitution � le jugement �(A) ` a : �(�) est aussi valide.

Cela permet de consid�erer la synth�ese des types comme un probl�eme d'uni�cation et de pro�ter des

formalismes et des outils d�evelopp�es dans le domaine de l'uni�cation pour le r�esoudre (voir [102]).

Un probl�eme de typage est la donn�ee d'un environnement de typage A, d'un programme a et

d'un type � et consiste en la recherche de l'ensemble des substitutions � telles que le jugement

�(A) ` a : �(�) soit valide. La stabilit�e par substitution implique que l'ensemble des solutions d'un

probl�eme de typage est ferm�e par composition avec une substitution arbitraire. L'existence de types

principaux se ram�ene alors l'existence de solutions minimales aux probl�emes de typage.

Th�eor�eme 3 (Types principaux) Un probl�eme de typage qui admet une solution admet une

solution minimale. Il existe un algorithme qui �etant donn�e un probl�eme de typage retourne une

solution minimale ou un �echec si le probl�eme de typage n'a pas de solution.

Sortes et th�eorie �equationnelle Les r�esultats s'�etendent �egalement lorsque l'alg�ebre des types

est sort�ee ou munie d'une th�eorie �equationnelle r�eguli�ere (les deux membres d'une �equation

poss�edent toujours le même ensemble de variables). L'existence de types principaux d�epend alors de

l'existence d'uni�cateurs principaux dans l'alg�ebre consid�er�e. Cette extension est �etudi�ee dans [102].

On pourra se reporter �a [58] pour une autre �etude dans le cas des th�eories �equationnelles non

r�eguli�eres. La correction du typage pour l'�evaluation d�epend alors de conditions suppl�ementaires

entre les types des primitives et leur domaine d�e�nition.
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Types r�ecursifs Les r�esultats s'�etendent �egalement au cas des types r�ecursifs dans l'alg�ebre libre.

Toutefois, en pr�esence d'�equations, il faudra prendre garde �a ce que les types r�ecursifs commutent

avec les �equations. Nous traitons seulement un cas particulier dans le chapitre 5 (et nous ne donnons

que des r�esultats purement syntaxiques).

Des variations sur les d�e�nitions Une solution d'un probl�eme de typage peut donc instancier

les variables libres du contexte de typage autant que les variables du type attendu pour l'expres-

sion typ�ee. C'est en ce sens (1) que nous assurons l'existence de solutions principales. Les types

principaux sont quelques fois �enonc�es en interdisant d'instantier les variables libres dans le contexte

(2). Lorsque les types sont les termes d'une alg�ebre libre, il n'y a pas de di��erence entre les deux

r�esultats. En e�et si la solution principale du probl�eme (1) restreinte aux variables du contexte de

typage est un renommage, alors on en d�eduit une solution principale de (1) ; sinon il n'y a pas de

solution au probl�eme (2). (La r�eciproque est facile.) Cette propri�et�e n'est plus n�ecessairement vraie

en pr�esence d'une th�eorie �equationnelle.

Constructions imp�eratives Les r�esultats pr�esent�es dans cette partie s'�etendent aux construc-

tions imp�eratives lorsque la construction de liaison let x = a in a est remplac�ee par la forme

plus restreinte let x = v in a. En fait, il est possible de relâcher cette condition, et il su�t que

v soit une expression non expansive, c'est-�a-dire qui s'�evalue sans cr�eer d'e�et de bord. On peut

aussi, de fa�con encore plus souple permettre de lier une expression a quelconque, mais interdire la

g�en�eralisation des variables de types qui apparaissent dans le typage d'une sous-expression de a qui

n'est pas elle-même une sous expression d'une expression non-expansive de a.

1.2 Les enregistrements polymorphes

Le langage ML peut être facilement �etendu avec des enregistrements d�eclar�es, analogues aux

types concrets. Ces enregistrements ne sont pas su�samment puissants pour simuler les objets.

En particulier, il n'est pas possible d'�ecrire une fonction polymorphe qui puisse acc�eder au même

champ ` de deux enregistrements de types di��erents, mais ayant tous deux le même champ `. Le

langage SML propose une variante des enregistrements d�eclar�es autorisant la surcharge statique

des �etiquettes, mais la restriction �a de la surcharge statique ne permet pas d'augmenter r�eellement

l'expressivit�e du langage et revient �a une simple convenance de notation.

Les enregistrements polymorphes sont au coeur du typage des objets, comme l'ont tr�es tôt

remarqu�e Cardelli [20], puis Wand [119] dans le cadre du langage ML.

Le typage des enregistrements s'appuie sur les types-enregistrements et le polymorphisme des

variables de rang�ee propos�e par Wand [119].

�

Elabor�e pr�ecis�ement dans mes travaux de th�ese [100],

sa pr�esentation a �et�e ensuite simpli��ee et son �etude poursuivie dans divers articles : les r�esultats

les plus techniques sont pr�esent�es dans [104, 102] et appliqu�es �a une proposition concr�ete pr�esent�ee

dans le chapitre 2 qui reproduit [106]. Toutefois, nous montrons dans le chapitre 3 que le typage

des enregistrements polymorphes peut se d�ecomposer en deux fonctionnalit�es orthogonales :

{ les enregistrements partiels de domaine �ni,

{ les enregistrements totaux (constants presque partout) de domaine in�ni.

Cette d�ecomposition permet une pr�esentation plus simple des enregistrements ; elle est aussi enri-

chissante, car chacun des m�ecanismes peut être utilis�e ind�ependemment de l'autre. Aussi c'est la

pr�esentation que nous suivrons ici. Cette d�ecomposition n'est pas apparue imm�ediatement, bien

que notre premier travail, pr�esent�e dans [99], ne couvrait techniquement que le premier aspect. Les
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id�ees pour traiter les domaines in�nis �etaient pr�esentes, mais pas encore tout �a fait matures. Cette

d�ecomposition est aussi int�eressante parce que le premier aspect peut s'exprimer enti�erement dans

le langage ML, alors que le second demande une extension signi�cative du langage.

Plusieurs variantes du calcul sur les enregistrements ont �et�e propos�ees, en g�en�eral pour �eviter des

di�cult�es de typages. Notre s�eparation en deux fonctionnalit�es orthogonales permet de les retrouver

presque toutes en gardant le même moteur des enregistrements totaux et en modi�ant seulement

les op�erations sur les champs des enregistrements partiels, ou en en ajoutant de nouvelles. Par

exemple dans le chapitre 3, nous montrons comment ajouter des op�erations de retrait et d'�echange

de champs. Cela con�rme �egalement que pour bien comprendre le typage des enregistrements (ou

de structures similaires), il est essentielle de les �etudier d'abord sur un champ unique (�a la rigueur

quelques uns), le m�ecanisme g�en�eral en d�ecoule alors facilement. Cela sera mis �a pro�t dans le

chapitre 8.

1.2.1 Enregistrements partiels de domaine �ni

Dans cette partie, nous consid�erons un ensemble �ni d'�etiquettes. Pour simpli�er la pr�esentation

nous pouvons nous limiter �a deux ou trois �etiquettes. Un enregistrement a �egal �a fa = 1 ; b = trueg

peut être �ecrit dans le langage ML apr�es avoir e�ectu�e la d�eclaration de type suivante :

type bar = fa : int; b : boolg

L'expression a a le type bar. La phrase ci-dessus est en quelque sorte une d�eclaration de type abstrait

avec une fonction de construction fun (x) fun (y) fa = x ; b = yg et deux projections fun (y) (y:a)

et fun (y) (y:b) pour fonctions d'�elimination. L'exemple peut être g�en�eralis�e en d�eclarant le type

bar polymorphe :

type (�, �) bar = fa : �; b : �g

Mais un enregistrement b d�e�ni seulement sur le champ a est n�ecessairement d'un autre type

bar', pr�ealablement d�eclar�e, di��erent et incompatible avec bar. Le probl�eme du typage des enre-

gistrements apparâ�t d�es que l'on souhaite �ecrire une fonction d'acc�es polymorphe, c'est-�a-dire une

fonction d'acc�es �a un champ ` �x�e qui puisse prendre en argument tout enregistrement ayant au

moins le champ ` d�e�ni, ind�ependamment des autres champs.

En l'absence d'enregistrements polymorphes, une solution na��ve en ML consisterait �a utiliser

un enregistrement su�samment grand poss�edant tous les champs n�ecessaires et �a ne pas remplir

certains champs. Cela se traduit en ML par l'utilisation de valeurs du type suivant :

type � option = Some of � j None;;

On pourrait ainsi �ecrire fa = Some 1; b = Some trueg et fa = Some 0; b = Noneg pour

repr�esenter respectivement les enregistrements fa = 1; b = trueg et fa = 0g. Cependant cette

solution oblige �a ex�ecuter un test dynamiquement �a chaque acc�es �a un champ de l'enregistrement : le

typage ne rend pas compte de la pr�esence ou l'absence d'un champ. Nous avons donc aussi le risque

d'une erreur dynamique, alors que nous souhaitons d�etecter l'absence d'un champ statiquement.

En fait, il existe une solution tr�es simple en ML pour distinguer par le typage si une valeur

est pr�esente ou pas. Elle consiste �a remplacer le type optionnel par deux d�eclarations de types

ind�ependantes :

type � pre = Pre of � and abs = Abs;;

Chacun des constructeurs appartenant alors �a un type di��erent, il est possible de distinguer stati-

quement les deux cas. Plus pr�ecis�ement, chacun des constructeurs est super
u (ici car unique dans
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son type), et pourrait être omis. En tous cas, même s'il reste pr�esent dynamiquement, le test ne

peut jamais �echou�e, et en fait n'est pas e�ectu�e. Reprenons le codage de fa�con plus syst�ematique

(nous en pro�tons pour ajouter un champ suppl�ementaire) :

type (�, �, 
) record = fa : �; b : �; c : 
g;;

let get (Pre x) = x;;

let a x = get x.a and b x = get x.b;;

val a : (� pre, �, 
) record ! � = hfuni

val b : (�, � pre, 
) record ! � = hfuni

Nous pouvons �ecrire le programme suivant en toute s�ecurit�e :

let x = fa = Pre 1; b = Pre true; c = Absg;;

let y = fa = Pre 0; b = Abs; c = Absg;;

(a x) + (a y);;

L'acc�es �a un champ non d�e�ni sera d�etect�e statiquement.

b y;;

Characters 3�4:

This expression has type (int pre, abs, abs) record

but is here used with type (int pre, � pre, �) record

L'extension d'un enregistrement donn�e avec un nouveau champ peut �egalement être d�e�nie :

let a r x = fa = Pre x; b = r.b; c=r.cg and b r x = fa = r.a; b = Pre x; c=r.cg;;

val a : (�, �, 
) record ! � ! (� pre, �, 
) record = hfuni

val b : (�, �, 
) record ! � ! (�, � pre, 
) record = hfuni

Nous v�eri�ons sur un exemple que l'extension d'un champ est libre, c'est-�a-dire qu'elle peut se faire

que le champ soit ou non d�e�ni (cela se voit �egalement sur le type de a ci-dessus).

let x' = a x false and y' = b y false;;

Le codage que nous venons de pr�esenter peut être �evit�e en utilisant des enregistrements extensibles

primitifs tout en conservant le m�ecanisme de typage. Nous avons alors deux applications possibles :

{ Utiliser le codage tel quel et sans extension du langage lorsqu'une situation n�ecessite des

enregistrements partiellement d�e�nis.

{ Ajouter du sucre syntaxique ou, mieux, en d�eduire des constructions primitives pour les

enregistrements polymorphes extensibles de domaine �ni pr�e-d�e�ni (c'est en fait la solution

expos�e dans [99]).

Toutefois, l'une ou l'autre ne convient que pour un usage peu fr�equent ou avec des constructions

primitives pour de petits ensembles d'�etiquettes, et un programme complet. En e�et, on ne peut

longtemps cacher le probl�eme de la taille des types enregistrements proportionnels au nombre total

d'�etiquettes apparaissant dans le programme. Lorsque celui-ci devient trop grand et lorsque les

enregistrements sont d�e�nis sur un tr�es petit sous-ensemble d'�etiquettes, les types ont une taille

d�emesur�ee par rapport aux valeurs et deviennent du bruit illisible.

Pire, cela exclut un ensemble potentiellement in�ni d'�etiquettes, puisque les �etiquettes ne sont

pas connues �a l'avance. Pour des raisons de modularit�e, il est important de ne pas �xer l'ensemble

des �etiquettes en fonction d'un programme particulier, mais de se donner d�es le d�epart un ensemble

potentiellement in�ni d�enombrable de toutes les �etiquettes possibles.
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Pour bien expliquer la modularit�e ou le m�ecanisme qui permet de ne retenir que les �etiquettes

signi�catives, il faut in�evitablement consid�erer un ensemble in�ni d'�etiquettes. L'intuition facile que

le cas in�ni est la limite du cas �ni est tout �a fait informelle et ne dispense en rien d'une �etude

rigoureuse.

Ce codage a �et�e repris, avec les limitations que nous venons d'exposer dans [121] dans le cadre

de ML et [24] dans un syst�eme de types de second ordre. D'autres �etudes plus r�ecentes sur les

codages dans le �-calcul suivent une d�emarche analogue.

Pour aller plus loin, et �naliser compl�etement l'ajout de constructions primitives, il est souhai-

table d'ajouter des sortes aux expressions de types de fa�con �a distinguer les types des champs P �

et A ainsi que les variables de champs des types usuels. Pour cela, on utilisera une signature tr�es

simple qui est l'une des deux signatures pr�esent�ees dans le chapitre 2.

1.2.2 Enregistrements totaux de domaine in�ni

Nous r�esolvons ici le probl�eme orthogonal. Il ne s'agit plus de savoir si un champ est d�e�ni ou

non, puisque nous supposons tous les champs d�e�nis, mais de connâ�tre le type des valeurs port�ees

par tels ou tels champs.

Nous nous limitons ici �a des enregistrements totaux presque partout constants. C'est-�a-dire que

les projections sont toutes �egales sauf au plus celles d'un nombre �ni de champs. Intuitivement,

une valeur d'un enregistrement peut être repr�esent�ee par ses valeurs particuli�eres sur les champs

signi�catifs et une valeur par d�efaut sur les autres champs.

f`

1

= v

1

; : : : `

n

= v

n

; �g

Il est donc naturel de typer un tel enregistrement par une expression de type analogue :

f`

1

= �

1

; : : : `

n

= �

n

; �g

Toutefois, nous apportons quelques corrections : Pour �eviter un symbole f g d'arit�e variable, il est

pr�ef�erable de voir le type pr�ec�edent comme f(`

1

: �

1

; (: : : `

n

: �

n

; �)g qu'il faut lire

fg

�

`

1

(�

1

; (: : : `

n

(�

n

; �) : : :))

�

C'est-�a-dire que f g est un constructeur d'arit�e 1 et (` : ; ) est un constructeur d'arit�e deux pour

tout ` 2 L. Les expressions (` : � ; �) sont dites expressions de rang�ee et ne peuvent pas être utilis�ees

en dehors des types enregistrements. Pour distinguer les types usuels � des expressions de rang�ee �

nous introduisons un nouveau symbole h i et nous �ecrirons h�i pour utiliser � comme une rang�ee.

Finalement, nous �ecrivons f`

1

= �

1

; (: : : `

n

= �

n

; [� ])g. La grammaire des expressions de type est :

� ::= � j � ! � j f�g � ::= ' j (` : � ; �) j h�i

Remarquons que nous avons ajout�e des variables de rang�ee ' qui s'av�erent jouer un rôle essentiel.

Pour retrouver l'id�ee intuitive que l'utilisation d'�etiquettes permet de ne plus tenir compte de

l'ordre, les rang�ees sont consid�er�ees modulo une �equation de commutativit�e gauche, i.e.

(`

1

: �

1

; (`

2

;�

2

;�)) = (`

2

: �

2

; (`

1

: �

1

;�)) 8`

1

; `

2

2 L

En�n, l'autre intuition que le type en �n de rang�ee repr�esente le type des projections sur tous les

champs non signi�catifs est rendue par une �equation d'idempotence :

h�i = (` : � ; h�i) 8` 2 L
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En�n, certaines expressions de type telles que f`:� ; `:�

0

; �g ! f�g sont mal form�ees. D'une part,

le champ ` est r�ep�et�e deux fois : quel valeur faut-il lui donner ? Il serait possible de choisir la valeur

la plus �a gauche, comme cela est fait dans [8, 66], mais au prix d'une complication inutile. D'autre

part la variable � apparâ�t dans deux contextes di��erents n'�etant pas pr�ec�ed�es des mêmes ensembles

d'�etiquettes explicitement d�e�nies. L'�elimination du cas pr�ec�edent nous oblige �a �eliminer ce second

cas de fa�con �a ce que l'instance d'un type bien form�e soit toujours bien form�e. Les expressions de

type mal form�ees peuvent être �elimin�ees par des sortes (se reporter au chapitre 2).

Il est maintenant facile de d�e�nir les primitives essentielles sur les enregistrements totaux avec

leur types :

Primitive Type S�emantique intuitive

( =`) [`:� ; �]! � Acc�es au champ `

( k [` = ]) [`:� ; �]! �

0

! [`:�

0

; �] Modi�cation du champ `

[ ] �! [h�i] Enregistrement constant

L'expression [v] cr�ee un enregistrement partout �egal �a v. L'expression v

1

[` = v

2

] retourne un

enregistrement �egal �a v

1

sauf sur le champ ` o�u il vaut v

2

. L'expression v=` retrouve la valeur de

v sur le champ `. Par exemple, [0] est l'enregistrement qui vaut 0 sur toutes ses projections et a

pour type [hinti]. L'enregistrement [0] jj [b = true] qui vaut true sur le champ b et 0 sur tous

les autres champs ; il a pour type [b : bool; hinti]. L'expression ([0] jj [b = true]) / b s'�evalue

en 0.

Pour retrouver les enregistrements partiels de domaine in�ni, il su�t de composer les deux

solutions pr�ec�edentes. On obtient les primitives d�ecrites dans le tableau ci-dessous :

Primitive Traduction Type

( :`) fun (x) get (x=`) [`: P � ; �

0

]! �

( k f` = g) fun (r x) (r k f`: Pre xg) [`: P � ; �

0

]! �

00

! [`: P �

00

; �

0

]

fg [Abs] [hAi]

Ce tableau peut �a nouveau se lire de deux mani�eres di��erentes, selon la vision (style de program-

mation ou nouvelles primitives) des enregistrements partiels. La premi�ere lecture est celle retenue

dans le chapitre 3. La seconde est plus dans l'esprit du chapitre 2. Les types des enregistrements

partiels de domaine in�ni sont restreints par une double signature, chacune correspondant �a une

des extensions.

Une extension naturelle La version donn�ee ici des enregistrements totaux est une simpli�cation

de celle �etudi�ee dans le chapitre 3. En particulier, les mod�eles sont ici des variables ou des types

usuels h�i. Pour atteindre toute leur puissance, la structure des types est hi�erarchis�ee et inclue une

copie des types usuels dans les rang�ees. Cette extension n'est pas n�ecessaire pour les enregistrements

polymorphes classiques mais elle l'est pour la variante utilis�ee dans le chapitre 5.

Types �etiquet�es Les types-�etiquet�es de Berthomieu, reformalis�es ensuite par Le Monier de Sa-

gazan [8] sont une autre solution aux enregistrements totaux de domaine in�ni. On en d�eduit
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imm�ediatement une autre solution au typage des enregistrements polymorphes partiels de domaine

in�ni par composition avec notre solution pour les enregistrements partiels. Dans leur version de

base, les types-�etiquet�es et les types-enregistrements ont même expressivit�e, mais ils di��erent rapi-

dement d�es que l'on en consid�ere des extensions. Nous pensons aussi que les types enregistrements

sont plus simples parce qu'ils rentrent dans le formalisme bien compris des alg�ebres sort�ees et des

th�eories �equationnelles et ne n�ecessitent pas de modi�er les r�egles de typage de ML.

Autres applications Les enregistrements totaux sont des enregistrements avec valeurs par

d�efaut. Leur int�erêt ne se limite pas �a cette application imm�ediate. Ils sont aussi une forme duale

des variantes : en e�et les variantes ont naturellement un cas d'action par d�efaut pouvant s'appli-

quer �a n'importe quel constructeur (portant une valeur du bon type). Ils permettent �egalement de

d�ecrire des types plus pr�ecis. Cela n'est pas sans importance car cette extension sera indispensable

pour d�e�nir les types des objets et des messages dans le langage ML-ART.

Polymorphisme et variables de rang�ee Dans notre approche du typage des enregistrements,

les op�erations de s�election et d'extension reposent uniquement sur le polymorphisme (des variables

de rang�ees), ce qui �evite toute perte d'information de type. La �nesse des types-enregistrements

permet de les manipuler exactement. Il est possible d'extraire l'information de types sur tous les

champs sauf un nombre �ni pour reconstruire un nouvel enregistrement, avec des types di��erents

sur ces champs particuliers, mais exactement le même comportement sur les autres champs, qu'ils

soient d�e�nis ou non. Ce sont ces deux aspects, tous deux absents dans l'approche plus fr�equente

avec du sous-typage, qui nous permettent de rester au premier ordre, donc de conserver la simpli-

cit�e du langage ML pour typer pr�ecis�ement et simplement les enregistrements, mais aussi et c'est

sans doute encore plus important, les objets dans les chapitres 5 et 6. Les types-enregistrements

poss�edent des (( destructeurs de types )) dans le sens de Hofmann et Pierce [53]. Toutefois, les types

enregistrements n'o�rent que l'op�eration tr�es simple d'expansion. La contraction, plus compliqu�ee,

�etudi�ee dans [100], est en fait un ra�nement qui n'est pas vraiment n�ecessaire. L'ajout de sous-

typage est possible, mais il est secondaire, et permet simplement de confondre des enregistrements

de domaines di��erents, en cachant le sous-domaine sur lequel ils di��erent.

1.3 Concat�enation des enregistrements

Le probl�eme de la concat�enation des enregistrements se pose naturellement comme une

g�en�eralisation de l'op�eration d'extension. En pratique son importance est justi��ee par son analogie

avec l'h�eritage. Alors que l'extension des enregistrements permet de simuler l'ajout de m�ethodes �a

un objet existant donc la notion d'h�eritage simple, la concat�enation des enregistrements correspond

naturellement �a l'h�eritage multiple.

Le probl�eme de la concat�enation est celui de donner un type su�samment g�en�eral �a la primitive k

qui prend deux enregistrements et en retourne un troisi�eme compos�e de tous les champs du second

plus ceux qui sont dans le premier mais pas dans le second. La seule contrainte sur les arguments

est qu'ils soient des enregistrements, donc de types f�g et f�

0

g. Mais comment exprimer le type

du r�esultat ? Intuitivement, nous souhaiterions �ecrire f� k �

0

g pour les types des champs pris par

priorit�e dans �

0

et dans � lorsqu'ils ne sont pas d�e�nis (i.e. de type A) dans �

0

. Pour formaliser

cette proposition, il faudrait introduire un constructeur k avec des �equations et une strat�egie de

r�esolution pour �etendre les algorithmes d'uni�cation sur de tels termes. La plupart des tentatives

pour r�esoudre ce probl�emes ont �echou�e, au moins partiellement. Les premi�eres sont restreintes et

compliqu�ees [50, 27]. Une proposition r�ecente tr�es simple change la s�emantique des enregistrements
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et la rend d�ependante des types [125]. D'autres propositions utilisent une forme de types intersection

et sont plus coûteuses [121]. Nous avons �egalement �etudi�e la concat�enation �a partir d'un m�ecanisme

de sous-typage dans [110] qui ressemble �a une forme d�egrad�ee de types intersection.

Nous proposons ici une solution oppos�ee qui est plutôt un contournement de la di�cult�e que

sa r�esolution e�ective. Elle consiste �a consid�erer (donc �a typer) un enregistrement r comme une

fonction fun (u) (u k r) qui ajoute ses propres champs �a un enregistrement u arbitraire re�cu

en argument. L'int�erêt de cette construction provient du fait que l'enregistrement r est toujours

connu, seul l'argument u restant arbitraire. En s'appuyant sur la composition, on ram�ene ainsi la

concat�enation de deux enregistrements arbitraires �a la concat�enation �a gauche, c'est-�a-dire �a une

op�eration d'extension.

Nous donnons ci-dessous les primitives sur les enregistrements avec concat�enation, leur codage

en terme d'enregistrements avec extension, et le type des expressions primitives et cod�ees.

Concat�enation (primitive) Traduction

( :`) fun (x) fun (u) (u k f` = xg)

�! f`:�

00

) P �

0

; �g �! f`:�

00

; �g ! f`: P �

0

; �g

fg fun (u) u

f�) �g f�g ! f�g

( k ) fun (r r

0

) fun (u) (u k r) k r

0

f�) �

0

g ! f�

0

) �

00

g ! f�) �

00

g (f�g ! f�

0

g)! (f�

0

g ! f�

00

g)! f�g ! f�

00

g

Le constructeur de type ) utilis�e ici est distributif par rapport aux symboles (` : ; ).

Au sens strict, cette proposition est d'abord un style de programmation qui permet d'�eviter

le probl�eme de la concat�enation des enregistrements. C'est aussi un syst�eme de typage pour la

concat�enation des enregistrements permettant la synth�ese des types. Plus g�en�eralement, c'est une

m�ethode pour �etendre un syst�eme de typage avec une op�eration d'extension �a un syst�eme plus riche

avec une op�eration de concat�enation.

1.4 Les objets vus comme des enregistrements

Le lien entre les objets et les enregistrements a �et�e mis en �evidence par L. Cardelli d�es 1984 [20] et

repris par M. Wand [121] dans le contexte de ML en 1988. Toutefois, une correspondance plus �etroite

et typ�ee n'a �et�e r�ealis�ee que vers 1994 [93] par B. Pierce et D. N. Turner. Dans le chapitre 5 pr�esent�e

aussi dans [108], nous reprenons cette d�emarche, mais avec deux contraintes suppl�ementaires. Nous

nous imposons une e�cacit�e et une concision du code source qui soient r�ealistes pour une utilisation

dans un vrai langage ; d'autre part nous choisissons le langage ML ce qui nous oblige �a synth�etiser

tous les types, donc �a rester pour l'essentiel au premier ordre.

Les objets

Dans leur version la plus simple, les objets sont des enregistrements de valeurs. A�n de distinguer

les objects des autres enregistrements, il serait naturel de d�e�nir le type suivant

1

.

1

Les exemples de cette partie sont typables dans une maquette du langage ML-ART.



1.4. LES OBJETS VUS COMME DES ENREGISTREMENTS 23

type (�) objet = Objet of f�g

Toutefois cette notation obligerait �a expliquer que le param�etre � du type objet est une variable de

rang�ee et donc �a expliquer les sortes �a l'utilisateur. Pour �eviter ce probl�eme, mais aussi pour rendre

les types des objets plus lisibles, nous pr�ef�erons utiliser une extension de la notion d'abr�eviation de

type introduite par B. Berthomieu dans LCS [7]. Celle-ci permet l'utilisation du �ltrage dans les

expressions de type en param�etre. Par exemple, on pourra �ecrire :

type (� * �) fst == �;;

Un telle d�e�nition impose que l'argument du constructeur fst soit �ltr�e par le motif de sa d�e�nition,

c'est-�a-dire ici une expression de type paire. Cette forme d'abr�eviation est d'autant plus pratique

qu'elle est compatible avec l'�egalit�e sur les types enregistrements. Nous �ecrirons plutôt :

type (f�g) object = Object of f�g;;

Dans cette vision simpli��ee, l'envoi de message se r�eduirait �a l'acc�es au champ correspondant dans

l'enregistrement.

let send m (Object p) = p.m;;

S�eparer les variables d'instance des m�ethodes

En fait, on distingue dans un objet les variables d'instance qui sont des champs d'enregis-

trements comme d�ecrits ci-dessus, et des m�ethodes qui sont des proc�edures qu'il faut ex�ecuter �a

l'invocation d'un message. Pour plusieurs raisons, il est important de distinguer les variables d'ins-

tance des m�ethodes. D'une part, il est fr�equent qu'un objet poss�ede quelques variables d'instance

et de nombreuses m�ethodes. De plus, de nombreux objets ont les mêmes m�ethodes et ne di��erent

que par leurs variables d'instance. L'enregistrement des m�ethodes peut alors être partag�e.

Pour renforcer cette distinction, et simpli�er la pr�esentation, nous consid�erons un objet comme

une paire compos�ee d'un �etat interne R (les variables d'instance) et d'un vecteur de m�ethodes

M . Les m�ethodes doivent pouvoir consulter l'�etat interne de l'objet. Pour rendre les m�ethodes

ind�ependantes de l'�etat interne R (ce qui permettra ensuite d'en h�eriter), il est pr�ef�erable de les

abstraire syst�ematiquement par rapport �a R

Avant de donner le type des objets, pr�ecisons que la structure des types enregistrements de ML-

ART est une variante de ceux d�ecrits ci-dessus (elle est pr�esent�ee plus en d�etail dans le chapitre 2) :

' ::= � j P � j A est remplac�e par ' ::= � j �:� o�u � ::= � j Pj A

Ainsi, au lieu de dire qu'un champ est absent ou pr�esent avec un certain type, nous d�ecrivons

s�epar�ement le type possible (au sens usuel) des valeurs d'un champ, qu'il soit pr�esent ou absent,

et sa pr�esence. Par exemple, l'enregistrement a �egal �a f`

1

= 1 ; `

2

= trueg a maintenant pour type

f`

1

: P :int ; `

2

: P :bool ; A:�g. Cette variante pr�esent�ee �a la �n du chapitre 2 est strictement plus

expressive. Il est facile de traduire les types pr�ec�edents dans cette forme enrichie. Cette structure

permet aussi de manipuler le type d'un enregistrement de fonctions roff (for record of functions)

comme celui d'une fonction retournant un enregistrement.

type (f'arg ! ('attendance. 'methods)g) roff == f'attendance. 'arg ! 'methodsg;;

Nous (( jouons )) avec les �equations de distribution des types enregistrements pour en donner une

lecture plus concise : lorsque le type 'arg est identique dans tous les champs de l'enregistrement,

l'�ecriture de gauche permet de ne le mentionner qu'une seule fois.

Cette notation permet de d�e�nir le type des m�ethodes comme suit :
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type ('R, f'Ig) objectM == f['R] ! 'Ig roff;;

Ainsi, les m�ethodes f['R] ! 'Ig roff sont un enregistrement de fonctions de domaine commun

'R. En e�et, ici ['R] est un \mod�ele" constant partout �egal �a 'R. De fa�con plus importante, cette

notation permet de s�eparer le type commun 'R de l'�etat interne des objets de celui de leur interface

f'Ig, ce qui permettra ensuite d'abstraire l'�etat interne.

type ('R, f'Ig) objectRM == ('R * ('R, f'Ig) objectM);;

Cacher l'�etat interne

Dans de nombreuses situations, les variables d'instance d�eterminent la repr�esentation de l'objet

qui est souvent un choix d'implantation dont ne d�ependent que les m�ethodes de l'objet. Inversement

les m�ethodes d�eterminent l'interface de l'objet qui est utilis�ee par les autres parties du programme.

Il est fr�equent de vouloir cacher la repr�esentation de l'objet, que ce soit pour des raisons de s�ecurit�e,

de lisibilit�e ou simplement pour permettre �a des objets ayant des implantations di��erentes mais

des interfaces identiques d'être �echang�es. Un exemple classique est celui des points dans le plan que

l'on peut repr�esenter en coordonn�ees polaires ou en coordonn�ees cart�esiennes selon les op�erations

que l'on souhaite privil�egier.

Pour cacher l'�etat interne, nous reprenons la solution B. Pierce et D. Turner [93]. Pour cela, il

su�t ajouter des types existentiels au langage, par exemple en reprenant la proposition de K. La�ufer

et M. Odersky [64, 65]. On peut alors abstraire l'�etat interne 'R dans le type des objets

type (f'Ig) object = Object of Exist ('R) ('R, f'Ig) objectRM;;

Permettre les appels r�ecursifs

Dans la programmation avec objets, il est important qu'une m�ethode puisse envoyer

r�ecursivement d'autres messages �a l'objet qui l'a invoqu�ee. Dans [93]. B. Pierce et D. N. Tur-

ner r�esolvent ce probl�eme en d�e�nissant les m�ethodes d'un objet r�ecursivement. Cependant, en

raison de la di�cult�e �a d�e�nir un point �xe sur les enregistrements avec une strat�egie d'�evaluation

en appel par valeur, leur codage ne s'applique que dans un langage avec une strat�egie d'�evaluation

en appel par nom. Il en r�esulte que chaque appel r�ecursif r�e�evalue, donc recopie, l'enregistrement

des m�ethodes. Pour �eviter cette source d'ine�cacit�e (et d'autres probl�emes), nous pr�ef�erons utiliser

le m�ecanisme dit d'auto-application. Il consiste �a abstraire les m�ethodes par rapport �a R et M plutôt

que par rapport �a R seul. En contrepartie, le type des m�ethodes devient r�ecursif :

type ('R, f'Ig) objectM == rec 'M in (f['R * 'M] ! 'Ig) roff;;

En e�et, les m�ethodes qui composent un objet ont pour domaine le type de l'objet lui-même. En

revanche l'enregistrement des m�ethodes lui-même n'est plus r�ecursif (�a l'inverse de la proposition

pr�ec�edente o�u les objets �etaient r�ecursifs, mais pas leurs types). Nous reprenons alors les d�e�nitions

pr�ec�edentes inchang�ees pour obtenir le type �nal des objets dans ML-ART :

type ('R, f'Ig) objectRM == ('R * ('R, f'Ig) objectM);;

type (f'Ig) object = Object of Exist ('R) ('R, f'Ig) objectRM;;

L'�etat interne cach�e �a l'ext�erieur de l'objet, reste visible par les m�ethodes. Pour cela, il est important

que la r�ecursion soit �a l'int�erieur de l'abstraction, et non l'inverse. En particulier, les m�ethodes sont

d�e�nies en ayant une vision exacte de l'�etat interne 'R, ce qui leur permet d'acc�eder ou de modi�er

l'�etat interne. Bien sûr, on aurait pu �ecrire directement :

type (f'Ig) object = Object of Exist ('R) rec 'RM in ('R * (f['RM] ! 'Ig) roff)
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D�e�nir des messages polymorphes

Lorsqu'un message est utilis�e �a l'int�erieur d'un objet, il interagit avec l'�etat interne puisqu'il

s�electionne une m�ethode (donc une fonction) qui re�coit l'�etat interne de l'objet comme argument.

Si un tel message est import�e de fa�con monomorphe, il en r�esulte une extrusion de l'�etat interne

�a l'ext�erieur de l'objet par l'interm�ediaire du message. Les fonctions import�ees de l'ext�erieur pour

être appliqu�ees �a une valeur comportant des parties cach�ees doivent être su�samment polymorphes

pour laisser les parties cach�ees bien cach�ees... Cette observation, qui semble ne pas avoir �et�e re-

marqu�ee auparavant, est pourtant g�en�erale : la pr�esence de types existentiels n'a gu�ere d'int�erêt

sans l'existence simultan�ee de types universels. Heureusement, ces derniers peuvent être rattach�es

�a des d�eclarations de types concrets comme les types existentiels tout en �etant techniquement plus

simples que ceux-ci. Le type des messages est :

type (f'Ig, �) message = Message of

All ('R) ('R, f'Ig) objectM ! ('R, f'Ig) objectRM ! �;;

Les messages sont polymorphes par rapport �a la repr�esentation interne des objets. L'envoi de

messages est une fonction uniforme.

let repr S = fst S;;

let meth S = snd S;;

let send message P =

let (Object S) = P in let (Message extractor) = message in extractor (meth S) S;;

Reste �a d�e�nir quelques messages...

let setx = Message (fun x ! x.setx);;

let getx = Message (fun x ! x.getx);;

En�n, un objet !

let point =

let pointR = fmutable abscisse = 0g in

let pointM =

let getx self = (repr self).abscisse

and setx self x = (repr self).abscisse  x

and move self x = send setx (Object self) (x + send getx (Object self))

in emptyM jj fgetx; setx; moveg

in Object (pointR, pointM);;

La valeur emptyM est simplement l'enregistrement vide mais avec le type

(� ! fabs. nullg) objectM o�u null est un nouveau symbole de type, utilis�e simplement

pour rendre les objets monomorphes.

Les classes

Comme nous l'avons rappel�e, de nombreux objets ne di��erent que par leurs variables d'instance.

En fait, les objets sont en g�en�eral construits �a partir de classes. Une classe doit permettre deux

op�erations bien distinctes : g�en�erer des objets de cette classe et cr�eer d'autres classes par h�eritage.

En particulier, une classe est abstraite par rapport aux variables d'instance. Puisque les m�ethodes

ne d�ependent pas des variables d'instance, il su�t d'abstraire l'�etat interne par rapport �a celles-ci.

Une premi�ere tentative est donc est de repr�esenter une classe par la paire d'une fonction pour
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cr�eer l'�etat interne, et d'un enregistrement de m�ethodes. Pour h�eriter d'une classe, il su�rait de lui

ajouter les variables d'instance et les m�ethodes suppl�ementaires de la classe h�erit�ee.

Toutefois, il est plus facile de prendre en compte directement l'h�eritage multiple. Par analo-

gie avec la concat�enation des enregistrements, l'enregistrement des m�ethodes M d'une classe C est

abstrait par rapport aux m�ethodes superM d'une classe parente hypoth�etique �a laquelle la classe

C pourrait ult�erieurement être ajout�ee. De même, l'�etat interne R de la classe C est abstrait par

rapport au constructeur de l'�etat interne superR de la classe parente. Concr�etement, la classe des

points sera d�e�nie ainsi :

let pointC =

let pointR superR v = superR jj fmutable abscisse = vg in

let pointM superM =

let getx self = (repr self).abscisse

and setx self x = (repr self).abscisse  x

and move self x = send setx (Object self) (x + send getx (Object self))

and print self = print int (send getx (Object self))

in superM jj fgetx; setx; move; printg

in Class (pointR, pointM);;

Le lien entre les classes et les objets est clari��e par la fonction d'instantiation :

let new (Class (RR, MM)) v = Object (RR fg v, MM emptyM);;

Le constructeur de type Class ci-dessus est utilis�e principalement pour imposer une contrainte sur

le type des composantes et ainsi anticiper certaines erreurs de types. Sa d�e�nition n'est elle-même

ni facile ni tr�es lisible, mais le constructeur permet aussi de rendre le type des classes plus lisible,

car moins polymorphe. Une d�e�nition approch�ee est :

type ('superR ! 'init ! 'R, f'superI ! 'Ig) class = Class of

('superR ! 'init ! 'R) *

(f [ ('R, f'Ig) objectRM ] ! 'superIg roff ! ('R, f'Ig) objectM)

La d�e�nition r�eelle est l�eg�erement di��erent car il faut dissocier les occurrences de 'R dans le construc-

teur de l'�etat interne et dans l'enregistrement des m�ethodes.

Le codage des classes par des enrouleurs (wrappers) o�re directement l'acc�es aux messages

de la super-classe. Pour envoyer un message �a la classe parente, il su�t d'extraire la fonction

correspondante dans superM et de lui passer la vision interne de self en argument. Pour illustrer

l'h�eritage multiple, nous d�e�nissons une classe couleur :

let colorC =

let colorR superR c = superR jj fcolor = cg in

let colorM superM = superM jj f

print = fun self ! superM.print self; print string (repr self).color

g in Class (colorR, colorM);;

L'h�eritage est obtenu par composition des composantes g�en�eratrices des classes.

let inherit (Class (RR1, MM1)) (Class (RR2, MM2)) =

let RR superR (v1,v2) = RR2 (RR1 superR v1) v2 in

let MM superM = MM2 (MM1 superM) in

Class (RR, MM);;

let colored pointC() = inherit pointC colorC;;
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Et voici le point color�e !

let p = new (colored pointC()) (1,"blue");;

send print p;;

1blue� : unit = ()

Le langage ML-ART permet de nombreuses autres constructions, plus avanc�ees. Par exemple, il

est possible de retourner self exactement, une copie de self, ou une version de self dans laquelle

certaines variables d'instance ont �et�e modi��ees. Nous verrons ces op�erations ci apr�es dans le langage

Objective ML.

Notre proposition est avant tout un style de programmation avec objets qui s'appuie de fa�con

essentielle sur les enregistrements polymorphes extensibles. Nous avons pour cela fourni une librairie

pour les objets �ecrite dans le langage ML-ART. Cette librairie utilise toutes les constructions mises

au point dans les chapitre 2, 3, 4, les types existentiels de K. La�ufer et M. Odersky [64], les types

universels qui sont un compl�ement indispensable aux types existentiels. Nous avons �egalement

ajout�e des d�e�nitions de types avec �ltrage, mais seulement pour rendre les expressions de type

plus lisibles.

Compar�ee avec la proposition de B. Pierce and D. N. Turner, notre solution est plus avanc�ee.

D'une part elle prend en compte un ensemble plus complet d'op�erations sur les objets. Elle est

�egalement plus r�ealiste, dans le sens o�u le code source est concis et non redondant. On pourrait en

fait reprendre le codage de ML-ART dans un calcul avec types explicites d'ordre sup�erieur. Cela

permettrait en outre de r�esoudre le probl�eme de la lisibilit�e des types grâce �a des op�erateurs de

types plus puissants.

1.5 Objective ML

L'exp�erience pr�ec�edente est satisfaisante sur le plan th�eorique. En revanche elle est un peu

d�ecevante sur le plan pratique. En e�et, les types des classes que nous nous sommes bien gard�es de

montrer deviennent vite tr�es gros, et donc illisibles. La compr�ehension des erreurs de typage qui non

seulement oblige �a les lire, mais aussi �a les comparer est encore plus di�cile. Le probl�eme n'est pas

surprenant, et il est li�e �a la combinaison de deux facteurs aggravants. D'une part la synth�ese totale

des types signi�e aussi l'absence d'abr�eviations de types. Les types des objets re
�etent enti�erement

leur structure. D'autre part, les objets sont par essence des structures compliqu�ees. Chaque donn�ee

est accompagn�ee de l'ensemble de toutes les op�erations qui peuvent être e�ectu�ees sur cette donn�ee.

Dans la vision tout objet, un entier devient une structure comportant une variable d'instance

d�ecrivant la valeur de l'entier et autant de m�ethodes que de fonctions disponibles sur les entiers,

certainement plus d'une vingtaine. Ce facteur est encore aggrav�e par la structure r�ecursive des

objets. Cela n'augmente pas n�ecessairement la taille des types �a condition de les repr�esenter (et de

les a�cher) comme des graphes, mais dans tous les cas, en diminue leur lisibilit�e. Il devient donc

n�ecessaire d'abr�eger les types des objets.

C'est la premi�ere justi�cation d'Objective ML. Le syst�eme des types d'Objective ML est en fait

moins expressif que celui de ML-ART. L'exercice consistait �a simpli�er le syst�eme de types de ML-

ART autant que possible, pour en simpli�er la pr�esentation th�eorique, mais en conservant tous les

exemples pratiques. La plupart des simpli�cations sont permises par l'utilisation de constructions

primitives et par la restriction des classes �a être d�eclar�ees au niveau le plus haut du langage (i.e.

elles ne sont pas autoris�ees sous abstraction). Ces restrictions, en plus des simpli�cations th�eoriques

ont permis de mettre en place un m�ecanisme d'abr�eviation automatique des types tr�es sophistiqu�e.

C'est la seule technique vraiment nouvelle d�evelopp�ee pour Objective ML, mais elle est essentielle
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et r�eellement e�cace. La plus grande partie du travail reste toutefois l'ajustement et la mise en

�uvre harmonieuse de techniques connues. La puissance, la souplesse et la l�eg�eret�e du langage en

d�ependent simultan�ement.

Plutôt que de montrer les d�etails techniques du m�ecanisme d'abr�eviation ou l'�etude formelle du

langage, nous pr�ef�erons illustrer le r�esultat au travers d'une petite d�emonstration de la couche objet

du langage Ocaml [70]. Nous renvoyons le lecteur au chapitre 6 pour une pr�esentation formelle du

langage ou du m�ecanisme d'abr�eviation.

Montrer la r�eussite d'un langage avec synth�ese des types est une tâche di�cile, car plus le

syst�eme de types est expressif, moins il y a de types �a montrer ! Les exemples de cette partie ont

tous �et�e ex�ecut�es automatiquement dans la boucle interactive du langage Objective Caml (Ocaml

en abr�eg�e). Les types ne sont imprim�es que lorsqu'ils sont signi�catifs ou dans la partie 1.5 o�u nous

nous int�eressons plus pr�ecis�ement au typage.

De la programmation classique aux objets

Nous en pro�tons pour rappeler quelques id�ees qui ne sont pas particuli�erement li�ees au langage

Ocaml, mais au style de programmation avec objets. De fa�con traditionnelle, les donn�ees sont

distingu�ees des fonctions qui op�erent sur celles-ci. Les donn�ees sont les entiers, les caract�eres, mais

aussi les types concrets :

type pierre = Opal j Perle j Diamant;;

type � liste = Cons of � * � liste j Nil;;

Les fonctions sont primitives ou d�e�nies sur les types de bases, ou bien d�e�nies par �ltrage. Ci-

dessous la fonction concasser s�eparent des cailloux en leurs �el�ements constituants :

let concasse = function

Opal ! ['O'; 'p'; 'a'; 'l'; ' ']

j Perle ! ['P'; 'e'; 'r'; 'l'; 'e'; ' ' ]

j Diamant ! [ 'D'; 'i'; 'a'; 'm'; 'a'; 'n'; 't'; ' '];;

Dans cette vue traditionnelle, le calcul est d�ecrit par l'application d'une fonction �a des donn�ees

let imprime caillou x = List.iter print char (concasse x);;

imprime caillou Opal;;

Dans le style �a objets, une donn�ee est regroup�ee avec l'ensemble de toutes les fonctions qui peuvent

op�erer sur celle-ci, dans une structure appel�ee objet. Les objets sont construits �a partir des classes.

Les classes d�ecrivent au travers des m�ethodes le comportement d'un ensemble d'objets, mais elles

abstraient les valeurs particuli�eres qui di��erencient les objets de la classe.

class entier n =

object

val valeur = n

method z�ero = (valeur = 0)

method successeur = fh valeur = valeur + 1 ig

method pr�ed�ecesseur = fh valeur = min 0 (valeur�1) ig

method imprime = print int valeur

end;;

L'expression fh valeur = valeur + 1 ig retourne une copie modi��ee de self, et ne produit pas

d'e�et de bord.
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class caillou roche =

object

method concasse = concasse roche

method imprime = imprime caillou roche

end;;

Un objet est cr�e�e comme instance d'une classe.

let treize = new entier 13;;

let pierre = new caillou Diamant;;

Le calcul est maintenant d�ecrit pas envoi de message.

treize # imprime; pierre # imprime;;

13Diamant � : unit = ()

Plusieurs messages du même nom (comme imprime dans l'exemple ci-dessus) peuvent avoir un

comportement di��erent. Cela est rendu possible parce que le comportement qui doit être ex�ecut�e

�a la r�eception du message est port�e par l'objet qui le re�coit, du moins formellement. Cette apti-

tude fournit une nouvelle forme de polymorphisme appel�ee envoi de messages polymorphes. Pour

illustration, nous d�e�nissons une fonction �echo qui r�ep�ete l'envoi du message imprime.

let �echo x = x # imprime; x # imprime;;

val �echo : h imprime : �; .. i ! � = hfuni

Cette fonction peut être appliqu�ee �a n'importe quel objet poss�edant une m�ethode imprime.

�echo treize; �echo pierre;;

1313Diamant Diamant � : unit = ()

L'envoi de messages polymorphes est une op�eration essentielle. Un langage avec cette possibilit�e

peut d�ej�a pr�etendre o�rir le \style" de la programmation avec objets.

H�eritage et liaison tardive

Un langage �a objets doit aussi poss�eder un m�ecanisme d'h�eritage qui permette de construire

de nouvelles classes �a partir de classes existantes, o�u �eventuellement, de nouveaux objets �a partir

d'autres objets. La classe des cailloux peut être enrichie en une classe de bijoux, par ajout d'un

champ valeur et d'une m�ethode pour calculer le prix �a partir de la valeur.

class bijou roche valeur =

object

inherit caillou roche as pierre

method prix = 2 * valeur

method imprime = pierre # imprime; print int valeur; print string " carats"

end;;

Un bijou est imprim�e en le consid�erant d'abord comme une pierre sans valeur (le mot cl�e as lie

le bijou �a la variable pierre avant que les nouvelles m�ethodes ne soient ajout�ees), puis le prix est

a�ch�e suivi de l'unit�e.

let solitaire = new bijou Diamant 13;;

solitaire # imprime;;

Diamant 13 carats� : unit = ()
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Les fonctions r�ecursives jouant un rôle essentiel dans le style de programmation traditionnel, les

m�ethodes doivent elles aussi pouvoir être r�ecursives. Cela est r�ealis�e en g�en�eral par l'utilisation d'un

mot cl�e self dans le corps des m�ethodes qui r�ef�ere �a l'objet ayant invoqu�e la m�ethode. Nous lui

pr�ef�erons une construction de liaison r�ecursive au niveau des d�e�nitions de classes. Nous illustrons

la liaison r�ecursive en prenant pour exemple le jeu de la roulette russe.

class roulette () =

object (jeu)

val mutable position = 0

method roulette = position  Random.int 8; jeu

method coup = position  (position + 1) mod 8; position = 0

method je joue = if jeu # coup then "Je meurs" else jeu # tu joues

method tu joues = if jeu # coup then "Tu meurs" else jeu # je joue

end;;

Il est important que les m�ethodes je joue et tu joues s'appellent r�ecursivement pour obliger l'ad-

versaire �a jouer quand son tour est venu. Une fois commenc�e, le jeu ne peut plus s'arrêter que par

la mort de l'un des deux joueurs. Sinon, le huiti�eme coup ne serait jamais tir�e. . . Jouons !

(new roulette ()) # je joue;;

� : string = "Tu meurs"

Heureusement, c'�etait un coup �a blanc ! Rejouons pour de bon, mais sans oublier de faire tourner

la roulette auparavant. . .

(new roulette ()) # roulette # je joue;;

� : string = "Tu meurs"

La capacit�e pour un objet de s'envoyer r�ecursivement des messages r�ealise simultan�ement le

m�ecanisme de la liaison tardive. En e�et la r�esolution des appels r�ecursifs n'est pas e�ectu�ee au

moment de la d�e�nition de la classe (comme c'est le cas dans les langages fonctionnels), mais elle

est retard�ee jusqu'au moment de la cr�eation de l'objet. Nous illustrons cela en sp�ecialisant la classe

de la roulette �a un jeu �a deux contre un. La classe roulette �a deux contre un h�erite de la classe

roulette et red�e�nit la m�ethode je joue pour qu'elle tire un deuxi�eme coup |si le premier n'a pas

tu�e le joueur| avant d'appeler la m�ethode tu joues comme auparavant.

class roulette �a deux contre 1 () = object (jeu)

inherit roulette () as vieux jeu

method je joue = if jeu#coup then "Je meurs" else vieux jeu # je joue

end;;

(new roulette �a deux contre 1 ()) # roulette # tu joues;;

� : string = "Tu meurs"

Il est important que la m�ethode tu joues bien qu'inchang�ee appelle maintenant la nouvelle m�ethode

je joue, sinon le joueur croyant avoir l'avantage serait tromp�e.

Une nouvelle forme de modularit�e

Le style de programmation traditionnel permet de d�e�nir de nouvelles fonctions op�erant sur une

donn�ee existante de fa�con modulaire, c'est-�a-dire sans avoir �a connâ�tre ou �a red�e�nir les autres

op�erations. Par contre, le moindre changement dans la repr�esentation des donn�ees oblige �a red�e�nir

toutes les fonctions op�erant sur ce type de donn�ee.
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Le style �a objets permet d'e�ectuer les deux types d'extensions, i.e. l'ajout d'op�eration (exten-

sion verticale) ou l'extension de la structure de donn�ee (extension horizontale), de fa�con modulaire.

Nous illustrons cela sur la structure bien connue de cellules. Par opposition �a la classe caillou

nous choisissons une approche objet plus �ne pour les cellules. Chaque type de donn�ee, i.e. chaque

constructeur de valeur sera cod�e par une classe di��erente, mais ayant la même interface, de fa�con

�a pouvoir m�elanger toutes les valeurs ind�ependemment de leur constructeur. Nous groupons ces

d�e�nitions de classes dans un module, mais c'est seulement pour mieux g�erer l'espace des noms.

La classe principale cons d�e�nit les vraies cellules. L'autre classe d�e�nit la cellule vide nil. Pour

lui donner la même interface que la classe cons nous y d�e�nissons les fonctions car et cdr qui l�event

une exception. Cela n'est pas une perte de s�ecurit�e, mais la contrepartie d'une exception de �ltrage

incomplet en Ocaml, par exemple lorsqu'on demande la tête d'une liste vide.

module Cell = struct

class [�, �] cons (h:�) (t:�) =

object method null = false method car = h method cdr = t end

exception Null

class [�, �] nil =

object

method null = true

method car = (raise Null : �)

method cdr = (raise Null : �)

end

end;;

Ces cellules sont tr�es g�en�erales. En particulier, il est possible d'a�ecter des valeurs ind�ependantes

�a chacune des cases.

new Cell.cons treize solitaire;;

� : (entier, bijou) Cell.cons = hobji

Elles di��erent des paires seulement par la possibilit�e qu'elles ont d'être non initialis�ees (la cellule

nil).

Ne nous privons pas d'un d�etour amusant par le probl�eme des listes altern�ees qui ont �et�e propos�e

par la communaut�e Java comme un exemple di�cile. Pour augmenter la lisibilit�e, nous d�e�nissons

une abr�eviation de type (�,�) alt list pour la structure de liste altern�ee dont les �el�ements sont

alternativement de type � et de type �.

type (�, �) alt list = (�, (�, (�, �) alt list) Cell.cons) Cell.cons;;

Puis nous d�e�nissons un exemple arbitraire de liste altern�ee.

let x = ref (new Cell.nil : (�, �) alt list) in

x := new Cell.cons treize (new Cell.cons solitaire (!x)); !x;;

Cet exemple g�en�erique est compatible avec l'h�eritage. Les sous-classes des cellules construites par

h�eritage pourront encore être utilis�ees pour fabriquer des listes altern�ees (par exemple avec une

op�eration d'it�eration). La structure de liste traditionnelle se retrouve simplement en for�cant le type

des cellules �a être r�ecursif de p�eriode un.

module L = struct

class [�] cons h t = object (self : 'mytype) inherit [�, 'mytype] Cell.cons h t end

class [�] nil = object (self : 'mytype) inherit [�, 'mytype] Cell.nil end

end;;
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Extension verticale Elle est r�ealis�ee par l'h�eritage qui est une op�eration enti�erement modulaire

en Ocaml. Le code de la classe h�erit�ee ne doit pas être r�e�ecrit. De plus, l'h�eritage multiple permet

de d�e�nir l'ajout d'une fonctionnalit�e s�epar�ement, puis d'e�ectuer cet ajout sur di��erentes classes

parentes. Par exemple, on peut d�e�nir une palette d'extensions et choisir ult�erieurement la bonne

combinaison des options pour une application donn�ee.

Pour ajouter une op�eration d'it�eration sur les listes, nous d�e�nissons dans un premier temps un

module Iter qui d�ecrit l'op�eration �a la fois sur les vraies cellules et sur les cellules vides. Dans la

classe cons les m�ethodes car et cdr sont dites virtuelles, parce qu'elles sont utilis�ees sans avoir �et�e

d�e�nies. Les m�ethodes virtuelles d'une classe devront être d�e�nies dans une sous-classe, et il n'est

pas possible de construire d'objet d'une classe virtuelle.

module Iter = struct

class virtual [�] cons =

object (self : �)

method virtual car : � method virtual cdr : �

method iter (f : � ! unit) = f self#car; self#cdr#iter f; ()

end

class [�] nil = object method iter (f : � ! unit) = () end

end;;

Les listes avec it�eration sont obtenues par h�eritage.

class [�] cons h t = object (self) inherit [�] L.cons h t inherit [�] Iter.cons end

class [�] nil = object inherit [�] L.nil inherit [�] Iter.nil end;;

Comme test, nous pouvons construire une liste de nombres premiers et l'imprimer.

let primes = List.fold right (new cons) [2;3;5;7;11;13] (new nil);;

val primes : int cons = hobji

primes#iter print int;;

23571113� : unit = ()

L'extension verticale consiste �a ajouter un constructeur �a un type de donn�ee existant. Supposons

par exemple que les listes soient souvent concat�en�ees. Pour �eviter le calcul de la concat�enation il

est possible, dans le style traditionnel, d'ajouter un nouveau constructeur Append au type des listes.

Cependant cela cr�ee un nouveau type, incompatible avec le pr�ec�edent et il faut en cons�equence

red�e�nir toutes les op�erations sur les listes.

Avec des objets, il su�t de d�e�nir une nouvelle classe append qui d�ecrit le comportement du

nouveau constructeur. Les anciens constructeurs restent compatibles et n'ont donc pas besoin d'être

modi��es.

class [�] append l r = object (self : 'mytype)

val left = (l : 'mytype) val right = (r : 'mytype)

method null = left#null && right#null

method car = if left#null then right#car else (left#car : �)

method cdr =

if left#null then right#cdr

else if left#cdr#null then right else fh left = left#cdr ig

method iter (f : � ! unit) = left#iter f; right#iter f; ()

end;;

Nous introduisons une notation in�x�ee, et v�eri�ons le comportement sur un exemple arbitraire.
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let (@@) = new append;;

let double primes = primes @@ (new nil @@ new nil) @@ primes;;

double primes#iter print int;;

2357111323571113� : unit = ()

Typage

Nous �nissons cette section par une illustration du typage en Ocaml. Apr�es avoir d�ecrit

bri�evement les m�ecanismes principaux, nous montrerons que les constructions r�eput�ees di�ciles

�a typer sont r�esolues sans di�cult�e en Objective ML.

L'utilit�e du typage est pour nous une �evidence. Mais, c'est une �evidence encore plus 
agrande

en pr�esence d'objets, car les objets permettent de s�eparer des parties de programmes qui coop�erent

�etroitement et de surcrô�t r�ecursivement.

En Objective ML, le typage des objets s'appuie tr�es fortement et �a tous les niveaux sur le

polymorphisme des variables de rang�ee, comme pour le langage ML-ART. Le typage des messages

n'y fait pas exception. Les diverses contraintes li�ees �a l'envoi de message sont accumul�ees dans

le type de l'objet comme dans un type enregistrement, les nouvelles contraintes s'accrochant aux

pr�ec�edentes en instantiant leur variable de rang�ee.

let g x = x#car;;

val g : h car : �; .. i ! � = hfuni

Elles introduisent �a leur tour une nouvelle variable de rang�ee plus faible �a laquelle les contraintes

suivantes s'accrocheront.

let g x = if x#null then x#car else x#cdr;;

val g : h car : �; cdr : �; null : bool; .. i ! � = hfuni

Rappelons le type de la fonction �echo, d�e�nie ci-dessus.

�echo;;

� : h imprime : �; .. i ! � = hfuni

Elle peut être appliqu�ee aux cailloux et aux bijoux, mais pas �a la liste primes.

�echo pierre; �echo solitaire;;

Diamant Diamant Diamant 13 caratsDiamant 13 carats� : unit = ()

ih

ih

�echo primes;;

Sous-typage Les langages explicitement typ�es utilisent souvent le sous-typage plutôt que le po-

lymorphisme pour typer l'envoi de messages. Pour illustrer l'usage du sous-typage sur un exemple

simple, il nous faut empêcher le polymorphisme arti�ciellement en utilisant une contrainte de type.

La version monomorphe de la fonction �echo d�e�nie ci-dessous peut-être appliqu�ee aux cailloux mais

plus aux bijoux.

let �echo monomorphe (x : caillou) = �echo x;;

val �echo monomorphe : caillou ! unit = hfuni

�echo monomorphe pierre;;

Diamant Diamant � : unit = ()

ih

ih

�echo monomorphe solitaire;;



34 CHAPITRE 1. UN RACCOURCI

Dans certains langages explicitement typ�es le sous-typage est en partie implicite (les bornes des

variables polymorphes doivent toujours être indiqu�ees explicitement). Dans Ocaml, �a l'inverse, les

types sont implicites mais le sous-typage doit être explicite. Ainsi, nous devons �ecrire :

let comme un caillou x = (x :> caillou);;

val comme un caillou :

h concasse : char list; imprime : unit; .. i ! caillou = hfuni

La fonction �echo monomorphe peut être indirectement appliqu�ee �a des bijoux �a condition de les

consid�erer explicitement comme des cailloux, en utilisant la fonction de coercion ci-dessus ou une

annotation de type :

�echo monomorphe (comme un caillou solitaire);;

Diamant 13 caratsDiamant 13 carats� : unit = ()

�echo monomorphe (solitaire :> caillou);;

Diamant 13 caratsDiamant 13 carats� : unit = ()

Il est possible de rentre le polymorphisme et le sous-typage simultan�ement implicites en utilisant

un formalisme de typage avec contraintes [98], mais il reste �a comprendre comment adapter le

m�ecanisme d'abr�eviation automatique des types, indispensable �a leur lisibilit�e.

La r�ecursion est souvent di�cile �a typer correctement. En fait, puisque Ocaml utilise le polymor-

phisme param�etrique plutôt que le sous-typage, toutes les di�cult�es s'estompent. Nous r�esumons

toutes les op�erations autour de la r�ecursion dans une classe d�emoniaque.

class d�emon =

object (lui même)

val mutable g�enes = Random.int 9999999

method identit�e = g�enes

method même = lui même

method clone = fh ig

method reproduction = fh g�enes = g�enes + 1 ig

method mutation = g�enes  g�enes + Random.int 9999999

end;;

class d�emon :

object (�)

val mutable g�enes : int

method clone : �

method identit�e : int

method mutation : unit

method même : �

method reproduction : �

end

Une instance du d�emon, appelons-la dolly, m�emorise son identit�e dans ses g�enes. Elle poss�ede une

m�ethode même qui retourne dolly elle-même, une m�ethode clone qui duplique dolly, et deux m�ethodes

reproduction et mutation qui retournent une copie modi��ee de dolly ou modi�e dolly elle-même.

Les types et les propri�et�es annonc�ees sont v�eri��ees ci-dessous :

let dolly = new d�emon;;

val dolly : d�emon = hobji
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dolly = dolly # même && dolly 6= dolly # clone;;

� : bool = true

let id = dolly # identit�e in dolly # reproduction; id = dolly # identit�e;;

� : bool = true

let id = dolly # identit�e in dolly # mutation; id 6= dolly # identit�e;;

� : bool = true

Le d�emon n'est pas une abstraction de l'esprit. Chaque classe concr�ete peut cacher un petit d�emon

en son sein. Pour illustration, voici une liste d�emoniaque.

module D = struct

class [�] cons h t = object inherit d�emon inherit [�] L.cons h t end

class [�] nil = object inherit d�emon inherit [�] L.nil end

end;;

suivie d'une exp�erimentation. . .

let exp�erience = new D.cons solitaire (new D.nil);;

val exp�erience : bijou D.cons = hobji

exp�erience # même # reproduction # clone # même # car # concasse;;

� : char list = ['D'; 'i'; 'a'; 'm'; 'a'; 'n'; 't'; ' ']

Les m�ethodes binaires s'�ecrivent aussi naturellement en Ocaml. Un exemple typique de

m�ethode binaire (ici nous utilisons la comparaison polymorphe �) :

class compare = object (self) method better x = x � self end;;

class compare : object (�) method better : � ! bool end

peut être ajout�e �a la plupart des objets. Par exemple,

class joaillier c v = object inherit bijou c v inherit compare end;;

Une solutions simple a un probl�eme r�eput�e di�cile

La simplicit�e d'Objective Caml n'entame en rien son expressivit�e. Au contraire, en s'appuyant

sur le polymorphisme param�etrique et la synth�etise les types, nous obtenons la garantie d'un

meilleur compromis entre expressivit�e et simplicit�e. L'exemple qui suit, connu comme l'exemple du

sujet et de l'observateur, a �et�e propos�e dans la litt�erature comme un probl�eme di�cile d'h�eritage car

mettant en jeu des classes inter-connect�ees, et il a fait couler beaucoup d'encre dans la communaut�e

Java.

La classe observateur poss�ede une m�ethode distingu�ee signale qui attend deux arguments, un

sujet et un �ev�enement pour ex�ecuter une action.

class virtual ['sujet, '�ev�enement] observateur =

object method virtual signale : 'sujet ! '�ev�enement ! unit end;;

Un objet de la classe sujet maintient �a jour une liste de ses observateurs et poss�ede une m�ethode

signale observateurs qui distribue le message signale �a tous les observateurs avec un �ev�enement

particulier e.

class ['observateur, '�ev�enement] sujet =

object (self)

val mutable observateurs = ([]:'observateur list)
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method ajoute observateur obs = observateurs  (obs :: observateurs)

method signale observateurs (e : '�ev�enement) =

List.iter (fun x ! x#signale self e) observateurs

end;;

La di�cult�e r�eside habituellement dans la d�e�nition d'une instance de ce motif r�ecursif par h�eritage.

En objective Caml, cela se fait naturellement.

type event = Raise j Resize j Move;;

let string of event =

function Raise ! "Raise" j Resize ! "Resize" j Move ! "Move";;

let count = ref 0;;

class ['observateur] fenêtre sujet =

let id = count := succ !count; !count in

object (self)

inherit ['observateur, event] sujet

val mutable position = 0

method identit�e = id

method d�eplace x = position  position + x; self#signale observateurs Move

method dessine = Printf.printf "fPosition = %dgnn" position;

end;;

class ['sujet] fenêtre observateur =

object

inherit ['sujet, event] observateur

method signale s e = s#dessine

end;;

Les objets de la classe fenêtre sujet sont sans surprise r�ecursifs.

let fenêtre = new fenêtre sujet;;

val fenêtre : h signale : � ! event ! unit; .. i fenêtre sujet as � =

hobji

Cependant les classes fenêtre sujet et fenêtre observateur ne sont elles-mêmes pas r�ecursives.

let fenêtre observateur = new fenêtre observateur;;

fenêtre#ajoute observateur fenêtre observateur;;

fenêtre#d�eplace 1;;

fPosition = 1g

� : unit = ()

Les classes sujet et fenêtre observateur peuvent �a nouveau être �etendues par h�eritage. Par

exemple, il est possible d'ajouter un nouveau comportement au sujet et de ra�ner celui de l'obser-

vateur.

class ['observateur] grande fenêtre sujet =

object (self)

inherit ['observateur] fenêtre sujet

val mutable size = 1

method resize x = size  size + x; self#signale observateurs Resize

val mutable top = false

method raise = top  true; self#signale observateurs Raise
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method draw = Printf.printf "fPosition = %d; Size = %dgnn" position size;

end;;

class ['sujet] grande fenêtre observateur =

object

inherit ['sujet] fenêtre observateur as super

method signale s e = if e 6= Raise then s#raise; super#signale s e

end;;

Nous pouvons aussi ajouter un nouvel observateur :

class ['sujet] trace observateur =

object

inherit ['sujet, event] observateur

method signale s e =

Printf.printf "hWindow %d �= %sinn" s#identit�e (string of event e)

end;;

et combiner l'ensemble ainsi :

let fenêtre = new grande fenêtre sujet;;

fenêtre#ajoute observateur (new grande fenêtre observateur);;

fenêtre#ajoute observateur (new trace observateur);;

fenêtre#d�eplace 1; fenêtre#agrandit 2;;

Dans cette partie, nous avons montr�e l'expressivit�e et la souplesse d'Ocaml. Mais quelqu'en soit

la r�eussite, il y a toujours des aspects �a am�eliorer. Nous connaissons trois probl�emes : l'absence de

m�ethodes polymorphes, la di�cult�e �a cacher les m�ethodes a posteriori, et le choix di�cile entre les

styles de programmation objets et modulaire.

1.6 Polymorphisme de premi�ere classe

Une limitation importante d'Ocaml qui est r�esolue dans le chapitre 7 est l'absence de m�ethodes

polymorphes. Nous avons montr�e comment �equiper les listes avec une m�ethode d'it�eration. Malheu-

reusement, l'ajout d'une m�ethode fold n'est pas possible en Ocaml, car cela n�ecessite des m�ethodes

polymorphes. Passant d'un style traditionnel �a un style objet, les fonctionnelles se retrouvent être

des m�ethodes dans un objet et ne peuvent plus être polymorphe.

Nous avons montr�e dans le langage ML-ART comment ajouter du polymorphisme de premi�ere

classe en utilisant des constructeurs de types. Ajouter cette construction au langage Ocaml per-

mettrait de d�e�nir des m�ethodes polymorphes. Cependant leur usage serait tr�es p�enible car chaque

m�ethode polymorphe devrait être pr�ec�ed�ee d'une d�e�nition de type, et chaque utilisation d'un mes-

sage polymorphe devrait mentionner explicitement le constructeur r�ealisant la coercion du type

polymorphe vers un type ML.

Dans le chapitre 7, nous proposons une autre approche permettant d'ajouter des types d'ordre

sup�erieur �a ML, �a la fois plus expressive et plus souple que celle introduite dans le chapitre 5. Bien

que cette extension soit motiv�ee par son application au langage Objective ML, elle est de fa�con

plus g�en�erale, une extension de ML avec du polymorphisme d'ordre sup�erieur. Nous l'�etudions en

d�etail dans le cadre du langage ML, puis nous l'appliquons au cas des m�ethodes polymorphes.

Nous donnons ici une pr�esentation plus intuitive, mais moins formelle que dans le chapitre 7. Un

probl�emes li�e �a la d�eclaration pr�ealable des types polymorphes est de toujours distinguer des types

polymorphes construits de fa�con di��erente même s'ils sont �equivalents. Par exemple, la d�eclaration



38 CHAPITRE 1. UN RACCOURCI

type � g�en�eral = G�en�eral of All �. � * (� ! �)

d�e�nit un constructeur G�en�eral qui permet de coercer le type polymorphe All �. � * (� ! �)

vers le type ML � g�en�eral et inversement en utilisant le �ltrage. De fa�con analogue, on peut d�e�nir

type � fl�eche = Fl�eche of All �. (� ! �) * (� ! �)

Cependant, les types (
 ! 
) g�en�eral et 
 fl�eche sont incompatibles bien que repr�esentant le

même type polymorphe All �. (
 ! 
) * (� ! �). Ce probl�eme est corrig�e en fournissant une

notation [�] pour manipuler directement un type polymorphe � comme un type ML de premi�ere

classe.

� ::= � j � ! � j [�] � ::= � j 8�:�

Nous �etendons les expressions avec les constructions suivantes

a ::= : : : j [a : �] j hai j (a : �)

L'expression [a : �] introduit une expression a de type polymorphe �.

�

A l'inverse, hai coerce une

expression polymorphe a en une expression ordinaire. En�n (a : �) force l'expression a �a être de

type � .

Le principe de notre proposition est de m�elanger polymorphisme explicite et polymorphisme

implicite, mais sans jamais avoir �a deviner le polymorphisme. En e�et, cela nous entrâ�nerait dans

les probl�emes bien connus d'uni�cation d'ordre sup�erieur. \Deviner" signi�e ici introduire un type

polymorphe. Par exemple, fun (x) hx

1

i x n'est pas typable (les exposants sont des marques per-

mettant d'identi�er les di��erentes occurrences d'une même variable) parce qu'il faut deviner le type

polymorphe de la variable x

1

, Plus pr�ecis�ement, l'expression hx

1

i est rejet�ee parce que x

1

�a un type

polymorphe inconnu. Par contre, nous nous autorisons �a propager le polymorphisme. L'expression

let x = [fun (y) y : 8�:�! �] in hxi x

est bien typ�ee parce que x a le type polymorphe connu 8�:� ! �. En fait, le polymorphisme ne

peut être extrait par la construction h i que lorsqu'il est connu. Au besoin, nous pouvons ins�erer des

contraintes de type explicites pour indiquer (faire connâ�tre) le polymorphisme d'une expression.

Par exemple, fun (x) hx : 8�:�! �i x est bien typ�e.

La di�cult�e consiste �a formaliser les notions de (( polymorphisme connu )) et de (( propagation )).

En ML, la propagation d'information de type repose sur l'uni�cation, bidirectionelle, verticale et

transversale, alors que la notion de propagation ci-dessus est unidirectionnelle et seulement verticale.

Par exemple, consid�erons l'expression fun (x) hx

1

i (x

2

: 8� ! �). L'occurrence de x

2

porte une

contrainte qui peut remonter vers le lieur et redescendre vers l'occurrence x

1

, produisant l'e�et

d'une propagation transversale de x

2

vers x

1

. Avec ce sc�enario, l'expression hxi serait typable.

Cependant pour un autre sc�enario dans lequel la variable x

1

serait typ�ee en premier, donc sans que

la contrainte portant sur x

2

ne puisse être transmise, l'expression hxi devrait être rejet�ee car x a

un type polymorphe inconnu �a ce stade. Pour �eviter un m�ecanisme de retour en arri�ere pendant le

typage, nous rejetons cet exemple, donc nous refusons la liaison transversale.

Le r�esultat important que nous obtenons est une sp�eci�cation simple de la propri�et�e de pro-

pagation obtenue en consid�erant les types comme des graphes plutôt que des arbres, ou ce qui

revient au même en gardant trace du partage. Nous mettons ce partage en �evidence aux n�uds

[ ] en les marquant par une variable de type. C'est-�a-dire que nous rempla�cons [�] dans la gram-

maire des types par [�]

�

. Pour typer l'expression x

1

dans fun (x) hx

1

i x, nous pouvons typer

x

1

: [�]

�

dans le contexte x : [�]

�

. Le fait que la marque � de [�] apparaisse dans le contexte signi�e

que le n�ud est partag�e et nous refusons d'en extraire le polymorphisme. Inversement, l'expression
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let x = [fun (y) y : 8�:�! �] in hx

1

i est bien typ�ee car le type de x, [8�:�! �]

�

0

est polymorphe,

et la variable x

1

a le type [8�:�! �]

�

00

dans l'environnement x : [8�:�! �]

�

0

, pour une variable �

00

di��erente de �

0

. L'expression fun (x) hx : 8�:�! �i x est typable �a condition que la contrainte de

type explicite ( : 8�:� ! �) rompe le partage entre le type de l'argument et le type du r�esultat.

Une telle contrainte se comporte comme une fonction de type 8��

0

:[8�:�! �]

�

! [8�:�! �]

�

0

.

Nous donnons une formalisation pr�ecise du syst�eme de typage dans le chapitre 7 et nous mon-

trons qu'il admet des types principaux.

Le polymorphisme semi-explicite permet avant tout d'�etendre Objective ML avec des m�ethodes

polymorphes. En fait, cette proposition s'int�egre parfaitement dans le langage qui fait d�ej�a bon

usage du partage par le m�ecanisme d'abr�eviation des types. Avec un peu de sucre syntaxique et

quelques variations, on pourra y d�e�nir la classe suivante.

module P = struct

class [�] cons h t = object (self) inherit [�] L.cons h t

method (fold : All �. (� ! � ! �) ! � ! �) f x =

self#cdr#fold f (f self#car x)

end

class [�] nil = object inherit [�] L.nil

method (fold : All �. (� ! � ! �) ! � ! �) f x = x

end

end

L'envoi d'un message �a un objet se fait toujours par la même construction, mais il sera typ�e de

fa�con polymorphe ou monomorphe selon que le type est connu et polymorphe ou, au contraire,

inconnu ou monomorphe.

let deux = new P.cons 1 (new P.cons 2 (new nil));;

deux # fold (fun x y ! new cons (x#car * x#car) y) # iter print int;;

De fa�con plus g�en�erale, le polymorphisme semi-explicite s'applique �a toutes les situations o�u le

polymorphisme de ML est trop limit�e.

Dans la proposition pr�esente, deux sch�emas de types qui ne sont pas �egaux (au regard de leur

squelettes polymorphes, les parties monomorphes pouvant être instanci�ees librement) sont incom-

patibles. En particulier, il n'est pas possible d'intancier une sch�ema de type par un autre qui serait

moins pr�ecis. Il serait int�eressant d'�etendre notre proposition avec un m�ecanisme d'a�aiblissement

permettant dans certaines conditions d'uni�er des types actuellement consid�er�es comme incompa-

tibles. C'est une direction de recherche que nous poursuivons.

1.7 Des classes aux objets par la relation de sous-typage

Objets et classes se ressemblent �evidemment. De fa�con intuitive, on peut consid�erer une classe

comme une fonction qui retourne un objet. Cependant, cette vision trop simpli��ee des objets exclue

l'h�eritage. Dans les langages ML-ART ou objective ML, nous avons donn�e aux classes des formes

plus compliqu�ees.

Une notion importante qui n'est pas prise en compte par le mod�ele pr�ec�edent est l'abstraction.

Les variables d'instance sont visibles dans les classes. Elles sont cach�ees automatiquement dans les

objets par un m�ecanisme d'abstraction. Elle peuvent �egalement être cach�ees dans les classes, mais

explicitement.
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Par exemple, on peut prot�eger la structure des cellules en cachant leur repr�esentation interne

par une contrainte de signature. En revanche, il est plus di�cile de cacher les m�ethodes. Le sous-

typage permet de les cacher dans les objets �a condition qu'il ne reste pas d'autres m�ethodes binaires.

Cela peut aussi être fait automatiquement, par exemple en d�eclarant une m�ethode prot�eg�ee. Une

m�ethode prot�eg�ee se comporte comme une variable d'instance, implicitement cach�ee dans les objets,

et pouvant être explicitement cach�ee dans sa classe par une contrainte de signature. Inversement,

une m�ethode qui n'a pas �et�e d�eclar�ee prot�eg�ee ne peut pas le devenir. En e�et, une autre m�ethode

m

0

aurait pu supposer la m�ethode m visible de type � , et l'oubli de la m�ethode m serait dangereux

parce qu'il permettrait de red�e�nir m avec un autre type �

0

incompatible, brisant ainsi l'hypoth�ese

faite par m

0

sur m.

Le m�ecanisme d'abstraction n'est pas simple. Bien que traditionnellement il se limite �a l'ins-

tantiation d'une classe en un objet, on le retrouve �a la fois dans les classes et les objets, avec des

propri�et�es tr�es similaires. Le m�ecanisme d'abstraction de type est compliqu�e par un m�ecanisme

simultan�e d'abstraction de valeurs, puisque les classes sont en plus abstraites (au sens fonctionnel)

par rapport �a des param�etres d'initialisation. Les classes et les objets partagent des m�ecanismes

similaires pas toujours bien dissoci�es. Ces m�ecanismes sont au centre de la notion d'abstraction

actuellement trop limit�ee. Aussi, nous avons cherch�e �a �etablir un lien plus �etroit entre les objets et

les classes.

Nous menons cette �etude dans le chapitre 8 en consid�erant un calcul d'objets primitifs similaire

�a celui de M. Abadi et L. Cardelli [3]. Nous choisissons un syst�eme de type explicite pour nous

lib�erer des contraintes li�ees �a la synth�ese des types. Nous montrons qu'un enrichissement de la

structure des types des objets avec toute la richesse des types-enregistrements permet de tracer �a

la fois les types des m�ethodes, leur pr�esence, et leur usage par liaison tardive.

Nous pouvons ainsi distinguer entre une m�ethode pr�esente avec le type � (mais pas utilis�ee)

et une m�ethode exig�ee avec le type � . La premi�ere peut être oubli�ee et red�e�nie, �eventuellement

avec un autre type. La seconde peut devenir virtuelle |sa pr�esence est oubli�ee mais son type est

conserv�e| puis être red�e�nie ult�erieurement avec le même type ; elle peut aussi être cach�ee (son

type n'est alors plus visible), mais elle ne pourra plus être red�e�nie.

L'utilisation de m�ethodes virtuelles au niveau des objets nous permet de distinguer entre l'in-

troduction d'une m�ethode et sa d�e�nition r�eelle, qui peut être retard�ee. On peut alors consid�erer

les classes comme des objets avec des m�ethodes virtuelles. Les variables d'instance sont des champs

virtuels, allou�es mais non d�e�nis et l'op�eration de cr�eation d'une instance revient �a d�e�nir ces

champs avec des valeurs pr�ecises. Nous identi�ons ainsi classes et objets, m�ethodes et variables

d'instance.

Les r�esultats que nous obtenons qui doivent être approfondis, ouvrent de nouvelles directions �a

la fois vers la simpli�cation des concepts, mais aussi vers plus de 
exibilit�e et d'expressivit�e dans

les op�erations d'abstraction.



Chapter 2

Synth�ese des types enregistrements

dans une extension naturelle de ML

Ce chapitre a �et�e publi�e dans [106].

Synth�ese des types enregistrements dans une extension naturelle de ML

Nous proposons une extension de ML avec des enregistrements o�u l'h�eritage est obtenu par le poly-

morphisme g�en�erique de ML. Toutes les op�erations sur les enregistrements, except�e la concat�enation,

sont trait�ees sans restriction, y compris de nouvelles op�erations telles que le renommage des champs.

La solution propos�ee repose sur une g�en�eralisation des types qui sont simultan�ement munis de sortes

et consid�er�es modulo une th�eorie �equationnelle et qui conduit �a la notion de types-enregistrements.

La solution est simple et modulaire, et l'algorithme d'inf�erence est e�cace en pratique.

Typeckecking records in a natural extension of ML

We describe an extension of ML with records where inheritance is given by ML generic polymor-

phism. All common operations on records but concatenation are supported, in particular the free

extension of records. Other operations such as renaming of �elds are added. The solution relies

on an extension of ML, where the language of types is sorted and considered modulo equations,

and on a record extension of types. The solution is simple and modular and the type inference

algorithm is e�cient in practice.

41
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Introduction

The aim of typechecking is to guarantee that well-typed programs will not produce runtime errors.

A type error is usually due to a programmer's mistake, and thus typechecking also helps him in

debugging his programs. Some programmers do not like writing the types of their programs by

hand. In the ML language for instance, type inference requires as little type information as the

declaration of data structures; then all types of programs will be automatically computed.

Our goal is to provide type inference for labeled products, a data structure commonly called

records, allowing some inheritance between them: records with more labels should be allowed where

records with fewer labels are required.

After de�ning the operations on records and recalling related work, we �rst review the solution

for a �nite (and small) set of labels, which was presented in [99], then we extend it to a denumerable

set of labels. In the last part we discuss the power and weakness of the solution, we describe some

variations, and suggest improvements.

Without records, data structures are built using product types, as in ML, for instance.

("Peter", "John", "Professor", 27, 5467567, 56478356, ("toyota", "old", 8929901))

With records one would write, instead:

fname = "Peter"; lastname = "John"; job = "Professor"; age = 27; id = 5467567;

license = 56478356; vehicle = fname = "Toyota"; id = 8929901; age = "old"gg

The latter program is de�nitely more readable than the former. It is also more precise, since

components are named. Records can also be used to name several arguments or several results of

a function. More generally, in communication between processes records permit the naming of the

di�erent ports on which processes can exchange information. One nice example of this is the LCS

language [7], which is a combination of ML and Milner's CCS [78].

Besides typechecking records, the challenge is to avoid record type declarations and �x size

records. Extensible records introduced by Wand [121, 27] can be built from older records by

adding new �elds. This feature is the basis of inheritance in the view of objects as records [121, 27].

The main operations on records are introduced by examples, using a syntax similar to CAML

syntax [33, 122]. Like variable names, labels do not have particular meanings, though choosing

good names (good is subjective) helps in writing and reading programs. Names can, of course, be

reused in di�erent records, even to build �elds of di�erent types. This is illustrated in the following

three examples:

let car = fname = "Toyota"; age = "old"; id = 7866g;;

let truck = fname = "Blazer"; id = 6587867567g;;

let person = fname = "Tim"; age = 31; id = 5656787g;;

Remark that no declaration is required before the use of labels. The record person is de�ned on

exactly the same �elds as the record car, though those �elds do not have the same intuitive meaning.

The �eld age holds values of di�erent types in car and in person.

All these records have been created in one step. Records can also be build from older ones. For

instance, a value driver can be de�ned as being a copy of the record person but with one more �eld,

vehicle, �lled with the previously de�ned car object.

let driver = fperson with vehicle = carg;;

Note that there is no sharing between the records person and driver. You can simply think as if

the former were copied into a new empty record before adding a �eld car to build the latter. This
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construction is called the extension of a record with a new �eld. In this example the newly de�ned

�eld was not present in the record person, but that should not be a restriction. For instance, if our

driver needs a more robust vehicle, we write:

let truck driver = fdriver with vehicle = truckg;;

As previously, the operation is not a physical replacement of the vehicle �eld by a new value. We

do not wish the old and the new value of the vehicle �eld to have the same type. To distinguish

between the two kinds of extensions of a record with a new �eld, we will say that the extension is

strict when the new �eld must not be previously de�ned, and free otherwise.

A more general operation than extension is concatenation, which constructs a new record from

two previously de�ned ones, taking the union of their de�ned �elds. If the car has a rusty body but

a good engine, one could think of building the hybrid vehicle:

let repaired truck = fcar and truckg;;

This raises the question: what value should be assigned to �elds which are de�ned in both car and

truck? When there is a con
ict (the same �eld is de�ned in both records), priority could be given to

the last record. As with free extension, the last record would eventually overwrite �elds of the �rst

one. But one might also expect a typechecker to prevent this situation from happening. Although

concatenation is less common in the literature, probably because it causes more trouble, it seems

interesting in some cases. Concatenation is used in the standard ML language [48] when a structure

is opened and extended with another one. In the LCS language, the visible ports of two processes

run in parallel are exactly the ports visible in any of them. And as shown by Mitchell Wand [121]

multiple inheritance can be coded with concatenation.

The constructions described above are not exhaustive but are the most common ones. We

should also mention the permutation, renaming and erasure of �elds. We described how to build

records, but of course we also want to read them. There is actually a unique construction for this

purpose.

let id x = x.id;; let age x = x.age;;

Accessing some �eld a of a record x can be abstracted over x, but not over a: Labels are not values

and there is no function which could take a label as argument and would access the �eld of some

�xed record corresponding to that label. Thus, we need one extraction function per label, as for id

and age above. Then, they can be applied to di�erent records of di�erent types but all possessing

the �eld to access. For instance,

age person, age driver;;

They can also be passed to other functions, as in:

let car info �eld = �eld car;; car info age;;

The testing function eq below should of course accept arguments of di�erent types provided they

have an id �eld of the same type.

let eq x y = equal x.id y.id;; eq car truck;;

These examples were very simple. We will typecheck them below, but we will also meet more tricky

ones.
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Related work

Luca Cardelli has always claimed that functional languages should have record operations. In 1986,

when he designed Amber, his choice was to provide the language with records rather than poly-

morphism. Later, he introduced bounded quanti�cation in the language FUN , which he extended

to higher order bounded quanti�cation in the language QUEST. Bounded quanti�cation is an ex-

tension of ordinary quanti�cation where quanti�ed variables range in the subset of types that are

all subtypes of the bound. The subtyping relation is a lattice on types. In this language, subtyping

is essential for having some inheritance between records. A slight but signi�cant improvement of

bounded quanti�cation has been made in [19] to better consider recursive objects; a more general

but less tractable system was studied by Pavel Curtis [34]. Today, the trend seems to be the sim-

pli�cation rather than the enrichment of existing systems [26, 49, 25]. For instance, an interesting

goal was to remove the subtype relation in bounded quanti�cation [49]. Records have also been

formulated with explicit labeled conjunctive types in the language Forsythe [116].

In contrast, records in implicitly typed languages have been less studied, and the proposed

extensions of ML are still very restrictive. The language Amber [20, 21] is monomorphic and

inheritance is obtained by type inclusion. A major step toward combining records and type inference

has been Wand's proposal [119] where inheritance is obtained from ML generic polymorphism.

Though type inference is incomplete for this system, it remains a reference, for it was the �rst

concrete proposal for extending ML with records having inheritance. The year after, complete type

inference algorithms were found for a strong restriction of this system [56, 86]. The restriction

only allows the strict extension of a record. Then, the author proposed a complete type inference

algorithm for Wand's system [99], but it was formalized only in the case of a �nite set of labels

(a previous solution given by Wand in 1988 did not admit principal types but complete sets of

principal types, and was exponential in size in practice). Mitchell Wand revisited this approach

and extended it with an \and" operation

1

but did not provide correctness proofs. The case of an

in�nite set of labels has been addressed in [100], which we review in this article.

2.1 A simple solution when the set of labels is �nite

Though the solution below will be made obsolete by the extension to a denumerable set of labels, we

choose to present it �rst, since it is very simple and the extension will be based on the same ideas.

It will also be a decent solution in cases where only few labels are needed. And it will emphasize a

method for getting more polymorphism in ML (in fact, we will not put more polymorphism in ML

but we will make more use of it, sometimes in unexpected ways).

We will sketch the path from Wand's proposal to this solution, for it may be of some interest to

describe the method which we think could be applied in other situations. As intuitions are rather

subjective, and ours may not be yours, the section 2.1.1 can be skipped whenever it does not help.

2.1.1 The method

Records are partial functions from a set L of labels to the set of values. We simplify the problem

by considering only three labels a, b and c. Records can be represented in three �eld boxes, once

1

It can be understood as an \append" on association lists in lisp compared to the \with" operation which should

be understood as a \cons".
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labels have been ordered:

a b c

De�ning a record is the same as �lling some of the �elds with values. For example, we will put the

values 1 and true in the a and c �elds respectively and leave the b �eld unde�ned.

1 true

Typechecking means forgetting some information about values. For instance, it does not distinguish

two numbers but only remember them as being numbers. The structure of types usually re
ects

the structure of values, but with fewer details. It is thus natural to type record values with partial

functions from labels (L) to types (T ), that is, elements of L �* T . We �rst make record types

total functions on labels using an explicitly unde�ned constant abs (\absent"): L �! T [ fabs g.

In fact, we replace the union by the sum pre (T ) + abs . Finally, we decompose record types as

follows:

L �! [1;Card (L)] �! pre (T ) + abs

The �rst function is an ordering from L to the segment [1;Card (L)] and can be set once and for

all. Thus record types can be represented only by the second component, which is a tuple of length

Card (L) of types in pre (T ) + abs . The previous example is typed by

1 true

�( pre (num) , abs , pre (bool) )

A function :a reading the a �eld accepts as argument any record having the a �eld de�ned with a

value M , and returns M . The a �eld of the type of the argument must be pre (�) if � is the type

of M . We do not care whether other �elds are de�ned or not, so their types may be anything. We

choose to represent them by variables � and ". The result has type �.

:a : �(pre (�); �; ")! �

2.1.2 A formulation

We are given a collection of symbols C with their arities (C

n

)

n2IN

that contains at least an arrow

symbol ! of arity 2, a unary symbol pre and a nullary symbol abs . We are also given two sorts

type and �eld. The signature of a symbol is a sequence of sorts, written � for a nullary symbol and

�

1

: : : 
 �

n

) � for a symbol of arity n. The signature S is de�ned by the following assertions (we

write S ` f :: � for (f; �) 2 S):

S ` pre :: type) �eld

S ` abs :: �eld

S ` � :: �eld

card(L)

) type

S ` f :: type

n

) type f 2 C

n

n fpre ; abs ;�g

The language of types is the free sorted algebra T (S;V). The extension of ML with sorted types is

straightforward. We will not formalize it further, since this will be subsumed in the next section.
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The inference rules are the same as in ML though the language of types is sorted. The typing

relation de�ned by these rules is still decidable and admits principal typings (see next section for

a precise formulation). In this language, we assume the following primitive environment:

fg : � (abs ; : : : abs )

:a : � (�

1

: : : ; pre (�); : : : �

l

)! �

f with a = g : � (�

1

; : : : �

l

)! �! � (�

1

: : : ; pre (�); : : : �

l

)

Basic constants for �ML

fin

The constant fg is the empty record. The :a constant reads the a �eld from its argument, we

write r:a the application ( :a) r. Similarly fr with a =Mg extends the records r on label a with

value M .

2.2 Extension to large records

Though the previous solution is simple, and perfect when there are only two or three labels involved,

it is clearly no longer acceptable when the set of labels is getting larger. This is because the size

of record types is proportional to the size of this set | even for the type of the null record, which

has no �eld de�ned. When a local use of records is needed, labels may be fewer than ten and the

solution works perfectly. But in large systems where some records are used globally, the number of

labels will quickly be over one hundred.

In any program, the number of labels will always be �nite, but with modular programming,

the whole set of labels is not known at the beginning (though in this case, some of the labels may

be local to a module and solved independently). In practice, it is thus interesting to reason on an

\open", i.e. countable, set of labels. From a theoretical point of view, it is the only way to avoid

reasoning outside of the formalism and show that any computation done in a system with a small

set of labels would still be valid in a system with a larger set of labels, and that the typing in

the latter case could be deduced from the typing in the former case. A better solution consists in

working in a system where all potential labels are taken into account from the beginning.

In the �rst part, we will illustrate the discussion above and describe the intuitions. Then we

formalize the solution in three steps. First we extend types with record types in a more general

framework of sorted algebras; record types will be sorted types modulo equations. The next step

describes an extension of ML with sorts and equations on types. Last, we apply the results to a

special case, re-using the same encoding as for the �nite case.

2.2.1 An intuitive approach

We �rst assume that there are only two labels a and b. Let r be the record fa = 1 ; b = trueg and

f the function that reads the a �eld. Assuming f has type � ! �

0

and r has type �, f can be

applied to r if the two types � and � are uni�able. In our example, we have

� = �(a : pre (�) ; b : �

b

) ;

� = �(a : pre (num) ; b : pre (bool)) ;

and �

0

is equal to �. The uni�cation of � and � is done �eld by �eld and their most general uni�er

is:

�

� 7! num

�

b

7! pre (bool)
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If we had one more label c, the types � and � would be

� = �(a : pre (�) ; b : �

b

; c : �

c

) ;

� = �(a : pre (num) ; b : pre (bool) ; c : abs ) :

and their most general uni�er

8

<

:

� 7! num

�

b

7! pre (bool)

�

c

7! abs

We can play again with one more label d. The types would be

� = �(a : pre (�) ; b : �

b

; c : �

c

; d : �

d

) ;

� = �(a : pre (num) ; b : pre (bool) ; c : abs ; d : abs ) :

whose most general uni�er is:

8

>

>

>

<

>

>

>

:

� 7! num

�

b

7! pre (bool)

�

c

7! abs

�

d

7! abs

Since labels c and d appear neither in the expressions r nor in f , it is clear that �elds c and d behave

the same, and that all their type components in the types of f and r are equal up to renaming of

variables (they are isomorphic types). So we can guess the component of the most general uni�er

on any new �eld ` simply by taking a copy of its component on the c �eld or on the d �eld. Instead

of writing types of all �elds, we only need to write a template type for all �elds whose types are

isomorphic, in addition to the types of signi�cant �elds, that is those which are not isomorphic to

the template.

� = �(a : pre (�) ; b : �

b

;1 : �

1

) ;

� = �(a : pre (num) ; b : pre (bool) ;1 : abs ) :

The expression � ((` : �

`

)

`2I

;1 : �

1

) should be read as

Y

`2L

�

` :

�

�

`

if ` 2 I

�

`

otherwise, where �

`

is a copy of �

1

�

The most general uni�er can be computed without developing this expression, thus allowing the

set of labels to be in�nite. We summarize the successive steps studied above in this �gure:

Labels a b c d 1

� pre (�) �

b

�

c

�

d

�

1

� pre (num) pre (bool) abs abs abs

� ^ � pre (num) pre (bool) abs abs abs

This approach is so intuitive that it seems very simple. There is a di�culty though, due to the

sharing between templates. Sometimes a �eld has to be extracted from its template, because it

must be uni�ed with a signi�cant �eld.

The macroscopic operation that we need is the transformation of a template � into a copy

�

0

(the type of the extracted �eld) and another copy �

00

(the new template). We regenerate the
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template during an extraction mainly because of sharing. But it is also intuitive that once a �eld

has been extracted, the retained template should remember that, and thus it cannot be the same.

In order to keep sharing, we must extract a �eld step by step, starting from the leaves.

For a template variable �, the extraction consists in replacing that variable by two fresh variables

� and 
, more precisely by the term ` : � ; 
. This is exactly the substitution

� 7! ` : � ; 


For a term f(�), assuming that we have already extracted �eld ` from �, i.e. we have f(` : � ; 
),

we now want to replace it by ` : f(�) ; f(
). The solution is simply to ask it to be true, that is, to

assume the axiom

f(` : � ; 
) = ` : f(�) ; f(
)

for every given symbol f but �.

2.2.2 Extending a free algebra with a record algebra

The intuitions of previous sections are formalized by the algebra of record terms. The algebra

of record terms is introduced for an arbitrary free algebra; record types are an instance. The

record algebra was introduced in [100] and revisited in [104]. We summarize it below but we

recommend [104] for a more thorough presentation.

We are given a set of variables V and a set of symbols C with their arities (C

n

)

n2IN

.

Raw terms

We call unsorted record terms the terms of the free unsorted algebra T

0

(D

0

;V) where D

0

is the set

of symbols composed of C plus a unary symbol � and a collection of projection symbols f(` : ; ) j

` 2 Lg of arity two. Projection symbols associate to the right, that is (a : � ; b : � ; �

0

) stands for

(a : � ; (b : � ; �

0

)).

Example 1 The expressions

� (a : pre (num) ; c : pre (bool) ; abs ) and � (a : pre (b : num ; num) ; abs )

are raw terms. In section 2.2.4 we will consider the former as a possible type for the record

fa = 1 ; c = trueg but we will not give a meaning to the latter. There are too many raw terms.

The raw term fa : � ; �g ! � must also be rejected since the template composed of the raw

variable � should de�ne the a �eld on the right but should not on the left. We de�ne record terms

using sorts to constrain their formation. Only a few of the raw terms will have associated record

terms.

Record terms

Let L be a denumerable set of labels. Let K be composed of a sort type , and a �nite collection of

sorts (row (L)) where L range over �nite subsets of labels. Let S be the signature composed of the

following symbols given with their sorts:

S ` � :: Row(;)) Type

S ` f

K

:: K

n

) K f 2 C

n

;K 2 K

S ` (`

L

: ; ) :: Type
Row(L [ f`g)) Row(L) ` 2 L; L 2 P

fin

(L n f`g)

The superscripts are parts of symbols, so that the signature S is not overloaded, that is, every

symbol has a unique signature. We write D the set of symbols in S.
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De�nition 1 Record terms are the terms of the free sorted algebra T (S;V).

Example 2 The left term below is a record term. On the right, we drew a raw term with the

same structure.

�

�

�

�

� @

@

@

@

� (a : ; )

;

�

�

�

� @

@

@

@

f

Type

g

Row(fag)

j j

� (b : ; )

fag

�

�

�

� @

@

@

@

� 


�

�

�

�

� @

@

@

@

� (a : ; )

�

�

�

� @

@

@

@

f g

j j

� (b : ; )

�

�

�

� @

@

@

@

� 


Script erasure

To any record term, we associate the raw term obtained by erasing all superscripts of symbols.

Conversely, for any raw term �

0

, and any sort � there is at most one record term whose erasure

is �

0

. Thus any record term � of sort � is completely de�ned by its erasure �

0

and the sort �. In the

rest of the paper we will mostly use this convention. Moreover we usually drop the sort whenever

it is implicit from context.

Example 3 The erasure of

�

�

a

;

: f

Type

(g

Type

) ;

�

c

fag

: f

Type

(�) ; h

Row(fa;cg)

��

is the raw term

� (a : f(g) ; c : f(�) ; h)

There is no record term whose erasure would be

� (a : f(b : g ; �) ; h)

Record algebra

The permutation and the extraction of �elds in record terms will be obtained by equations, of left

commutativity and distributivity respectively. Precisely, let E be the set of axioms

� Left commutativity. For any labels a and b and any �nite subset of labels L that do not

contain a and b,

a

L

: � ;

�

b

L[fag

: � ; 


�

= b

L

: � ;

�

a

L[fbg

: � ; 


�

� Distributivity. For any symbol f , any label a and any �nite subset of labels L that do not

contain a,

f

Row(L)

(a

L

: �

1

; �

1

; : : : a

L

: �

p

; �

p

) = a

L

: f

Type

(�

1

; : : : �

p

) ; f

Row(L[fag)

(�

1

; : : : �

p

)
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With the raw notation the equations are written:

� Left commutativity. At any sort row (L), where L does not contain labels a and b:

a : � ; (b : � ; 
) = b : � ; (a : � ; 
)

� Distributivity. At any sort row (L) where L does not contain label a, and for any symbol f :

f(a : �

1

; �

1

; : : : a : �

p

; �

p

) = a : f(�

1

; : : : �

p

) ; f(�

1

; : : : �

p

)

All axioms are regular, that is, the set of variables of both sides of equations are always identical.

Example 4 In the term

� (a : pre (num) ; c : pre (bool) ; abs )

we can replace abs by b : abs ; abs using distributivity, and use left commutativity to end with

the term:

� (a : pre (num) ; b : abs ; c : pre (bool) ; abs )

In the term

� (a : pre (�) ; �)

we can substitute � by b : �

b

; c ; �

c

; " to get

� (a : pre (�) ; b : �

b

; c : �

c

; ")

which can then be uni�ed with the previous term �eld by �eld.

De�nition 2 The algebra of record terms is the algebra T (S;V) modulo the equational theory E,

written T (S;V)=E.

Uni�cation in the algebra of record terms has been studied in [104].

Theorem 4 Uni�cation in the record algebra is decidable and unitary (every solvable uni�cation

problem has a principal uni�er).

A uni�cation algorithm is given in the appendix.

Instances of record terms

The construction of the record algebra is parameterized by the initial set of symbols C, from which

the signature S is deduced. The signature S may also be restricted by a signature S

0

that is

compatible with the equations E, that is, a signature S

0

such that for all axioms r and all sorts �

of S

0

,

S

0

` r

l

:: � () S

0

` r

r

:: �

The algebra (T =E)j

�

S

0

and (T j

�

S

0

)=(Ej

�

S

0

) are then isomorphic, and consequently uni�cation in

(T j

�

S

0

)=(Ej

�

S

0

) is decidable and unitary, and solved by the same algorithm as in T =E. The S

0

-

record algebra is the restriction T (S;V)j

�

S

0

of the record algebra by a compatible signature S

0

.
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We now consider a particular instance of record algebra, where �elds are distinguished from

arbitrary types, and structured as in section 2.1. The signature S

0

distinguishes a constant symbol

abs and a unary symbol pre in C, and is de�ned with two sorts type and �eld :

S

0

` � :: �eld ) type

S

0

` abs

�

:: �eld � 2 K

S

0

` pre :: type ) �eld

S

0

` f

Type

:: type

n

) type f 2 C

n

n fabs ;pre ;�g

S

0

` (`

L

: ; ) :: �eld 
 �eld ) �eld ` 2 L; L 2 P

fin

(L n f`g)

The signature S

0

is compatible with the equations of the record algebra. We call record types the

S

0

-record algebra.

In fact, record types have a very simple structure. Terms of the sort Row(L) are either of

depth 0 (reduced to a variable or a symbol) or are of the form (a : � ; �

0

). By induction, they are

always of the form

(a

1

: �

1

; : : : a

p

: �

p

; �)

where � is either abs or a variable, including the case where p is zero and the term is reduced to �.

Record types are also generated by the pseudo-BNF grammar:

� ::= � j � ! � j ��

;

types

�

L

::= �

L

j abs

L

j a : ' ; �

L[fag

a =2 L rows

' ::= � j abs j pre (�) �elds

where �, �, 
 and � are type variables, �, � and � are row variables and � and " are �eld variables.

We prefer the algebraic approach which is more general.

2.2.3 Extending the types of ML with a sorted equational theory

In this section we consider a sorted regular theory T =E for which uni�cation is decidable and

unitary. A regular theory is one whose left and right hand sides of axioms always have the same

set of variables. For any term � of T =E we write V(�) for the set of its variables. We privilege a

sort Type.

The addition of a sorted equational theory to the types of ML has been studied in [100, 102].

We recall here the main de�nitions and results. The language ML that we study is lambda-calculus

extended with constants and a LET construct in order to mark some of the redexes, namely:

M ::= Terms M, N

x Variable x, y

j c Constant c

j �x: M Abstraction

jM M Application

j let x =M inM Let binding

The letter W ranges over �nite set of variables. Type schemes are pairs noted 8W � � of a set of

variables and a term � . The symbol 8 is treated as a binder and we consider type schemes equal

modulo �-conversion. The sort of a type scheme 8W � � is the sort of � . Contexts as sequences of

assertions, that is, pairs of a term variable and a type. We write A the set of contexts.
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Every constant c comes with a closed type scheme 8W � � , written c : 8W � � . We write B the

collection of all such constant assertions. We de�ne a relation ` on A�ML�T and parameterized

by B as the smallest relation that satis�es the following rules:

x : 8W � � 2 A � : W ! T

(Var-Inst)

A `

S

x : �(�)

c : 8W � � 2 B � : W ! T

(Const-Inst)

A `

S

c : �(�)

A[x : � ] `M : � � 2 T

(Fun)

A ` �x: M : � ! �

A `M : � ! � A ` N : �

(App)

A `M N : �

A `

S

M : � A[x : 8W � � ] `

S

N : � W \ V(A) = ;

(Let-Gen)

A `

S

let x =M in N : �

A `M : � � =

E

�

(Equal)

A `M : �

They are the usual rules for ML except the rule EQUAL that is added since the equality on types

is taken modulo the equations E.

A typing problem is a triple of A�ML�T written A.M : � . The application of a substitution

� to a typing problem A . M : � is the typing problem �(A) . M : �(�), where substitution of a

context is understood pointwise and only a�ects the type part of assertions. A solution of a typing

problem A.M : � is a substitution � such that �(A) `M : �(�). It is principal if all other solutions

are obtained by left composition with � of an arbitrary solution.

Theorem 5 (principal typings) If the sorted theory T =E is regular and its uni�cation is decid-

able and unitary, then the relation ` admits principal typings, that is, any solvable typing problem

has a principal solution.

Moreover, there is an algorithm that given a typing problem computes a principal solution if one

exists, or returns failure otherwise.

An algorithm can be obtained by replacing free uni�cation by uni�cation in the algebra of record

terms in the core-ML type inference algorithm. A clever algorithm for type inference is described

in [104].

2.2.4 Typechecking record operations

Using the two preceding results, we extend the types of ML with record types assuming given the

following basic constants:

fg : � (abs )

:a : � (a : pre (�) ; �) ! �

f with a = g : � (a : � ; �) ! �! �(a : pre (�) ; �)

Basic constants for �ML

There are countably many constants. We write fa

1

= x

1

; : : : a

n

= x

n

g as syntactic sugar for:

ffa

1

= x

1

; : : : a

n�1

= x

n�1

g with a

n

: x

n

g

We illustrate this system by examples in the next section.

The equational theory of record types is regular, and has a decidable and unitary uni�cation.

It follows from theorems 5 and 4 that the typing relation of this language admits principal typings,

and has a decidable type inference algorithm.
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2.3 Programming with records

We �rst show on simple examples how most of the constructions described in the introduction

are typed, then we meet the limitations of this system. Some of them can be cured by slightly

improving the encoding. Finally, we propose and discuss some further extensions.

2.3.1 Typing examples

A typechecking prototype has been implemented in the CAML language. It was used to automat-

ically type all the examples presented here and preceded by the # character. In programs, type

variables are printed according to their sort in S

0

. Letters �, � and � are used for �eld variables

and letters �, �, etc. are used for variables of the sort type . We start with simple examples and

end with a short program.

Simple record values can be built as follows:

#let car = fname = "Toyota"; age = "old"; id = 7866g;;

car : Pi (name : pre (string); id : pre (num); age : pre (string); abs)

#let truck = fname = "Blazer"; id = 6587867567g;;

truck : Pi (name : pre (string); id : pre (num); abs)

#let person = fname = "Tim"; age = 31; id = 5656787g;;

person : Pi (name : pre (string); id : pre (num); age : pre (num); abs)

Each �eld de�ned with a value of type � is signi�cant and typed with pre (�). Other �elds are

insigni�cant, and their types are gathered in the template abs . The record person can be extended

with a new �eld vehicle:

#let driver = fperson with vehicle = carg;;

driver :

Pi (vehicle : pre (Pi (name : pre (string); id : pre (num); age : pre (string); abs));

name : pre (string); id : pre (num); age : pre (num); abs)

This is possible whether this �eld was previously unde�ned as above, or de�ned as in:

#let truck driver = fdriver with vehicle = truckg;;

truck driver :

Pi (vehicle : pre (Pi (name : pre (string); id : pre (num); abs)); name : pre (string);

id : pre (num); age : pre (num); abs)

The concatenation of two records is not provided by this system.

The sole construction for accessing �elds is the \dot" operation.

#let age x = x.age;;

age : Pi (age : pre (�); �) ! �

#let id x = x.id;;

id : Pi (id : pre (�); �) ! �

The accessed �eld must be de�ned with a value of type �, so it has type pre (�), and other �elds

may or may not be de�ned; they are described by a template variable �. The returned value has

type �. As any value, age can be sent as an argument to another function:

#let car info �eld = �eld car;;

car info : (Pi (name : pre (string); id : pre (num); age : pre (string); abs) ! �) ! �

#car info age;;

it : string
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The function equal below takes two records both possessing an id �eld of the same type, and possibly

other �elds. For simplicity of examples we assume given a polymorphic equality equal.

#let eq x y = equal x.id y.id;;

eq : Pi (id : pre (�); �) ! Pi (id : pre (�); �) ! bool

#eq car truck;;

it : bool

We will show more examples in section 2.3.3.

2.3.2 Limitations

There are two sorts of limitations, one is due to the encoding method, the other one results from

ML generic polymorphism. The only source of polymorphism in record operations is generic poly-

morphism. A �eld de�ned with a value of type � in a record object is typed by pre (�). Thus, once

a �eld has been de�ned every function must see it de�ned. This forbids merging two records with

di�erent sets of de�ned �elds. We will use the following function to shorten examples:

#let choice x y = if true then x else y;;

choice : � ! � ! �

Typechecking fails with:

#choice car truck;;

Typechecking error: collision between pre (string) and abs

The age �eld is unde�ned in truck but de�ned in car. This is really a weakness, since the program

#(choice car truck).name;;

Typechecking error: collision between pre (string) and abs

which should be equivalent to the program

#choice car.name truck.name;;

it : string

may actually be useful. We will partially solve this problem in section 2.3.3. A natural generaliza-

tion of the eq function de�ned above is to abstract over the �eld that is used for testing equality

#let �eld eq �eld x y = equal (�eld x) (�eld y);;

�eld eq : (� ! �) ! � ! � ! bool

It is enough general to test equality on other values than records. We get a function equivalent to

the program eq de�ned in section 2.3.1 by applying �eld eq to the function id.

#let id eq = �eld eq id;;

id eq : Pi (id : pre (�); �) ! Pi (id : pre (�); �) ! bool

#id eq car truck;;

Typechecking error: collision between pre (string) and abs

The last example fails. This is not surprising since �eld is bound by a lambda in �eld eq, and

therefore its two instances have the same type, and so have both arguments x and y. In eq, the

arguments x and y are independent since they are two instances of id. This is nothing else but ML

generic polymorphism restriction. We emphasize that, as record polymorphism is entirely based on

generic polymorphism, the restriction applies drastically to records.
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2.3.3 Flexibility and Improvements

The method for typechecking records is very 
exible: the operations on records have not been �xed

at the beginning, but at the very end. They are parameters that can vary in many ways.

The easiest modi�cation is changing the types of basic constants. For instance, asserting that

f with a = g comes with type scheme:

f with a = g : � (a : abs ; �) ! �! �(a : pre (�) ; �)

makes the extension of a record with a new �eld possible only if the �eld was previously unde�ned.

This slight change gives exactly the strict version that appears in both attempts to solve Wand's

system [56, 86]. Weakening the type of this primitive may be interesting in some cases, because

the strict construction may be easier to implement and more e�cient.

We can freely change the types of primitives, provided we know how to implement them cor-

rectly. More generally, we can change the operations on records themselves. Since a de�ned �eld

may not be dropped implicitly, it would be convenient to add a primitive removing explicitly a �eld

from a record

n a : � (a : � ; �) ! �(a : abs ; �) ;

In fact, the constant f with a = g is not primitive. It should be replaced by the strict version:

f with !a = g : � (a : abs ; �) ! �! �(a : pre (�) ; �) ;

and the na constant, since the original version is the composition f n a with !a = g. Our encoding

also allows typing a function that renames �elds

rename

a b

: � (a : � ; b : " ; �) ! �(a : abs ; b : � ; �)

The renamed �eld may be unde�ned. In the result, it is no longer accessible. A more primitive

function would just exchanges two �elds

exchange

a$b

: � (a : � ; b : " ; �) ! �(a : " ; b : � ; �)

whether they are de�ned or not. Then the rename constant is simply the composition:

( n a) � exchange

a$b

More generally, the decidability of type inference does not depend on the speci�c signature of the

pre and abs type symbols. The encoding of records can be revised. We are going to illustrate this

by presenting another variant for type-checking records.

We suggested that a good type system should allow some polymorphism on records values

themselves. We recall the example that failed to type

#choice car truck;;

Typechecking error: collision between pre (string) and abs

because the age �eld was de�ned in car but unde�ned in truck. We would like the result to have a

type with abs on this �eld to guarantee that it will not be accessed, but common, compatible �elds

should remain accessible. The idea is that a de�ned �eld should be seen as unde�ned whenever

needed. From the point of view of types, this would require that a de�ned �eld with a value of

type � should be typed with both pre (�) and abs .
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Conjunctive types [32] could possibly solve this problem, but they are undecidable in general.

Another attempt is to make abs of arity 1 by replacing each use of abs by abs (�) where � is a

generic variable. However, it is not possible to write 8 � � �(�) where � ranges over abs and pre .

The only possible solution is to make abs and pre constant symbols by introducing an in�x �eld

symbol \." and write abs :� and pre :� instead of abs (�) and pre (�). It is now possible to write

8 " � (":�). Formally, the signature S

0

is replaced by the signature S

00

given below, with a new sort


ag:

S

00

` � :: �eld ) type

S

00

` abs

�

:: 
ag � 2 K

S

00

` pre

�

:: 
ag � 2 K

S

00

` :

�

:: 
ag 
 type ) �eld � 2 K

S

00

` f

Type

:: type

%(f)

) type f 2 C n fabs ;pre ; :g

S

00

` (`

L

: ; ) :: �eld 
 �eld ) �eld ` 2 L; L 2 P

fin

(L n f`g)

Record constants now come with the following type schemes:

fg : � (abs :�)

:a : � (a : pre :� ; �) ! �

f with a = g : � (a : � ; �) ! �! �(a : ":� ; �)

Basic constants for �ML

0

It is easy to see that system �ML

0

is more general than system �ML; any expression typeable in

the system �ML is also typeable in the system �ML

0

: replacing in a proof all occurrences of abs

by abs :� and all occurrence of pre (�) by pre :� (where � does not appear in the proof), we obtain

a correct proof in �ML

0

.

We show the types in the system �ML

0

of some of previous examples. Flag variables are

written ', � and  . Building a record creates a polymorphic object, since all �elds have a distinct


ag variable:

#let car = fname = "Toyota"; age = "old"; id = 7866g;;

car : Pi (name : '.string; id : �.num; age :  .string; abs.�)

#let truck = fname = "Blazer"; id = 6587867567g;;

truck : Pi (name : '.string; id : �.num; abs.�)

Now these two records can be merged,

#choice car truck;;

it : Pi (name : '.string; id : �.num; age : abs.string; abs.�)

forgetting the age �eld in car. Note that if the presence of �eld age has been forgotten, its type has

not: we always remember the types of values that have stayed in �elds. Thus, the type system

�ML

0

rejects the program:

#let person = fname = "Tim"; age = 31; id = 5656787g;;

person : Pi (name : '.string; id : �.num; age :  .num; abs.�)

#choice person car;;

Typechecking error: collision between num and string

This is really a weakness of our system, since both records have common �elds name and id,

which might be tested on later. This example would be correct in the explicitly typed language

QUEST [22]. If we add a new collection of primitives

n a : � (a : � ; �) ! �(a : abs :� ; �) ;
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then we can turn around the failure above by explicitly forgetting label age in at least one record

#choice (car n age) person;;

it : Pi (age : abs.num; name : '.string; id : �.num; abs.�)

#choice car (person n age);;

it : Pi (age : abs.string; name : '.string; id : �.num; abs.�)

#choice (car n age) (person n age);;

it : Pi (age : abs.�; name : '.string; id : �.num; abs.�)

A more realistic example illustrates the ability to add annotations on data structures and type

the presence of these annotations. The example is run into the system �ML

0

, where we assume

given an in�x addition + typed with num! num! num.

#type tree (') = Leaf of num

# j Node of fleft: pre.tree ('); right: pre.tree (');

# annot: '.num; abs.unitg

#;;

New constructors declared:

Node : Pi (left : pre.tree ('); right : pre.tree ('); annot : '.num; abs.unit) ! tree (')

Leaf : num ! tree (')

The variable ' indicates the presence of the annotation annot. For instance this annotation is absent

in the structure

#let winter = 'Node fleft = 'Leaf 1; right = 'Leaf 2 g;;

winter : tree (abs)

The following function annotates a structure.

#let rec annotation =

# function

# Leaf n ! 'Leaf n, n

# j Node fleft = r; right = sg !

# let (r,p) = annotation r in

# let (s,q) = annotation s in

# 'Node fleft = r; right = s; annot = p+qg, p+q;;

annotation : tree (') ! tree (�) * num

#let annotate x = match annotation x with y, ! y;;

annotate : tree (') ! tree (�)

We use it to annotate the structure winter.

#let spring = annotate winter;;

spring : tree (')

We will read a structure with the following function.

#let read = function 'Leaf n ! n j 'Node r ! r.annot;;

read : tree (pre) ! num

It can be applied to the value spring, but not to the empty structure winter.
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#read winter;;

Typechecking error: collision be-

tween pre and abs

#read spring;;

it : num

But the following function may be applied to both winter and spring:

#let rec left =

# function

# 'Leaf n ! n

# j 'Node r ! left (r.left);;

left : tree (') ! num

#left winter;;

it : num

#left spring;;

it : num

2.3.4 Extensions

In this section we describe two possible extensions. The two of them have been implemented in a

prototype, but not completely formalized yet.

One important motivation for having records was the encoding of some object oriented features

into them. But the usual encoding uses recursive types [20, 121]. An extension of ML with variant

types is easy once we have record types, following the idea of [99], but the extension is interesting

essentially if recursive types are allowed.

Thus it would be necessary to extend the results presented here with recursive types. Uni�cation

on rational trees without equations is well understood [54, 77]. In the case of a �nite set of labels,

the extension of theorem 5 to rational trees is easy. The in�nite case uses an equational theory,

and uni�cation in the extension of �rst order equational theory to rational trees has no decidable

and unitary algorithm in general, even when the original theory has one. But the simplicity of the

record theory lets us conjecture that it can be extended with regular trees.

Another extension, which was sketched in [99], partially solves the restrictions due to ML

polymorphism. Because subtyping polymorphism goes through lambda abstractions, it could be

used to type some of the examples that were wrongly rejected. ML type inference with subtyping

polymorphism has been �rst studied by Mitchell in [79] and later by Mishra and Fuh [44, 45].

The LET -case has only been treated in [55]. But as for recursive types, subtyping has never been

studied in the presence of an equational theory. Although the general case of merging subtyping

with an equational theory is certainly di�cult, we believe that subtyping is compatible with the

axioms of the algebra of record types. We discuss below the extension with subtyping in the �nite

case only. The extension in the in�nite case would be similar, but it would rely on the previous

conjecture.

It is straightforward to extend the results of [45] to deal with sorted types. It is thus possible

to embed the language �ML

fin

into a language with subtypes �ML

�

. In fact, we use the language

�ML

0

�

that has the signature of the language �ML

0

for a technical reason that will appear later. The

subtype relation we need is closed structural subtyping. Closed

2

structural subtyping is de�ned

relatively to a set of atomic coercions as the smallest E-re
exive (i.e. that contains =

E

) and

2

In [45], the structural subtyping is open. With open structural subtyping only some of the atomic coercions are

known, but there are potentially many others that can be used (opened) during typechecking of later phrases of the

program. Closed subtyping is usually easier than open subtyping.
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transitive relation � that contains the atomic coercions and that satis�es the following rules [45]:

� � � �

0

� �

0

� ! �

0

� � ! �

0

�

1

� �

1

; : : : �

p

� �

p

f(�

1

; : : : �

p

) � f(�

1

; : : : �

p

)

f 2 C n f!g

In �ML

0

�

, we consider the unique atomic coercion pre � abs . It says that if a �eld is de�ned, it

can also be view as unde�ned. We assign the following types to constants:

fg : � (abs :�

1

; : : : abs :�

l

)

:a : � (�

1

: : : ; pre :� : : : �

l

)! �

f with a = g : � (�

1

; : : : �

l

)! �! � (�

1

: : : ; pre :�; : : : �

l

)

Basic constants for �ML

0

�

If the types look the same as without subtyping, they are taken modulo subtyping, and are thus

more polymorphic. In this system, the program

let id eq = �eld eq id;;

is typed with:

id eq : fid : pre.�; �g ! fid : pre.�; �g ! bool

This allows the application modulo subtyping id eq car truck. The �eld age is implicitly forgotten in

truck by the inclusion rules. However, we still fail with the example choice person car. The presence

of �elds can be forgotten, yet their types cannot, and there is a mismatch between num and string

in the old �eld of both arguments. A solution to this failure is to use the signature S

0

instead of

S

00

. However the inclusion relation now contains the assertion pre (�) � abs which is not atomic.

Such coercions do not de�ne a structural subtyping relation. Type inference with non structural

inclusion has not been studied successfully yet and it is surely di�cult (the di�culty is emphasized

in [99]). The type of primitives for records would be the same as in the system �ML

fin

, but modulo

the non-structural subtyping relation.

Conclusion

We have described a simple, 
exible and e�cient solution for extending ML with operations on

records allowing some sort of inheritance. The solution uses an extension of ML with a sorted

equational theory over types. An immediate improvement is to allow recursive types needed in

many applications of records.

The main limitation of our solution is ML polymorphism. In many cases, the problem can be

solved by inserting retyping functions. We also propose structural subtyping as a more systematic

solution. But it is not clear yet whether we would want such an extension, for it might not be

worth the extra cost in type inference.
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If � 2 V(�) ^ � 2 e n V,

U ^ (� 7! �)(e)

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

U ^ 9� � (e ^ � = �)

(Generalize)

U ^ a : � ; �

0

= abs = e

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

U ^

V

8

<

:

abs = e

� = abs

�

0

= abs

U ^ a : � ; �

0

= b : � ; �

0

= e

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

U ^ 9 
 �

V

8

>

<

>

:

b : � ; �

0

= e

�

0

= b : � ; 


�

0

= a : � ; 


(Mutate)

U ^ f(�

1

; : : : �

p

) = f(�

1

; : : : �

p

) = e

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

U ^

V

(

f(�

1

; : : : �

p

) = e

�

i

= �

i

; i 2 [1; p]

(Decompose)

U ^ � = e ^ � = e

0

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

U ^ � = e = e

0

(Fuse)

Figure 2.1: Rewriting rules for record-type uni�cation

Appendix

2.4 Uni�cation on record types

The algorithm is an adaptation of the one given in [104], which we recommend for a more thorough

presentation. It is described by transformations on uni�cands that keep unchanged the set of

solutions. Multi-equations are multi-sets of terms, written �

1

= : : : �

p

, and uni�cands are systems

of multi-equations, that is, multi-sets of multi-equations, with existential quanti�ers. Systems of

multi-equations are written U . The union of systems of multi-equations (as multi-sets) is written

U ^U

0

and 9� � U is the existential quanti�cation of � in U . Indeed, 9 acts as a binder and systems

of multi-equations are taken modulo �-conversion, permutation of consecutive binders, and 9� � U

is assumed equal to U whenever � is not free in U . We also consider both uni�cands U ^ 9� � U

0

and 9� � U ^ U

0

equal whenever � is not in U . Any uni�cand can be written 9W � U where W is

a set of variables, and U does not contain any existantial.

The algorithm reduces a uni�cand into a solved uni�cand in three steps, or fails. The �rst step

is described by rewriting rules of �gure 2.1. Rewriting always terminates. A uni�cand that cannot

be transformed anymore is said completely decomposed if no multi-equation has more than one

non-variable term, and the algorithm pursues with the occur check while instantiating the equations

by partial solutions as described below, otherwise the uni�cand is not solvable and the algorithm

fails.

We say that a multi-equation e

0

is inner a multi-equation e if there is at least a variable term

of e

0

that appears in a non-variable term of e, and we write e

0

<� e. We also write U

0

6<� U for

8e

0

2 U

0

; 8e 2 U; e

0

6<� e

The system U is independent if U 6<� U .



2.4. UNIFICATION ON RECORD TYPES 61

The second step applies the rule

If e ^ U 6<� e,

e ^ U

-------------------------------------------------------

g

�

e ^ ê(U)

(Replace)

until all possible candidates e have �red the rule once, where ê is the trivial solution of e that sends

all variable terms to the non-variable term if it exists, or to any (but �xed) variable term otherwise.

If the resulting system U is independent (i.e. U 6<� U), then the algorithm pursues as described

below; otherwise it fails and U is not solvable.

Last step eliminates useless existential quanti�ers and singleton multi-equations by repeated

application of the rules:

If � =2 e ^ U ,

9� � (� = e ^ U)

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

e ^ U

f�g ^ U

--------------------------------------------------

g

�

U

(Garbage)

This always succeeds, with a system 9W � U that is still independent. A principal solution of the

system is

^

U , that is, the composition, in any order, of the trivial solutions of its multi-equations.

It is de�ned up to a renaming of variables in W . The soundness and correctness of this algorithm

is described in [104].

The Replace step is actually not necessary, and a principal solution can be directly read from

a completely decomposed form provided the transitive closure of the inner relation on the system

is acyclic (see [104] for details).

With the signature S

00

the only change to the algorithm is the addition of the mutation rules:

a : � ; �

0

= pre = e

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

V

8

>

<

>

:

pre = e

� = pre

�

0

= pre

a : � ; � = 


1

:


2

= e

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

g

�

9�

1

�

2

�

1

�

2

�

V

8

>

>

>

>

>

<

>

>

>

>

>

:




1

:


2

= e

� = �

1

:�

2

� = �

1

:�

2




1

= a : �

1

:�

1




2

= a : �

2

:�

2

Note that in the �rst mutation rule, all occurrences of pre in the conclusion (the right hand side)

of the rewriting rule have di�erent sorts and the three equations could not be merged into a multi-

equation. They surely will not be merged later since a common constant cannot �re fusion of two

equations (only a variable can). As all rules are well sorted, rewriting keeps uni�cands well sorted.
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Chapter 3

Projective ML

Ce chapitre a �et�e publi�e dans [103].

Projective ML

Nous proposons un lambda-calcul projectif comme base pour exprimer les op�erations sur les en-

registrements. Les projections sont des enregistrements avec une valeur par d�efaut qui est comme

projet�ee �a l'in�ni. Le calcul �etend le �-calcul tout en conservant ses propri�et�es essentielles. Nous

construisons le langage projective ML au dessus de ce calcul en ajoutant des liaisons polymorphes au

�-calcul projectif simplement typ�e. Nous montrons que projective ML poss�ede la propri�et�e d'auto-

r�eduction �a la base de la sûret�e de l'�evaluation. Les projections sont une structure de donn�ee utile

qui peut être compil�ee e�cacement. De plus, les op�erations habituelles sur les enregistrements

peuvent être d�e�nies en termes de projections.

Projective ML

We propose a projective lambda calculus as the basis for operations on records. Projections operate

on elevations, that is, records with defaults. This calculus extends lambda calculus while keeping

its essential properties. We build projective ML from this calculus by adding the ML Let typing

rule to the simply typed projective calculus. We show that projective ML possesses the subject

reduction property, which means that well-typed programs can be reduced safely. Elevations are

practical data structures that can be compiled e�ciently. Moreover, standard records are de�nable

in terms of projections.

63
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Introduction

The importance of records in programming languages is commonly accepted. There have been

many proposals for adding records in strongly typed functional languages [20, 119, 56, 86, 84, 99,

106, 27, 25, 49, 50]. However the topic is still active and there is not yet a best solution. Even for

the most popular of them, ML, each implementation extends the core language with records of a

very di�erent kind.

For experts of record calculi, the multitude of works converges continuously towards a better

comprehension of records, but it appears as a jungle of proposals for the novice that can hardly

understand their very insidious di�erences. There is a lack of a simple formalism in which evaluation

of row expressions could be described concisely and precisely. Furthermore, in a typed language,

the typing rules often add technical restrictions that increase the confusion. This work started as

a modest attempt to �nd a simple untyped record calculus in which most classical operations of

records could be described. It ended in yet another proposal, but one that subsumes some others.

In the simplest view of records, there are only two operations. A record is a �nite collection

of objects, each component being addressed by name. The creation of a record takes as many

name-object pairs as there are components and creates the corresponding record. The names used

to address components are called labels; a label together with its component is a �eld. Reading

information from a record takes a label that de�nes a �eld in the record and returns the component

of that �eld. Thus the access of a component in a record should only require that the label does

de�ne a �eld in the record. Some type systems are more drastic, and require that the labels of all

other �elds of the records be also given at access time. This makes it impossible to use the same

function to access the same �eld in two records having that �eld in common, but di�ering by other

�elds | a feature that is highly desirable.

The most popular extension of simple records is the creation of a record from another one by

adding one �eld. This operation is called record extension. If the component may already be de�ned

in the argument the extension is free, otherwise it is strict. Conversely, record restriction creates a

record from another one by removing one of its �eld. As for extension, restriction can be free or

strict.

The most di�cult operation to type is still the concatenation of records that creates a record by

combining the �elds of two others [121, 50]. Again, record concatenation can be free or strict. There

is also recursive concatenation that recursively merges the components of common �elds, provided

they are records themselves [86]. Record concatenation can be encoded with record extension,

which gives one way of typechecking record concatenation [107]. However, none of the proposal for

typing record concatenation is fully satisfactory.

Between extension and concatenation, there exists an intermediate operation that takes two

records and a label and builds a record by copying all the �elds of the �rst record except for

the given label whose �eld is taken from the second one, whether it is de�ned or not. That is,

either the label is unde�ned in both the second argument and the result or it is de�ned with the

same value in both records. This operation, called modi�cation, is strictly more powerful than

extension and restriction, but much easier to type than concatenation, since it involves only one

�eld. Other constructions, such as the exchange or renaming of �elds are less popular, though they

easily typecheck in some systems.

We introduce a projective lambda calculus as the basis for designing functional languages with

records. In the �rst section, we study the Projective Lambda Calculus, written P�, extends the

lambda calculus while preserving the Church-Rosser property. There is a simple projective type

system for this calculus, for which the subject reduction theorem holds. In the second section, we
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extend the simple projective type system with the ML Let typing rules and add concrete data types

to the language: this de�nes the language we call projective ML. In the last section we elaborate

on the signi�cance of Projective ML from three di�erent standpoints.

By lack of space, most of the proofs have been omitted, other are roughly sketched. See [103]

for a more thorough presentation.

3.1 The projective lambda calculus

In this section we introduce the untyped projective lambda calculus. Then, we propose a simple

type system for this calculus, we prove the subject reduction property and show that there are

principal typings.

3.1.1 The calculus P�

The projective lambda calculus P� is the lambda calculus extended with three constructions,

namely the elevation, the modi�cation and the projection. It is de�ned relatively to a denumerable

collection of labels, written with letters a and b.

M ::= x Variable

j �x: M Abstraction

jM M Application

j [M ] Elevation

jM [a =M ] Modi�cation

jM=a Projection

The intended meaning of these constructions is given by the reduction rules of the projective lambda

calculus. Namely, the rules are the classical � rule:

(�x: M) N �!M [x := N ] (�)

plus the following projective rules (P ):

[M ]=a �!M (Default)

M [a = N ]=a �! N (Access)

M [b = N ]=a �!M=a (Skip)

As opposed to records, elevations can be projected on all labels.

The compatible closure of �! is written ����

-

. The transitive closure of ����

-

is written

����

--

and call �P -reduction.

Theorem 6 (Church-Rosser) The calculus �P is Church-Rosser.

This means that if M �P -reduces to N and N

0

, then there exists a term M

0

such that both N and

N

0

�P -reduces to M

0

.

Proof: The reductions � and P are Church-Rosser. The reduction P is a rewriting system that

has no critical pair and is n�therien, thus it is Church-Rosser. The reductions � and P commute,
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since the diagram

M ����

P

�����

-

N

j

j

�

�

�

�

�

�

�

j

?

�

�

�
?

M

0

�������

P

��������

--

N

0

commutes (this is checked by considering the relative positions of �- and P -redexes).

3.1.2 Projective types

Projective types extend the record types that have been introduced in [100, 104] in order to get a

type system for the record extension of ML presented in [100, 106].

Record types are based on the idea that types of records should carry information on all �elds

saying for every label either the �eld is present or absent [99]. The way to deal with an in�nite

collection of labels is to give explicit information for a �nite number of �elds and gather all infor-

mation about other �elds in a template, called a row. Record types allow sharing between the same

�elds of two rows, but do not allow sharing between all �elds of the same row (except for ground

rows). When a type is coerced to a row, all projections must be shared for the same reason that

lambda bound variables in ML cannot have polymorphic types.

� ::= type � and �

� type variable � and �

j � ! � arrow type

j h�i projection type

� ::= row type � and �

' row variable ' and  

j �) � arrow row

j a : � ; � de�ned row

j @ � shared row

In fact, rows are sorted according to the set of labels that they cannot de�ne. We omit this

distinction here. The reader is referred to [104] for a more thorough presentation.

The equality on types is de�ned by the following axioms. Left commutativity:

a : � ; (b : � ; ') = b : � ; (a : � ; ')

simply means that the order of de�nition of rows does not matter. Replication:

@ � = a : � ; @ �

means that shared rows are the same as rows de�ning the same type on all labels. Distributivity

of arrows:

@ �) @ � = @ (�! �)

and

(a : � ; ')) (a : � ;  ) = a : (�! �) ; (')  )

means that arrow rows are truly rows of arrows.

Lemma 2 The theory of projective types is regular, unitary unifying and has a decidable uni�cation

algorithm.
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Hint: The regularity directly follows from the shape of the axioms. The theory of projective types

is shown syntactic by extending the method developed in [104] for simple record terms. This is the

di�cult part of the proof. It is a consequence that the rewrite rules given in the appendix 3.4 are

sound and complete. The termination of the algorithm is quite standard. Then, since the rewrite

rules never introduce any disjunction, the theory is unitary.

The uni�cation algorithm is described in the appendix 3.4.

3.1.3 A type system for P�

There are two kinds of typing judgements. A type assertion is the binding of a variable x to a

type, written x :

T

� and a row assertion is the binding of a variable x to a row �, written x :

R

�.

A context is a list of assertions with rightmost priority. Mixed contexts contain both type and

row assertions. Row contexts only contain row assertions. Concatenation of contexts is written by

juxtaposition.

The judgement H `

T

M : � means that in the mixed context H, the program M has type

� . The judgement H;K `

R

M : � means that in the mixed context H and the row context K,

the program M has row �. The �rst set of typing rules are the ones of the simply-typed lambda

calculus:

x :

T

� 2 H

H `

T

x : � T-Var

H[x :

T

� ] `

T

M : �

H `

T

�x: M : � ! � T-Fun

H `

T

M : � ! � H `

T

N : �

H `

T

M N : � T-App

The next set of rules deals with the elevations:

H `

T

M : ha:� ; �i H `

T

N : �

H `

T

M [a = N ] : ha: � ; �i Modify

H `

T

M : ha: � ; �i

H `

T

M=a : � Project

H; ; `

R

M : �

H `

T

[M ] : h�i Elevate

The �rst two rules are quite standard with record calculi. The last one describes the typing of an

elevation. The elevated expression must be assigned a row. The row context shall binds variables

that will be introduced during the typing of the current elevation, while previously bound variables

are in the mixed context H. All expressions can be elevated, thus we need to assign rows to
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applications and abstractions as well:

x :

R

� 2 K

H;K `

R

x : � R-Var

H;K[x :

R

�] `

R

M : �

H;K `

R

�x: M : �) � R-Fun

H;K `

R

M : � ) � H;K `

R

N : �

H;K `

R

M N : � R-App

Sometimes, one might get a type when a row is required. For instance, when a type derivation of

�x: [x], the variable x will be assigned a type � , but a row will be expected when typing x in the

elevation. The type � can be lifted to a shared row.

HK `

T

M : �

H;K `

R

M : @ � Lift

Conversely, a variable bound to the row @ (�) can be used with type � :

x :

R

@ � 2 H

H `

T

x : � Drop-Var

Finally, since types are taken modulo E-equality:

H `

T

M : � � =

E

�

H `

T

M : � T-Equal

H `

R

M : � � =

E

�

H `

R

M : � R-Equal

We presented the previous set of rules (RT ) since there are simple and very intuitive. There is a

smaller and more regular set (S), given in the appendix 3.5, that are equivalent to the rules (RT ).

The judgements of (S) are H;K `

S

: � were both H and K are row contexts (where superscript

R

is omitted).

Lemma 3 The judgement H `

T

M : � is derivable if and only if the judgement H; ; ` M : @ � is

derivable where x :

T

� in T is translated as x : @ � in S.

Hint: The proof is by successive transformations of (RT ) into equivalent systems ending with

(S). The �rst step converts every type assertion x :

T

� in contexts into row assertions x :

R

@ (�),

replacing in the derivations, every occurrence of the rule T-Var by a rule Drop-Var. Rule T-Var

is removed. The converse of the Lift rule:

H;K `

R

M : @ �

HK `

T

M : � Drop

is derivable in (RT ), by an easy induction on the size of the derivation of the premise and by cases

on the last rule of the derivation. It is added to (RT ).

Successively, rules Fun and App are removed, record rules of (S) are added, then those of (RT )

can be removed, rule Var is added and rule Drop-Var is removed. Last, Drop and Lift are

shown to be useful only at the end of a derivation.
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Lemma 4 (Stability by substitution) Typings are stable by substitution.

This property is quite immediate in the case of the a simple calculus.

The type inference problem is: given a triple H;K . M : �, �nd all substitutions � such that

�(H); �(K) ` M : �(�). The type system (S) has principal typings if the set of solutions of every

type inference problem is either empty, or has a maximal element called a principal solution, and

if, in addition, there exists an algorithm that takes a type inference problem as input and returns

a principal solution or an indication of failure if no solution exists.

Theorem 7 (Principal typings) The type system of P� has principal typings.

Hint: Type inference for P� is in the general framework of extending the ML type system with an

equational theory on types. The comma that splits the contexts into two parts is a detail, since the

system (S) is still syntax directed. The principal type property for such a system holds in general

whenever the axiomatic theory on types is regular, unitary unifying and as a decidable uni�cation

algorithm [100].

Type inference is based on the syntacticness of the theory of projective types and the uni�cation

algorithm that follows. It proceeds exactly as for the language with record extension presented

in [106].

The algorithm for type inference can be found in the Appendix 3.6 for the language PML

presented in the next section.

3.1.4 Subject reduction

Subject reduction holds if reduction preserves typings: for any program M and N , if M has type

� in the context H;K and �P -reduces to N , then N has type � in context H;K.

Theorem 8 (Subject reduction) Subject reduction holds in P�.

Hint: It is shown independently for all cases of reduction at the root, then it easily follows for

deeper reductions. The di�cult case is Elevate. It uses the lemma if HK; ; ` M : (a : � ; �) is

derivable in S, then so is HK; ; ` M : @ � which is proved with a little stronger hypothesis by

induction on the length of the derivation of the premise and cases on the last rule that is not an

equality rule.

3.2 The language PML

Since the simply typed projective lambda calculus behaves nicely, we extend it to a full language,

PML, in two steps. We add the ML Let typing rule and then concrete data types. In each case we

check that the principal type property and subject reduction still hold.

3.2.1 Let polymorphism

We extend the projective calculus with a let construction

M ::= : : : j let x =M in N
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The let is syntactic sugar for marked redexes

(�x: N)

�

N

Thus, there is no special reduction rule for let redexes but the (�) rule:

(�x: M)

�

N �! (x 7! N)(M) (�)

Therefore the calculus remains Church-Rosser.

Types are extended with type schemes. Type schemes are pairs of a set of variables and a type

or a row, written 8W � � or 8W � �. Formally, variables should be annotated with their sorts,

but the sorts can be recovered from the occurrences of variables in their scheme. We identify type

schemes modulo �-conversion of bound variables, and elimination of quanti�cation over variables

that are not free.

Type assertions now bind variables to type schemes. The rules Var are changed to:

x : 8W � � 2 K dom (�) �W

H;K ` x : �(�)

x : 8W � @ � 2 H nK dom (�) �W

H;K ` x : @ �(�)

The Let rule is

H;K `M : �

H;K[x : V(�) n V(HK)] ` N : �

H;K ` let x =M in N : � Let

where V(�) is the set of free variables in � and V is naturally extended to contexts.

The extension of P� with let binding does not interfere with projections, and the substitution

lemma, and the principal typing property and subject reduction theorems easily extend to PML.

3.2.2 Concrete data types

The language is now parameterized by a �nite collection of concrete data types. For sake of simplic-

ity, we consider a single two-constructor data type. We shall make other simplifying assumptions

on types below, but it is possible to generalize to arbitrary data types.

The data type that we consider could be declared in ML as:

type bar (�) = A j B of �

The syntax is extended with:

M ::= : : :

j A j B(M)

j match M with A)M j B(y))M

The new reduction rules are:

(match A with A)M

j B(y)) N) �!M

(match B(L) with A)M

j B(y)) N) �! (� y: N) L
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These �-reductions are CR and commute with �P . Therefore the language PML with sums is still

Church-Rosser.

Types are also extended with a symbol bar of arity one.

� ::= : : : Old type

bar (�) bar type

� ::= : : : Old row

bar (�) bar row

We should have used two di�erent symbols for bar types and bar rows, but the context will distin-

guish them. The symbol bar obeys the two distributivity axioms:

bar (a : �;') = a : bar (�);bar (')

@ (bar (�)) = bar (@ �)

We add the three typing rules:

H;K ` A : bar (�)

H;K `M : �

H;K ` B(M) : bar (�)

H;K ` L : bar (�)

H;K `M : � H;K ` � y: N : � ) �

match L with A)M j B(y)) N : �

Theorem 9 The language PML with sums has principal typings.

Theorem 10 Subject reduction holds for PML with sums.

3.3 The three views of PML

Projective ML is a practical language of records with default values. It is also a language in which

all operations of classical records but concatenation are de�nable. Finally, computation inside

elevations introduces a new kind of polymorphism.

3.3.1 Records with default values

To the author's knowledge, this feature has never been introduced in the literature before. Instead

of starting with empty records that can be extended with new �elds, projective ML initially creates

records with the same default value on all �elds. Then a �nite number of �elds can be modi�ed.

Thus, all �elds are always de�ned and can be read.

The introductory examples below have been typechecked by a prototype typechecker written in

Caml-Light [67]. The �rst examples are:

#type unit = Unit;;

#let r = [Unit];;

r : shared [unit]

#r/a;;

it : shared unit

#type bool = True j False;;
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#let s = r [a = True];;

s : shared [a : bool; unit]

#s/a;;

it : shared bool

The a �eld of s cannot be removed, but it can be reset to its default value. Whenever the types

of �elds are known statically, but not their presence, the attendance can be dynamically checked:

#type �eld (') = Absent j Present of ';;

#let r = [Abs] [a = Present (True)]

# [b = Present (Unit)];;

r : shared [a : �eld (bool); b : �eld (unit); �eld (')]

#let check x =

# match x with Present y ) y

# j Absent ) failwith "Absent �eld";;

check : �eld (') ) '

#let v = check (r/a);;

v : shared bool

If the presence of �elds is stactically known, the two-constructor data type can be replaced by two

one-constructor data types, leaving the typechecker check attendances.

#type absent = Absent;;

#type present (') = Present (');;

#let get x = match x with Present y ) y;;

get : present (') ) '

[Absent][a = Present (true)][b = Present (unit)];;

it : shared [a : present (bool); b : present (unit); absent]

#let v = get (it/a);;

v : shared bool

Record with defaults are not just an untractable toy feature. They can be compiled very

e�ciently, as classical records [101].

3.3.2 Classical records

Continuing the example above, we show that classical records are de�nable in projective ML.

Precisely, classical record operations are just syntactic sugar for:

fg � [Absent]

fM with a = Ng �M [a = Present (N)]

(M:a) � get (M=a)

Many other constructions are programmable as well, since projective ML allows the manipulation

of �elds whether they are present or absent.

M n a �M [a = Absent]

fM but a from Ng �M [a = N=a]

fexchange a and b in Mg � let u =M=a in

let v =M=b in

M [a = v][b = u]
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Though e�ciency is not our main goal here, it is important to emphasize that dealing explicitly

with the presence of �elds does not cost anything. Since both abs and pre data types have unique

constructors, the constructors need not be represented explicitly. That is, the presence of �elds can

be statically computed by the typechecker. Even the default value Absent need not be represented,

since it is the only value in its type. Thus the (very small) overhead for computing with elevations

only costs when there are used.

Obviously, the projective implementation of standard records can be packed in an abstract data

type or a module so that the two types pre and abs and their constructors are not visible outside,

and the presence of �elds cannot be manipulated by hand. But elevations and projections will

remain visible, can be used whenever defaults values in records are desirable, or also to implement

another variant of classical records.

3.3.3 Projection polymorphism

The last view of projective ML is quite unexpected. The elevations are assigned rows that are

in fact \template" types. That is, they can be read on any component by taking a copy of the

template; therefore the type of two projections will not be equal but isomorphic. For instance, with

classical records as in [106] (or using the syntactic sugar of the previous section) the function that

reads the a �eld of a record has type:

[a : pre � ;']! �

But this type can also be seen as

1

:

[a : pre � ; b : �; ]! �

With classical records, this polymorphism allows the �nite representation of a potentially in�nite

product of types, and nothing more. In projective ML, we can �ll the elevations with any value

and even compute inside. The identity function elevation [�x: x] has type [' ) ']. Taking its

projection on two arbitrary �elds gives twice the same value but with two isomorphic types �! �

and � ! �. The program,

(�x: x x) (�x: x) (1)

cannot be written in ML without a Let. In projective ML one can write:

(�x: x=a x=b) [�x: x] (2)

which has type � ! �. It can be argued that this is not exactly the same program, and that,

if program transformations are allowed, then the following ML program also computes the same

result.

(�xy: x y) (�x: x) (�x: x) (3)

This is certainly true, but the program (3) is much bigger than the program (1) and duplicates

some of the code. The expression (2) is almost as small as the expression (1) and takes less time

to typecheck (for bigger example of course, since all examples here are too small to allow any

comparison). In (3), the body of �x: x is typed twice, but it is typed only once in (2) before the

resulting type is duplicated by uni�cation.

1

In [104] we de�ne canonical forms and show that both type have the same canonical form, though they are not

equal (the latter is less general).
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Moreover, if we consider a variant of PML without the possibility of modifying elevations,

M ::= x j �x: M jM M j [M ] jM=a

then projections always access the default value of elevations (since they could not be modi�ed).

Elevation and projection can both be implemented as empty code. They only modi�es the types

(they are called retyping functions), and helps the typechecker as if they were type annotations.

The elevation indicates that an expression may be used later with di�erent types, and thus should

be typed with a row. The projection requires the use of a copy of the row template instead of the

row itself. The copy is kept inside the row for constraint propagation.

Breaking the expression (2), the subexpression (�x: x=a x=b) has type:

[a : � ! �; b : � ]! � (4)

There are obvious similarities with conjunctive types [32, 91]. This expression would have the

conjunctive type

(� ! � ^ �)! � (5)

Projective ML di�ers from conjunctive types by naming the conjunctions, but also in some deeper

way. The projection, which correspond to the expansion in conjunctive types, is much more re-

strictive than the expansion. An interesting comparison would be with the decidable restriction of

conjunctive types that has been recently proposed by Coppo and Denzianni [31].

There is an important limitation in the type system of projective ML: it is a two-level design.

Elevations inside elevations get typed with shared rows and projective polymorphism is lost. A

strati�ed version with types, rows, rows of rows, etc. composing an in�nite row tower can be

imagined. The author has actually worked on such a version but has not proved yet that it is

correct.

Another form of this limitation of projective polymorphism is its failure to cross elevations. The

best type for �x: [x] is @ � ) [@ �], while we would expect ' ) [']. Variables in elevations that

are bound outside of the current elevation in which they appear can only have shared rows.

Projective polymorphism combines nicely with generic polymorphism. The two concepts are

orthogonal. Here is an example that combines both:

let F = � f: � x; y: f=a x; f=b y in

F [I] (I;K); F [K] (I;K)

where I and K are abbreviations for �x: x and �xy: x. It is typeable in projective ML.

Conclusions

We have introduced Projective ML, and shown that it is a type-safe language. Projective ML

exceeds ML on two opposite �elds.

� Elevations, modi�cations and projections are extensible records with defaults. With only

three operations that can be compiled very e�ciently, they provide the ML language with

enough power to de�ne all variants of classical records.

� Projective ML brings in the type system a restricted form of conjunctive polymorphism.

The curiosity of Projective ML is that both features are almost independent but one still need the

other. The most intriguing of the two is projective polymorphism, for which more investigation is

still needed.
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Appendix

3.4 Uni�cation on projective types

We describe the uni�cation algorithm by transformation rules on uni�cands (multi-sets of equa-

tions). The formalism is the one of [104] in general, improved with existential uni�cands [57]. A

multi-equation is a multi-set of terms written �

1

_= : : : �

n

. A solution of a multi-equation is a sub-

stitution that uni�es all the terms of the multi-equation. A multi-set of multi-equations is noted

U

1

^ : : : U

p

. Its solutions are the substitutions that satisfy all the multi-equations. We also use

existential uni�cands, written 9�:U , whose solutions are the restrictions of the solutions of U on

variables distinct from �. Indeed, 9 acts as a binder, and existential uni�cands are equal modulo

�-conversion. Consecutive binders can be exchanged, and 9�:U is equal to U whenever � is not

free in U . We identify uni�cands modulo the previous equalities.

Two uni�cands U and U

0

are equivalent, and we write U �� U

0

if they have the same set of

solutions. The relation �� is obviously an equivalence. It is also a congruence, that is, parts of

uni�cands can be replaced by equivalent parts. We also write ? and > for uni�cands that are

respectively equivalent to the empty set and the set of all substitutions.

The input of the uni�cation algorithm is a multi-set of equations. The output will be failure

or a most general solution of the input uni�cand. It proceeds in three steps. All of these steps are

described by transformations of uni�cands that are equivalences.

Most of the transformations are valid for both types and rows. We write � and � for terms and

� for variables that can be of both kinds. The �rst step is the generalization:

e _= �[�]

9�: e _= �[�] ^ � _= �

Generalize

An iteration of this rule will transform any system into one that contains only small terms (terms

of height at most one).

The second step is only de�ned on small uni�cands, and keeps them small. The mutation of

uni�cands is one of the four following transformations (f is a symbol of arity p and I is the segment
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of integers [1; p]):

a : � ; � _= f(�

i

)

I

9 (�

i

)

I

('

i

)

I

:

^

8

>

<

>

:

� _= f (�

i

)

I

� _= f ('

i

)

I

�

i

_= a :�

i

;'

i

i 2 I

Mut

a.f

a : � ; � _= b :�; �

9':

V

(

� _= b :�;'

� _= a : � ;'

Mut

a.b

@ (�) _= a : �; �

9�:

V

(

� _= � _= �

� _= @ (�)

Mut

@ .b

@ (�) _= f (�

i

)

I

9 (�

i

)

I

:

V

(

� _= f (�

i

)

I

�

i

_= @ (�

i

) i 2 I

Mut

f.@

For all other pairs of terms (�; �), if they have identical top symbols, they are decomposable, that

is

� _= �

V

I

(�

=i

_= �

=i

)

Decompose

otherwise they produce a collision

� _= �

V

I

(�

=i

_= �

=i

)

Collision

All mutation, decomposition and collision rules can be generalized to rules where the premise is a

multi-equation rather than an equation: for any mutation rule

� _= �

Q

we build the generalized mutation rule:

e _= � _= �

e _= X ^Q

The fusion of multi-equations is:

� _= e ^ � _= e

0

� _= e _= e

0

Fuse

Applying the generalized mutation and the fusion in any order always terminates on small uni�-

cands. Uni�cands that cannot be reduced are necessarily in canonical forms, that is, completely

decomposed and fused.
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The last step does the occur check on canonical uni�cands while instantiating the equations by

partial solutions. On canonical uni�cands Q, we say that the multi-equation e

0

is directly inner the

multi-equation e if there is at least a variable term of e

0

that appears in a non variable term of e.

We note <�

Q

its transitive closure. The occur check is the rule

Q

?

Occurif e <�

Q

e,

Otherwise, we can apply the rule:

e ^Q

e ^ ê(Q)

Replaceif e 6<� Q,

where ê is the trivial solution of e that sends all variable terms of e to the non variable term if it

exists, or to any variable term otherwise. The Replace rule is completed by the elimination of

useless existentials

9�: (� _= e ^Q)

e ^Q

Restrictif � =2 e \Q,

The succession of the three steps either fails or ends with a system 9W:Q where all multi-

equations are independent. A principal solution of the system is

^

Q, that is, the composition, in any

order, of the trivial solutions of its multi-equations. It is de�ned up to a renaming of variables in

W .

The last step may be reduced to the occur check, and the equations in the uni�cand need

not be instantiated by rule Replace, since the canonical uni�cand itself is a good and compact

representation of a principal uni�er.

Although it is described in a more general framework, the algorithm is very close to the one of

Martelli-Montanari for empty theories [77], some of the collisions have been replaced by mutations

in a way that copies the axioms of the theory. This is a property of syntactic theories [61, 62].

Proving the correctness of the algorithm is reduced to proving the syntacticness of the theory and

the termination of the second step. Proving the termination is standard, but proving that the

theory is syntactic is the di�cult part.

The second step may not be restricted to small terms. In this case the generalized mutation

and decomposition rules need to include the minimum of generalization so that there is enough

sharing to ensure the termination.



78 CHAPTER 3. PROJECTIVE ML

3.5 A simpler set of typing rules for the projective calculus

The judgements are of the form H;K ` M : �, where H and K are row assertions. The typing

rules, called (S) are:

x : @ � 2 H nK

H;K ` x : @ �

x : � 2 K

H;K ` x : � Var

H;K[x : �] `M : �

H;K ` �x: M : �) � Fun

H;K `M : �) � H;K ` N : �

H;K `M N : � App

HK; ; `M : �

H;K ` [M ] : @ h�i Elevate

H;K ` N : @ (�)

H;K `M : @ ha: � ; �i

H;K `M [a = N ] : @ ha:� ; �i Modify

H;K ` [M ] : @ ha: � ; �i

H;K `M=a : @ � Project

H;K `M : � � =

E

�

H;K `M : � Equal

3.6 Type inference

The above set of rules is completed with:

H;K `M : �

H;K[x : 8 (V(�) n V(HK)) � �] ` N : �

H;K ` let x =M in N : � Let

The rules are not exactly those of ML. The two rulesModify and Project can be treated as ap-

plication of constants. The rule equal, due to an extended type equality, does not add any di�culty,

provided that the theory is regular and has a decidable and unitary uni�cation algorithm [100]. The

only di�erence with ML (extended with equations on types) is the mark in the context. However,

the position of the mark is rigid, and the type inference algorithms of ML very easily extends to

the system S. We describe the algorithm in terms of uni�cands. The substitution lemma (that

extends to PML) allows to consider type inference problems as uni�cands, written H;K . M : �,

whose solutions are the substitutions � such that �(H); �(K) `M : �(�) is a valid judgement. We

give below equivalence transformations of these uni�cands.

Case Var: If x : @ � is in H nK, and � is a renaming of variables of V(�) outside of �, then

H;K . x : �

9V(�(�)): � = �(�)

T-Var
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If x : � is in K, and is a renaming of variables of V(�) outside of �, then

H;K . x : �

9V(�(�)): � = �(�)

R-Var

If x is not in HK, then H;K . x : � is not solvable.

Case App:

H;K .MN : �

9 :H;K .M :  ^H;K . N :  ) �

App

Case Fun:

H;K . �x: M : �

9' :H;K[x : '] . M :  ^ � = ')  

Fun

Case Let: If � is outside of HK and 9W:Q is a solvable independent uni�cand equivalent to

H;K .M : �, then

H;K . let x =M in N : �

9W:H;K[x :

^

Q(�)] . N : �

Let

If H;K .M : � is not solvable, then neither is H;K . let x =M in N : �.

Case Elevate:

H;K . [M ] : �

9�:HK; ; . M : � ^ @ � _= �

Elevate

The above rules applied in any order either fail or reduce any type inference problem to a uni�cation

problem.
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Chapter 4

Typage de la concat�enation des

enregistrements �a l'�il

Ce chapitre a �et�e publi�e dans [107].

Typage de la concat�enation des enregistrements �a l'oeil

Nous montrons que dans un langage fonctionnel avec des enregistrements extensibles la

concat�enation des enregistrements est gratuite. Nous donnons une traduction de la concat�enation

en utilisant une op�eration d'extension. Nous obtenons un syst�eme de type pour un langage avec la

concat�enation en composant la traduction avec le typage de l'extension des enregistrements. Nous

appliquons cette m�ethode �a une version de ML avec une op�eration d'extension. Nous obtenons une

extension simple et 
exible de ML avec une op�eration de concat�enation sym�etrique ou asym�etrique

qui poss�ede un algorithme de synth�ese des types e�cace en pratique. Pour obtenir dans le langage

avec concat�enation une op�eration d'e�acement des champs, il faut ajouter une nouvelle op�eration

aux enregistrements extensibles.

Les langages �a objets b�en�e�cient de ce codage puisqu'il montre que l'h�eritage multiple n'a pas

en fait besoin de la concat�enation des enregistrements mais seulement d'une op�eration d'extension.

Typing Record Concatenation for Free

We show that any functional language with record extension possesses record concatenation for

free. We exhibit a translation from the latter into the former. We obtain a type system for a

language with record concatenation by composing the translation with typechecking in a language

with record extension. We apply this method to a version of ML with record extension and obtain

an extension of ML with either asymmetric or symmetric concatenation. The latter extension is

simple, 
exible and has a very e�cient type inference algorithm in practice. Concatenation together

with removal of �elds needs one more construct than extension of records. It can be added to the

version of ML with record extension. However, many typed languages with records cannot type such

a construct. The method still applies to them, producing type systems for record concatenation

without removal of �elds. Object systems also bene�t from the encoding which shows that multiple

inheritance does not actually require the concatenation of records but only their extension.
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Introduction

Dictionaries are an important data abstraction in programming languages. They are basically

partial functions from keys to values. A simple implementation of dictionaries is the association

list, commonly called A-list . A-lists are lists of pairs, the �rst component being the key to access

the value of the second component. The usual cons and append operations provide facilities for

extending the domain of an A-list and merging two A-lists into one de�ned on the union of the

domains of the input lists, respectively. Access to a given key may fail when the key is not in the

domain of the A-list, which cannot be checked statically. Records are a highly restricted form of

A-lists. Keys may no longer be any values, but belong to a distinguished set of atomic values,

called labels. All �elds of a record must be speci�ed at creation time. These restrictions make it

possible to perform static checks on accesses to record �elds.

Then, an important goal in typechecking records, was to allow a record with many �elds to be

used instead of a records with fewer �elds. This was �rst suggested by Cardelli in the language

Amber [21] using inclusion on monomorphic types.

Later, Wand [119] used polymorphism instead of a speci�c inclusion relation on types. He also

re-imported the cons operation of A-lists which became the extension of records with new �elds.

Originally, this construction was free (existing �elds could be rede�ned), but strict versions (existing

�elds could not be rede�ned) have been proposed [86, 56] to avoid typechecking di�culties. Note

that cons on A-lists naturally implements free extension.

Record extension quickly became popular, but many languages still only provide the strict

version [56, 84, 49]. Finally Wand re-imported the append of A-lists, calling it record concatenation.

An important motivation for this is the encoding of multiple inheritance [121] in object oriented

languages.

Record concatenation is still considered a challenge, since it is either very restricted [49] or leads

to combinatorial explosion of typechecking [120]. We propose a general approach to concatenation.

In fact we claim that concatenation comes for free once record extension is provided. We justify

this assertion by presenting an encoding of the latter into the former. The interest of the encoding

is to provide a type system for record concatenation by composing the coding with a type system

for record extension.

We introduce the translation in an untyped framework in section 4.1. In section 4.2, we apply

it to an extension of ML for record extension. In the last section we brie
y illustrate the encoding

on a few other languages.

4.1 Encoding of concatenation

In this section we describe how concatenation can be encoded with extension. The language with

record extension, L, is an extension of the untyped � calculus plus distinguished constructs for

record expressions:

M ::= x variable

j �x: M abstraction

jM M application

j fg empty record

j fM with a =Mg record extension

jM:a record access
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The semantics of records is the usual one. Informally, they are partial functions from labels to

values. The empty record is de�ned nowhere. Accessing a �eld of a record is applying the record

to that �eld. It produces an error if the accessed �eld is not de�ned. The free extension of a record

with a new �eld de�nes or rede�nes that �eld with the new value. The strict extension does the

same if the �eld was unde�ned, but produces an error otherwise. In an untyped language the free

extension is preferred since the more well typed programs, the better.

The concatenation (or merge) operator k takes two records and returns a new record composed

of all �elds de�ned in any of its arguments. There are di�erent semantics given to the merge,

when both records de�ne the same �eld: symmetric concatenation rejects this case [50] while

asymmetric concatenation takes the value from the last record [121]. We will not consider recursive

concatenation that would compute the concatenation of common �elds by recursively concatenating

their values.

The language with record concatenation, L

k

is

M ::= x

�

�

�

�x: M

�

�

�

M M

�

�

�

fg

�

�

�

fa =Mg

�

�

�

M kM

�

�

�

M:a

The language is an extension of L with a construct for concatenation, but record extension has

been replaced by one-�eld records that are more primitive in the presence of concatenation, since

1

:

fM with a = Ng �M k fa = Ng

Reading this equality from right to left is also interesting: it means that one-�eld concatenation can

be written with record extension only. It gives the expected semantics of asymmetric concatenation

when the extension is free and the semantics of symmetric concatenation when the extension is

strict. We are going to generalize this to a translation from the language L

k

to the language L.

4.1.1 The untyped translation

The following translation works for both asymmetric and symmetric concatenation. We arbitrarily

choose asymmetric concatenation.

The extension of �elds provides the one-�eld concatenation operation:

� r: (r k fa =Mg) = � r: fr with a =Mg;

which we write fa =Mg

y

. In fact, we can compute r k s whenever we know exactly the �elds of s,

since

r k fa

1

=M

1

; : : : a

n

=M

n

g � f: : : fr with a

1

=M

1

g : : : with a

n

=M

n

g:

This equivalence could also have been deduced from the decomposition of s into one-�eld concate-

nations

(: : : (r k fa

1

=M

1

g) : : : k fa

n

=M

n

g);

which is also the composition

(fa

n

=M

n

g

y

� : : : fa

1

=M

1

g

y

) r:

We write

fa

1

=M

1

; : : : a

n

=M

n

g

y

1

This is similar to the correspondence between append and cons on A-lists, in this particular case, the equality is

[M ] append r =M cons r.
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for the abstraction of the previous expression over r. More generally we de�ne the transformation

y on record expressions, called record abstraction, by:

fg

y

� �u: u

fa =Mg

y

� �u: fu with a =M

y

g

(M k N)

y

� N

y

�M

y

Since any record expression can be decomposed into a combination of the three previous forms, the

transformation is de�ned for all records. It satis�es the property

r

y

= �u: (u k r):

Thus r is equal to r

y

fg. If we transform all record expressions in a program, then we have to

replace the access r:a by (r

y

fg):a. Actually, it is enough to apply r to a record r

0

that does not

contain the a �eld and read the a �eld from the result (r r

0

):a. In a typed language this solution

will leave more 
exibility for the type of r. Other constructs of the language simply propagate the

translation. Thus the translation is completed by

(M:a)

y

� (M

y

fg):a

(�x: M)

y

� �x: M

y

(M N)

y

�M

y

N

y

x

y

� x

The translation works quite well in an untyped framework. However, the encoding is not injective,

for instance it identi�es the empty record with the identity function. In the next section we adapt

the translation to a typed framework.

4.1.2 The tagged translation

In this section we improve the translation so that the encoding becomes injective. The main

motivation is to prepare the use of the encoding to get a typed version of L

k

by pulling back the

typing rules of a typed version of L. The well typed programs of L

k

will be the reverse image

of the well typed programs of L. The translation should be injective on well typed programs. A

solution is to tag the encoding of records, so that they become tagged abstractions, distinct from

other abstractions.

In fact we replace L by L

Tag ;Untag

, that is L plus two constants Tag and Untag used to tag

and untag values. The only reduction involving Tag or Untag is that Untag (Tag M) reduces

to M . Tag and Untag can be thought as the unique constructor and the unique destructor of an

abstract data type, respectively. In SML [48] they could be de�ned as:

abstype (�, �) tagged = Tagged of � ! � with

val Tag = fn x ) Tagged x

val Untag = fn Tagged x ) x

end;

Their role is to certify that some functional values are in fact record abstractions, Tag stamps them

and Untag reads and removes the stamps. Obviously, these constants are not accessible in L

k

, i.e.

they are introduced during the translation only.

Syntactically the existence of Tag and Untag is not a question, but semantically a model of

a calculus with record extension might not possess such constants. On the opposite, �nding a
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particular model in which the constants Tag and Untag exist might be as di�cult as �nding a

direct model for concatenation. Anyhow, we limit our use of the encoding to syntactic issues.

The tagged translation is:

fg

y

� Tag (�u: u)

fa =Mg

y

� Tag (�u: fu with a =M

y

g)

(M k N)

y

� Tag (�u: Untag (N

y

(UntagM

y

u)))

(M:a)

y

� ((Untag M) fg):a

It does not modify other constructs:

(�x: M)

y

� �x: M

y

(M N)

y

�M

y

N

y

x

y

� x

We would like to show a property such as: starting with a calculus of record extension, we can

translate any program of a calculus with record concatenation into the �rst calculus enriched with

constants Tag and Untag using the translation above, and thereby get | in some sense | an

equivalent program.

L

k

y

! L

fTag ;Untag g

M

k

! M

eval

#

#

#

#

eval

v

k

� � � � �

?

� � ��� �� ��� v

Without any such result, the translation y is no more than a good intuition to understanding

record concatenation. In the next section it helps �nding a type system for a language with

concatenation L

k

from a typed language with extension L, by translating L

k

programs and then

typing them in L.

4.1.3 Concatenation with removal of �elds

We omitted one construction in the language L: the restriction of �elds. We extend both languages

L and L

k

with record restriction:

M ::= : : : jM n a

Record restriction takes a record and removes the corresponding �eld from its domain. As for

extension of �elds, restriction of �elds can be free or strict. We consider free restriction here. The

question is obviously the extension of the transformation y to restriction of �elds.

The guide line is to keep the equality

(M n a)

y

= �u: u k (M n a)

true, since it was true before the introduction of restriction of �elds. Actually this equality is

needed since it is the basis of the translation of the extraction of �elds.
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Unfortunately, the attempt

(M n a)

y

= �u: (M

y

u) n a

does not work: the record u k (M n a) is not equal to (M

y

u) n a, since if the record u provides an

a �eld, this �eld is de�ned in the left expression but it is unde�ned in the right expression. In fact

u k (M n a) is equal to M

y

u on all �elds but a. On the a �eld it is unde�ned if u is, or de�ned

with the value of the a �eld of u otherwise. This operation cannot be written in the language L;

we need another construct,

fM but a from Ng;

called combining. From two recordsM and N , it de�nes one that behaves exactly as M on all �elds

but a, and as N on the a �eld. This primitive is stronger than ( n a) which could be de�ned as

f but a from fgg.

Now, the translation of (M n a) can be de�ned by

(M n a)

y

� �u: fM

y

u but a from ug

Its tagged version is:

(M n a)

y

� Tag (� : fUntag (M

y

u) but a from ug)

We call L

+

the language L extended with the combining construct. This construct has never been

introduced in the literature before. If the language L is typed, it may be the case that the combining

primitive cannot be assigned a correct and decent type in the type system of L and L

+

might not

be a trivial extension of L or even not exist.

The combining construct is not in L

k

and there is no easy way to provide it in an extension

of L

k

. Therefore L but not L

+

is a sub-language of L

k

.

4.2 Application to a natural extension of ML

In this section we apply the translation where L is a version of ML with record extension, and we

get a language with record concatenation. We �rst review the language � taken from [100, 106]

for record extension. Then we describe in detail two versions of the typed language �

k

obtained

by pulling back the typing rules of �. Last, we discuss the system �

k

on its own, and compare it

with other existing systems with concatenation.

4.2.1 An extension of ML for records

The language, called �, is taken from [100, 106]. It is an extension of ML, where the language of

types has been enriched with record types in such a way that record operations can be introduced

as primitive functions rather than built in constructs. The main properties are described in [106]

and proved in [100, 104, 102]. The following summary should be su�cient for understanding the

next sections. The reader is referred to [106] for a more thorough presentation.

Let L be a �nite set of labels. We write a, b and c for labels and L for �nite subsets of labels.

The language of types is informally described by the following grammar (a formal description using

sorts can be found in [106]):

� ::= � j � ! � j �

�

�

;

�

types

�

L

::= �

L

j abs

L

j a : ' ; �

L[fag

a =2 L rows de�ning all labels but those in L

' ::= � j abs j pre (�) �elds
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where �, �, 
 and � are type variables, �, � and � are row variables and � and " are �eld variables.

Intuitively, a row with superscript L describes all �elds but those in L, and tells for each of

them whether it is present with a value of type � (positive information pre (�)) or absent (negative

information abs ). A template row is either abs or a row variable. It always describes an in�nite

set of �elds. The superscripts in row expressions L are �nite sets of labels. Their main role is to

prevent �elds from being de�ned twice: the type

�

�

a : � ; (a : " ; �

L

)

�

cannot be written for any L. Similarly, all occurrences of the same row variable should be preceded

by the same set of labels (possibly in a di�erent order). The type

�

�

a : � ; �

L

�

! �

�

�

L

�

:

cannot be written either, since the row variable � cannot be both in the syntactic class of rows not

de�ning label a and the syntactic class of rows de�ning all labels. The superscripts are part of the

syntax, but we shall omit them whenever they are obvious from context. We write a : � ; b : � ; 


for a : � ; (b : � ; 
).

Example 5 The following is a well-formed type:

�! �(a : pre (�) ; b : pre (num) ; abs )

Types are equal modulo the following equations:

� left commutativity, to reorder �elds:

(a : � ; b : " ; �) = (b : " ; a : � ; �)

� distributivity, to access absent �elds:

abs = (a : abs ; abs )

Example 6 The record types � (a : pre (�) ; abs ) and � (b : abs ; a : pre (�) ; abs ) are equal.

Any �eld de�ned by a template can be extracted from it using substitution if the template is a

variable or distributivity if it is abs .

Example 7 In � (a : pre (�) ; abs ) , the template is abs ; its superscript is fag. To read the b

�eld, we replace abs by (b : abs ; abs ) . The original type becomes � (a : pre (�) ; b : abs ; abs ) ,

and the new template has superscript fa; bg.

In � (a : pre (�) ; �) , the � variable can be substituted by b : " ; �. The type becomes

� (a : pre (�) ; b : " ; �)

and � is the new template.
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The language of expressions is the core ML language.

M ::= x j c j �x: M jM M j let x =M inM

where the constants c include the following primitives operating on records, with their types:

fg : � (abs )

:a : � (a : pre (�) ; �) ! �

f with a = g : � (a : abs ; �) ! �! �(a : pre (�) ; �)

n a : � (a : � ; �) ! �(a : abs ; �)

Primitives for Record Extension (�)

The extension on a �eld f with a = g is strict: a �eld can only be added to a record r that does

not already possess this �eld. But the restriction of a �eld n a is free: it can be applied to a

record which does not have �eld a. Free extension with a �eld b is achieved by restriction of �eld

b followed by strict extension with �eld b. That is, it is the composition:

( n a) � (f with a = g) : � (a : � ; �) ! �! �(a : pre (�) ; �)

that we abbreviate f with !a = g. In the simplest language, the restriction of �elds would not be

provided, and the extension would be given whether strict or free.

Typing rules are the same as those of ML but where type equality is taken modulo the equations.

As in ML, any typeable expression possesses a principal type. We show a few examples extracted

from [106] and run on a CAML prototype.

Records are built all at once as in

#let car = fname = "Toyota"; age = "old"; registration = 7866g;;

car : Pi (name : pre (string); registration : pre (num); age : pre (string); abs)

or from previous records by removing or adding �elds:

#let truck = fcar n age with name = "Blazer"; registration = 6587867567g;;

truck : Pi (name : pre (string); registration : pre (num); age : abs; abs)

Fields are accessed as usual with the \dot" operation.

#let registration x = x.registration;;

registration : Pi (registration : pre (�); �) ! �

Here, the �eld registration must be de�ned with a value of type �, so the �eld registration has type

pre (�), and other �elds may or may not be de�ned; they are grouped in the template variable

�. The return value has type �. The function eq below takes two records possessing at least a

registration �eld of the same type

2

:

#let eq x y = equal (registration x) (registration y);;

eq : Pi (registration : pre (�); �) ! Pi (registration : pre (�); �) ! bool

#eq car truck;;

it : bool

The identi�er \it" is bound to the last toplevel phrase (the prototype types the expressions but it

does not evaluate them). The two records car and truck do not have the same set of �elds, but both

can still be passed to the function registration.

2

For simplicity of examples we assume the existence a polymorphic equality equal.
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4.2.2 An extension of ML with record concatenation

The language � described in section 4.2.1 can easily be extended with a combining primitive

f but a from g : � (a : � ; �) ! �(a : " ; �) ! �(a : " ; �)

The extended language is referred to as �

+

. We apply the transformation y with � as L. We �rst

consider the strict version of �

+

, then we show a few examples and we treat the free version of �

+

at the end.

Symmetric concatenation

We encode the language �

k

with symmetric concatenation into the version of �

+

with strict ex-

tension. We introduce a new type symbol f ) g of arity two, and we assume given the two

constants:

Tag : (� (�) ! �(�) )! f�) �g;

Untag : f�) �g ! (� (�) ! �(�) ):

They are private to the translation.

A program is typable in �

k

if and only if its translation is typable in �

Tag ;Untag

(� extended

with Tag and Untag ). However, composing the translation with typechecking in �

Tag ;Untag

is

the same as typechecking in �

k

with the following types for primitives:

fg : f�) �g

:a : fa : abs ; �) a : pre (�) ; �g ! �

fa = g : �! fa : abs ; �) a : pre (�) ; �g

na : fa : � ; �) a : " ; �g ! fa : �

0

; �) a : �

0

; �g

k : f�) �g ! f� ) �g ! f�) �g

Primitives for symmetric concatenation (�

k

)

Thus the translation can be avoided.

When typing directly in �

k

with the rules above, all record types are written with f ) g and

the type symbol � can be removed; the grammar for types becomes

� ::= � j � ! � j f�

;

) �

;

g

The type f�) �g should be read \I am a record which given any input row of �elds � returns the

output row �." The types for the primitives above can be read with the following intuition:

� The empty record returns the input row unchanged.

� As remarked above (section 4.1), we encoded the extraction of �eld a in M as the extraction

of �eld a in the application of M to any record that does not contain the a �eld. Otherwise

we would have got the weaker type:

:a : fabs ) a : pre (�) ; �g ! �

Thus, the extraction of the a �eld of r takes a record r which, given any row where a is

absent, produces a row where a is de�ned with some value v. The result r:a is this value v.

� A one-�eld record extends the input row, de�ning one more �eld (that should not be previously

de�ned).
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� The removal of �eld a from a record M returns a record that acts as M except on the �eld

a where it acts as the empty record.

� Finally, concatenation composes its arguments.

It is easy to see that any program in � is also a program in �

k

. First, de�ne the extension primitive

by:

fM with a = Ng �M k fa = Ng

It has type:

f�) a : abs ; �g ! �! f�) a : pre (�) ; �g

Check that all the following typing assertions are correct in �

k

:

fg : fabs ) abs g

:a : fabs ) a : pre (�) ; �g ! �

f with a = g : fabs ) a : abs ; �g ! �! fabs ) a : pre (�) ; �g

n a : fabs ) a : " ; �g ! fabs ) a : abs ; �g

Last, abbreviate (abs ) �) as (�) to conclude that �

k

possesses all the primitives of � with all

types that � can assign to them. The rest of the language � is core ML and is also in �

k

.

Examples

We show a few examples processed by a prototype written in CAML [33, 122]. The type inference

engine is exactly the one of �; only the primitives have changed. The syntax is similar to CAML

syntax.

The type of a one-�eld record says that the record cannot be merged with another record that

also de�nes this �eld:

#let a = fa = 1g;;

a : fa : abs; � ) a : pre (num); �g

Two records r and s can be merged if they do not de�ne common �elds. For instance, r can be

merged on the left with fa = 1g if its output row on a is absent.

#let left r = r jj fa = 1g;;

left : f� ) a : abs; �g ! f� ) a : pre (num); �g

The resulting record modi�es its input row as r but on �eld a which is added. Similarly, s can be

merged on the right with a if the input �eld a is present (with the adequate type).

#let right s = fa = 1g jj s;;

right : fa : pre (num); � ) �g ! fa : abs; � ) �g

In particular, s cannot de�ne an a �eld, otherwise its input �eld a would be absent.

Non overwriting of �elds is guaranteed on the left by negative information (absent �eld) at

a positive row occurrence, and on the right by positive information (present �eld) at a positive

row occurrence. Some symmetry is preserved! However writing r jj s instead of s jj r in a program

sometime matters: one might typecheck while the other does not, though none of the programs

would overwrite �elds. If both typecheck, the type of the result will be the same (provided all �elds

are symmetric).

Here are a few more examples:
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#let foo = fun r s ! (r jj s).a;;

foo : fa : abs; � ) �g ! f� ) a : pre (�); �g ! �

This shows the functionality of concatenation on both sides. The result shall have an a �eld, but

what argument will provide it is not speci�ed yet.

#let gee = foo fb = 1g;;

gee : fb : pre (num); a : abs; � ) a : pre (�); �g ! �

Now r must de�ne the a �eld.

#gee a;;

it : num

Asymmetric concatenation

The system � may also provide free extension, with the following primitive:

f with !a = g : � (a : � ; �) ! �! �(a : pre (�) ; �)

This will make concatenation asymmetric:

f!a = g : �! fa : � ; �) a : pre (�) ; �g

For instance, the following example is typeable:

#let ab = (fun r ! f!a = 1g jj r) f!a = true; !b = 1g;;

ab : fa : �; b : �; � ) a : pre (bool); b : pre (num); �g

This shows that asymmetric �elds can be rede�ned with values of possibly incompatible types.

The choice between strict and free extension is encoded in the extension primitive, but the choice

between asymmetric and symmetric concatenation is not encoded in the concatenation primitive

which is always the composition. It is not concatenation which is symmetric or not, but record

�elds themselves! We can have symmetric and asymmetric �elds coexisting peacefully.

#f!a = 1; b = trueg;;

it : fb : abs; a : �; � ) a : pre (num); b : pre (bool); �g

Primitives to modify these properties of �elds can easily be provided

symmetric

a

: fa : � ; �) a : pre (�) ; �g ! fa : abs ; �) a : pre (�) ; �g

asymmetric

a

: fa : � ; �) a : pre (�) ; �g ! fa : " ; �) a : pre (�) ; �g

But it is not possible to make all �elds of a record symmetric, or asymmetric; this has to be done

�eld by �eld.

We can now better understand why symmetric concatenation is not so symmetric. Both left

and right functions accept any argument, and one should not expect them to behave the same on a

record of which some of the �elds are asymmetric.

With asymmetric �elds, the following examples reach the limit of ML polymorphism. For

instance, the function

#fun r s ! s.b, r jj s;;

it : f� ) b : abs; �g ! fb : abs; � ) b : pre (�); �g ! � * f� ) b : pre (�); �g
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does not accept a record r which has a b �eld, though the program would still run correctly if

the b �eld of s is asymmetric. This is due to ML polymorphism weakness: the second argument is

�-bound and thus it is not polymorphic. The �eld b of s is observed by setting its input to abs ,

which has to be the output �eld b of r in r jj s.

Since s has de�nitely a b �eld, the concatenation r jj s is equal to the concatenation rnb jj s. We

can rewrite the previous program as

#fun r s ! s.b, (rnb jj s);;

it : fb : �; � ) b : �; 'sg ! fb : abs; 's ) b : pre (�); 'tg !

� * fb : abs; � ) b : pre (�); 'tg

which can now be applied to any record r.

The restriction nb of �eld b only changes the type of its arguments but does not modify it; it

is called a retyping function. Many weaknesses of �

k

originating in the restricted polymorphism

provided by the ML type system can be solved by adding retyping functions. They insert type

information in the program helping the type inference engine. We will describe other ways of

solving these examples by strengthening the type inference engine in section 4.2.3.

4.2.3 Strength and weakness of �

k

We compare our language with Wand's proposal [121], and Harper and Pierce's system and mention

possible extensions.

Comparison with other systems

There are only a few other systems that implement concatenation. Wand's proposal [121] is still

more powerful than our system �

k

. For instance

� r: r:a+ (fa = 1g k r):a

is typable in Wand's system but not in ours. Wand's system polymorphism is carried by the

concatenation operator, at the cost of bringing in the type system a restricted form of conjunctive

types and having disjunction of principal types instead of unique principal types. In contrast, in

our system, polymorphism is carried by records themselves. As mentioned above, we can regenerate

polymorphism of records by inserting retyping functions. If the same restricted form of conjunctive

types was brought in our system, then retyping functions would be powerful enough to regenerate

all �elds of a record without having to mention them explicitly. This would give back all the power

of Wand's system.

This shows that the additional power of Wand's system comes from conjunctive types. Con-

versely, our system succeeds with only generic polymorphism on examples that needed conjunctive

types in Wand's system. We are going to explain how this happens.

Wand's system can be reformulated in system �. A simple idea is to type the concatenation

operator by introducing an in�x type operator k of arity two. Then concatenation has type:

k : � (�) ! �(�) ! �(� k �)

But we have to eliminate k operators that might hide type collisions. In the system �, we entice

distributing concatenation on �elds with the equations:

(a : � ; �) k (a : " ; �) = (a : � k " ; � k �)
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The operator k on �elds can be de�ned by enumerating the triples (�; "; � k "). They are all triples

of the form

(�; abs ; �) or (�;pre (�);pre (�)):

This disjunction in the relation k breaks the principal type property of type inference. Worse,

disjunctions on di�erent �elds combine and make the resulting type (conjunction of types) explode

in size.

Our system emphasizes that � k " is uniform on �: once we know ", we can eliminate the

conjunction in � k ". A �eld a, instead of carrying its type ", carries the function � ) � k ". For

instance, ifM has type � , the record fa =Mg would have type � (a : pre (�) ; abs ) in �. On �eld

a, since " is now pre (�), the merging � k " is equal to pre (�). In the template, � is abs , and thus

� k � is �. We deduce the type of fa =Mg in �

k

:

fa : (� ) pre (�)) ; (�) �)g i.e. f(a : � ; �)) (a : pre (�) ; �)g:

Another system with type inference was proposed by Ohori and Buneman in [86]. Their con-

catenation on records is recursive concatenation, which we do not provide. Note that they have

a very restricted form of recursive concatenation since types in record �elds must not contain any

function type.

In explicitly typed languages, the only system with concatenation is the one of Harper and

Pierce [50]; it implements symmetric concatenation. Since their system is explicitly (higher order)

typed, we say that typing a �

k

programM succeeds in HP90 if we can �nd a HP90 program whose

erasure (the program obtained by erasing all type information) is M . Their system has not free

restriction of �elds, but we shall ignore this di�erence.

The following �

k

program cannot be typed in HP90:

#let either r s = (r jj s).a in

# if true then either fa = 1g fb = 2g else either fb = 2g fa = 1g;;

it : num

In the expression (r jj s).a, one has to choose whether r or s is de�ning �eld a, and thus the function

either cannot be used with the two alternatives. This breaks the symmetry of concatenation.

Conversely, there are programs that can be typed in HP90 but not in �

k

as a result of ML

polymorphism restrictions. For instance the function

#let reverse r s = if true then r jj s else s jj r;;

reverse : f� ) �g ! f� ) �g ! f� ) �g

cannot be applied to fa = 1g and fb = 2g in �

k

. In HP90 it would have type

8� � 8�#� � �! � ! (� k �)

and could be applied to any two compatible records. It is di�cult, though, to tell whether the failure

comes from a limitation of polymorphism in general, or the inability to quantify with constraints,

since the two are strongly related. The typability of the previous example in �

k

is somehow

equivalent to the typability, in core ML, of the function:

#let reverse r s = if true then r o s else s o r;;

reverse : (� ! �) ! (� ! �) ! � ! �

This is too weak a type! Whether a higher order language would give it a much better type is not

so obvious. Next section provides a better basis for comparison between the two systems.
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Limitations and extensions

Since the type inference engine of �

k

is the same as the one of � (only types of primitives have

changed), both systems enjoy the same properties. Record polymorphism is provided by ML gener-

icity introduced in let bindings. If this is too restrictive, then one should introduce type inclusion.

One could also have a restricted conjunctive engine as in [121]; however this would decrease con-

siderably the e�ciency of type inference, and the readability of types. Allowing recursion on types

would also require an extension of the results (though in practice the mechanism is already present).

In �

k

, as in �, present �elds cannot be implicitly forgotten, but have to be explicitly removed,

unless the structure of �elds is enriched with 
ags. All these improvements are discussed in detail

in [106].

4.3 Other applications

The transformation can also be applied to other languages, which we illustrate in this section.

4.3.1 Application to Harper and Pierce's calculus.

The higher order typed language of Harper and Pierce [49] already possesses concatenation, but

records are not abstractions. It can still bene�t from the encoding. Instead of presenting spe-

cial constructs for operations on records, we could assume given the following primitives in their

language:

fg : � ()

:a : 8� � 8�#a � (� (a : �) k �)! �

fa = g : 8� � �! �(a : �)

na : 8� � 8�#a � (� (a : �) k �)! �

k : 8� � 8�#� � �! � ! (� k �)

Primitives for HP90

But the type system is not enough sophisticated to type the primitive f but a from g. Thus we

apply the translation dropping the removal of �elds. Using the encoding, the primitive operations

on records in the language HP90

k

have the following types:

fg : 8� � (�) �)

:a : 8� � 8�#a � 8�#a � (�) �(a : �) k �)! �

fa = g : 8� � �! 8�#a � (�) �(a : �) k �)

k : 8� � 8� � 8 � � (�) �)! (� ) �)! (�) �)

Primitives for HP90

k

We can de�ne a function either:

��: ��: ��#a: � r : (� () ) �): � s : (�) �(a : �) k �):

( :a [�] [� () ] [�] (k [� () ] [�] [� (a : �) k �] r s))

and apply it to records fa = 1g and fb = 2g in any order. For instance,

either [num] [� (a : num) ] [� (b : num) ] (fa = 1g [� () ]) (fb = 2g [� (a : num) ])

This example is not typable in HP90.

Conversely, the program:
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let reverse r s = if true then r jj s else s jj r in reverse fg fa = 1g, reverse fg fa = 1g;;

can be typed in HP90, but we conjecture that it cannot be typed in HP90

k

. In fact its typability

in HP90

k

is equivalent to the following term being the erasure of a term of F :

(fun r ! K (r I K) (r K I))

(fun f g ! (fun x ! f (g x)) or (fun x ! g (f x)))

where I is fun x ! x and K is fun x y ! x, and or is a constant assumed of type ��: � ! � ! �

in F .

To summarize, none of the language HP90 or HP90

k

would be more powerful than the other.

Remark that type applications and type abstractions are located at completely di�erent places,

thus a partial translation of explicitly typed terms from HP90

k

to HP90 can only be global.

A previous language proposed by Harper and Pierce in [49] had no concatenation, but shared

the same spirit as HP90. The transformation applies to it as well, and results in a language with

concatenation very closed to HP90

k

.

4.3.2 Application to Cardelli and Mitchell's calculus.

Unlike HP90, the language of Cardelli and Mitchell [27] does not already provide concatenation of

records, but only strict extension. The application of our encoding to CM89 is not harder than to

HP90. The language cannot be easily extended with the combining construct, therefore we skip the

removal of �elds. Using CM89 types, primitives for record operations in CM89

k

have the following

types:

fg : 8� � (�) �)

:a : 8� � 8� < hhii n a � 8� < hhii n a � (�) hh� k a :�ii)! �

fa = g : 8� � �! 8� < hhii n a � (�) hh� k a :�ii)

k : 8� � 8� � 8 � � (�) �)! (� ) �)! (�) �)

Primitives for CM89

k

We can again de�ne the function either:

��: ��: �� < hhii n a: � r : (hhii ) �): � s : (�) hh� k a :�ii):

( :a [�] [hhii] [�] (k [hhii] [�] [hh� k a :�ii] r s))

and apply it to the records fa = 1g and fb = 2g:

either [num] [hha : numii] [hhb : numii] (fa = 1g [hhii]) (fb = 2g [hha : numii])

4.3.3 Multiple inheritance without record concatenation

Multiple inheritance has been encoded with record concatenation [121]. We have encoded record

concatenation with record extension. By composition, multiple inheritance can be encoded with

record extension.

Given the strengthening of the type inference engine to recursive types, the system �

k

would

support multiple inheritance as presented in [121]. But multiple inheritance makes very little use of

concatenation. It is only necessary for building new methods, but objects do not need it. Thus it

may be worth revisiting the typechecking of multiple inheritance of [121] and eliminating the need

for concatenation by abstracting methods as we abstracted records.

The following encoding of multiple inheritance was used by Wand in [121]. The de�nition of a

class

class (~x) inherits

���!

P (

~

Q)methods

����!

a =M end
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was encoded as

�~x: � self:

����!

P (

~

Q) k f

����!

a =Mg

The creation of objects of that class

instance C(

~

N)

was the recursive expression

Y (C(

~

N))

Sending a method a to an object x was the same as reading the �eld x of a. The problem with this

encoding is that it requires record concatenation. We can easily get read of it, using our trick. We

encode a class de�nition as

�~x: � u: � self: u k

����!

P (

~

Q) k f

����!

a =Mg

i.e.

�~x: � u: � self: f

�����!

P (

~

Q) � u with

����!

a =Mg

which only requires record extension. Then creating an object of that class becomes

Y (C(

~

N)fg)

and sending a method is unchanged.

Remarks

Since removing of �elds is not needed here, this section applies to all typed calculi with record

extension.

This section uses Wand's conception of inheritance. Objects are carrying their dictionaries. Other

views of objects do not encode with record operations. This section does not apply to them.

Conclusion

We have described how a functional language with records and record extension automatically

provides record concatenation. Though records are data, they should be typed as if there were

abstractions over an input row of �elds that they modify. Their behavior can be observed at any

time by giving them the empty row as input. Concatenation is then composition.

We have applied the method to a record extension of ML. We have obtained a language im-

plementing all operations on records except the recursive merge, allowing type inference in a very

e�cient way in practice.

The kind of type system that we have obtained seems complementary to Harper and Pierce's

one. Taking the best of the two systems would be interesting investigation.

The encoding also helps understanding concatenation. However, the relationship between the

semantics of a program in the language with concatenation and the semantics of its translation

need to be investigated closely before claiming that concatenation itself comes for free.
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Chapter 5

Programmer les Objets dans ML-ART

Une extension de ML avec des types

abtraits et des types enregistrements

Ce chapitre a �et�e publi�e dans [108].

Programmer les objets dans ML-ART

Dans une approche avec classes, les objets peuvent être programm�es directement et e�cacement

dans une extension simple de ML. Leur repr�esentation, qui s'appuie sur des types enregistrements et

des types abstraits, permet toutes les op�erations usuelles telles que l'h�eritage multiple, la possibilit�e

pour une m�ethode de retourner l'objet lui-même ou de lui envoyer un message, y compris un message

sa classe parente. Toutefois, la coercion du type d'un objet vers son type correspondant dans une

classe parente reste explicite. Nous donnons aussi une repr�esentation plus simple o�u les objets ne

sont plus des valeurs r�ecursives. Le langage sous-jacent est une extension de ML avec des types

r�ecursifs, des types existentiels et universels et des enregistrements extensibles mutables. Le langage

ML-ART est �equip�e d'une s�emantique en appel par valeur pour laquelle la correction du typage est

prouv�ee.

Programming objects in ML-ART

Class-based objects can be programmed directly and e�ciently in a simple extension to ML. The

representation of objects, based on abstract and record types, allows all usual operations such as

multiple inheritance, object returning capability and message transmission to themselves as well as

to their super classes. There is, however, no implicit coercion from objects to other objects of their

super-classes. A simpler representation of objects without recursion on values is also described.

The underlying language extends ML with recursive types, existential and universal types, and

mutable extensible records. The language ML-ART is given with a call by value semantics for

which type soundness is proved.

97
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Introduction

An important motivator for type-checking extensible records is the records' application to object

encoding. Initiated by Cardelli in 1984 [20], continued by Wand [119], and then many others, type-

checking records has produced several satisfactory solutions for higher order languages [27, 49]

and for ML [86, 84, 106]. Object encoding, based on record calculi, reveals severe di�culties,

mainly due to overreliance on recursive values. Thus, the tendency has been to design languages

with objects as primitive operations [15, 3, 51, 82], rather than encodings, to achieve important

simpli�cation of type-theoretical models.

Pierce et al. produces convincing evidence that object oriented programming could be treated

as a matter of programming style, at least from a theoretical point of view [93]. However, the use of

F

!

�

as the basis language supports the idea that encodings involve complex type theories, and the

demonstration does not always apply to the ML programmer. The need to write many coercions,

due to the use of explicit types and the absence of record extension, makes it obvious that large-

scale object-oriented applications cannot be programmed directly in F




�

. Finally, the encoding is

created in a call-by-name language, which results in a duplication of too many structures. A recent

version of the encoding in a call-by-value language [92] still contains inherent ine�ciencies. At least

a large amount of syntactic sugar must be provided to program objects in F

!

�

.

We concur with the claim that object-oriented programming is essentially a matter of style.

Consequently, it is not addressed in this paper. Our main goal is to demonstrate that objects can

be programmed in a small extension to ML. Therefore, we repeat Pierce's method using, instead,

a basic language derived from ML. This results in a quite elegant and still 
exible class-based

object-oriented programming style, almost as concise as if objects were primitive. No syntactic

sugar is required. This approach allows for programming capabilities such as multiple inheritance,

object returning ability and message transmission to themselves as well as to their super classes.

However, implicit coercion of objects to their counterparts in super classes is not implemented.

As in [93], we consider objects as abstract data structures, but our encoding di�ers in two

essential ways. First, we can take advantage of record extension to implement inheritance in a

simpler way that avoids successive coercions and treats classes as \�rst class citizens". Ignoring

implicit class coercions enables to move the recursion on \self" from method vector creation to

method application, converting objects to non recursive values.

Another interest of this paper is the language ML-ART utilized for programming objects; it

extends core ML with several orthogonal features. None of these is really new but itself, however,

the combination is original. We give a complete de�nition of ML-ART, omit type inference, but

verify type soundness.

The most important feature of ML-ART is extensible records. We choose those described

in [106], althoug other choices are permissible, provided they implement polymorphic access and

polymorphic extension. Polymorphic access refers the ability to de�ne a function that reads the

same �eld of many records, with di�erent domains. This is the key operation to messages passing.

Record extension is the operation that creates new records from older ones by addition of new

�elds. It is said to be polymorphic if it can operate on records with di�erent domains. Record

extension is used to program single inheritance [119] or even multiple inheritance reusing the trick

that provides record concatenation with only record extension [107]. Polymorphic record extension

also allows polymorphic duplication of records, which is used to copy the state without knowing its

representation.

The language is also enriched with recursive types. Record types and recursive types are

su�cient to program objects with value abstraction, modulo serious ine�ciencies and di�culties
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with the compilation of recursive values. Thus, we choose to extend the language with existential

types, as suggested by La�ufer and Odersky [64], and use type abstraction to conceal the internal

state of objects. This necessitates replacement of record types with more expressive projective

types [103]. Finally, existential types introduce scope borders that can only be crossed using

universal types in a dual way.

The paper is organized as follows. In section 5.1, we brie
y describe encoding of records using

value-abstraction and illustrate various problems that could �nd only ad hoc solutions. In section 5.2

we informally introduce the language ML-ART. We motivate and describe the di�erent features

one by one. A formal presentation is supplied in the appendices. In section 5.3, we describe two

object programming styles based on a number of variations of points. In the �nal section, we

discuss and conclude the experience.

5.1 Failure to program objects with value abstraction

In this section we attempt to program objects with value abstraction until we meet serious di�cul-

ties.

All examples are run in a sub-language of ML-ART composed of ML plus extensible records

and recursive types

1

. The key features that are used in this section are just polymorphic access and

polymorphic extension. Any language that provides those two operations could be used instead.

The paper is organized such that all language features are described in the next section; although

the constructions used here are very simple and can be mostly understood intuitively, it is possible

to read the three �rst parts of the next section before considering the following examples.

The language ML-ART is strongly typed and provides type inference. However, objects have

anonymous, long, and often recursive types that describe all methods that the object can receive.

Thus, we usually do not show the inferred types of programs in order to emphasize object and

inheritance encodings rather than typechecking details. This is quite in the spirit of ML where

type information is optional and is mainly used for documentation or in module interfaces. Except

when trying top-level examples, or debugging, the user does not often wish to see the inferred types

of his programs in a batch compiler. When printed, the output of compilation is indicated with a

marginal \" sign.

As in [93], we consider objects as pairs (R,M) of an internal state R and a method vector M.

The state is the data stored in the object; it is usually di�erent for each object and mutes when

the object receives appropriate messages, which drives the behavior of objects on messages.

let pointR v = f!x = vg;;

The method vector is a record of methods; when the object receives a message, the corresponding

method is extracted from the record and is applied to the state of the object. Each method is thus

a function whose �rst argument is always the state (even if the method does not uses the state, for

uniformity reasons).

let pointM = let getx R = R.x and setx R x = R.x  x in fgetx; setxg;;

Point objects are created as follows:

let new point v = (pointR v, pointM);;

As described above, sending the method getx to a point is realized by the function:

1

An implementation of this sub-language as an extension of the Caml-Light language, should be released soon.

The full ML-ART language is built on top of this extension and is still experimental.
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let send getx (R,M) = M.getx R;;

For example,

send getx (new point 1);;

� : int = 1

However, point objects expose their representation R to the entire world. This is a failure to

guarantee the abstraction that is usually expected in programming with objects. Moreover it

prevents from having several implementations of similar objects with the same interface (accepting

the same messages) but di�erent representations. For instance, points with polar and carthesian

coordinates could not be mixed since their representations, and thus part of their types, would be

incompatible.

Hiding the representation in the object (R;~m) can be accomplished by partially applying each

method m to the internal state and representing the object by

��!

m(R).

let pointM R = let getx () = R.x and setx () x = R.x  x in fgetx; setxg;;

let new point v = pointM (pointR v);;

Sending a message accesses the right method and passes the argument () instead of the state to

launch the method. For example,

let send getx P = P.getx ();;

send getx (new point 1);;

There is already an important e�ciency problem. Since pointM is abstracted on state R, each

object will be created with a new method vector pointM R. Hiding by value abstraction is realized

by re-arranging the program, fortunately keeping its high-level semantics. However, the operational

behavior of the program or, equivalently, a low-level semantics that would count resources, has been

seriously altered. In practice, the method vector may be quite large, and it is unrealistic |except

maybe for school examples| to have a copy of the method vector in each object of the same class.

Ignoring e�ciency issues and pursuing this exercise is still an interesting experiment. Notions

of classes and inheritance could be implemented in a similar way to what is done below for objects

with type abstraction. However, as in section 5.3.1 we would hit the same problem of creating

recursive values in non trivial ways. We did not �nd any but ad hoc solution to both of these

problems, yet.

Refusing to twist the language, we consider the value-abstraction approach to objects as a

failure. Instead, taking the type-abstraction approach, the goal of this paper can be ful�lled after

a few powerful language extensions. In the view of objects as pairs (R,M) of an internal state R and

a method vector M, the type of R, say �

R

must be hidden, but still allow R to be passed to any

�eld of M. Thus, it is necessary to remember that each method of M has type �

R

! �

m

, whatever

the type �

R

is. Methods of the same object will have, of course, independant codomains �

m

and

di�erent objects will answer di�erent set of messages. Finding a type for objects means �nding a

uniform way of saying This is a pair whose �rst component has some type �

R

and whose second

component is a record of functions of common domain �

R

, and exhibiting their codomains.

5.2 The language

The language ML-ART is designed by adding several features to core ML. Each extension is quite

simple and none of them is really new; they have been either described somewhere else or already
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implemented in some version of ML. Their combination provides just enough power to program

objects in a very 
exible and elegant way. The two main extensions are polymorphic records

and existential types. Recursive types are also added and record types are enriched to projective

types. Finally, it is convenient to have universal types and mutable �elds. First, core ML is brie
y

described, then each of the feature is introduced independently before the full language ML-ART

is presenetd.

5.2.1 The core language

The core language is ML, with a call by value semantics. Programs are given by the following

grammar:

a ::= x j fun x! a j a

1

a

2

j let x = a

1

in a

2

and are taken modulo renaming of bound variables. The conditionals and pairs may be provided

as syntactic sugar. For convenience, we also use simultaneous let bindings with the construction:

let x

1

= a

1

and : : : x

n

= a

n

in a

0

They can be expanded into cascades of lets after renaming of bound variables. Multiple-case data-

types could easily be added together with pattern matching, but we will not need them in the

examples. We do not include reference cells in the initial language either since they are subsumed

by mutable record �elds. For similar reason, we have no construction for recursion.

Types expressions are given by the grammar:

� ::= � j � ! � types

� ::= � j 8� � � type schemes

A ::= ; j A; x : � contexts

We abbreviate sequences of quanti�ers 8�

1

� : : : 8�

n

�� by 8�

1

; : : : �

n

�� and often write ~� for tuples

of variables. We write [�=�] the substitution that replaces free occurrences of � by � .

The Damas-Milner typing relation A ` a : � is de�ned in the appendix by the inference rules

of �gure 5.7.

5.2.2 Extensible records

Monomorphic records, as in Sml [48] or Caml-Light [71], are not su�cient to program objects.

The basic operation on objects is message passing that is usually implemented as an access to the

appropriate message in a vector of methods carried by the object itself. The same message often

need to be passed to di�erent classes of objects that can receive di�erent sets of messages. Thus

access to the method vector must be polymorphic.

Record extension is not absolutely required for simulating objects. For instance, in [93], classes

are de�ned at top-level so that when a class inherits another all methods of the super class are known

and can be explicitly copied into the new method vector. However, writing all coercion functions

quickly becomes a burden and some syntactic sugar is required to automatically generate them.

Non polymorphic record extension can be useful to avoid syntactic sugar, but classes cannot yet be

�rst class citizens ([52]). Polymorphic extension make it possible to program multiple inheritance

and to treat classes as �rst citizens.
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The extensible records are those

2

presented in [106]. We assume given a denumerable collection

of labels L. Instead of introducing nex syntac or records, we extend the set of constants with the

empty record fg and two families of primitives ( :`) and ( k f` = g) for all labels `, implementing

respectively the access to �eld ` and extension on �eld `. For convenience, we also write (a k

f`

1

= a

1

; : : : `

n

= a

n

g) as a short hand for (: : : (a k f`

1

= a

1

g) : : : jjf`

n

= a

n

g) and, as in Sml, the

abusive but very convenient convention that (a k fxg) stands for (a k f`

x

= xg), where `

x

is the

label that has the same name as variable x.

The type system is enriched with record types:

� ::= : : : j f�g j �:� j abs j pre j (` : � ; �) ` 2 L

The formation of types is restricted by sorts. Type symbols abs and pre may only appear on the

left hand sides of dots; they tell whether the corresponding �eld is accessible or not. See [106] or

the appendice for a detailed treatment of sorts.

There is no special typing rules for records; the primitives simply come with the following

principal types:

fg : 8� � fabs:�g

( :l) : 8�

0

; �

1

� fl: pre:�

0

; �

1

g ! �

0

( k f` = g) : 8�

0

; �

1

; �

2

� fl:�

0

; �

1

g ! �

2

! fl: pre:�

2

; �

1

g

Here is an example combining most of the constructs:

let get x = x.a in let ra = fa = 1g in let rb = ra jj fa = 2; b = trueg in

get ra + get rb;;

� : int = 3

5.2.3 Mutable data structures

ML reference cells could be added to the language, but the mutable data structures that have been

introduced in Caml and re-used in Caml-Light [71] are more 
exible and in fact more powerful. In

those languages record data structures are dual of variant data structures, and need to be declared

in the same way with all their labels. Labels carry implicit type information according to the last

record de�nition in which they appear. Fields whose labels have been declared mutable can then

be updated. For instance, it is possible to write the following program in Caml-Light:

type person = fname : int; !age : intg;;

let birthday person = person.age  person.age + 1;;

With declared records, mutable �elds save space but do not increase power, since they could always

be replaced by non mutable �elds that contain references to the dynamic values.

Polymorphic extension may also be used to dupplicate records. For instance, the function copy

let copy r = r jj fknown = r.knowng;;

dupplicates all records having at least a known �eld. It is then natural to allow multiple extension

of no �elds and interpret it as copying its argument:

let copy r = r jj fg;;

2

In fact, in [106] we presented two variants of record types, both described in section 3.3. Here, we use the second

one, but with the weaker type assumptions of the �rst one.
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Polymorphic duplication of records becomes an interesting feature when �elds are mutable; it is

used below to create new objects by copying, and then modifying, the state of an older object.

Polymorphic duplication could not be written if �elds were coded as references.

Mutability information is carried by labels, and must be mentioned explicitly at the construc-

tion. We replace record extension by two primitives: ( k f`: g) and ( k f!`: g) for non mutable

and mutable �eld extensions. We also add a new primitive ( :` ) for �eld mutation.

In order to carry mutability information in types, the pre type symbol becomes of arity 1, and

we add two constant symbols mut and static. Sorts guarantee that only the type symbols mut

and static may appear under pre. The grammar of types is updated to:

� ::= : : : j f�g j �:� j abs j � pre j mut j static j (` : � ; �) ` 2 L

Record primitives are given below

fg : 8� � fabs:�g

( :l) : 8�

0

; �

1

; �

2

� f`:�

0

pre:�

1

; �

2

g ! �

1

( :l ) : 8�

0

; �

1

; �

2

� f`: mut pre:�

1

; �

2

g ! �

1

! unit

( k f` = g) : 8�

0

; �

1

; �

2

� f`:�

0

; �

1

g ! �

2

! f`: staticpre:�

2

; �

1

g

( k f!` = g) : 8�

0

; �

1

; �

2

� f`:�

0

; �

1

g ! �

2

! f`: mut pre:�

2

; �

1

g

In particular the access is polymorphic in mutability as well, which enables ( :` ) to be applied

to records with either mutable or static �eld `. As an example, references are de�nable:

let newref x = f!val = xg

and assign r x = r.val  x

and deref r = r.val;;

newref : � ! fval : mut pre.�; abs.
g = hfuni

assign : fval : mut pre.�; 
g ! � ! unit = hfuni

deref : fval : � pre.
; �g ! 
 = hfuni

In order to guarantee the type-safety in the presence of mutable objects, we choose the \poly-

morphism on values" approach [124]. In fact, we re�ne this approach in order to get polymorphic

record extension, although record extension is not a value. We de�ne a set of generalizable terms

ranged over by letter b that do not contain any application except applications of safe constants

and applications under abstractions. The only dangerous constant is record extenmsion on a mu-

table �eld. The grammar of generalizable terms is given (for semantics that do not evaluate under

abstractions) in table 5.1 of the appendix. Restricting the expression of Gen rule (�gure 5.7) to

be generalizable guarantees that the evaluation of generalizable terms never create any mutable

data that is used polymorphically. For instance, let bound expression that are not generalizable

expressions can only be assigned monomorphic types.

5.2.4 Recursive types

The notion of \self" allows an object to send messages to itself or, worse, to return itself (or a

copy of itself) when it receives some appropriate message. This makes it possible to implement �x

points without ML recursive de�nitions. Thus, recursive types are required. Since we wish not to

declare the types of objects (although we will allow to do so for documentation), we need to infer

recursive types.

Recursive types are only provided through data type declarations in ML. Allowing implicit

recursive types would be quite easy [105] since type inference reduces to �rst order uni�cation for
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which there are well known algorithms in the presence of recursive types [77, 54]. This does not

mean that implicit recursive types would make recursive type declarations obsolete. For instance,

in ML-ART, there is no record type equivalent to the Caml Light type de�nition below, since such

a type cannot be represented by a regular tree (but it can be regularly generated).

type � foo = ffoo : (� * �) foog;;

Other interesting applications of implicit recursive types in ML can be read in [68].

To model recursive types we extend types with the syntactic construct

� ::= : : : j rec �:�

Equality for recursive types is de�ned in appendix 5.4.3.

The following �x-point combinator is de�nable with recursive types,

let Y F = (fun f ! f f) (fun f x ! F (f f) x);;

Y : ((� ! 
) ! � ! 
) ! � ! 
 = hfuni

Recursive de�nition of functions let rec f = a

1

in a

2

is allowed as syntactic sugar for let f =

Y (fun f ! a

1

) in a

2

. Recursively let-bound variables become lambda-bound in the expanded

form, which provides the correct monomorphic typing rules for recursion.

The type of Y forces a

1

to have a functional type and does not allow the construction of recursive

values. It is possible to have a primitive construct for recursion that permits some de�nitions of

recursive values, but it is di�cult to automatically �lter admissible de�nitions of non-functional

recursive values as soon as application is tolerated. In core ML-ART we forbid recursion on non-

functional values. Still, �x point of non-functional values are used in some of the examples, but the

reader will always be warned.

5.2.5 Projective types

We ended previous section claiming that a good type system for programming objects must provide

a way of referring to records of functions with all the same domains, and de�ning their codomains.

Simple record types do not allow to write any information in template types. Presently, a template

of a record type can either be a �eld variable �, as in the type of the access primitive, or the

expression abs:�, as in the type of the empty record.

It would be easy to allow type-like expressions inside templates, for instance �

0

:�

1

! �

2

, would

force any �eld to be an arrow type. But variables �

1

and �

2

are template variables and can just

serve as �lters to types of �elds. In order to constraint all �elds to have the same domain �

0

, type

variable �

0

must be coerced to a template term. This is exactly what projective types allow. The

grammar of types is extended with a new symbol row :

� ::= : : : j row �

Sorts allow row to coerce an ordinary type expression to a template expression; sorts are re-

laxed such that all ordinary type symbols but f g may occur inside templates. For instance,

f�

0

:row � ! �

1

g is the type of all records whose de�ned �elds are functions of the same domain � .

Projective types are described in more details in the appendix 5.4.2 and are fully formalized

in [104] and also more intuitively described in [103]. They enjoy all the interesting properties of

record types. Although projective types are richer that record types, ML-ART does not have new

language constructs; the additional power is mainly used to write more expressive existential types.
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5.2.6 Existential types

Existential types are the basic tool for de�ning objects with type abstraction. An extension of ML

with existential types has been proposed by K. L�aufer and M. Odersky in [64]. We slightly simplify

the presentation of their proposal by separating existential types from variant types.

We �rst extend type schemes with existential type schemes:

� ::= � j Exist(~�) �

1

! �

2

j 8� � �

Of course, we consider Exist( ) as a binder, when computing free variables and applying substi-

tutions. As for concrete data types in ML, new existential types could be de�ned to the typing

environment by types declarations:

type D

i

(�

0

i

) = K

i

of Exist (~�

i

) �

i

;;

where ~� and �

0

are linear types (that is, no variable occurs twice) and the union of their free

variables contain the free variables of � . For simpli�cation, we simply assume that the corresponding

assertions

K

i

: 8~�

j

� Exist(~�

i

) �

i

! D

i

(�

0

i

)

are in the initial typing environment where �

j

's are the free variables of � and �

0

but the �

i

's

The syntax of the language is extended with existential introduction and elimination constructs

a ::= : : : j K a j let Kx = a

1

in a

2

When opening an existential value a

1

as K x, parts of the type of variable x are abtract in a

2

and

cannot be exported outside of the let expression. We assume given a denumerable collection of

type symbols 
 that are used to represent abstract parts of types. Typing judgements are modi�ed

both to include initial existential type assertions and to introduce 
 type constructors so that their

scope can be delimited.

A ::= ; j A; x : � j A;K : � j A;


A typing judgement A ` a : � is well-formed if all 
's appearing in type expressions (in � as well as

in A) are introduced in A on the left of the occurrence where they appear (see the appendix 5.4.4).

Inference rules are only valid for well-formed typing judgements. We add a constructor introduction

rule similar to the Var rule:

K : � 2 A

A ` K : �

Rule Inst also applies to K although K is not an expression a. The existential introduction rule

is:

A ` a : �

0

A ` K : Exist(~�) �

0

! �

1

A ` K a : �

1

The elimination rule is

A ` a

1

: 8~�

1

� �

1

A ` K : 8~�

1

� Exist(~�

i

) �

0

! �

1

A;

~




i

[x : 8~�

1

� �

0

[


i

(�

1

)=�

i

]] ` a

2

: �

2

A ` let K x = a

1

in a

2

: �

2

where

~


 is a vector of all distinct new constants that do not appear in A. The 
 symbols replace

hidden sub-terms of �

0

that may depend on variables in �

1

. Instead of �nding all free variables of

�

1

we simply make all 


i

's depend on �

1

.
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5.2.7 Universal types

Opening an abstract type introduces 
 type symbols with a restricted scope. These type symbols

quickly propagate by uni�cation outside of their scope. For instance, the following example is not

typable since the argument g is monomorphic and captures the 
 in the type of its argument.

type � k = K of Exist (') (' ! �) * (' * ');;

let fx = K (succ, (0, 1));;

let apply g fp = let (K (f,p)) = fp in f (g p) in apply fst fx;;

i Toplevel input:

ilet apply g fp = let (K (f,p)) = fp in f (g p) in apply fst fx;;

i ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

i Expression of type � with escaping type hescapedi

i in type hescapedi * hescapedi of variable p

A solution is to pass fst polymorphically and take an instance inside the scope of the de-structuring

let expression.

Universal types are dual of existential types. Type scheme are extended to:

� ::= � j Exist(~�) �

1

! �

2

j All(~�) �

1

! �

2

j 8� � �

The initial environment may now also contain assertions of the form:

K

i

: 8~�

0

� All(~�

i

) �

i

! D

i

(�

0

i

)

such that ~� and �

0

are linear types (no variables may be repeated) and the union of their free

variables contains the free variables of � .

The universal introduction rule is:

A ` a : 8~� � �

0

A ` K : All(~�) �

0

! �

1

A ` K a : �

1

If a is not a generalizable expression, ~� will necessarily be empty. This guarantees that mutable

data structures are not used polymorphically; the rule applies to universal bindings as well as to

let bindings. The elimination rule is

A ` a

1

: �

1

A ` K : All(~�) �

0

! �

1

A; x : 8~� � �

0

` a

2

: �

2

A ` let K x = a

1

in a

2

: �

5.2.8 Mixing the extensions

All extensions informally introduced in previous sections are orthogonal and can be easily mixed

together in the language ML-ART. The language is formally described in the appendices.

Type inference had to be omitted by lack of space. Principal type property, and decidability of

type inference has been proved for the main extensions of the language taken separately. See [102,

104] for projective types, [30] for recursive record types, [64] for existential types. Other extensions

are much simpler, and have obvious type inference algorithms. The combination of recursion

with projective types is the one that has to be considered more carefully. Projective types are

formalized as terms of an equational algebra. In general, equations do not commute with limits

and most equational algebras cannot be extended with recursive types in a trivial way. However

the theory of record terms is simple enough to be extended with recursive types [30]. We conjecture
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that projective types equality also commutes with limits, and thus can be extended with recursive

types.

The language ML-ART is described in the appendix. We give the semantics of the language,

and a type-soundness result, but proofs have to be reduced to the main lemmas and a few hints.

5.3 Objects and Inheritance

With the rich type system of ML-ART we can now attempt to de�ne the type of objects. In this

section we show how to program objects and inheritance with type abstraction. A �rst intuitive

approach will require unsafe �x points. We then present another solution that avoids any recursion

on values.

5.3.1 An intuitive approach to objects and inheritance

The type of an object with exposed representation is of the form �

R

� �

M

, for some representation

type �

R

and a method vector type �

M

where �

M

depends on �

R

. In order to abstract �

R

in �

M

,

we need to show this dependence explicitly, at least explicitly enough such that methods can be

applied to the representation. We rule that all methods should receive the internal representation

as �rst argument. Thus the type of the method vector is at least a record whose de�ned �elds

are abstractions that can be applied to a state of type �

R

. That is, each of the method has type

�

R

! �

m

for some type �

m

that may be di�erent on each �eld. The method vector is always an

instance of f�:row �

R

! �

m

g for some representation �

R

. Thus, we de�ne:

type (f'attendances.'methodsg) object =

Object of Exist ('R) 'R * f'attendances. ['R] ! 'methodsg;;

An object point could be de�ned as follows. We �rst de�ne its representation, then its method

vector, last we combine the two:

let pointR v = f!x = vg;;

let pointM =

let getx R = R.x in

let setx R x = R.x  x in

let move R x = setx R (x + getx R) in

let print R = print int (getx R) in

fgetx; setx; move; printg;;

let point v = Object (pointR v, pointM);;

The move method explicitly uses the getx and setx methods that have been de�ned simultaneously.

If the getx method is later rede�ned, for instance in:

let better pointM =

let getx R x = �R.x in let setx R x = R.x  �x in

pointM jj fgetx; setxg;;

then the movemethod of \better" points still uses the old getx and setx methods. The right de�nition

of movemust take getx and setx dynamically from the object method vector. The well-known solution

is to use the so-called \self" methods:

let pointM self =
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let getx R = R.x

and setx R x = R.x  x

and move R x = self.setx R (x + self.getx R)

and print R = print int (self.getx R) in

fgetx; setx; move; printg;;

The creation of points has to build the recursive method vector as follows:

let point v = let rec self = pointM self in Object (pointR v, self);;

This kind of recursive de�nition is not in the core language. The example is safe, but the general

case is not. It must checked that the expression pointM self does not access �elds of self before they

are �lled. This is obvious here because pointM does not send any message, but it requires some

non trivial analysis in general. In the implementation of ML-ART there is a secret entrance to the

unsafe recursion that relies on the programmer to verify the above property by hand. Safer but

heavier solutions to this problem are proposed at the end of the paper; another approach to objects

that avoids recursion on values is also described further. In the rest of this part unsafe recursion is

used without any warning.

The above implementation of better pointM by re-using methods from pointM produces the ex-

pected behavior.

let better pointM self =

let getx R x = �R.x and setx R x = R.x  �x in

pointM self jj fgetx; setxg;;

Inheritance is basically sharing of methods, and we have also realized some of it when reusing pointM

methods in the de�nition of better pointM methods. Extending points with color points requires the

extension of the state as well. Hiding the implementation of points, we can de�ne colorR as follows:

type color = Blue j Red;;

let colorR superR (c) = superR jj fcg;;

The method vector of color points should add a new method getc to the methods of points. The

method print had better be rede�ned to print the color as well. For instance, it can �rst print the

point as before reusing the print method of points, then print the color. However, it is better to

abstract on the method vector of points, called the super class, so that better points can be extended

with color as well.

let colorM self super =

let getc R = R.c

and print R =

print string (match self.getc R with Blue ! "blue" j Red ! "red"); super.print R in

super jj fgetc; printg;;

Then we create:

let color pointM self = colorM self (pointM self);;

let color better pointM self = colorM self (better pointM self);;

Points might themselves have been created from abstract points. In abstract points, only the move

method and a default print method are de�ned. Polar or carthesian points may later implement

getx and setx with di�erent representations and still be subclasses of abstract points.

let abstract pointM self =
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let move R x = self.setx R (x + self.getx R)

and print R = () in

fmove; printg;;

Therefore points should also have been de�ned by abstracting the method vector of their super class.

For sake of uniformity, we rewrite all de�nitions of method vectors by abstracting the super-class

method vector. Similarly all representations should abstract the super representation.

let pointR superR v = superR jj f!x = vg;;

let pointM self super =

super jj fgetx; setx; move; printg;;

Real representations and real methods can be recovered anytime by applying the representation

function or the method function to empty records.

type null = Null;;

let emptyM = (fg: fabs.� ! nullg) and emptyR = (fg: fabs.nullg);;

let point v =

let rec self = pointM self emptyM in Object (pointR emptyR v, self);;

Inheritance is essentially methods sharing, but in a very structured way! Classes are just a way of

structuring inheritance.

type � class = Class of �;;

We group in a same object both components of points. For instance, the empty class is de�ned as:

let nullR superR () = superR;;

let nullM super = super;;

let nullC = Class (nullR, nullM);;

A natural attempt to write a function new that creates instances of a given class does not work:

let new (Class (R,M)) v = let rec self = M self emptyM in Object (R emptyR v, self);;

The recursive call is unsafe (though it could be proved correct by hand) but, worse, it cannot easily

be compiled correctly. The compiler need to know the size of the recursive value that it is going to

create. The di�culty may be avoided by putting the method vector into a �x size top structure,

thus using usafe but correctly compiled recursion:

type � methods = Methods of �;;

type (f'att.'methsg) object = Object of Exist ('R) 'R * f'att. ['R] ! 'methsg methods;;

let new (Class (R,M)) v =

let rec self = Methods (M self emptyM) in Object (R emptyR v, self);;

let null = new nullC;;

Access to self inside the de�nition of method vectors must be re-written with one more indirection.

The simplest way to send objects messages is to de�ne a send function for each message:

let send getx P = let (Object (R, Methods M)) = P in M.getx R;;

Another option is to view messages as �eld extractors, and de�ne a unique send function:

let getx = fun z ! z.getx;;

Unfortunately the following function fails to type, because of abstraction scope violation:
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let send extractor object =

let (Object (R, Methods M)) = object in extractor M R;;

i Toplevel input:

i let (Object (R, Methods M)) = object in extractor M R;;

i ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

i Expression of type � with escaping type hescapedi

i in type f�.[hescapedi] ! 
g of variable M

The solution is to make extractors polymorphic on the representation, so that the abstract repre-

sentation is not exported within the extractor.

type (f'att.'methsg, �) extractor = Extractor of All ('R) f'att. ['R] ! 'methsg ! 'R ! �;;

let getx = Extractor (fun z ! z.getx);;

let print = Extractor (fun z ! z.print);;

let send extractor P =

let (Object (R, Methods M)) = P in let (Extractor x) = extractor in x M R;;

The �nal version of pointM is:

let pointM self super =

let getx R = R.x

and setx R x = R.x  x

and move R x = send setx (Object (R,self)) (x + send getx (Object (R,self)))

and print R = print int (send getx (Object (R,self))) in

super jj fgetx; setx; move; printg;;

let pointC = Class (pointR, pointM);;

let p1 = new pointC 1 in send move p1 2; send print p1;;

Simple inheritance can be done in a systematic way by de�ning:

let inherits (Class (R1, M1)) (Class (R2, M2)) =

let R superR (v1,v2) = R2 (R1 superR v1) v2 in

let M self super = M2 self (M1 self super) in

Class (R, M);;

A method can of course return the object that lauches it, or other objects of the same type. For

instance, we may de�ne a copy method that returns a new isomorphic object composed of a copy

of the state and the same method vector.

let copyM self super =

let copy R = Object (R jj fg, self) in

super jj fcopyg;;

let copyC = Class (nullR, copyM);;

Then, providing the copying method to points is quite easy:

let copy pointC() = inherits pointC copyC;;

Since classes are polymorphic, we need to delay their assemblage until they are used monomorphi-

cally to create objects. The is one example of limitation of polymorphism on values as proposed

in [124]. This is quite odd but admissible here since the assemblage may still be done only once

before the creation of all objects of the same class.
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Our classes are called wrappers in [52]. There are similar to functions that given any class would

return a class by adding their own methods. The inherits function simply composes them. while

the new function applies them to the empty class before building new objects. Lifting classes to

wrappers is basically the same as lifting records to functional records as done in [107]; it provides

multiple inheritance for free. A name wrapper can be de�ned as the color one:

let nameR superR (n) = superR jj fng;;

let nameM self super =

let getn R = R.n

and print R = print string (send getn (Object (R, self))); print char ` `; super.print R in

super jj fgetn; printg;;

let nameC = Class (pointR, pointM);;

Named color points can be de�ned by wrapping points with either color, then name or name then

color.

let name color point() = inherits pointC (inherits colorC nameC);;

let color name point() = inherits pointC (inherits nameC colorC);;

Both ways are not equivalent; for instance, the last one will print the color before the name, which

usually looks very odd. Wrappers have replaced multiple inheritance by single inheritance. It is a

more signi�cant example to assume that named-point class and color-point class are de�ned �rst,

then attempt to implement their combination but ignoring how they were created. The composition

let name color pointC() = inherits (name pointC()) (color pointC());;

is not quite correct since the print method is taken from the last class and thus does not print

the color. It is usual when doing multiple inheritance that multiply-de�ned methods need to be

rede�ned. One possibility is to wrap a new print method around the bad de�nition. Another

solution is to do less meta-programming and more programming, that is to de�ne name-color-point

methods directly:

let color pointM self super = colorM self (pointM self super)

and name pointM self super = nameM self (pointM self super);;

let name color pointM self super =

let super1 = color pointM self super in

let super2 = name pointM self super1 in

let print R = print string (send getn (Object (R, self))); print char `=`; super1.print R in

let print no name = super1.print in

super2 jj fprint; print no nameg;;

let name color pointR superR (x,c,n) = superR jj f!x = x; c; ng;;

let name color pointC = Class (name color pointR, name color pointM);;

let p1 = new name color pointC (1, Red, "p") in send print p1;;

p=red1� : unit = ()

This is all the 
exibility of programmable objects.
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5.3.2 Safe �x-points of non-functional values

As shown in the language de�nition, it is possible to de�ne a �x-point operator on abstractions.

Fix point of non-functional values raises di�culties. Their compilation usually requires to know

the exact size of the top structure of recursive values; a dummy value of that size is allocated

before the evaluation of the recursive de�nition, whose result is used to patch the dummy value.

Thus, at least the top structure of the recursive value must be statically known. The evaluation of

non-functional values also assumes that the dummy value is only passed to other functions, stored

inside closures, but never accessed before it is patched. This kind of analysis is similar to checking

that the evaluation of some expression does not create any reference cell. This problem has been

widely addressed recently but has not found any satisfactory solution yet. It can be thought that

any good solution for detecting the creation of references can be applied to the detection of unsafe

recursions as well.

Simpler solutions could require annotations of the source code to help the static analyzer. There

are easy solutions that would automatically guarantee safety of the above examples. All of them

are still more or less ad hoc, therefore none of them has been included into the language ML-ART.

Another approach is to remark that call-by-name �x points are always safe and not restricted to

functions, and that call-by-name can be simulated with call-by-value. That is, recursive values can

be replaced by recursive abstractions on values, which can be de�ned safely. This solution has been

proposed in [92]. However, extra abstractions stop evaluation and method vectors are recreated

any time a message resends another message to itself, which is too much ine�cient. Moreover

call-by-value runtime errors (unsafe examples) have been changed into call-by-name \safe" loops.

Is this more satisfactory?

5.3.3 Objects without recursive values

There is a very simple way of avoiding recursive objects, which required �x-points of non-recursive

values. Going from objects with value abstraction to objects with type abstraction, we moved the

abstraction on state from outside the method vector into each method. Similarly, we can move

abstraction on self into methods. For instance, the method move can be de�ned as:

let move (R,M) = send setx (Object (R,M)) (x + send getx (Object (R,M)))

The function send would correspondingly be changed to

let send extractor P = let (Object (R,M)) = P in let (Extractor x) = extractor in x M (R,M);;

Since x M is a component of M, the expression x M (R,M) contains an application of a part of M to

a structure containing itself; thus, it must have a recursive type. Unsurprisingly, the object type

must be rede�ned to:

type (f'att.'methsg) object = Object of Exist ('R) rec 'RM in 'R * f'att. ['RM] ! 'methsg;;

The extractor type must also be changed to:

type (f'att.'methsg, �) extractor = Extractor of

All ('R,'M) f'att. (['R] * 'M) ! 'methsg ! ('R * f'att. (['R] * 'M) ! 'methsg) ! �;;

Of course, all extractors must be re-evaluated. Sending a message becomes:

let send extractor P = let (Object (R,M)) = P in let (Extractor x) = extractor in x M (R,M);;

Method vectors are de�ned by abstracting the super class.
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let pointM super =

let getx (R,M) = R.x

and setx (R,M) x = R.x  x

and move P x = send setx (Object P) (x + send getx (Object P))

and print P = print int (send getx (Object P)) in

(super jj fgetx; setx; move; printg);;

let pointC = Class (pointR, pointM);;

Since the object constructor is only a type coercion, that is Object P and P are the same value, this

approach is more e�cient than the previous one; it does not sucessively disassemble and re-assemble

the state and the method vector.

Creating a new class does not involve recursion any more:

let new (Class (R,M)) v = Object (R emptyR v, M emptyM);;

For instance,

let p1 = new pointC 1 in send print p1;;

1� : unit = ()

All examples of the previous section can be re-programmed in the new style, keeping entirely within

core ML-ART.

5.3.4 Extensions

We have shown how to program most object constructions. It is lacking the ability to implicitly

forget methods and coerce objects to their counterparts in super classes. The same message print

can be sent to both points and color points. But points and color points have two incompatible

types and can never be stored in the same list. Some languages with sub-typing allow this and

would take the common interface of all objects that are mixed in the list as the interface of any

object of the list.

In order to be able to forget �elds in ML-ART, it would be necessary to give a more general

type to the extension primitive:

( k f` = g) : f`:�

0

; �

1

g ! �

2

! f`: static:�:�

2

; �

1

g

Here, �elds of record types should be tripples m; f; � where m is !, static, or a variable and f is

abs, pre, or a variable.

Such typing would be sound. However, to get the bene�t of the richer structure, ML should

be extended with polymorphic recursion. so that the recursion involved in object construction

or message passing can be typed with polymorphic 
ags. Currentlty, the vector of methods in

recursive objects is built as a �x point and can only be assigned a monomorphic type.

In order to allow implicit coercions of objects to their super classes some other kind of polymor-

phism must be used. Adding sub-typing could be one. Type-checking with non structural sub-types

may �nd a solution along the lines of [4]. Objects with type inference but top-level class de�nitions

have also been studied in [30]. Another interesting investigation, and probably the most promising

are type isomorphisms of Di Cosmo [36]. It can be expected that they would allow to turn some

pre 
ags into 
ag variables after the recursive objects have been created.
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Conclusion

Programming objects with ML-ART is an interesting experiment, that primarily helps to under-

stand objects in several ways. The unavoidable feature in object-oriented programming is message

passing. Polymorphic access is required and it su�ces to model very simple objects. The next step

involves concealing the internal state of objects, either by value abstraction or type abstraction.

Hiding by type abstraction has proved to be both easier and simpler. The concept of inheritance is

essentially method sharing in a structured way. Polymorphic record extension is su�cient for simple

and multiple inheritance. Slightly less important, classes are just a way of structuring inheritance.

As opposed to the encoding in F

!

�

that requires a lot of systematic, but still necessary, type

information, all our example could be written in a natural ML style. This allows us to assert that

no syntactic construct is needed for programming objects in ML-ART. Programmable objects are

easier to understand than primitive objects; there is no need to learn a new language, instead

object-oriented programming can be discovered progressively.

We have presented two programming styles for objects but other interesting ones can certainly

be found. Some of them could be o�ered in libraries to allow the user to choose the complexity

of his objects that is consistent with the level of his problem. A beginner would probably adopt a

style from the library while the expert would de�ne his own one.

The language ML-ART is a powerful extension to ML. Record types make declarations of record

data structures optional. Recursive types may be quite useful in a few other circumstances, however

quanti�ed types, through type declarations, seem to possess the degree of higher order needed in

practice; type information, carried by constructors, keeps the language very close to ML and make

it as easy to use.

The main limitation of our objects is their inability to coerce objects of their super classes.

Improvements of the type system should be made to address this problem, this being contingent,

however, on �nding a satisfactory solution to the second problem of non-functional recursive values.

Both of these problems are interesting and worth further investigation.

Last, but not least, polymorphic records used in ML-ART can be compiled very e�ciently. The

language itself has been implemented as an extension of Caml-Light.
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Appendix

5.4 De�nition of the language ML-ART

Notation For brievity, we will write h�i for shared templates in this section while we wrote row �

in the examples. We also write ��:� instead of rec �:� .

We formalize an extended language with locations (store adresses) and record values. We assume

given a denumerable set of locations. Letter l ranges over locations. Record values are �nite maps
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from locations to terms. When de�ned by enumeration, priority is given to the right, that is, in

f`

1

= a

1

; : : : `

n

= a

n

; ` = ag

` may be one of the `

i

, but �eld ` is always mapped to a.

The syntax of language expressions, types and typing judgements are de�ned in �gure 5.1.

a ::= x j c j fun x! a j a

1

a

2

Expressions

j K a j let Kx = a

1

in a

2

j strip K of a j f

~

` = ~wg j l

c ::= c

a

j c

b

Constants

c

a

::= ( k f!` = g) Dangerous constants

c

b

::= ( k f` = g) j ( :`) j ( :` ) j copy j : : : Safe constants

b ::= x j c

b

~

b j c

a

j fun x! a j let Kx = b in b Non expansive terms

j K b j f

~

` = ~wg

v ::= c j fun x! a j f

~

` = ~wg j K v Values

w ::= v j l

Figure 5.1: Expressions.

5.4.1 Expressions

The syntax of expressions is given in �gure 5.1. Expressions are untyped. Values as a subset of

expressions. Non expansive expressions are a subset expressions whose evaluation is guaranteed

not to produce any side e�ect. The type of a non-expansive expression can be generalized.

The following type declarations are not expressions of the language:

type k(�

0

) = K of Exist (~�) � or type k(�

0

) = K of All (~�) �

Instead, they are replaced by type assignment, that for sake of simplicity will be assumed in the

initial environment.

K : 8~�

0

� Exist(~�) � ! k(�

0

) or K : 8~�

0

� All(~�) � ! k(�

0

) (1)

We say that value constructor K and type symbol k are paired in type assignment (1). The

expression Exist(~�) � ! �

0

and All(~�) � ! �

0

are well-formed if

� ~� is linear, i.e. no variable occurs twice,

� variables ~� are not in �

0

,

� all variables of � occur in either ~� or �

0

.

Type scheme 8� � � is well-formed if � is. We abbreviate sequences of quanti�ers 8�

1

� � � � 8�

n

� �

by 8�

1

; � � ��

n

� � .

The expression strip K of a is used for universal elimination: it strips of the constructor of a

value of universal type; the type of the result is an instance of of the universal type associated to K.
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Thus, when K is the constructor of a universal data-type, we should now see let K x = a

1

in a

2

(used in section 5.2.6) as syntactic sugar for let x = strip K of a

1

in a

2

. The later form is

simpler to formalize. The same simpli�cation cannot be used for existential elimination because

the above transformation would break the scope of the type anonymous type symbols introduced

by strip K of a. Thus, when K is the constriuctor of an existential data-type, the expression

let x = Ka

1

in a

2

both unpacks the existential and generalizes its type within the scope of

the let expression. Generalization must happen simultaneously to unpacking, hence we used a

\Let" construct. Since the expression let x = a

1

in a

2

can now be seen as syntactic sugar for

let K

0

x = K

0

a

1

in a

2

where K

0

: 8� � Exist()� ! k

0

� is in A

0

, we removed the original let

form from the core language.

5.4.2 Sorts and types

� ::= � j � ! � j ��:� j f�g j C(~�) Types

j �:� j (` : � ; �) j abs j � pre j mut j static j h�i

C ::= k j D j 
 Type constants

� ::= Usual j Field j Flag j Mutability Kind sorts

� ::= Type j Row (L) Power sorts

L ::= ; j `:L ` =2 L

Figure 5.2: Sorts and types.

Symbols Kinds Powers

C (Usual; Usual)) Usual (�; �)) �

( ! ) (Usual; Usual)) Usual (�; �)) �

f g Field) Usual Row (;)) Type

: (Flag; Usual)) Field (�; �)) �

(` : ; ) (�; �)) � (Type; Row (`:L))) Row (L)

abs Flag �

pre Mutability) Flag � ) �

mut Mutability �

static Mutability �

h i Usual) Usual Type) Row (L)

Figure 5.3: Kinds and powers

The syntax of types is described in �gure 5.2. Their formation is further restricted twice by

kind sorts and power sorts. Kind (respectively power) signatures are non empty sequences of

kind (respectively power) sorts, written ~�

i

) � or just � when ~�

i

is empty. Each primitive type

symbol comes with both a kind signature and a power signature given in �gure 5.2. Recursive

type expressions (��:�) requires � and � to both be of the kind sort Usual and the power sort
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Type. Type symbols C are universal and existential type symbols k, anonymous type symbols 
,

or regular type symbols D (e.g. type list, int, etc.)

Sort metavariables in signatures mean that all forms ranged over by this meta-variable are

possible. Thus, symbols may have several signatures. However, for any term and any sort, there

is at most one possible assignment of signatures to symbol occurrences that makes the term well-

sorted. There is an algorithm that checks whether such assignment exists and, if so, computes the

assignment. Thus it would be possible to work with decorated types, instead, which form a many

sorted algebra in the usual meaning.

The most signi�cant sorts are called \kinds": they avoid using 
ag or mutablility expressions

instead of usual types. The other sorts are called \power": expressions of power Row (L) are

templates in record types and L enumerates all labels that the template must not de�ned; this is

used to avoid rede�nition of �elds in record types. All types appearing in typing rules and typing

environments have the kind Usual and the power Type.

The above sorts allow such type expressions as f`

1

: abs:�

1

; (`

2

:�

2

:abs):(�

3

! �

4

)g but types

that the user may see only uses the weaker kind signature (Field; Field) ) Field for (` : ; )

symbols, which forbids such types as above.

5.4.3 Type equality

We write [�=�] the substitution that replaces free occurrences of � by � . We use letter C to range

other all type symbol, and letter f , and g to range other any type symbol other than (` : ; ), h i,

and f g.

Type equality is the smallest congruence that satis�es the equations of the projective algebra

and those for recursive types. The rules for congruence are

�

1

= �

1

(Reflexivity)

�

1

= �

2

�

2

= �

1

(Symmetry)

�

1

= �

2

�

2

= �

3

�

1

= �

3

(Transitivity)

�

1

= �

0

1

: : : �

n

= �

0

n

C(�

1

; : : : �

n

) = C(�

0

1

; : : : �

0

n

)

(Congruence)

For sake of simplicity, we will include equivalence rules (Relexivity, Symmetry, and

Transitivity) in the notation, and omit them in derivations.

Type equations of the projective algebra are, for any type symbol C other that (` : ; ), h i,

and fg, for any labels `

1

, `

2

, and `,

(`

1

: �

1

; `

2

: �

2

;�

0

) = (`

2

: �

2

; `

1

: �

1

;�

0

) (Left-commutativity)

f

�

������!

` : �

1

;�

2

�

= (` : f(~�

1

); f(~�

2

)) (Distributivity)

hf(~�)i = f

�

�!

h�i

�

(Row-distributivity) h�i = (` : �; h�i) (Idempotence)

The equational theory of projective types is regular and collapse free, but non linear. It is studied

and proved syntactic in [104] in the absence of recursive types. We show below that this result

extends to recursive types.

The recursive type expression (��:�) is well formed only if both � and � have the power sort

and if � is neither a type variable, nor another (� : ). This guarantees that � is contractive in �

and that ��:� is well-de�ned. In practice, when we write types, we may require that � also be

of power sort Type; this would not be a true restriction since there cannot be cycles along a path



118 CHAPTER 5. PROGRAMMER LES OBJECTS

composed only of row symbols. However, we do not impose such a restriction in the formalization.

The symbol � : acts as a binder, and in examples, we always assume that bound variables have

been renamed properly in order to avoid capture.

Equality for recursive types is taken from [5] (all types are assumed to be well-sorted) and

de�ned by the set of inference rules (�):

�

1

= �

2

��:�

1

= ��:�

2

(�-Congruence) ��:� = � [��:�=�] (Fold-Unfold)

If � 6� � (1) and � 6� ��:�

0

(2),

�

1

= � [�

1

=�] ^ �

2

= � [�

2

=�]

�

1

= �

2

(Contract)

The condidtions (1) and (2) of Contract implies that � is contractive in �. If � is neither a

variable (1) nor another term of the form ��

0

:�

0

(2). These conditions can always be enforced when

� is contractive. In fact, we will furthermore restrict use of rule Contract to cases where � 2 � ,

since otherwise the rule degenerates into a transitive rule.

Note that rule �-Congruence is derivable from other rules.

Proof: Prove �rst that the system without this rule is stable by substitution (Same proof as below,

but without case �-Congruence). Assuming �

1

=

�E

�

2

, the equality �

1

[��:�

2

=�] = �

2

[��:�

2

=�]

follows by substitution, and we conclude with the following derivation:

��:�

1

= �

1

[��:�

1

=�]

��:�

2

= �

2

[��:�

2

=�]

�

1

[��:�

2

=�] =

�E

�

2

[��:�

2

=�]

(Transitivity)

��:�

2

= �

1

[��:�

2

=�]

(Contract)

��:�

1

=

�E

��:�

2

Therefore, in proofs, we always asume that rule �-Congruence does not appear in derivations.

5.4.4 Typing rules

� ::= � j Exist(~�) �

1

! �

2

j All(~�) �

1

! �

2

j 8� � � Type schemes

A ::= ; j A; z : � j A; f Typing environments

z ::= x j c j K j l

� ::= A ` a : � j A ` K : � Judgements

Figure 5.4: Type schemes and typing judgments

Well-formed typing environments are recursively de�ned as follows. The empty environment is

well-formed. The environment A;
 is well-formed if A is well-formed and does not introduce 
.

The environment A; z : � is well-formed if A is and if all symbols of � are prede�ned or introduced

in A. Moreover, if z is a location, then � must be a simple type � . Last, type assignment formula

A ` : � is well-formed if the environment A; : � is. We also asume that all typing contexts are

well-sorted, but we omit sorts in the formalization. (In particular, 
 must be used with consistent

sorts.)
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We assume that the initial environment A

0

assign the types schemes described in �gure 5.5

to record constants. We also assume that A

0

contain paired bindings for type constructors of

existential or universal types. The conditions that type constructors K

i

are paired with a unique

type symbol k

i

is essential to ensure type soundness. This makes the constructor unique for the

corresponding type.

( :l) : 8�

0

; �

1

; �

2

� f`:�

0

pre:�

1

; �

2

g ! �

1

( :l ) : 8�

0

; �

1

; �

2

� f`: mut pre:�

1

; �

2

g ! �

1

! unit

( k f` = g) : 8�

0

; �

1

; �

2

� f`:�

0

; �

1

g ! �

2

! f`: staticpre:�

2

; �

1

g

( k f!` = g) : 8�

0

; �

1

; �

2

� f`:�

0

; �

1

g ! �

2

! f`: mut pre:�

2

; �

1

g

copy : 8� � f�g ! f�g

K

i

: 8~�

0

� Exist(~�) � ! k

i

(�

0

)

K

j

: 8~�

0

� All(~�) � ! k

j

(�

0

)

Figure 5.5: Type schemes of record primitives

� ::= � j Exist(~�) �

1

! �

2

j All(~�) �

1

! �

2

Type schemes

j 8� � �

A ::= ; j A; l : � j A; x : � j A; c : � Type environments

j A;K : � j A;


� ::= A ` a : � j A ` K : � j A ` � Judgements

Figure 5.6: Type assignment formulas

We write FV (A) for free variables of A. Type schemes and type assignment formulas are given

in �gure 5.6. Typing rules are given in �gure 5.7. Variable z ranges over identi�ers x, c, and K.

Rules Exist and All should be seen as existential and universal introduction rules.

In a derivation of a typing judgement, Gen rules can only be used as the last ones or before the

left hand sides of Let and Forall rules, since these are the only premises that allow type schemes.

We write Gen* for a possibly empty sequence of Gen rules. Moreover, we can always assume that

it is used as much as possible on the left hand sides of Let rules. We call such derivations canonical.

In the equational theory that is considered, the arrow type symbol is decomposable, that is:

�

1

! �

2

= � =) � � �

3

! �

4

^ �

1

= �

3

^ �

2

= �

4

As a result, it is always posssible to move rule Equal* around all other typing rules so that it only

occurs above left-side premises of App rules and as the last rule of the derivation. For simplicity

of presententation, however, we will omit rule Equal* and instead consider types modulo the

equational theory. We will only emphasize places where the presence of rule Equal* is essential.

The following properties of typings will be used.

Proposition 5 (Stability by substitution) If A ` a : � then �(A) ` a : �(�) for any substitu-

tion � such that the formula is well-formed.
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z : 8~�

j

� � 2 A

(Get)

A ` z : � [~�

j

=~�

j

]

A ` a : �

1

�

1

= �

0

(Equal*)

A ` a : �

0

A ` b : � � =2 FV

G

(A)

(Gen)

A ` b : 8� � �

A; x : �

0

` a : �

1

(Fun)

A ` fun x! a : �

0

! �

1

A ` a

1

: �

1

! �

0

A ` a

2

: �

1

(App)

A ` a

1

a

2

: �

0

A ` v

1

: �

1

: : : A ` v

n

: �

n

(Record)

A ` f`

1

= v

1

; : : : `

n

= v

n

g : f`

1

: pre:�

1

; : : : `

n

: pre:�

n

; abs:�g

A ` a : �

0

A ` K : Exist(~�) �

0

! �

1

(Exist)

A ` K a : �

1

A ` a : 8~� � �

0

A ` K : All(~�) �

0

! �

1

(All)

A ` K a : �

1

A ` a

1

: �

1

A ` K : All(~�) �

0

! �

1

(Strip)

A ` strip K of a

1

: �

0

A ` K : 8~�

1

; ~�

j

� Exist(~�

j

) �

0

! �

1

A ` a

1

: 8~�

1

� �

1

A;

~




j

; x : 8~�

1

� �

0

[

~




j

(�

1

)=~�

j

] ` a

2

: �

2

(Let)

A ` let K x = a

1

in a

2

: �

2

Figure 5.7: Typing rules.

Proposition 6 (Extension of environment) If the type-assignement A and B are identical ev-

erywhere except maybe on variables that are not free in a, then A ` a : � is derivable if and only if

B ` a : � is.

These properties are proved in [102] for core ML when types are taken modulo a regular equa-

tional theory. A regular theory is one such that two equal terms always have the same free variables.

All equations for the projective algebra and for recursive types are regular. The proofs of [102]

easily extend to the language ML-ART.

In [102] we also show that the language has principal typings if the equational theory has

principal uni�ers, and that type inference then reduces to uni�cation. Although not stated explicitly

for recursive types, the results and proof of [102] extend to the case of recursive types. The proofs

also extend to the new constructs of ML-ART. Thus, the algorithm for type inference without

recursive types is sound and complete in the presence of recursive types.

5.5 Syntactiness of recursive projective types and type inference

The aim of this section is to show the syntacticness of the equational theory presented in the

previous section. We show that the axioms of the theory E form a syntactic presentation for �-

equality. This means that the obvious mutation rules derived from the axioms (given in �gure 5.9)
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preserve sets of uni�ers (i.e. they are sound and complete) for �E-equality. This was proved in E

in [103], but only for E-equality (no recursive types). The proof used results from [104]; it does not

easily extend to �E-equality (recursive types). Here, we provide a direct proof of syntacticness,

reusing the idea of canonical forms introduced in [100].

� _= e ^ � _= e

0

� _= e _= e

0

Fuse

C(�

i

)

i21;p

_= C(�

0

i

)

i21;p

_= e

9(�)

i21;p

�

V

(

^f(�

i

)

i21;p

_= e

�

i

_= �

i

_= �

0

i

i 2 [1; p]

Decompose

f(�

i

)

i21;p

_= f

0

(�

0

j

)

j21;q

_= e

?

Collision(f; f

0

) if f 6= f

0

Figure 5.8: Rules for uni�cation in the empty theory.

In this part we write �

i

for a tuple of types. The indice i range over a set I, usually left implicit

from the context. By default, we choose those indices distinct from integers, so that, when i is

implicit, �

1

and �

i

are independant types, i.e. �

1

is not �

i

for some i. We write =

�E

for �E-equality

in the equational theory (or simply = when there is no ambiguity) and � for textual equality.

As usual, substitutions are sort-respecting mappings from variable to types that are the identity

almost everywhere. Substitutions are extended to mappings from types to types by congruence.

Therefore (��:�)[�

0

=�

0

] is by de�nition equal to ��:(� [�

0

=�

0

]) (by naming convention � and �

0

are

dinstinct).

Lemma 7 The relation =

�E

is stable by substitution.

Proof: We show the lemma for a substitution [�

0

=�

0

]. It follows for more genral substitutions by

composition into smaller substitutions. By induction on the size of the derivation. We assume

given a derivation of �

1

=

�E

�

2

and that any substitution of provably equal term with a strictly

smaller derivation are equal. We show �

1

[�

0

=�

0

] =

�E

�

2

[�

0

=�

0

].

Case Congruence: trivial.

Case Axioms: immediate, since the axioms are closed by substitutions.

Case Fold-Unfold: �

1

is ��:� and �

2

is � [�

1

=�] and are equal. We asume that � does not appear

in �

0

. Terms �

1

[�

0

=�

0

] and �

2

[�

0

=�

0

] are respectively ��:(� [�

0

=�

0

]) and (� [�

0

=�

0

])[� [�

0

=�

0

]=�], and

therefore are equal by rule Fold-Unfold axiom.

Case Contract: �

1

and �

2

are � [�

1

=�] and � [�

2

=�]. Then, assuming that �

0

and � are dis-

tinct and that � is not free in �

0

, �

1

[�

0

=�

0

] is � [�

0

=�

0

][�

1

[�

0

=�

0

]=�] and similarly �

2

[�

0

=�

0

] is

� [�

0

=�

0

][�

2

[�

0

=�

0

]=�], therefore, by rule Contract, �

1

[�

0

=�

0

] and �

2

[�

0

=�

0

] are equal. If � and �

0

are equal or � appears in �

0

, we may replace � by �

0

and � by � [�

0

=�] in both premisses.

Two substitutions are �E-equal if they have the same domain and the same variables are

mapped to �E-equal terms. This property of the de�nition extends to substitutions of terms:
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a

L

: � ; �

0

_= b

L

: �;�

0

_= e

9�

00

�

V

8

>

>

<

>

>

:

b

L

: �;�

0

_= e

� _= b

a

:L : �;�

00

�

0

_= a

b

:L : � ;�

00

Mutate(a; b)

a

L

: � ; �

0

_= h�i

L

_= e

h�i

L

_= e ^ � _= � ^ �

0

_= h�i

a:L

Mutate(a; Row )

f

Row (L)

(�

i

)

i21;p

_= a

L

: �;�

0

_= e

9�

i

; �

0

i

i21;p

�

V

8

>

>

>

>

>

<

>

>

>

>

>

:

a

L

: �;�

0

_= e

�

0

_= f

Type

(�

i

)

i21;p

�

0

_= f

Row (a:L)

(�

0

i

)

i21;p

�

i

_= a

L

: �

i

;�

0

i

i 2 [1; p]

Mutate(f; a)

f

Row (L)

(�

i

)

i21;p

_= h�i

L

_= e

9(�)

i21;p

�

V

8

>

>

<

>

>

:

h�i

L

_= e

� _= f

Type

(�

i

)

i21;p

�

i

_= h�

i

i

L

i 2 [1; p]

Mutate(f; Row )

Figure 5.9: Mutation rules in the generic algebra of record terms

Lemma 8 Two �E-equal substitutions map the same term to two equal terms

Proof: By induction on the size of the term � , using congruence.

We de�ne the top symbol Top� of a type � to be C if � is C(�

1

; : : : �

n

) or Top(�

1

) if � is ��:�

1

. It

is unde�ned for variables. We de�ne the projection �

=i

as �

i

if � is C(�

1

; : : : �

i

; : : : �

n

) and (�

1

=i

)[�

1

=�]

if � is ��:�

1

. It is unde�ned if � is a variable or i is higher than the arity of Top(�).

Lemma 9 Two �E-equal non variables terms of the power Type have the same top symbols and

the same projections.

Proof: By induction on the size of the equality derivation and case analysis on the last rule applied.

All cases are easy, in particular since no axiom has power Type.

On row terms, we de�ne the projection �

=a

on label a, the restriction �

na

on label a, the main

symbol Main(�), and the extended projection �

==i

, inductively on the size of the term and by cases
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on its top structure:

� �

=a

�

na

Main(�) �

==i

(a : �

1

; �

2

) �

1

�

2

Top(�

1

)(1) (a : �

1

=i

; �

2

==i

) (1)

(b : �

1

; �

2

) �

2

=a

(b : �

1

; �

2

na

) Top(�

1

)(1) (b : �

1

=i

; �

2

==i

) (1)

f(�

i

) f(�

i

=a

) f(�

i

na

) f �

i

h�

1

i �

1

h�

1

i Top(�

1

) h(�

1

=i

)i

(1) We restrict the de�nition of Main(�) and �

==a

in the two �rst lines to cases where Main(�) and

Main(�

=a

) are equal. The projection on a and restriction on a are always de�ned (for well-typed

row terms).

The de�nition is well-founded, since recursive de�nitions are always called on immediate sub-

terms of the original term, and there is no in�nite path composed of only symbols of the power

sort Row . Therefore, a result answer or the unde�ned answer will be reached in a �nite number of

iterations.

Lemma 10 The above operations are compatible with �E-equality, i.e. given �E-equal row terms

their projections (respectively restrictions and extended projection) are either both unde�ned or

�E-equal, and their main symbols are either both unde�ned or identical.

Proof: By induction on the size of the proof of equality, then by cases on the last rule applied. We

write �

0

and �

00

for the two �E-equal terms. We write #(�) any of the operations �

=a

, �

na

, or �

==i

,

but used consistently in the context.

We �rst notice that whenever #� is de�ned, then #(�(�)) is �(#�) (substituvity of the de�ni-

tion).

Case Congruence: By congruence, the top symbols of �

0

and �

00

are the same, and the direct

subterms of �

0

and �

00

are �E-equal (which a smaller derivation). By induction, their #-projections

are also �E-equal. By congruence, we can rebuild two versions composed of the corresponding

subterms that are �E-equal. This shows that #�

0

and #�

00

for any #-projection.

Case Fold-Unfold: This is immediate since the de�nition of each operators is de�ned by unfold-

ing: #(��:�) is de�ned as #(� [��:�=�]). Similarly for Main.

Case Axioms of E: All cases are easy, since the de�nitions have been written exactly to commute

with E-equality.

Case Contract: Assume that �

�

=

�E

� [�

�

=�] when

�

is

0

or

00

. Assume that � does appear in � .

Since � has power sort Type, the operation # is de�ned on �

�

whenever it is de�ned on � . Then it is

also de�ned on �

00

. The terms �

�

and � [�

�

=�] are �E-equal. By induction hypothesis, they remain

�E-equal by any #-projection. Therefore #�

�

and (#�)[�

�

=�] are �E-equal. Since by hypothesis,

�

0

and �

00

are �E-equal, the two substitutions [�

0

=�] and [�

00

=�] are also �E-equal; hence, so are

#�

0

and #�

00

.

Othercases: all operations are unde�ned.

Corollary 11 It immediately follows that
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(E1) If (a : �

1

; �

2

) =

�E

(a : �

3

; �

4

) then �

1

=

�E

�

3

and �

2

=

�E

�

4

(E2) If f(�

i

) =

�E

f(�

0

i

) then �

i

=

�E

�

0

i

.

The properties (E1), (E2) ensures that standard decomposition rules remain complete for �E-

equality.

Lemma 12 A row term � for which both the projection on label a and the restriction on label a

are de�ned is �E-equal to (a : �

=a

; �

na

).

Proof: By induction on the size of � and cases on the top symbol of �

Case (a : �

1

; �

2

): By de�nition �

1

and �

2

are �

=a

and �

na

.

Case (b : �

1

; �

2

): By de�nition (a : �

=a

; �

na

) is equal to (a : �

2

=a

; (b : �

1

; �

2

na

)), which by left

commutativity is �E-equal to (b : �

1

; (a : �

2

=a

; �

2

na

)). By induction hypothesis the right subterm is

equal �

2

and by congruence the whole term is �E-equal to � .

Case h�

1

i: By de�nition, (a : �

=a

; �

na

) is equal to (a : �

1

; h�

1

i), which by the idempotence axiom

� is �E-equal to h�

1

i.

Case f(�

i

): By de�nition (a : �

=a

; �

na

) is equal to (a : f(�

i

=a

); f(�

i

na

), which by distributivity is

�E-equal to f(a : �

i

=a

; �

i

na

). By induction hypothesis, each subterm (a : �

i

=a

; �

i

na

) is �E-equal to

�

i

, thus by f -congruence, it is �E-equal to � .

Corollary 13

(E3) If (a : �

1

; �

2

) =

�E

(b : �

3

; �

4

) then there exists a term �

5

such that �

2

=

�E

(b : �

1

; �

5

) and

�

4

= (a : �

2

; �

5

).

(E4) If (a : �

1

; �

2

) is equal to h�i, then �

1

=

�E

� and �

2

=

�E

h�i.

This ensures the completeness of the �rst two mutation rules.

Lemma 14 A row term � with extended top symbol f is �E-equal to f(�

==i

i2I

).

Proof: By induction on the size of � and case analysis on the top symbol of � .

Case (a : �

1

; �

2

): Then f is the top symbol of �

1

and the extended top symbol of �

2

. Therefore, by

induction hypothesis �

2

is equal to f(�

2

==i

i2I

). Since by de�nition, �

1

is �E-equal to f(�

1

=i

i2I

), the

term � is �E-equal to (a : f(�

1

=i

); f(�

2

==i

)). By distributivity it is �E-equal to f((a : �

1

=i

; �

2

==i

)

i2I

)

which is by de�nition f(�

==i

).

Case h�

1

i: Then Top(�

1

) is f and f((h�

1

i)

==i

i2I

) is f(h(�

1

=i

)i

i2I

). This is E-equal to h(f(�

1

=i

i2I

))i,

i.e. h�i

1

.

Case g(�

i

): Then g must be f and there is nothing to prove.

Corollary 15

(E5) If (a : �

1

; �

2

) =

�E

f(�

i

), then there exists �

0

i

, �

00

i

, and �

3

such that �

i

=

�E

(a : �

0

i

; �

00

i

) and

�

1

=

�E

f(�

0

i

) and �

2

= f(�

00

i

).

(E6) If f(�

i

) =

�E

h�i, then Top(t) is f and �

i

=

�E

h�

=i

i.

This ensures the completeness of the last two mutation rules.

Proof:
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Case E5: The term (a : �

1

; �

2

) has main symbol f , thus it is �E-equal to f(a : �

1

=i

; �

2

==i

) (1). By

distributivity, it is �E-equal to (a : f(�

1

=i

); f(�

2

==i

)) (2).

From (1), we get by property (E2) that �

i

=

�E

(a : �

1

=i

; �

2

==i

). Form (2), we get by property (E1)

that �

1

=

�E

f(�

1

=i

) and �

2

=

�E

f(�

2

==i

).

Case E6: The term h�i has main extended top symbol f , thus it is �-equal to f(h�

=i

i). By

property (E2), we get that �

i

is equal to h�

==i

i.

In summary, we have shown that decomposition and mutation rules are complete. They are

sound by constructions. Thus, each of them preserves �E-equality. Hence the axioms E form a

syntactic presentation of the theory of recursive projective types. Rules of �gure 5.9 together with

the rules for uni�cation in the empty theory 5.8 provide an algotithm for �E-uni�cation when the

input problem does not have recursive types. To allow recusive types as input, we simply add the

rule

��:� _= e

(�-Decompose)

9�:� _= � _= e

(since � and 9 are bindindes, this implicitly assume that � is not free in e.) The rule �-Decompose

is sound and complete. For soundness, assume that S is a solution of the conclusion. Let S

0

be the

restriction of S outside of �. We can derive:

S(�) =

�E

S

0

(�)[S(�)=�] ��:S

0

(�) =

�E

S

0

(�)[��:S

0

(�)=�]

(Contract)

S(�) =

�E

��:S

0

(�)

Since ��:S

0

(�) is S(��:�), by transitivity with S(�) =

�E

S(e), S is a solution of the premise. For

completeness, asume that S is a solution of the premisse. We can always assume that S does not

a�ect �. Since ��:� is �E-equal to � [��:�=�], the stability of �E-equality by substitution implies

that S(��:�) is �E-equal to S(� [��:�=�]) (1). Let S

0

be S + [S(��:�=�]. The equality (1) can be

rewritten into S(�) =

�E

S(�), hence the conclusion.

Since rule �-Decompose strictly decreases the number of � symbols, it can always be applied

�rst to transform a system of multi-equations with recursive types into an �E-equivalent system

of multi-equations without recursive types. The application of other rules in any order terminates,

since they are the same set of rules that for E-uni�cation (see [104, 103]) but the occur check has

been removed. In fact, since no rules actually introduces recursive types, rule �-Decompose does

not need to be applied �rst, and can be freely combined with other rules. Since no rule introduces

a disjunction, we deduce as a corollary that uni�cation for recursive projective types has principal

uni�ers. (A principal uni�er can straighforwardly be read from a system of multi-equations in

canonical form.)

5.6 Semantics

We give a call-by-value store reduction semantics to ML-ART, using the formalism of [47]. Evalua-

tion of programs is de�ned on pairs a=s of an expression a and a store s. The evaluation is de�ned

by redex rules and an congruence rule allowing reduction in any evaluation context. Stores and

evaluations contexts are de�ned in the �gure 5.10. The small-step reduction relation �! is de�ned

in in �gure 5.11.

We say that store s agrees with typing A, and we write ` s : A if both s and A have the same

location domains, and for any location l of their domain A ` s(l) : A(l). We call a store extension

of A any extension of A with location typing assertions (l : �). We write a

1

=s

1

� a

2

=s

2

if
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s ::= [l

1

7! v

1

; : : : l

2

7! v

2

] Stores

E ::= [] j E a j v E j let K x = E in a j K E j strip K of E Evaluation contexts

Figure 5.10: Values, stores and evaluation contexts

(fun x! a) v=s�!

�

a[v=x]=s Fun

let K x = K v in a=s�!

�

a[b=x]=s Let

strip K of Kv=s�!

�

v=s Strip

f

~

`

i

= ~w

i

g k f!` = vg=s�!

�

copy f

~

`

i

= ~w

i

; ` = lg=s; l 7! v if l =2 s; l =2

~

`

i

Extend-M

f

~

`

i

= ~w

i

g k f` = vg=s�!

�

copy f

~

`

i

= ~w

i

; ` = vg=s if ` =2

~

`

i

Extend-S

f` = w;

~

`

i

= ~w

i

g k f!` = vg=s�!

�

copy f

~

`

i

= ~w

i

; ` = lg=s; l 7! v if l =2 s Override-M

f` = w;

~

`

i

= ~w

i

g k f` = vg=s�!

�

copy f

~

`

i

= ~w

i

; ` = vg=s Override-S

f: : : ; ` = vg:`=s�!

�

v=s if l 2 s Dot-S

f: : : ; ` = lg:`=s�!

�

s(l)=s if l 2 s Dot-M

f: : : ; ` = lg:` v=s�!

�

v=s; l 7! v if l 2 s Mute

copy f

~

`

i

=

~

l

i

;

~

`

j

= v

j

g=s�!

�

f

~

`

i

=

~

l

0

i

;

~

`

j

= ~v

j

g=s;

~

l

0

i

= s(

~

l

i

) if

~

l

0

i

=2 s Copy

E[a

1

]=s

1

�! E[a

2

]=s

2

if a

1

=s

1

�!

�

a

2

=s

2

Context

Figure 5.11: Reduction-rules

� for any environment A

1

, any type � such that A

1

` a

1

: � and ` s

1

: A

1

, there exists a store

extension A

2

of A

1

such that A

2

` a

2

: � and ` s

2

: A

2

,

� a

2

is non expansive whenever a

1

is and then A

2

may be chosen equal to A

1

.

The soundness of the semantics is formalized by the two following theorems:

Theorem 11 (Subject Reduction) If a

0

=s

0

�! a=s then a

0

=s

0

� a=s.

Theorem 12 (Normal forms) Let A be a store extension of the initial environment A

0

. If A `

a : � and ` s : A and a=s is in �!-normal form, then a is a value.

The second theorem asserts that well typed terms that cannot be reduced are values, thus the

evaluation is never stuck. It is proved by structural induction on the normal term, and by case

analysis on the top structure of the type. Their is no di�culty but, at the di�erence of ML, types

have to be taken modulo the axioms.

Subject reduction is a straightforward combination of redex contration and context replacement

lemmas given below.

Lemma 16 (Context replacement) For any one-hole context E, if a

1

=s

1

� a

2

=s

2

then

E[a

1

]=s

1

� E[a

2

]=s

2

.
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By construction, the relation � is re
exive, transitive; context replacement says that it is also

increasing. The lemma is proved independently for each one-nod context, then the general case

follows by induction on the size of the context.

Proof: Let E be a one-nod context. Let A

1

be a type environment and � a type such that A `

E[a

1

] : � (1) and ` �

1

: A

1

. It follows from the de�nition of generalizable terms, that if E[a

1

] is

generalizable term then so are, successively, a

1

, a

2

, and E[a

2

]. We show that there exists a store

extension A

2

of A

1

such that A

2

` a

2

: � (2) and ` �

2

: A

2

.

Case E is let K x = [] in a: A canonical derivation of (1) ends as:

(3) A

1

` a

1

: �

1

(Gen*)

A

1

` a

1

: 8~�

1

� �

1

A

1

` K : 8~�

1

; ~�

j

� Exist(~�

j

) �

0

! �

1

A

1

;

~




j

; x : 8~�

1

� �

0

[

~




j

(�

1

)=~�

j

] ` a : �

(Let)

A

1

` let K x = [a

1

] in a : �

By the induction hypothesis applied to (3), we know that there exists a store extension A

2

of A

1

such that A

2

` a

2

: �

1

. If a

1

is non expansive then so is a

2

and A

2

may be chosen equal to A

1

.

Otherwise, the sequence of Gen rules is empty and the sequence of �

1

is also empty. In both cases,

we can prove A

2

` a

2

: 8~�

1

� �

0

. In the right premises, we may extend the context replacing A

1

by

A

2

. We conclude by applying rule Let.

Case E is K []: A canonical derivation of (1) may end as:

A

1

` a

1

: �

1

A

1

` K : Exist(~�

2

) �

1

! �

(Exist)

A

1

` K a

1

: �

By induction hypothesis applied to the premisse there exists and extension A

2

of A

1

such that

A

2

` a

2

: �

1

. We can extend the context of the right premisse and conclude with an Exist rule.

Otherwise, a canonical derivation of (1) ends as:

(7) A

1

` a

1

: �

1

(Gen*)

A

1

` a

1

: 8~�

1

� �

1

A

1

` K : All(~�

1

) �

1

! �

(All)

A ` K a

1

: �

We reason as for the Let case and to show that there exists an extension A

2

of A

1

such that

A

2

` a

2

: 8~�

1

� �

1

. We can extend the context of the right premisse and conclude with a All rule.

In both cases, A

2

may be taken equal to A

1

if a is generalizable.

Case E is strip K of a

1

: A canonical derivation of (1) of the form:

A

1

` a

1

: �

1

A

1

` K : All(~�

2

) �

2

! �

1

(Strip)

A

1

` stripK of a

1

: �

where � is of the form �

2

[�

i

=�

i

]. The induction hypothesis applied the left premisse shows that

there exists an extension A

2

of A

1

such that A

2

` a

2

: �

1

. We can extend the context of the

right premisse and conclude with a Strip rule. The context A

2

may be taken equal to A

1

if a is

generalizable.

Case E is E a or v E: They are similar to the previous case.
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Othercases: The expression E[a] is typed as the application of a primitive; these are sub-cases

of v E.

Lemma 17 (Redex contraction) If a

1

=s

1

�!

�

a

2

=s

2

then a

1

=s

1

� a

2

=s

2

.

The proof can be done independently for each redex. All cases are easy once we have proven the

right lemmas.

Lemma 18 (Term replacement) If the formulas A ` v : 8�

0

��

0

(1) and A; x : 8�

0

��

0

` a : � (2)

are provable and if bound variables of a are not free in b, then A ` a[b=x] : � (3) is provable.

Proof: The proof is by induction on the structure of a. We write A

0

for A; x : 8~�

0

� �

0

.

Case a is x: The terms a[v=x] and b are equal. From (2), we know that � is �

0

where all variables

~�

0

have been substituted. Stability by substitution applied to (1) proves (3).

Case a is y: The term a[v=x] and a are equal.

Case a is let Ky = a

1

in a

2

: A canonical derivation of (2) ends as:

(3) A

0

` a

1

: �

1

(Gen*)

A

0

` a

1

: 8�

1

� �

1

A

0

` K : 8~�

1

; ~�

j

� Exist(~�

j

) �

2

! �

1

(4) A

0

;

~




j

; y : 8~�

1

� �

2

[

~




j

(�

1

)=~�

j

] ` a

2

: �

(Let)

A

0

` let Ky = a

1

in a

2

: �

By induction hypothesis applied to (3), we get A ` a

1

[v=x] : �

1

, which can be followed by the same

Gen rules.

Since y is not free in v, we have A;

~




j

; y : 8�

1

� �

1

` b : 8�

0

� �

0

(5) by extension of environment

lemma. The induction hypothesis applied to (5) and (4) (in which the order of assignment may be

exchanged) proves

A;

~




j

; y : 8~�

1

� �

0

[

~




j

(�

1

)=~�

j

] ` a

2

[v=x] : �

We conclude by a Let rule.

Case a is K a

1

and K: A canonical derivation of (2) may end as:

(6) A

0

` a

1

: �

1

A

0

` K : Exist(~�

2

) �

1

! �

(Exist)

A

0

` K a

1

: �

Applying the induction hypothesis to (6), we get A

0

` a

1

[v=x] : �

1

, from which the conclusion easily

follows.

Otherwise, a canonical derivation of (2) ends as:

(7) A

0

` a

1

: �

1

(Gen*)

A

0

` a

1

: 8~�

1

� �

1

A

0

` K : All(~�

1

) �

1

! �

(All)

A ` K a

1

: �

By induction hypothesis applied to (7) we get A ` a

1

[v=x] : �

2

. Since a

1

[v=x] is at least as

generalizable as a

1

we may applied the same Gen rules, and easily conclude.
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Case a is strip K of a

1

: There is a canonical derivation of (2) of the form:

(8) A

0

` a

1

: �

1

A

0

` K : All(~�

2

) �

2

! �

1

(Strip)

A

0

` stripK of a

1

: �

where � is of the form �

2

[�

i

=�

i

]. We conclude by applying the induction hypothesis to (8) and a

Strip rule.

Case a is a

1

a

2

and fun x! a

1

: Those cases are similar to case Strip.

Case a is f g: Then a is a value, and variable x is free in a. The conclusion (3) follows from (2)

by context extension lemma.

Lemma 19 (Existential elimination) If A;


j

; x : 8�

0

� �

1

[

~




j

(�

0

))=~�

j

] ` a : � , and ~�

j

are terms

whose variables are also variables of �

0

then the formula A[x : 8~�

0

� �

1

[�

j

=�

j

]] ` a : � is valid

whenever it is well-formed.

Proof: Let A be a type assignement, 


j

type symbols that do not appear in A, �

0

and � be types

whose variables are also variables of �

0

.

We write '(�) the term � where all occurrences of subterms 


j

(�

u

) are sucessivelly replaced

(bottom up order always terminates) by �(�

j

) where � is the smallest substitution such that �(�

0

)

is �

1

; '(�) is unde�ned if one of the �'s is.

If A;


j

; B ` a : � and '(B) and '(�) are de�ned, then A'(B) ` a : '(�). Remark that '

is well-sorted, compatible with the structure of terms except for 


j

symbols. Free variables of '

never introduce new variables. The lemma is proved for any context B by structural induction on

a.

Case a is x: A canonical derivation ends with a Get rule. Thus � is an instance of B(x) by a

substitution �. The type '(�) equal to '(�(B(x)), i.e. ('��)(�), which is equal to ('��)('(B(x))),

thus '(�) is an instance of '(B(x)). The declaration of 


j

can be removed from the context since

no 


j

occurs in the conclusion.

Case a is let K x = a

1

in a

2

: A canonical derivation of (1) ends as:

(3) A;

~




j

; B ` a

1

: �

1

(Gen*)

A;

~




j

; B ` a

1

: 8�

1

� �

1

A;

~




j

; B ` K : 8~�

1

; ~�

k

� Exist(~�

k

) �

2

! �

1

(4)

A;

~




j

; B; y : 8~�

1

� �

2

[

~




k

(�

1

)=~�

k

] ` a

2

: � (5)

A;

~




i

; B ` let Kx = a

1

in a

2

: �

By induction hypothesis applied to (3), we get A;'(B) ` a

1

: '(�

1

). We can apply the same Gen

rules since FV ('(B)) is included in FV (B). More applications of Gen might still be possible since

the inclusion is strict in general. We can prove A;'(B) ` K : 8~�

1

; ~�

j

� Exist(~�

k

)'(�

2

) ! '(�

1

)

from (4) reasoning as above in the case where a is x. We apply the indcution hypothesis to (5) and

conlcude with a rule Let.

Othercases: They are all similar. The induction hypothesis is applied to one of the premisse of

the last rule in a canonical derivation of (1) using compatibility of ' with the structure of terms.

Then, the conclusion follows by the same typing rule.
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Proof: (of redex contraction) It is immediate to check on the reduction rules for each redex that

a

2

is generalizable whenever a

1

is generalizable. Let A

1

be a type environment and � a type such

that A

1

` a

1

: � (1) and ` s

1

: A

1

. We show that there exists a store extension A

2

of A

1

such that

A

2

` a

2

� (2) and ` s

2

: A

1

by cases on the redex a

1

. Moreover, whenever a

1

is generalizable, we

shall have A

2

equal to A

1

. Each case is shown independently.

Case a

1

is (fun x! a) v: A canonical derivation of (1) ends as:

(3) A

1

; x : �

1

` a : �

(Fun)

A

1

` a : �

1

! �

(Equal*)

A

1

` a : �

0

1

! �

0

(4) A

1

` v : �

0

1

(App)

A

1

` a

1

: �

0

Rule Equal here is essential. However the only possibility for �

1

! � to be equal to �

0

1

! �

0

is

that �

1

is equal to �

0

1

and � is equal to �

0

. Thus we can omit the equaliyt rule and the primes. Note

that this would not be the case if we had an axiom such as (int! int) = (int! unit).

The previous lemma applied to (4) and (3) shows the conclusion with A

1

for A

2

.

Case a

1

is let K x = K v in a: A canonical derivation of (1) is

(4) A

1

` v : �

2

A

1

` K : Exist(~�

j

) �

2

! �

1

(Exist)

A

1

` K v : �

1

(Gen*)

A

1

` K v : 8~�

1

� �

1

A

1

` K : 8~�

1

; ~�

j

� Exist(~�

j

) �

0

! �

1

(5) A

1

;

~




j

; x : 8~�

1

� �

0

[

~




j

(�

1

)=~�

j

] ` a : �

A

1

` let K x = K v in a : �

By existential elimination lemma applied to (5), we deduce

A

1

; x : 8~�

1

� �

0

[~�

j

=~�

j

] ` a : �:

Necessarily, �

2

must be �

0

[~�

j

=~�

j

], i.e. we have A

1

; x : 8~�

1

� �

2

` a : � (6). From (3), we may deduce

A

1

` v ` 8~�

1

� �

2

(7) by rule Gen. We conclude by applying term substitution to (6) and (7) with

A

1

for A

2

.

Case a

1

is strip K of Kv:

(8) A

1

` v : 8~� � �

0

A

1

` K : 8~� � All(~�) �

0

! �

1

(All)

A

1

` K v : �

1

A

1

` K : All(~�

2

) � ! �

1

(Strip)

A

1

` stripK of v : �

Necessarily, � must be �

0

[~�=~�

2

], thus the conclusion follows by substitution lemma applied to (8)

with A

1

for A

2

.

Case Extend-S: a

1

is f

~

`

i

= ~w

i

g k f` = vg where ` is not in `

i

. A canonical derivation of (1)

ends as:

A

1

` ~w : ~�

(Record)

A

1

` f

~

` = ~wg : f

~

`: ~'

i

pre:~� ; absg A

1

` v : �

0

(1)

(App)

A

1

` a

1

: f`: staticpre:�

0

;;

~

`

i

: pre:~�

i

; absg
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where '

i

is static if w is a value and mut if w is a store location and the sub-derivation (1) is

A

1

` ( k f` = g) : : : :

(Get)

A

1

` ( k f` =g) : f`: abs ; (

~

`

i

: ~'

i

pre:~� ; abs)g ! �

0

! f`: staticpre:�

0

; (

~

`: ~'

i

pre:~� ; abs)g

The equality is also important here (as in all other redexes coming from the application of a

primitive). For instance, it would be wrong if for instance pre(�

i

0

) could be changed into abs

We can derive:

A

1

` ~v

i

:

~

t

i

A

1

` v : �

0

(Record)

A

1

` f

~

`

i

= ~w

i

; ` = wg : f`: staticpre:�

0

;

~

`

i

: ~'

i

pre:~�

i

; absg (2)

(App)

A

1

` a

2

: f`: staticpre:�

0

;

~

`

i

: ~'

i

pre:~�

i

; absg

where (2) is an instance of the type of the primitive copy . This proves the conclusion with A

1

as

A

2

.

Case Override-S: The case were label ` is rede�ned is similar.

Case Extend-M: The case were label ` is mutable starts as above, and then ends with

A

2

` ~v

i

:

~

t

i

A

2

` l : �

0

(Record)

A

2

` f

~

`

i

= ~w

i

; ` = wg : f`: mut pre:�

0

;

~

`

i

: ~'

i

pre:~�

i

; absg (2)

(Copy)

A

2

` a

2

: f`: mut pre:�

0

;

~

`

i

: ~'

i

pre:~�

i

; absg

where (2) is an instance of the type of the primitive copy and A

2

is A

1

; l 7! �

0

. We easily check

that A

2

` s; l 7! v, hence the conclusion.

Case Override-M: The case were label ` is rede�ned is similar.

Case Copy: This case is obvious, just taking taking A

1

;

~

l

0

j

7! A

1

(

~

l

j

) for A

2

.

Case Dot-S: a

1

is f

~

l

i

= ~w

i

; ` = vg:`. A canonical derivation of (1) ends as:

A ` w

i

: �

i

A ` v : � (1) A ` ( :`) : f`: static pre:� ; (

~

`

i

:'

i

pre:~�

i

; abs)g ! �

(App)

A ` a

1

: �

Form (1), the conclusion holds for A

1

as A

2

.

Case Dot-M: As above, but v is l in (1) and staticis replaced by mut in the right premise. Hence

l is in the domain of s and A

1

` s(l) : � , thus the conclusion holds for A

1

as A

2

.

Case Mute: As above, one easily shows that l is in the domain of A

1

and s and that both

A

1

` v : � and A

1

` s(l) : � holds. Hence A

1

` s; l 7! v and the conclusion holds for A

1

as A

2

.

The second theorem asserts that well-typed terms that cannot be reduced are values, thus the

evaluation is never \stuck." It is proved by structural induction on the value using the following

lemma, which is itself a consequence of syntacticness of the theory 5.5.

Lemma 20 Let A be a store extension of A

0

such that A ` v : � .

� if � is a functional type then v is a function or a constant.
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� if � is a record type then v is a record; moreover, if � is of the shape

f`: static pre:�

1

; static�

2

g, �eld ` is de�ned and v(`) is a value. if � is of the shape

f`: mut pre:�

1

; static�

2

g, �eld ` is de�ned and v(`) is a location.

� if � is k(�

1

) then v is a value Kv

1

where K and k are paired in A.

Proof: We show separately:

� If v is a function or a constant then � is a functional type.

� If v is a record then � is a record type.

Moreover, if v(`) is de�ned and is a value, then then � is of the shape f`: staticpre:�

1

; �

2

g;

Moreover, if v(`) is de�ned and is a location, then then � is of the shape f`: mut pre:�

1

; �

2

g;

� If a is a value Kv

1

then � is a k(�

1

) where K and k are paired.

It is immediate to show that � has the right shape modulo type equality. The type-consistency

property shows that equality cannot change the top structure of types, thus the set of types are

disjoint. Since all cases of values have been considered, this proves the lemma.

Proof: (of normal forms) The proof is by structural induction on a. Let A be a store extension of

the initial environment such that A ` a : � (1) for some type � and ` s : A for some store s. We

assume that a is a value or a=s can be reduced.

Case a is x: Since A only assign types to constants and locations x must be a constant, therefore

it is a value.

Case a is a

1

a

2

: A canonical derivation of (1) shows that there exists a type �

1

such that

A ` a

1

: �

1

! � and A ` a

2

: �

2

. The induction hypothesis shows that either a

1

or a

2

can be

reduced, or both are values. In the former case, a can be reduced. In the later case, since a has

a functional type, either it is a function fun x ! a

0

and a can be reduced by rule Fun or it is a

primitive c. Then, reasoning by case on the primitive c, we can easily show in each case that the

shape of the value a

2

is such that one reduction rule always applies.

Case a is let KKx = b in a

2

: A canonical derivation of (1) ends as:

(2) A ` b : �

1

(Gen*)

A ` b : 8�

1

� �

1

A ` K : 8~�

1

; ~�

j

� Exist(~�

j

) �

0

! �

1

: : :

(Let)

A ` let K x = b in a

2

: �

2

The induction hypothesis applied to (2) shows that b is a value. Since it has a K type, it must be

a value Kv. Then a could be further reduced.

Case a is strip K of a

1

: Easy.

Case a is K a

1

: Easy.

Othercases: If a is c, fun x! a, or f

~

` = ~wg, then it is a value.



Chapter 6

Objective ML:

Une extension de ML avec des objets

primitifs

Ce chapitre, publi�e dans [113], est le r�esultat d'un travail en collaboration avec J�erôme

Vouillon.

Objective ML :

Une extension de ML avec des objets primitifs

Objective ML est une petite extension de ML avec des objets primitifs et des classes au niveau

sup�erieur du langage. Elle est compl�etement compatible avec ML ; son syst�eme de type s'appuie sur

le polymorphisme de ML, les types enregistrements et un meilleur traitement des abr�eviations de

type. Objective ML o�re la plupart des fonctionnalit�es des langages �a objets, ce qui inclue l'h�eritage

multiple, la possibilit�e pour une m�ethode de retourner l'objet lui-même, les m�ethodes binaires, ainsi

que les classes param�etriques. Cela montre que les objets peuvent être ajout�es aux langages typ�es

avec inf�erence des types fond�es sur le polymorphisme de ML.

Objective ML: an extension of ML with primitive objects

Objective ML is a small practical extension to ML with objects and toplevel classes. It is fully

compatible with ML; its type system is based on ML polymorphism, record types with polymorphic

access, and a better treatment of type abbreviations. Objective ML allows for most features

of object-oriented languages including multiple inheritance, methods returning self and binary

methods as well as parametric classes. This demonstrates that objects can be added to strongly

typed languages based on ML polymorphism.

133
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Introduction

We propose a simple extension to ML with class-based objects. Objective ML is a fully conservative

extension to ML. A beginner may ignore the object extension. Moreover, he would not notice any

di�erence, even in the types inferred. This is possible since the type inference algorithm of Objective

ML, as in ML, is based on �rst-order uni�cation and let-binding polymorphism. Types are extended

with object types that are similar to record types for polymorphic access. Both the status and the

treatment of type abbreviations have been improved in order to keep types readable.

When using object-oriented features, the user is never required to write interfaces of classes,

although he might have to include a few type annotations when de�ning parametric classes or

coercing objects to their counterparts in super classes.

Objective ML is a class-based system. Objects are records of methods. Our language copes with

most features of object-oriented programming, including methods returning self, binary methods,

virtual classes and multiple inheritance. Coercion from objects to their counterparts in super classes

is also possible.

The ingredients used, except automatic abbreviations, are not new. However, their incorpora-

tion into a practical language, combining power, simplicity and compatibility with ML, is new.

Objective ML is formally de�ned, and its dynamic semantics is proven correct with respect to

the static semantics. The language has not been designed to be a minimal calculus of objects,

but rather the core of a real programming language. In particular, the semantics of classes is

compatible with programming in imperative style as well as in functional style and it allows for

e�cient memory management (methods can be shared between all the instances of a class).

This paper is organized as follows: the �rst section is an overview of Objective ML. Objects

and classes are introduced in sections 6.2 and 6.3. Coercions are dealt with in section 6.4. The

semantics of the language is described in section 6.5. Type inference is discussed in section 6.6.

The abbreviation mechanism is explained in sections 6.7 and 6.8. Extensions to the core language

are presented in sections 6.9 and 6.10. In section 6.11, we compare our proposal with other works.

6.1 An overview of Objective ML

Objective ML has been implemented on top of the Caml Special Light system [70]. We have used

this implementation, now called Objective Caml

1

, to process all examples shown below. When

useful, we display the output of the typechecker in a slanted font. Toplevel de�nitions are implicit

let :: in ::. For each phrase, the typechecker outputs the binding that will be generalized and

added to the global environment before starting to typecheck the next phrase.

The language Objective ML is class-based. That is, objects are usually created from classes,

even though it is also possible to create them directly (this is described in the next section). Here

is a straightforward example of a class point.

class point x0 = struct

field x = ref x0

method move d = (x := !x + d; !x)

end;;

class point : int ! sig

field x : int ref

method move : int ! int

1

The syntax has been slightly modi�ed here in order to keep the concrete syntax and the abstract syntax closer.
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end

Class types are automatically inferred. Objects are usually created as instances of classes. All

objects of the same class have the same type structure, re
ecting the structure of the class. It

is important to name object types to avoid repeating the whole nested, often recursive, structure

of objects at each occurrence of an object type. Thus, the above declaration also automatically

de�nes the abbreviation:

type point = hmove : int ! inti

which is the type of objects with a method move of type int ! int. In practice, this is essential

in order to report readable types to the user. The following example shows that these object

abbreviations are introduced when the operator new is applied to a class.

new point;;

� : int ! point = hfuni

let p = new point 3;;

value p : point = hobji

Classes can also be derived from other classes by adding �elds and methods. The following example

shows how an object sends messages to itself; for instance, if the scale formula is overridden in

a subclass, the move method will use the new scale. Here, methods of the parent class are bound

to the super-class variable parent and are used in the rede�nition of the move method (the binary

operator # denotes method invocation in Objective ML).

class scaled point s0 = struct

inherit point 0 as parent

field s = s0

method scale = s

method move d =

parent#move (d * self#scale)

end;;

class scaled point : int ! sig

field s : int

field x : int ref

method move : int ! int

method scale : int

end

Scaled points have a richer interface than points. It is still possible to consider scaled points

as points. This might be useful if one wants to mix di�erent kinds of points with incompatible

attributes, ignoring anything but the interface of points:

let points = [(new scaled point 2 : scaled point h: point); new point 1];;

value points : point list = [hobji; hobji]

A few other examples are given in the paper, and an example using binary methods can be found

in the appendix 6.2.
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Notation

A binding is a pair (k; t) of a key k and an element t. It is written k = t when t is a term or k : t

when t is a type. Bindings may also be tagged. For instance, if foo is a tag, we write foo u = a

or foo u : a. Tags are always redundant in bindings and are only used to remind what kind of

identi�er is bound.

Term sequences may contain several bindings of the same key. We write @ for the concatenation

of sequences (i.e. their juxtaposition). On the contrary, linear sequences cannot bind the same key

several times. We write + for the overriding extension of a sequence with another one, and � to

enforce that the two sequences must be compatible (i.e. they must agree on the intersection of

their domains). We write ; for the empty sequence.

A sequence can be used as a function. More precisely, the domain of a sequence S is the union,

written dom (S), of the �rst projection of the elements of the sequence. An element of the domain k

is mapped to the value t so that x : t is the rightmost element of the sequence whose �rst projection

is x, ignoring the tags. The sequence S n foo is composed of all elements of S but those tagged

with foo. Finally, we write foo (S) for fk : t j foo k : t 2 Sg, that is, for the subsequence of the

elements of S tagged with foo but stripped of the tag foo.

We write

�

t for a tuple of elements (t

i

i2I

) when indexes are implicit from the context.

6.2 Objects

We assume that a set of variables x 2 X and two sets of names u 2 U and m 2 M are given.

Variable x is used to abstract other expressions; x is bound in fun (x) a and let x = a

1

in a

2

.

Programs are considered equal modulo renaming of bound variables. Conversely, names are always

free and not subject to �-conversion: u and m are used to name �eld and method components of

objects, respectively. The syntax of expressions is provided below.

a ::= x j fun (x) a j a a j let x = a in a

j self j u j fhu = a; : : : u = aig j a#m

j hfield u = a ; : : : field u = a ; method m = a ; : : : methodm = ai

Operations on references could be included as constants k (the ellipsis in syntax de�nitions means

that we are extending the previous de�nition; \ " marks the positions of arguments around pre�x

or in�x constants):

a ::= : : : j k and k ::= ref j ( := ) j (! )

For the sake of simplicity, we omit them in the formalization, although they are used in the examples.

An object is composed of a sequence of �eld bindings|the hidden internal state|, and of a sequence

of method bindings for accessing and modifying these �elds. Fields are also called instance variables.

The type of an object is thus the type of the record of its methods. In an object, a method may

return the object itself or expect to be applied to another object of the same kind. Types might

thus be recursive. We assume given two countable collections of type variables and row variables,
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written � and �, and a collection of type constructors written �.

� ::= � j � ! � j (�; : : : �) � j rec �:� j h~� i Types

~� ::= (m : � ; ~� ) j � j ; Object types

� ::= 8 ��: � Type schemes

Object types ending with a row variable are named open object types, while others are named

closed object types. In the examples, closed object types are simply written hm

i

: �

i

i2I

i, i.e. the

; symbol is omitted. The row variables of open object types are also left implicit in an ellipsis

hm

i

: �

i

i2I

; ::i (abbreviations explained in section 6.8 can even be used to share ellipsis). In the

formal presentation, we keep both ; and row variables explicit. A label can only appear once in

an object type. This is easily ensured by sorting type expressions [104]. The distinction between �

and ~� can also be guaranteed by sorts. Thus, we omit the distinction and simply write � below.

Type equality is de�ned by the following family of left-commutativity axioms:

(m

1

: �

1

;m

2

: �

2

; �) = (m

2

: �

2

;m

1

: �

1

; �)

plus standard rules for recursive types [6]:

(Rec)

�

1

= �

2

rec �:�

1

= rec �:�

2

(Fold-Unfold)

rec �:� = � [rec �:�=�]

(Contract)

�

1

= � [�

1

=�] ^ �

2

= � [�

2

=�] rec �:� well-formed

�

1

= �

2

Recursive types rec �:� are only well-formed if � is neither a variable nor of the form rec �

0

:�

0

(this is not too restrictive since rec �:(rec �

0

:�

0

) can always be rewritten rec �:�

0

[�=�

0

]). This

guarantees that � is contractive in �, and ensures that rec �:� e�ectively de�nes a regular tree.

Types, sorts, and type equality are a simpli�cation of those used in [108], which we refer to for

details. Typing contexts are sequences of bindings:

A ::= ; j A+ x : � j A+ field u : � j A+ self : �

Typing judgments are of the form A ` a : � . The typing rules for ML are recalled in appendix 6.1.

Typing rules for objects are given in �gure 6.1. A simple object is just a set of methods.

Methods can send messages to the object itself, which will be bound to the special variable self.

A simple object could be typed as follows:

A+ self : hm

j

: �

j

j2J

i ` a

j

: �

j

j2J

A ` hmethodm

j

= a

j

j2J

i : hm

j

: �

j

j2J

i

However, an object can also have instance variables. Instance variables may only be used inside

methods de�ned in the same object. The typechecking of instance variables (field u

i

= a

i

)

i2I

of

an object produces a typing environment (field u

i

: �

i

)

i2I

in which the methods are typed (rules

Object and Field).

Instance variables also provide the ability to clone an object possibly overriding some of its

instance variables (rule Override). In this rule, types �

y

and �

i

do not seem to be connected.
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(Field)

field u : � 2 A

A ` u : �

(Override)

(field u

i

: �

i

2 A A ` a

i

: �

i

)

i2I

self : �

y

2 A

A ` fhu

i

: a

i

i2I

ig : �

y

(Object)

A

?

` a

i

: �

i

i2I

A

?

+ self : hm

j

: �

j

j2J

i+ field u

i

: �

i

i2I

` a

j

: �

j

j2J

A ` hfield u

i

= a

i

i2I

; methodm

j

= a

j

j2J

i : hm

j

: �

j

j2J

i

(This rule will be overridden by the more general rule of same name in �gure 6.3.)

(Send)

A ` a : hm : � ; �

0

i

A ` a#m : �

Figure 6.1: Typing rules for objects

They are however, thanks to typing rule Object which requires the type �

y

of self and the types

�

i

of instance variables to be related to the same object. This is also ensured by typing the premises

in the context A

?

equal to A n ffield; selfg. As a result, the expression hfield u = a ; method

m = hmethod m = uii becomes ill-typed. This is not a real restriction however, since one can still

write the less ambiguous expression hfield u = a ; methodm = let x = u in hmethodm = xii.

The rule Send for method invocation is similar to the rule for polymorphic access in records:

when sending a message m to an object a, the type of a must be an object type with method m of

type � ; the object may have other methods that are captured in the row expression �

0

. The type

returned by the invocation of the method is � . The type of method invocation may also be seen

below:

let send m a = a#m;;

value send m : h m : �; .. i ! � = hfuni

The ellipsis stands for an anonymous row variable �, which means that any other method than m

may also be de�ned in the object a. Row variables provide parametric polymorphism for method

invocation. Instead of using row variables, many other languages use subtyping polymorphism.

Since subtyping polymorphism must be explicitly declared in Objective ML (see section 6.4), row

variables are essential here to keep type inference. Row variables also allow to express some kind

of matching [16] without F-bounded or higher-order quanti�cation [93, 2, 3]. Here is an example:

let min x y = if x#leq y then x else y;;

value min :

(h leq : � ! bool; .. i as �) !

� ! � = hfuni

The binder \as" makes it possible to deal with open object types occurring several times in a type

(this will be detailed in section 6.8). An expanded version of this type is:

rec �:hleq : �! bool; �i ! rec �:hleq : �! bool; �i ! rec �:hleq : �! bool; �i

The function min can be used for any object of type � with a method leq : � ! bool, since the row

variable � can always be instantiated to the remaining methods of type � .
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a ::= : : : j hbi j class z = c in a j new c j s#m Expressions

c ::= z j fun (x) c j struct b end Class expressions

b ::= ; j d ; b Class bodies

d ::= inherit c as s j field u = a j methodm = a

Figure 6.2: Core class syntax

6.3 Classes

The syntax for classes, introduced in section 6.1, is formally given in �gure 6.2. The body of a class

is a sequence b of small de�nitions d. We assume as given a collection of class identi�ers z 2 Z,

and a collection of super-class identi�ers written s.

We have also enriched the syntax of objects so that it re
ects the syntax of classes. That is,

objects can also be built using inheritance, and �elds need not precede methods.

In practice, classes will only appear at the toplevel. However, it is simpler to leave more freedom,

and let them appear anywhere except under abstraction. Technically, it would be possible to make

them �rst-order, that is to allow abstraction of classes; however, class types should be provided

explicitly in abstractions. The little gain in practice is probably not worth the complication (a class

can be already parameterized by other classes using modules).

The type of a class structure, sig (�

y

) ' end, is composed of the type �

y

of self (i.e. the type

an object of this class would have), and the type ' of its �eld bindings and method bindings. Class

types are written 
. Type schemes are extended with class types.

In the concrete syntax, �

y

and ' are combined: methods that appear in �

y

but not is ' are


agged virtual (as they are not de�ned); other methods appear both in �

y

and ', with the same

type. When necessary, a type variable can also be bound to �

y

. For instance, the concrete syntax

sig (�) virtual copy : � method x : int end

expands to

sig (rec �:hcopy : �; getx : int; �i)

method getx : int

end:


 ::= sig (�) ' end j � ! 


' ::= ; j ' ; field u : � j ' ; methodm : �

j ' ; super s : '

� ::= : : : j 8 ��: 


Typing contexts are extended with class variable bindings and superclass bindings:

A ::= : : : j A+ z : � j A+ super s : '

We add new typing judgments A ` b : ' and A ` d : ' that are used to type class bodies. We

also rede�ne A

?

to be A where all field, method, super, and self bindings have been removed.
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(Field)

A

?

` a : �

A ` field u = a : (field u : �)

(Method)

A ` self : hm : � ; �

0

i A ` a : �

A ` methodm = a : (methodm : �)

(Inherit)

A

?

` c : sig (�

y

) ' end A ` self : �

y

A ` inherit c as s : '+ (super s : ')

(Basic)

A ` ; : ;

(Then)

A ` d : '

1

A+ ('

1

n method) ` b : '

2

A ` d ; b : ('

1

n super)� '

2

(Class-Body)

A

?

+ self : �

y

` b : '

A ` struct b end : sig (�

y

) ' end

(New)

A ` c : sig (�

y

) ' end �

y

= hmethod (')i

A ` new c : �

y

(Super)

super s : ' 2 A methodm : � 2 '

A ` s#m : �

(Object)

A

?

+ self : �

y

` b : ' �

y

= hmethod (')i

A ` hbi : �

y

(Class-Inst)

z : 8 ��: 
 2 A

A ` z : 
[��=��]

(Class-Fun)

A+ x : � ` c : 


A ` fun (x) c : � ! 


(Class-App)

A ` a : � ! 
 A ` a

0

: �

A ` a a

0

: 


(Class-Let)

A ` c : 
 A+ z : Gen(
;A) ` a : �

A ` class z = c in a : �

Figure 6.3: Typing rules for classes
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Typing rules are given in �gure 6.3. Generalization of class types Gen(
;A) is, as for regular types,

8 ��: 
 where �� are all variables of 
 that are not free in A.

Class bodies are typed by adding each component (inheritance clause, �eld, or method) one

after the other. Fields are typed in A

?

, so that they cannot depend on other �elds (rule Field). On

the contrary, methods may depend on all �elds and super-classes that were previously de�ned (rule

Method). The Inherit rule ensures that self is assigned the same type in both the superclass

and the subclass; all bindings of the superclass are discharged in the subclass, and the superclass

variable is given the type of the superclass. Superclass variables are only visible while typechecking

the body of the class but are not exported in the type of the class itself, as shown by rule Then.

The rule Object is more general than (and overrides) the one of �gure 6.1; it corresponds to the

combination of rule Class-Body and rule New.

When a value or method component is rede�ned, its type cannot be changed, since previously

de�ned methods might have assumed the old type

2

. This is enforced by using in rule Then the �

operator which requires that the two argument sequences be compatible on the intersection of their

domains. At �rst, this looks fairly restrictive. But it still leaves enough freedom in practice. Indeed,

the class type can also be specialized by instantiating some type variables. Methods returning

objects of the same type as self are thus correctly typed.

class duplicable () = struct

method copy = fh ig

end;;

class duplicable : unit ! sig (�)

method copy : �

end

In this class type, � is bound to the type of self. Thus, objects of any subclass of this class have

types that match rec �:hcopy : �; ..i. Class duplicable can then be inherited, and method copy

still have the expected type (that is, the type of self).

class duplicable point x = struct

inherit duplicable () inherit point x

end;;

class duplicable point : int ! sig (�)

field x : int ref

method copy : �

method move : int ! int

end

Note that ancestors are ordered, which disambiguates possible method rede�nitions: the �nal

method body is the one inherited from the ancestor appearing last.

Rule Class-Let, Class-Inst, Class-Fun and Class-App are similar to the rules Let, Inst,

Fun and App for core ML (described in appendix 6.1). The two rules Class-Let and Class-Inst

are essential since polymorphism of class types enables method specialization during inheritance,

as explained above.

2

One may imagine to relax this constraint, and allow the type of the rede�ned method to be a subtype of the

original method. One would, however, lose a property we believe important: rule Inherit shows that the type a class

gives to self is a common instance of the di�erent types of self in its ancestors; as a consequence, the type of self in a

class uni�es with the type of any object of a subclass of this class.
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6.4 Coercion

Polymorphism on row variables enables to write a parametric function that sends a message m to

any object that has a method m. Thus, subtyping polymorphism is not required here. This is

important since subtyping is not inferred in Objective ML.

There is still a notion of explicit subtyping, that allows explicit coercion of an expression of

type �

1

to an expression of type �

2

whenever �

1

is a subtype of �

2

. As shown in the last example of

section 6.1, this enables to see all kinds of points just as simple points, and put them in the same

data-structure.

The language of expressions is extended with the following construct:

a ::= : : : j (a : � <: �)

The corresponding typing rule is:

(Coerce)

� � �

0

A ` a : �(�)

A ` (a : � <: �

0

) : �(�

0

)

� substitution

The premise � � �

0

means that � is a subtype of �

0

. As long as typechecking is concerned, we could

have equivalently introduced coercions as a family of constants ( : � <: �

0

) of respective principal

types 8 ��: � ! �

0

where �� are free variables of � and �

0

indexed by all pairs of types (�; �

0

) such

that � � �

0

.

The subtyping relation � is standard [6]. We choose the simpler (and algorithmically more

e�cient) presentation of [63]. The constraint � � �

0

is de�ned on regular trees as the smallest

transitive relation that obeys the following rules:

Closure rules

�

1

! �

2

� �

0

1

! �

0

2

=) �

0

1

� �

1

^ �

2

� �

0

2

h�i � h�

0

i =) � � �

0

(m : �

1

; �

2

) � (m : �

0

1

; �

0

2

) =) �

1

� �

0

1

^ �

2

� �

0

2

Consistency rules

� � �

1

! �

2

=) � is of the shape �

0

1

! �

0

2

� � h�

0

i =) � is of the shape h�

0

0

i

� � (m : �

1

; �

2

) =) � is of the shape (m : �

0

1

; �

0

2

)

� � ; =) � = ;

� � � =) � = �;

Our subtyping relation does not enhance subtyping assumptions on variables, and it is thus weaker

than the subtyping relation used in [41], except on ground types.

For instance, the expression fun (x) x has type 8�; �

0

j � � �

0

: � ! �

0

in [41], while we can

only type the equivalent expression fun (x) (x : � <: �

0

) for particular instances (�; �

0

) of (�; �

0

)

such that � � �

0

.
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Values

v ::= : : : j fun (x) a j hwi

v

c

::= fun (x) c j struct w end

w ::= ; j w

d

; w field preceed method, no overriding

w

d

::= methodm = a j field u = v

Evaluation contexts

E ::= [] j let x = E in d j E a j v E j E#m j hF i j new E j class z = E

c

in d

E

c

::= [] j E

c

a j v

c

E j struct F end

F ::= [] j F

d

; b j w

d

; F

F

d

::= inherit E

c

as s j field u = E

From classes to objects

new (struct w end) �! hwi

Reduction of objects

inherit (struct w end) as s ; b �! w @ (b [w(m)=s#m]

m2dom (w)

)

field u = v ; w �! w if u 2 dom (w)

methodm = a ; w �! w if m 2 dom (w)

methodm = a ; (field u = v ; w) �! field u = v ; (methodm = a ; w)

Reduction of method invocation (U = dom (w))

hwi#m �! w(m)[hwi=self][w(u)=u]

u2U

[hw @ (field u = a

u

u2V

)i=fhu = a

u

u2V

ig]

V �U

Reduction of coercions

(a : � <: �

0

) �! a

Reduction of other expressions

let x = v in a �! a[v=x]class z = v in a �! a[v=z]

(fun (x) a) v �! a[v=x] (fun (x) c) v �! c[v=x]

Context reduction

E[a] �! E[a

0

] if a �! a

0

E[b] �! E[b

0

] if b �! b

0

E[c] �! E[c

0

] if c �! c

0

Figure 6.4: Semantics of Objective ML
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6.5 Semantics

We give a small step reduction semantics to our language. Values are of two kinds: regular expres-

sion values are either functions or object values. Class values are either class functions or reduced

class structures. Object values and reduced class structures are composed of methods and �elds

which are themselves values; �elds must precede methods and neither can be overridden in values.

Values, evaluation contexts, and reduction rules are given in �gure 6.4.

The �rst reduction rule shows that objects are just a restricted view of classes where instance

variables have been hidden.

We have chosen to reduce inheritance in objects rather than classes. It would also be possible

to reduce inheritance inside classes, and reorder methods and �elds as well. Our choice is simpler

and more general, since classes can also be inherited in objects.

The reduction of object expressions to values is performed in two steps, described by the four

rules for objects: inheritance and evaluation of value components are reduced top-down (�rst rule,

we remind that the meta-notation @ stands for the concatenation of sequences); the components

are then re-ordered (last rule) and redundant components removed bottom-up (two middle rules).

The invocation of a method hwi#m evaluates the corresponding expression w(m) after replacing

self, instance variables, and overriding by their current values. That is, the following substitutions

are successively applied:

1. [hwi=self] replaces self by hwi,

2. [w(u)=u]

u2dom (w)

replaces each outer instance variable u by its actual value. Inner instances

of u, i.e. those appearing inside an object hw

0

i, are not replaced since they are related to the

inner object. Note that w(u) is a value and does not contain free �elds.

3. [hw@(field u = a

u

u2V

)i=fhu = a

u

u2V

ig]

V �U

replaces each outer occurrence of an overriding

fhu = a

u

u2V

ig by a new object built from w by overriding �elds u 2 V by (field u = a

u

)

u2V

.

Inner occurrences, i.e. those appearing inside an object hw

0

i, are not replaced since they are

related to the inner object. Note that a

u

is non necessarily a value, and may contain other

outer overriding of �elds, that should be replaced simultaneously, or equivalently in a bottom-

up fashion (deeper occurrences being replaced �rst).

Coercion behaves as the identity function: the coercion of a value reduces to the value itself.

Subject reduction can then only be proved by extending the type system with an implicit subtyping

rule:

A ` a : � � � �

0

(Sub)

A ` a : �

0

This means that a well-typed expression that has been reduced may not always be typable without

rule Sub. This is not surprising since explicit subtyping may disappear during reduction. Thus,

implicit subtyping may be required after reduction. It is possible however to keep explicit subtyping

information during reduction, and avoid the need for rule Sub. This would be obtained by replacing

the rule

(a : � <: �

0

) �! a

by the following rules

(v : hm

i

: �

i

i2I

i <: hm

i

: �

0

i

i2J

i)
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(Fuse)

� _=e ^ � _=e

0

� _=e _=e

0

(Decompose (1))

f(�

i

i2I

) _=f(�

0

i

i2I

) _=e

f(�

i

i2I

) _=e ^ (�

i

_=�

0

i

)

i2I

(Generalize (2))

e[�=�] � =2 �

9�: e ^ � _=�

(Mutate)

(m

1

: �

1

;�

0

1

) _=(m

2

: �

2

;�

0

2

) _=e

9�

0

: (m

2

: �

2

;�

0

2

) _=e ^ �

0

1

_=(m

2

: �

2

;�

0

) ^ �

0

2

_=(m

1

: �

1

;�

0

)

(1) In Rule Decompose, f is any type symbol, including (m : ; ) as well.

(2) To ensure termination, rule Generalize must be restricted to the case where � is not a

variable and � appears in e but not as a term variable of e.

Figure 6.5: Uni�cation as solving multi-sets of multi-equations

�! hm

i

= (v#m

i

: �

i

<: �

0

i

)

i2J

i

(fun (x) a : �

1

! �

2

<: �

0

1

! �

0

2

)

�! fun (x) (a[(x : �

0

1

<: �

1

)=x] : �

2

<: �

0

2

)

The counterpart is that types, although not actively participating, would be kept during reduction.

The formulation we have chosen has a simpler semantics and makes it clearer that the reduction is

actually untyped.

The soundness of the language is stated by the two following theorems.

Theorem 13 (Subject Reduction) Reduction preserves typings (i.e. for any A, if A

?

` a : �

and a �! a

0

then A

?

` a

0

: � .)

Theorem 14 (Normal forms) Well-typed irreducible normal forms are values (i.e. if ; ` a : �

and a cannot be reduced, then a is a value.)

See the appendix 6.3 for proofs of these theorems.

These results easily extend to cope with constants, as in core ML, provided �-rules for constants

are consistent with their principal types.

6.6 Type inference

Types of Objective ML are a restriction of record types. First-order uni�cation for record types

is decidable, and solvable uni�cation problems admit principal solutions, even in the presence of

recursion [108].

The uni�cation algorithm is a simpli�cation of the one used in ML-ART [108]. It is described in

�gure 6.5 as a rewriting process over uni�cation problems. This formalism was introduced in [57]

and has already been used for record types in [104]. A uni�cation problem also called a uni�cand,

is a multi-set of multi-equations preceded by a list of existentially quanti�ed variables. It is written

9�

1

; : : : �

p

: e

1

^ : : : e

q

. A multi-equation e is a multi-set of types written �

1

_= : : : �

n

. The algorithm

assumes that recursive types ��:� have been encoded using equations 9�: � _=� .
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A substitution is a solution of a multi-equation if it makes all its types equal. A solution of a

uni�cand is the restriction of a common solution to all its multi-equations outside of the existentially

quanti�ed variables.

Uni�cands can be simpli�ed by applying the rewriting rules given in �gure 6.5. Structural

rules have been omitted: they include associativity and commutativity of both ^ and _= and

the extrusion and renaming of existential variables. Rules Fuse, Decompose and Generalize

are standard. Rule Fuse merges two multi-equations that have a variable in common. Rule

Decompose decomposes terms of a multi-equations into smaller ones. Rule Generalize splits

terms into smaller terms. Thus, uni�cands can always be rewritten so that terms are of depth

at most one. This permits maximal sharing during uni�cation. It also ensures termination of

rewriting in the presence of recursive types. The only di�erence with uni�cation in a free algebra is

the mutation ruleMute for left-commutativity. It identi�es two terms (m

1

: �

1

; �

0

1

) and (m

2

: �

2

; �

0

2

)

with di�erent top symbols (m

1

: ; ) and (m

2

: ; ) provided their equality can be established by

the application of an axiom at the root.

The algorithm proceeds by rewriting multi-sets of multi-equations according to the above rules.

Each step preserves the set of solutions. Moreover, the process always terminates, reducing any

uni�cand to a canonical form.

A uni�cand is in a solved form if all of its multi-equations are merged and each one is fully

decomposed (i.e. it contains at most one non-variable term). Principal uni�ers can be read directly

from solved forms. A canonical uni�cand that is not in a solved formed contains a clash (two

incompatible types that should be identi�ed) and is not solvable.

The framework and the meta-theory of uni�cands are standard. The equational theory of object

types is a sub-case of the more general algebra of records types; for details and proofs, the reader

is referred to [104].

Objective ML does not allow classes as �rst-class values. Indeed, in the expression fun (x) a,

variable x cannot be bound to a class (or a value containing a class). Thus, class types never

need to be guessed. Polymorphism is only introduced at Let bindings of classes or values. This

ensures that type inference reduces to �rst-order uni�cation, as it is the case in ML. Consequently,

Objective ML has the principal type property. Type inference for classes is straightforward. The

links between �rst-order uni�cation, type inference and principal types are described in a more

general setting in [102].

Theorem 15 (Principal types) For any typing context A and any program a that is typable in

the context A, there exists a type � such that A ` a : � and for any other type �

0

such that A ` a : �

0

there exists a substitution � whose domain does not intersect the free variables of A and such that

�

0

= �(�).

6.7 Abbreviation enhancements

Object types tend to be very large. Indeed, the type of an object lists all its methods with their

types, which can themselves contain other object types. This quickly becomes unmanageable [108,

40]. Introducing abbreviations is thus of crucial importance. This section presents the general

abbreviation mechanism of Objective ML and the next section focuses on abbreviating object

types. The simple type abbreviation mechanism of ML is not su�ciently powerful: abbreviations

are expanded and lost during uni�cation and they do not interact well with recursive types. Several

improvements have thus been made to the abbreviation mechanism. First, abbreviations are kept

during uni�cation and propagated as much as possible. Second, a larger class of abbreviations are
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accepted: abbreviations can be recursive and their arguments can be constrained to be instances

of some given types.

In our implementation, types are considered as graphs. In particular, when two types are

uni�ed, they become identical rather than two separate, equal types. A construct has been added

to the syntax to express type graphs: the construct (� as �) is used to bind � to � , similarly

to the notation rec �:� . However, a main di�erence is that with aliases � is also bound outside

of � . As an example, the two types (hm : �i as �

0

) ! �

0

and hm : �i ! hm : �i are di�erent

graphs, that represent the same regular tree. There are two reasons for considering types as graphs.

First, uni�cation rolls types. For instance, unifying types � = � and �

0

= hm : �i results in type

� = �

0

= (hm : �i as �), rather than instantiating � to hm : �

0

i as �

0

in both types (in the

later case, �

0

would become hm : hm : �

0

i as �

0

i). Second, uni�cation propagates abbreviations.

Abbreviations can be considered as names for nodes. Unifying an abbreviated type with another

type makes both types being abbreviated. For instance, unifying the argument of a functional type

to an abbreviated type may propagate the abbreviation to the result type. This is demonstrated

in the following example.

let bump x = x#move 1; x;;

value bump :

(h move : int ! �; .. i as �) ! � =

hfuni

Nodes are shared between the argument type and the result type. The ellipsis stands for an anony-

mous row variable. When typing the expression bump p below, type (hmove : int ! �; ..i as �)

and type point are identi�ed. The type of bump p is thus also abbreviated to point.

let p = new point 7;;

value p : point = hobji

bump p;;

� : point = hobji

Not all the sharing is exposed to the user : sharing reveals too much of useless information.

So, only aliasing of open object types (thus row variables can be printed as ellipses) and aliasing

de�ning recursive types are printed. It would be possible to remove some aliasing during type

generalization, so that printed types would exactly re
ect their internal representations. However,

this would complicate the implementation needlessly.

Abbreviations can be recursive. That is, in the de�nition of the abbreviation type (��) � = � ,

the type constructor � may occur in the body � , as long as all occurrences have the same parameters

��. This restriction is extended to mutually recursive abbreviations. It ensures that abbreviations

expand to regular trees. In the implementation, any type constructor standing for an abbreviation

caches the expansions of abbreviations it appears in. Thus, when an abbreviation is expanded

several times during the traversal of a type, it expands each time to the same type.

Type abbreviations are generalized to allow constraints on the type parameters of the abbre-

viations. This is an extension to the abbreviations of LCS [7], that were also used in [108]. In an

abbreviation de�nition, parameters are types rather than type variables: type (��) � = �

0

. All free

variables of � must be bound in �� . Actual arguments of an abbreviation must always be instances

�(��) (for some substitution �) of the parameters �� . Then, the abbreviation can expand to type �(�

0

).

For instance, if the type constructor � is de�ned as type (� � �

0

) � = �! �

0

, then (int � bool) �

will expand to int ! bool. To expand an abbreviation, the arguments are usually substituted
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for the parameters. Instead, we choose to unify the arguments with the corresponding parameters.

The constraints need only to be enforced when parsing a type given by the user. Then, expansion

is guaranteed to succeed. Indeed, a substitution � can always be applied to an abbreviation (�� ) �.

The expansion of �((��) �) is equal to the result of applying the substitution � to the expansion of

(��) �. In particular, constraints are preserved by substitution.

6.8 Abbreviating object types

We will now describe how the abbreviation mechanism presented in the previous section is used

to generate abbreviations for objects. This mechanism is used to automatically abbreviate object

constructors: the expression new z will have type �

1

! : : : ! �

n

! (�

0

i

) �

z

, where �

z

is the

abbreviation associated with class z.

General type abbreviations, introduced in the previous section, can be used to simplify object

types. Rather than sorting types to ensure that object types are well-formed, we require the

stronger condition that any two object types that share the same row variable must be equal. This

eliminates incorrect types such as h�i ! hm : � ; �i. Types such as hm : �

1

; �i ! hm : �

2

; �i, at

the basis of record extension, are also rejected. However, no primitive operation on objects can

exhibit such a type. These types can thus be ruled out without seriously restricting the language.

Moreover, all programs keep the same principal types. This restriction was implemented to avoid

explaining sorts to the user. It also makes the syntax for types somewhat clearer, as row variables

can then always be replaced by ellipsis. Furthermore, sharing can still be described with aliasing.

For instance, hm : � ; �i ! hm : � ; �i is written (hm : � ; ::i as �)! �.

A class de�nition class z = c in : : : automatically generates an abbreviation for the type of

its instances. For specifying it, one actually needs to add type parameters to the class de�nitions,

corresponding to the one of the abbreviation. That is, we should write

class (��) z = c in : : : (1)

where the parameters �� must appear in c.

In fact, abbreviations are generated from class types. It follows from type inference that the

class de�nition c has a principal class type �

0

0

! : : : ! �

0

n

! sig (�

y

) ' end. Here, �

y

is the type

matched by objects in all subclasses. It is always of the form hm

i

: �

i

i2I

; �i where method (') is a

subsequence of m

i

: �

i

i2I

and � is either ; (this is a pathological case, where the class cannot be

extended with new methods) or a row variable �. If method (') is exactly m

i

: �

i

, then it is possible

to create objects of that class; they will have type �

y

[;=�]. Otherwise, the class is virtual and can

only be inherited in other class de�nitions. If all free type variables of �

y

except � are listed in ��,

we automatically de�ne two abbreviations:

type (��; �) #�

z

= �

y

type (��) �

z

= (��; ;) #�

z

The former matches all objects of subclasses of c. The latter is a special case of the former, and

abbreviates any objects of class c.

Let us consider an example. Class point has type int ! sig (hmove : int ! int; �i) ' end

for some ' whose only method is move : int ! int. Thus, class point is not virtual. The two

following abbreviations are generated for this class:

type � #point = hmove : int! int; �i type point = hmove : int! inti
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One can check that the type point is indeed an abbreviation for the type of objects of the class

point, and that the type of an object of any subclass of the class point is an instance of the type

� #point.

In the concrete syntax, the row variable � is treated anonymously (as an ellipsis) and is omitted.

The former abbreviation #�

z

is given a lower priority than the regular ones in case of a clash. It

also vanishes as soon as the row variable is instantiated, so as to reveal the value taken by the row

variable.

In fact, we allow �

z

and #�

z

to occur in the de�nition of b. The previous de�nitions can be

rewritten to handle the general case correctly.

Constrained abbreviations are natural for abbreviating objects, as, for instance, a sorted list

of comparable objects should be parameterized by the type of its elements, which in turn is not a

type variable. Moreover this extension makes it possible to avoid row variables as type parameters

(as the whole object type can appear as a parameter).

Constrained type abbreviations are also convenient since, in a class de�nition class (��) z =

c in : : :, class type parameters �� may have been instantiated to some types ��

�

while inferring the

class type �

0

0

! : : :! �

0

n

! sig (�

y

) ' end. The two abbreviations generated by the class de�nition

are thus:

type (�

�

; �) #�

z

= �

y

type (��) �

z

= (��; ;) #�

z

The latter is unchanged except that the constraints of the �rst ones are implicit in the second one.

Class types are shown to the user stripped of their type parameters. The parameters that

constraint the type abbreviations are described by constraint clauses:

class � circle (p : �) = struct

field point = p

method center = point

method move m =

if m = 0 then 0 else

point#move (1 + Random.int m)

end;;

class � circle : � ! sig

constraint � = h move : int ! int; .. i

field point : �

method center : �

method move : int ! int

end

This class de�nes the abbreviation

type (hmove : int! int; �i as �) circle = hcenter : �; move : int! inti

As a result of the abbreviation mechanisms, type inference may reject some class de�nitions

whose principal types have free variables. For instance, the following variant of class point is

rejected, since the method getx is polymorphic and therefore the class should be parametric.

class point x0 = struct

field x = x0

method getx = x

end;;
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Of course, one could choose an arbitrary ground class type, for instance:

class point : int ! sig

field x : int

method getx : int

end

Any other ground type could be used instead of int. We decide to reject those programs. This pre-

serves the property that any typable program has a principal type |and all other useful properties

of the type system.

This phenomenon is not new. It already appeared in several extensions of ML. Imperative

constructs limit polymorphism. Thus, some variables that are not generalizable may occur in the

type of a toplevel expression. In such a case, most languages would reject the program. For

instance, the extension to ML with dynamics [72] rejects fun x ! dynamics x, since the dynamic

type of x in dynamics x is statically unknown.

All the examples above would have principal types as long as type inference is concerned. We

can argue that some programs have been rejected for sake of simplicity and uniformity of the

language, but not because of a failure of type inference: For instance, in Objective ML we could

just omit the corresponding abbreviation whenever some type parameter is missing, and print a

warning message instead of an error message.

6.9 Extensions

This section lists other useful features of Objective ML that have been added to the implementation.

Imperative features have been ignored in the formal presentation since their addition is theoretically

well-understood and independent of the presence of objects and classes. Other features are less

important in theory, but still very useful in practice: private instance variables, coercion primitives.

Before we explore these extensions, let us consider an interesting restriction of the language. If

recursive types are only allowed when the recursion traverses an object type, Objective ML becomes

a conservative extension of ML, which we claimed in the introduction. Of course, all ML programs

can be de�ned, and behave similarly. Moreover, programs that are syntactically ML programs

are now well-typed ML programs if and only if they are well-typed in Objective ML. However, in

the implementation Objective Caml, the presence of modules requires the use of recursive abstract

types as well. This is because recursive object types may be abstracted. Thus, Objective Caml

is not strictly speaking a conservative extension of ML. Still, it is a conservative extension of ML

with recursive types.

6.9.1 Imperative features

We have intentionally used references in the very �rst example. We did not formalize references in

the presentation of Objective ML, since we preferred to keep the presentation simple and put em-

phasis on objects and classes. The addition of imperative features to Objective ML is theoretically

as simple and as useful practically as their addition to ML. Both the semantics and the properties

of reduction with respect to typing extend to operations on the store without any problem. The

formalization copies the one for core ML.

In fact, the implementation Objective Caml also allows �elds to be mutable in a similar way

mutable record �elds are treated in Caml [73]. For instance, we could have written:

class point x0 = struct
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field mutable x = x0

method move d = (x  x + d; x)

end;;

class point : int ! sig

field mutable x : int

method move : int ! int

end

Objective Caml only allows generalization of values (actually, a slightly more general class of non

expansive expressions). The creation of an object from a class c is not considered as a value (as it

is the application of function new c to some arguments). Mutable �elds in classes are typed as any

other �elds, except that mutability properties are also checked during typechecking.

6.9.2 Local bindings

As shown by the evaluation rules for objects, both value and method components are bound to

their rightmost de�nitions. All value components must still be evaluated even though they are to

be discarded.

Object-oriented languages often o�er more security through private instance variables. The

scope of a �eld can be restricted so that the �eld is no more visible in subclasses.

This section presents local bindings, that are only visible in the body of the class they appear

in. This is weaker than what one usually expects from private �elds, as a class cannot, for instance,

inherit a �eld and hide it from its subclasses (see section 6.10.1).

The syntax is extended as follows:

d ::= : : : j local x = a in b

F

d

::= : : : j local x = E in b

with the corresponding typing rule:

A

?

` a : � A+ x : � ` b : '

(Local)

A ` local x = a in b : '

Local bindings are reduced top-down, like inheritance:

local x = v in b; b

0

�! b[v=x] + b

0

In practice, however, local bindings would rather be compiled as anonymous �elds. This would

make methods independent of local bindings.

Initialization parameters could also be seen as local bindings in the whole class body, and could

also be compiled as anonymous instance variables. For instance, the de�nition

class point y = struct method x = y end;;

could be automatically transformed into the equivalent program:

class point y = struct

local y = y in method x = y

end;;

That way, the method x becomes independent of the initialization parameter y. Then, classes can

be reduced to class values: inheritance is reduced to local bindings, local bindings are 
attened,

and method overriding is resolved.
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6.9.3 Coercion primitives

Explicit coercions require both the domain and co-domain to be speci�ed. This eliminates the need

for subtype inference. In practice, however, it is often su�cient to indicate the co-domain of the

coercion only, the domain of the coercion being a function S of its co-domain.

For convenience, we introduce a collection of coercion primitives:

( <: �) : 8 ��: S(�)! �

where �� are free variables of S(�) and � , and S(�) is de�ned as follows:

� We call positive the occurrences of a term that can be reached without traversing an arrow

from the left hand side. (This is more restrictive than the usual de�nition, where the arrow

is treated contravariantly).

� For non recursive terms, we de�ne S

0

(�) to be � where every closed object type that occurs

positively is opened by adding a fresh row variable.

� Terms with aliases are viewed as graphs, or equivalently as pairs of a term �

0

and a list of

constraints �

i

= �

i

.

Let � be a renaming of variables �

i

into fresh variables.

Let �

0

i

be �

i

in which every positive occurrence of each �

i

is replaced by �(�

i

).

We return (S

0

(�

0

0

); f�(�

i

) = S

0

(�

0

i

); i 2 Ig [ f�

i

= �

i

; i 2 Ig) for S(�).

For example,

S(hm

1

: hm

2

: inti ! hm

3

: boolii) = hm

1

: hm

2

: inti ! hm

3

: bool; �

3

i; �

1

i

S(hm : �i as �) = hm : �

0

; �i as �

0

S(hm : �! �i as �) = hm : (hm : �! �i as �)! �

0

; �i as �

0

The operator S has the two following properties:

(1) S(�) � � (2) 9� (�(S(�)) = � ^ �(�) = �)

The former gives the correctness of the reduction step (a <: �) �! (a : S(�) <: �). The later

shows that if a has type � then (a <: �) also has type � .

There is no principal solution for an operator S satisfying (1). Consider � to be hm : inti ! int.

There are only two solutions, hm : inti ! int and hi ! int and none is an instance of the

other. This counter-example shows the weakness of the simulation of subtyping with row variables,

especially on negative occurrences. There are other examples of failure on positive occurrences, but

only using recursive types. For instance, if � is hx : �i as �, then both hx : � ; �i and hx : �; �

0

i as �

are solutions for S(�), but no solution is more general than both of these. Our choice of S (and

correspondingly, our choice of coercion primitives) is somehow arbitrary, but works well in practice.

This justi�es the exclusion of semi-explicit coercions from the core language, but leave them as a

collection of primitives. In fact, most coercions are of the form (a : S(�) <: �). Thus, the domain

of a coercion rarely needs to be given.
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6.10 Future work

This short section describes three possible extensions of importance to Objective ML. Each ex-

tension requires further theoretical and design investigation before it can be integrated within the

language Objective Caml.

6.10.1 Restriction of class interfaces

In section 6.9.2 we have shown that �eld components can be declared local to a class. However, this

does not enable class components to be hidden a posteriori. Assume, for instance, that a library

provides an implementation of a class z with two �elds x and x

0

and two methods m and m

0

. A

module may de�ne a class z

00

that inherits from an imported class z

0

whose interface is a restriction

of the one of the class z to the �eld x and the method m only. Can class z be used as an import to

the module? This problem corresponds to a common situation of interface restriction when reusing

code. However, interface restriction is not currently possible.

Private �elds would actually not be di�cult to hide. However, hiding methods in subclasses

con
icts with late binding and a 
at method name space. For instance, assume, method m

0

is

implicitly hidden when inherited in class z

00

, and that class z

00

de�nes a method m

0

, possibly with

another type!

Clearly, when a method m is hidden in a class z, self-invocations of m in all other methods of z

should be replaced by calls to a function representing the method m. This is a complex operation

that is di�cult to compile.

Another problem is that method m

0

appears in the type of self. Hiding the method thus

requires to modify a posteriori the type of self. This would not be correct if, for instance, this

type is the type of a method argument.

A partial solution is to give each method a di�erent view of self inside classes. This is usually

the case when classes are treated as a collection of pre-methods. Another choice, weaker but still

useful, is to split the input and output view of self. The former lists the methods that are required

while the later enumerates methods that are provided. However, in the presence of type inference,

such solutions tend to increase the size of a class to a point that may become unreadable [108].

The gain in expressiveness is also weakened by a later detection of errors. Clearly, it is an error if a

method has incompatible required and provided types. However, this would only be detected when

the object is created. In the design of Objective ML, we have deliberately limited the expressiveness

of class types to keep them readable. Many variations are theoretically possible, but very few of

them seem to improve expressiveness signi�cantly without sacri�cing simplicity.

Another possibility is to introduce private methods. They would not appear in the type of

self, consequently, they should be invoked di�erently. Private methods could have the same scope

as �elds. In particular, they could be hidden a posteriori as well.

The addition of �nal classes could also resolve the problem. These classes could not be inherited.

Then, a class could be soundly matched against a �nal class interface that omits some of its methods.

6.10.2 Polymorphic methods

In a classical programming style, functions and data are clearly separated. Functions are often

polymorphic and thus can be applied uniformly to di�erent kinds of data. Data may be structured.

It very rarely carries functions, and is usually monomorphic. In objects, data and methods are

jointly de�ned and stored or passed as arguments together | at least from a theoretical point of

view.
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Let-bound toplevel functions often become methods of �-bound �rst-class objects. Unfortu-

nately, polymorphism is lost during this transformation. For instance, a class implementing sets,

would naturally provide a fold method. The inferred class type would be of the form:

class � set = struct ...

method fold : (� ! � ! �) ! � ! �

end

However, this is rejected, since variable � is unbound in � set. An attempt to �x the problem

would be to parameterize the class set over � as well, that is, to replace � set in the de�nition

above by (�,�) set. However, this is not very intuitive, since the object stays parametric in �

even when all its �elds have a ground type. Moreover, the method fold becomes monomorphic and

thus can only be applied to functions of the same type, whenever the object is �-bound.

The intuition is of course that the method fold should be polymorphic. That is, the class set

should have the following class type:

class � set = struct ...

method fold : All �. (� ! � ! �) ! � ! �

end

The addition of polymorphic methods could also be used to reduce the number of explicit

coercions. In a class de�nition methods may have types more polymorphic than expected. For

instance, assume that class point has type:

class point (int) = struct

field x : int method getx : int

end;;

Then, the following subclass of point will not typecheck:

class eq point x = struct

inherit point x

method eq p = p#getx = self#getx

end;;

The parameter p of the method eq does not need to be a point but an object with method getx of

type int. Thus, its type hgetx : int; ..i ! bool has a free row variable. As for the case of set,

the row variable in the type of p can be bound in in a constraint type parameter as follows:

class � eq point x = struct

inherit point x

method eq (p:�) = p#getx = self#getx

end;;

class � eq point : int ! sig

constraint � = h getx : int; .. i

field x : int

method getx : int

method eq : � ! bool

end

Again, this is not very intuitive and one might prefer to add a stronger type constraint. One choice

is to require p to be of the same type as self. However, this unnecessarily makes eq a binary
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method and so restricts its further use with arguments of type eq point only. Constraining p to be

a point in the de�nition of the method eq is another possibility:

class eq point x = struct

inherit point x

method eq (p:point) = p#getx = self#getx

end;;

class eq point : int ! sig

field x : int

method getx : int

method eq : point ! bool

end

This solution is more general, although it usually requires explicit coercion when invoking the

method eq:

let p = eq point 1 in p#eq (p h: point);;

Polymorphic methods would allow a more natural class type for the eq point (�rst de�nition):

class eq point : int ! sig

field x : int

method getx : int

method eq p :

All (hgetx : int; ..i as �). � ! bool

end;;

Moreover, thanks to the polymorphic (anonymous) row variable, messages could then be sent to

the method eq with an argument of type either point or eq point.

We consider that the lack of polymorphic methods is a weakness of Objective ML. We believe

that polymorphic methods would make most explicit coercions unnecessary.

Some solutions to extend ML with �rst class-polymorphism already exist in the literature.

Simple but rudimentary proposals can be found in [108, 83] and better integration of �rst-class

polymorphism inside Objective ML has recently been studied in [46].

6.10.3 Integrating classes and modules

Objects and classes of Objective ML are orthogonal to the other extensions of ML. In particular,

the module system of ML extends directly to classes and objects [69]. Indeed, the implementation

of Objective ML, called Objective Caml [70], o�ers a rich language of both modules and classes.

Classes and modules share a lot of properties: they o�er some form of abstraction; they also

help structuring large applications; and they facilitate reusability of code. In fact, they are quite

di�erent. Modules are a very general and powerful abstraction. However, it is di�cult to allow

recursion between several modules or to give a meaning to self inside modules. On the other

hand, classes are a much more specialized paradigm that has proved extremely convenient for some

applications. Objects �nd their limitation with multiple dispatch. Hiding components also remains

a di�cult task.

For historical reasons, libraries of Objective Caml are implemented as modules. In practice,

many of these libraries could be rewritten as classes. Choosing one style or another is not insignif-

icant, since it is a global commitment to the architecture of the application. The class version

and the module version of the same libraries are very similar, but their code cannot currently be
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shared. This is, of course, unsatisfactory. We hope that more work will allow a better integration

of modules and classes.

6.11 Comparison to other works

The work closest to Objective ML is ML-ART [108]. Here, object types are also based on record

types and have similar expressiveness. State abstraction is based on explicit existential types in

ML-ART; in Objective ML, it is obtained by scope hiding, but it could also be explained with

a simple form of type abstraction. No coercion at all is permitted in ML-ART between objects

with di�erent interfaces. Unfortunately, ML-ART has no type-abbreviation mechanism. This was

a major drawback, which motivated the design of Objective ML. On the other hand, classes are

�rst class values in ML-ART. We, however, do not think this is a major advantage. The restriction

is a deliberate choice in the design of Objective ML, to keep the language simpler. In theory, most

features of ML-ART could have been kept in Objective ML. In practice, however, it would have

changed the language signi�cantly.

Another simpli�cation in Objective ML is that in classes all methods view self with the same

type. This is not required by the semantics, and could technically be relaxed by making method

types more detailed in classes (see [108]). We found that this extra 
exibility is not worth the

complication of class types.

Our object types are a simpli�cation of those used in [106]. The simpli�cation is possible since

object types are similar to record types for polymorphic access, and do not require the counterpart of

record extension. Moreover, as discussed above, our implementation assumes the stronger condition

that two object types sharing the same row variable are always identical. With this restriction,

object types seem to be equivalent to kinded record types introduced in [84]. Ohori also proposed

an e�cient compilation of polymorphic records (which does not scale up to extensible records)

in [85]. However, his approach, based on the correspondence between types and domains of records

cannot be applied to the compilation of objects with code-free coercions.

Objects have been widely studied in languages with higher-order types [19, 82, 16, 2, 93, 14].

These proposals signi�cantly di�er from Objective ML. Types are not inferred but explicitly given

by the user. Type abbreviations are also the user's responsibility. On the contrary, all these

proposals allow for implicit subtyping.

Our calculus di�ers signi�cantly from Abadi's and Cardelli's primitive calculus of objects mostly

as a result of design choices. We have chosen primitive classes because inferred types of sets of

pre-methods would be complex to be readable (see [108] for instance). We have emphasized the

role of row variables because we have chosen not to infer subtyping, therefore avoiding the more

complicated framework of constraint types. On the other hand we have included other features

such as instance variables, to avoid their encoding as methods not involving self, and to keep with

the more simple state-abstraction mechanism by scope hiding. Technically a major di�erence,

Objective ML does not allow method overriding.

Open record types are connected to the notion of matching introduced by Kim Bruce [16, 18].

Matching seems to be at least as important as subtyping in object-oriented languages. Row variables

in object types express matching in a very natural way. While explicit matching may require too

much type information, type inference makes object matching very practical.

Palsberg has proposed type inference [87] for a �rst-order version of Abadi and Cardelli's calculus

of primitive objects [1]. However, that language is missing important features from the higher-order

version [2]. Type inference is based on subtyping constraints and the technique is similar to the one

used in [40]. This later proposal [40, 41] is closer to a real programming language, and more suited
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for comparison. Here, the authors use a subtyping relation that is more expressive than ours, as

they can prove subtyping under some assumptions. They can also infer coercions. However, the

types they infer tend to be too large. Indeed, they do not have an abbreviation mechanism. Their

inheritance is weaker than ours since they must explicitly list all inherited methods in subclasses.

We think the two proposals are complementary and could bene�t from one another. In particular,

it would be interesting to adapt automatic type abbreviations to constraint types. The problem is

still non-trivial since inferred type-constraints are hard to read even in the absence of objects.

The remainder of this section is dedicated to the comparison with three other proposals for

adding objects to ML. They all use implicit subtyping, which is, however, restricted to atomic

structural subtyping [79, 44]. As a result, they all have the same di�culty with parameterized

classes, making it impossible to relate objects created from classes with a di�erent number of

parameters, even when the objects have the same interface. For instance, objects of a class string

are of incompatible type with objects of a parameterized class vector when the parameter type is

character.

In [14], Bourdoncle and Metz propose a language based on some restricted form of type con-

straints [41]. However, they do not provide type inference.

The two following proposals include type inference; however, fully polymorphic method invoca-

tion cannot be typed. Two di�erent solutions are proposed; they both amount to providing some

explicit type information at method invocation.

More precisely, in Duggan's proposal [38], methods must be predeclared with a particular type

scheme. Thus methods carry type information alike data-type constructors in ML. For instance,

move would be assigned type scheme 8�

y

: �

y

! int. Type schemes that are assigned to methods are

polymorphic in �

y

: they are arrow types whose domain is always a variable �

y

, standing for the type

of self. Object types only list the methods that objects of that type must accept. For instance, point

would be given type hmovei. The user must provide more type information that in Objective ML.

The same method name cannot be used in two di�erent objects with unrelated types. Objects of

parameterized classes are treated especially, using constructor kinds. As mentioned above, objects

of a parameterized class reveal forever that they are parameterized. For instance, let us consider

a class of vectors parameterized over the type �. All methods of that class must be given a type

scheme of the form: 8�

�

Type!Type

:8�: � �

�

! � , where variable �

�

range over type constructors.

That is, instead of the type �

y

of self, only the type constructor � of the type �

y

is hidden.

This reveals the dependence of �

y

on its parameters, and the parameters themselves. Methods of

parameterized classes are incompatible with methods of non-parameterized classes. Objects of a

vector class of characters cannot be related to objects of a string class even though they might

have the same interface. In Objective ML, two such objects could be mixed. However, Objective

ML does not allow polymorphic methods while Duggan's proposal does. A polymorphic method

map could be declared with type scheme: 8�

�

Type!Type

:8�:8�

1

: � �

�

! (� ! �

1

) ! �

1

�

�

.

Intuitively, map carries implicit universal intros and elims, like data constructors carry arguments

of existentially or universally quanti�ed types in [64, 108, 83]. Recursive kinds actually allow some

form of polymorphism that is di�erent from polymorphic methods discussed in section 6.10.

In Object ML [115], Reppy and Riecke treat objects as a generalized form of concrete data-

types. Types are also inferred in Object ML, but the authors do not claim a principal type

property. Also, method invocation must always mention the class of the object to which the

method belongs. Each object is actually tagged with a constructor that carries the class the object

originated from. Therefore, objects can be tested for membership to some arbitrary class in some

inheritance relationship. Only single inheritance is allowed. The subtyping relationship between

objects is declared and corresponds to the inheritance forest. Classes are generative, that is, objects
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of di�erent classes have di�erent types. Although these types can be related by subtyping, they

are never in an instance relationship. Some object coercions, but apparently not all, are implicit.

On the contrary in Objective ML, classes are transparent, that is, objects types are structural and

only describe the interface of objects: two objects with exactly the same interface have equal types.

Two objects of classes in a subclass relationship are not necessarily related, but when they are, one

type is simply an instance of the other. Object ML does not provide any inheritance mechanism,

except by means of encodings [114]. Typing of binary methods is also a problem, which is solved

via runtime class-type tests.

Conclusion

Objective ML has been designed to be the core of a real programming language. Indeed, the

constructs presented here have been implemented in the language Objective Caml. We chose class-

based objects since this approach is now well understood in a type framework and it does not

require higher-order types.

The original part of the design is automatic abbreviation of object types. Although this is not

di�cult, it is essential for making the language practical. It has been demonstrated before that

fully inferred object types are unreadable [108, 40]. On the contrary, types of Objective ML are

clear and still require extremely little type information from the user. To our knowledge, all other

existing approaches require more type declarations.

Objective ML is also interesting theoretically for the use of row variables [119, 106]. Row

variables are very close to matching and seem more helpful than subtyping for the most common

operations on objects. Message passing and inheritance are entirely based on row variables, which

relegates subtyping to a lower level.

Another interesting aspect of our proposal is its simplicity. This is certainly due to the fact that

Objective ML is very close to ML. Speci�cally, most features rely only on ML polymorphism. This

leads to very simple typing rules for objects and inheritance. Coercions, based on subtyping, can

be explained later. Data abstraction is guaranteed by scope hiding rather than by type abstraction;

this is a less powerful but simpler concept.

The main drawback of Objective ML is the need for explicit coercions. Coercions are necessary.

However, we think they occur in few places. Thus, explicit coercions should not be a burden.

Furthermore, coercions could in theory be made implicit using constraint-based type inference.

In our implementation of Objective ML, classes and modules are fully compatible, but orthogo-

nal. That should be particularly interesting to compare these two styles of large-scale programming,

and help us to better integrate them. This is an important direction for future work.
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Appendix

6.1 Typing rules for core ML

(Inst)

x : 8 ��: � 2 A

A ` x : � [��=��]

(Fun)

A+ x : � ` a : �

0

A ` fun (x) a : � ! �

0

(App)

A ` a : �

0

! � A ` a

0

: �

0

A ` a a

0

: �

(Let)

A ` a

0

: �

0

A+ x : Gen(�

0

; A) ` a : �

A ` let x = a

0

in a : �

Generalization Gen(�;A) is 8 ��: � where �� are all variables of � that are not free in A.

6.2 Binary methods

In Objective ML, it is possible to de�ne binary methods, that is, methods that receive as a parameter

an object of the same type as self. Furthermore, a class that has binary methods can be freely

extended by inheritance. Of course, binary methods remains binary in a subclass.

The virtual class comparable is a template for classes with a binary method leq. The component

virtual leq is a type constraint on the type of self. This method must be applied to an object of

the same type as self.

class comparable () = struct virtual (�)

virtual leq : � ! bool

end;;

class comparable : unit ! sig virtual (�)

virtual leq : � ! bool

end

Class int comparable inherits from class comparable. It implements method leq and adds a method

getx.

class int comparable (x : int) = struct

inherit comparable ()

field x = ref x

method getx = !x

method leq o = !x � o#getx

end;;

class int comparable : int ! sig (�)

field x : int ref

method leq : � ! bool

method getx : int

end

Method leq still expects to be applied to an object of the same type as self. So, type

int comparable = rec �:hleq : � ! bool; getx : inti is not a subtype of type comparable =

rec �:hleq : � ! booli: inheritance is not subtyping. Indeed, a method leq of an object of the
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former type expects to be applied to an object that has a method getx; this is not ensured by

the later type. However, int comparable is an instance of � #comparable, which is by de�nition

rec �:hleq : �! bool; �i. Binary methods are correctly handled since the type of self is kept open

while typing classes: adding the method getx to class comparable simply amounts to instantiating

the row variable in the type of self, to (getx : int; ..). Thus, the type of self in the subclass has

a method getx and is still open.

As a test, the function min will return the minimum of any two objects whose type is an instance

of type #comparable.

let min (x : #comparable) y =

if x#leq y then x else y;;

value min : (#comparable as �) ! � ! � =

hfuni

This function can thus be applied to objects of type int comparable.

let p = min (new int comparable 7)

(new int comparable 11)

in (p, p#getx);;

� : int comparable * int = hobji, 7

6.3 Proofs of type soundness theorems

Subject reduction is a straightforward combination of redex contraction (lemma 30) and context

replacement (lemma 25).

Since we have multiple syntactic categories for expressions, contexts, and types, it is convenient

to introduce the following meta-notations:

�a ::= a j b j c j d

�

E ::= E j F j E

c

j F

d

�� ::= � j ' j 


These meta-letters are used consistently. For instance, when writing A ` �a : �� , (�a; �� ) means (a; �),

(b; '), etc, but not (b; �).

The following propositions are used several times in the proof.

Proposition 21 (Stability by substitution) If A ` �a : �� , then for any substitution �, �(A) `

�a : �(��).

Proposition 22 (Extension of environment) If type environments A and B are identical on

free variables of expression a and A ` �a : �� , then B ` �a : �� . If type environment B extends type

environment A (that is B j

�

dom (A) is A) and A ` �a : �� , then B ` �a : �� .

We say that � is an instance of �

0

if any instance of � is an instance of �

0

. We say that type

environment A is an instance of type environment A

0

if both type environments have the same

domain and for any element h of their domain A(h) is an instance of A

0

(h).

Proposition 23 (Strengthening of context) If type environment A is an instance of type en-

vironment B and A ` a : � , then B ` a : � .

The following lemma somewhat simpli�es the proofs.
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Lemma 24 (Derivation simpli�cation) When proving that for all � , A

0

` a

0

: � implies A ` a :

� (for some A

0

, a

0

, A and a), one can restrict oneself to the case where a derivation of A

0

` a

0

: �

does not end with rule Sub. The general case follows.

Proof: This is done by induction on the size of derivations. Let us assume that a derivation of

A

0

` a

0

: � ends as

A

0

` a

0

: �

0

�

0

� �

(Sub)

A

0

` a

0

: �

By induction hypothesis, A ` a : �

0

. Hence

A ` a : �

0

�

0

� �

(Sub)

A ` a : �

We write a

1

� a

2

if for any environment A such that A

?

= A and any type � such that

A ` a

1

: � , A ` a

2

: � . Likewise, we write b

1

� b

2

(resp. c

1

� c

2

) if for any environments A and

any class body type ' such that A ` b

1

: ' (resp. any class type 
 such that A ` c

1

: 
), then

A ` b

2

: ' (resp. A ` c

2

: 
). Subject reduction theorem can be restated as follows: if a

1

�! a

2

,

then a

1

� a

2

.

Lemma 25 (Context replacement) For any context E, if �a

1

� �a

2

then E[�a

1

] � E[�a

2

].

Proof: The property can be proved independently for each arbitrary one-node context

�

E. Then,

the lemma follows by a trivial induction on the size of the context.

Let

�

E be a one-node context. Let A be a type environment and �� a type such that A `

�

E[�a

1

] :

�� (6.1). We show that A `

�

E[�a

2

] : �� . Using lemma 24, one can assume that a derivation of (6.1)

does not end with rule Sub.

All cases are simple and similar. We show one case for example:

Cas E is let x = [] in a: A derivation of (6.1) ends as:

A ` a

1

: �

0

A+ x : Gen(�

0

; A) ` a : �

(Let)

A ` let x = a

1

in a : �

By induction hypothesis applied to the �rst premise, A ` a

2

: �

0

. Hence A ` let x = a

2

in a : �

The following lemmas (26 thru 29) are used to simplify the proof of redex contraction.

Lemma 26 (Append) Let A be a typing environment containing no super bindings. If A ` b

1

:

'

1

, A + ('

1

n method) ` b

2

: '

2

, and '

1

and '

2

are compatible (that is, '

1

� '

2

is correct), then

A ` b

1

@ b

2

: '

1

� '

2

.

Proof: We actually prove a more general property. Let '

0

be a sequence of super bindings. If

A + '

0

` b

1

: '

1

, A + ('

1

n method) ` b

2

: '

2

, and '

1

and '

2

are compatible (that is, '

1

� '

2

is

correct), then A+ '

0

` b

1

@ b

2

: '

1

� '

2

.

This is easily proved by induction on b

1

.
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Lemma 27 (Term replacement (variables)) Let A be a type environment, �a and a

0

be term

expressions, �� and �

0

be type expressions. If A

?

` a

0

: �

0

(6.2) and A+ x : Gen(�

0

; A) ` �a : �� (6.3)

and bound variables of �a are not free in a

0

, then A ` �a[a

0

=x] : �� is provable (6.4).

Proof: The proof is by induction on the structure of �a (i.e. a, c, b and d). Using lemma 24, we can

assume that a derivation of (6.3) does not end with rule Sub.

In each case, we consider a derivation of (6.3). By using a renaming substitution on (6.2) if

necessary (proposition 21), we can assume that free variables of �

0

that are not in A

?

do not appear

free in this derivation (6.5). We write A

x

for A+ x : Gen(�

0

; A

?

).

We only show the more complicated cases. Other cases are either similar or simple.

Cas a is let x

0

= a

1

in a

2

: A derivation of (6.3) ends as:

(6.6) A

x

` a

1

: �

1

A

x

+ x

1

: Gen(�

1

; A

x

) ` a

2

: � (6.7)

(Let)

A

x

` let x

1

= a

1

in a

2

: �

By induction hypothesis applied to (6.6), we get A ` a

1

[a

0

=x] : �

1

(6.8).

If x

1

= x, (6.7) becomes A + x : Gen(�

1

; A

x

) ` a

2

: � . By strengthening of environment

(proposition 23), we have A+ x : Gen(�

1

; A) ` a

2

: � since A is a subsequence of A

x

. We conclude

by rule Let.

Otherwise, let A

1

be A + x

1

: Gen(�

1

; A). Re-ordering hypotheses in (6.7), we have A + x

1

:

Gen(�

1

; A

x

) + x : Gen(�

0

; A) ` a

2

: � . By strengthening of environment, we can replace A

x

by A.

Since free type variables of A

1

are the same as free type variables of A, we can replace A by A

1

in Gen(�

0

; A). Thus, we have A

1

+ x : Gen(�

0

; A

1

) ` a

2

: � . On the other hand, since x

1

is not

bound in a

0

, and A

?

1

extends A

?

, we deduce A

?

1

` a

0

: �

0

from (6.2) by extension of environment

(proposition 22). Thus, we can apply the induction hypothesis with A

1

for A. We get A

1

`

a

2

[a

0

=x] : � . Combining with (6.8) in a Let rule, we �nally have A ` (let x

1

= a

1

in a

2

)[a

0

=x] : � .

Cas a is fun (x

1

) a

2

: A derivation of (6.3) ends as:

A

x

+ x

1

: �

1

` a

2

: �

2

(Fun)

A

x

` fun (x

1

) a

2

: �

1

! �

2

Let A

1

be A + x

1

: �

1

. Re-ordering type environment of the premise, we have A + x

1

: �

1

+ x :

Gen(�

0

; A) ` a

2

: �

2

. By (6.5), the generalization Gen(�

0

; A) is equal to Gen(�

0

; A+ x

1

: �

1

), that is,

Gen(�

0

; A

1

). So, we have A

1

+ x : Gen(�

0

; A

1

) ` a

2

: �

2

. Since x

1

is not bound in a

0

and A

?

1

extends

A

?

, we deduce A

?

1

` a

0

: �

0

from (6.2). Thus, we can apply the induction hypothesis with A

1

for

A. We get A

1

` a

2

[a

0

=x] : �

2

. We conclude with rule Fun

Cas a is hbi: A derivation of (6.3) ends as:

A

?

x

+ self : �

y

` b : ' �

y

= hmethod (')i

(Object)

A

x

` hbi : �

y

Let A

y

be A

?

+self : �

y

. Re-ordering type environment of the premise, we have A

?

+self : �

y

+x :

Gen(�

0

; A) ` b : '. We can replace Gen(�

0

; A) by Gen(�

0

; A

?

) by strengthening of environment.

By (6.5), the generalization Gen(�

0

; A

?

) is equal to Gen(�

0

; A

?

+ self : �

y

), that is, Gen(�

0

; A

y

).

Thus, we have A

y

+ x : Gen(�

0

; A

y

) ` b : '. Since A

?

y

is just A

?

, we have A

?

y

` a

0

: �

0

(6.3). Thus,

we can apply the induction hypothesis with A

y

for A. We get A

y

` b[a

0

=x] : '. We conclude with

rule Object.
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Lemma 28 (Term replacement (instance variables and self)) Let A be an environment

and �a be either an expression a or a class expression c. Let w be an object body and ' be an object

body type. We de�nes U as the restriction of dom (w) to �elds. We write �

y

for hmethod (')i. We

assume that A

?

is A, bound variables of �a are not be free in hwi and w(u), and the following three

judgments hold:

A+ self : �

y

` w : '; (A ` w(u) : �

u

)

u2U

; A+ self : �

y

+ (' n method) ` �a : �� (6.9):

Then, A ` �a[hwi=self][w(u)=u]

u2U

[hw @ (field u = a

u

u2V

)i=fhu = a

u

u2V

ig]

V �U

: �� .

Proof: The proof is by induction on the structure of �a. For any expression a, we write a

+

for

a[hwi=self][w(u)=u]

u2U

[hw @ (field u = a

u

u2V

)i=fhu = a

u

u2V

ig]

V �U

Class expression c

+

is de�ned likewise. We write A

y

for A + self : �

y

+ (' n method). Using

lemma 24, we can assume that a derivation of (6.9) does not end with rule Sub.

We only show the more complicated cases. Other cases are easy.

Cas a is self: Hypothesis (6.9) is A + self : �

y

+ (' n method) ` self : � . So, � and �

y

are

equal. On the other hand, a

+

is equal to hwi. We conclude by rule Object:

A+ self : � ` w : ' � = hmethod (')i

(Object)

A ` hwi : �

Cas a is fhu = a

u

u2V

ig: A derivation of (6.9) ends as:

((6.10) field u : �

u

2 A

y

(6.11) A

y

` a

u

: �

u

)

u2V

(Override)

A

y

` fhu : a

u

u2V

ig : �

y

So, from (6.10), ' � field u : �

u

u2V

= '. By induction hypothesis applied to (6.11), we get

A ` a

+

u

: �

u

(6.12). Hence A ` (field u = a

+

u

)

u2V

: (field u : �

u

)

u2V

. Then, the append

lemma 26 applied to the hypothesis A+ self : �

y

` w : ' and the last judgment yields A+ self :

�

y

` w @ (field u = a

+

u

)

u2V

: '. Hence the following derivation :

A+ self : �

y

` w @ (field u = a

+

u

)

u2V

: ' �

y

= hmethod (')i

(Object)

A ` hw @ (field u = a

+

u

)

u2V

i : �

y

Lemma 29 (Term replacement (super)) If A ` b

1

: '

1

, A + super: ' ` b

2

: '

2

and bound

variables of b

2

are not free in b

1

, then A ` b

0

2

: '

2

where b

0

2

is [a=s#m]

methodm=a2b

1

, i.e. b

2

where all

invocations of methods to super s#m have been replaced by the body a of the corresponding method

m in b

1

.

Proof: The proof is similar to the one of lemma 27. It is in fact simpler, as super is not substituted

across class and object boundaries, nor across instance variable de�nitions.

Lemma 30 (Redex contraction) We write �!

�

for a one-step reduction in an empty context.

If �a

1

�!

�

�a

2

then �a

1

� �a

2

.

Proof: The proof is done independently for each redex. All cases are easy now that we have proven

the right lemmas.

Let us assume A ` a

1

: � (6.13) and A equals A

?

(resp. A ` b

1

: ' (6.14) for any A). We

show that A ` a

2

: � (6.15) (resp. A ` b

2

: ') by cases on the redex a

1

(resp. b

1

). Each case is

shown independently. Using lemma 24, we can assume that a derivation of (6.13) does not end

with rule Sub.
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Cas a

1

is (fun (x) a) v: A derivation of (6.13) ends either as:

A+ x : �

0

` a : �

0

(Fun)

A ` fun (x) a : �

0

! �

0

�

0

! �

0

� �

0

0

! �

(Sub)

A ` fun (x) a : �

0

0

! � A ` v : �

0

0

(App)

A ` (fun (x) a) v : �

or as:

(6.16) A+ x : �

0

` a : �

(Fun)

A ` fun (x) a : �

0

! � (6.17) A ` v : �

0

(App)

A ` (fun (x) a) v : �

The end of the �rst derivation can be rewritten as:

A+ x : �

0

` a : �

0

�

0

� �

(Sub)

(6.16) A+ x : �

0

` a : �

(Fun)

A ` fun (x) a : �

0

! �

A ` v : �

0

0

�

0

0

� �

0

(Sub)

(6.17) A ` v : �

0

(App)

A ` (fun (x) a) v : �

In both cases, the term replacement lemma 27 applied to (6.17) and (6.16) shows the conclusion.

Cas c

1

is (fun (x) c) v: Similar to previous case.

Cas a

1

is let x = v in a: A derivation of (6.13) ends as

(6.18) A ` v : �

0

(6.19) A+ x : Gen(�

0

; A) ` a : �

(Let)

A ` let x = v in a : �

The term replacement lemma 27 applied to (6.18) and (6.19) shows the conclusion.

Cas a

1

is class z = v in a: Similar to previous case.

Cas a

1

is new (struct w end): A derivation of (6.13) ends as

A

?

+ self : �

y

` w : '

(Class-Body)

A ` struct w end : sig (�

y

) ' end �

y

= hmethod (')i

(New)

(6.20) A ` new (struct w end) : �

y

Hence,

A

?

+ self : �

y

` w : ' �

y

= hmethod (')i

(Object)

A ` hwi : �

y

Cas a

1

is hwi#m: We must remember that A

?

is A. A derivation of (6.13) ends either as

A+ self : �

y

` w : ' �

y

= hmethod (')i

(Object)

A ` hwi : �

y

�

y

� �

y

0

(Sub)

A ` hwi : �

y

0

�

y

0

= hm : �

0

k

; �

0

i

(Send)

A ` hwi#m : �

0

k

or as

(6.21) A+ self : �

y

` w : ' (6.22) �

y

= hmethod (')i

(Object)

A ` hwi : �

y

(6.23) �

y

= hm : �

k

; �i

(Send)

A ` hwi#m : �

k
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The end of the �rst derivation can be rewritten

A+ self : �

y

` w : ' �

y

= hmethod (')i

(Object)

A ` hwi : �

y

�

y

= hm : �

k

; �i

(Send)

A ` hwi#m : �

k

�

k

� �

0

k

(Sub)

A ` hwi#m : �

0

k

It has been seen at the beginning of the proof that rule Sub at the end of a derivation could be

ignored. Thus, only the second case need to be considered.

The result is then proved using the term replacement lemma 28.

We �rst show that the hypotheses of lemma 28 are satis�ed. As the �elds of an object are

typed in the same environment as the object, for field u : �

u

2 ', A ` v

u

: �

u

(6.24) where

field u = v

u

2 w. From (6.22) and (6.23), method m : �

k

2 '. Then, from (6.21), an easy

induction on w using rules Then, Field, and Method yields:

A+ self : �

y

+ '

1

` w(m) : �

k

for some '

1

� (' n method)

As A contains no field bindings, the environment can be extended to include ' n method:

(6.25) A+ self : �

y

+ (' n method) ` w(m) : �

k

Finally, the term replacement lemma 28 applied to (6.21), (6.24), (6.25) yields

A ` w(m)[hwi=self][w(u)=u]

u2U

[hw @ (field u = a

u

u2V

)i=fhu = a

u

u2V

ig]

V �U

: �

k

Cas b

1

is inherit (struct w end) as s ; b: A derivation of (6.14) ends as

.

.

.

A ` inherit (struct w end) as s : ' (6.26) A+ (' n method) ` b : '

2

(Then)

A ` inherit (struct w end) as s ; b : '

1

� '

2

where ' = '

1

+ (super s : '

1

), continued by

(6.27) A ` self : �

y

(6.28) A

?

+ self : �

y

` w : '

1

(Class-Body)

A ` struct w end : sig (�

y

) '

1

end

(Inherit)

A ` inherit (struct w end) as s : '

1

+ (super s : '

1

)

According to (6.27), self : �

y

2 A. Judgment (6.28) can thus be rewritten A ` w : '

1

(6.29).

Applying the term replacement lemma 29 on A+ ('

1

n method) ` w : '

1

(the environment has

been extended) and (6.26) yields A+('

1

nmethod) ` b[a=s#m]

methodm=a2w

: '

2

. Then, the append

lemma applied on (6.29) and this last judgment gives the result:

A ` w @ b[a=s#m]

methodm=a2w

: '

1

� '

2

Cas b

1

is field u = v ; b: A derivation of (6.14) ends as

A

?

` v : �

(Field)

A ` field u = v : (field u : �) (6.30) A+ (field u : �) ` w : '

(Then)

A ` field u = v ; w : '� (field u : �)

From (6.30), since u 2 dom (w) and �elds appear before methods in w, an easy induction

shows that A ` w : '. Indeed, �elds are typed in environment A

?

, and methods are typed in an

environment in which (field u : �) has been added anyway after the typing of the �eld u appearing

in w.
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Cas b

1

is methodm = a ; b: A derivation of (6.14) ends as

A ` self : hm : � ; �

0

i A ` a : �

(Method)

A ` methodm = a : (methodm : �) (6.31) A ` w : '

(Then)

A ` methodm = a ; w : (methodm : �)� '

Since m 2 dom (w), m 2 dom ('), then ' and (method m : �) � ' are equal. Therefore, judg-

ment (6.31) can be rewritten A ` w : (methodm : �)� '.

Cas a

1

is (v : � <: �

0

): A derivation of (6.13) ends as

A ` v : �(�) � � �

0

(Coerce)

A ` (v : � <: �

0

) : �(�

0

)

Hence,

A ` v : �(�) �(�) � �(�

0

)

(Sub)

A ` v : �(�

0

)

The normal-form theorem is proved by structural induction on values, using the following

lemma.

Lemma 31 Let v be a value. We assume ; ` v : � (6.32).

� If � is a functional type, then v is a function.

� If � is an object type, then v is an object.

Let v

c

be a value. We assume ; ` v

c

: 
.

� If 
 is a functional type, then v is a function.

� Otherwise, v is an object.

Proof: We prove that if v is a function, then � is a functional type and that if v is an object, then

� is an object type. Then, since a value is either a function or an object and functional types and

object types are incompatible, this proves the lemma.

We can ignore rule Sub at the end of a derivation, as it does not change the shape of a type.

Cas a is fun (x) a

1

: A derivation of (6.32) ends as

A+ x : �

1

` a

1

: �

2

(Fun)

A ` fun (x) a

1

: �

1

! �

2

So, � is �

1

! �

2

.
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Cas a is hwi: A derivation of (6.32) ends as

A

?

+ self : �

y

` w : ' �

y

= hmethod (')i

(Object)

A ` hwi : �

y

So, � is hmethod (')i.

The proof is similar for class values.

Theorem 2 (Normal forms) Well-typed irreducible normal forms are values (i.e. if ; ` a : �

and a cannot be reduced, then a is a value.)

Proof: The proof is by structural induction simultaneously on expressions a and class bodies b. Let

us assume ; ` a : � (6.33) (resp. ; ` c : 
 (6.34), A ` b : ' (6.35) or A ` d : ', where A contains

only field and method bindings), and that a (resp. c, b or d) cannot be reduced.

Cas a is x: This expression cannot be typed in the empty environment.

Cas a is a

1

a

2

: It is not possible. A derivation of (6.33) shows that there exists a type �

1

such

that ; ` a

1

: �

1

! � . The induction hypothesis applied to expression a

1

shows that it is a value.

Since it has a functional type, it must be a function fun (x) a

0

. But then expression a could be

reduced.

Cas a is let x = a

1

in a

2

: It is not possible. The induction hypothesis applied to expression a

1

shows that it is a value. But then expression a could be reduced.

Cas a is a

1

#m or class z = c in a

1

: Similar to previous cases.

Cas a is fun (x) a

1

: By de�nition, expression a is a value.

Cas a is s#m: It is not possible : expression s#m is not typable in the empty environment.

Cas a is self or u or fhu = a

u

u2V

ig: Same as previous case.

Cas a is (a

1

: � <: �

0

): It is not possible: a can be reduced.

Cas a is hbi: The induction hypothesis shows that object body b is a value. Then, expression a

is also a value.

Cas a is new c: It is not possible. A derivation of (6.33) shows that ; ` c : sig (�

y

) ' end. The

induction hypothesis applied to c shows that it is a value. According to its type, it is a structure.

But then a can be reduced

Cas c is z: This expression is not typable in the empty environment.

Cas c is c

1

a: It is not possible. A derivation of (6.34) shows that there exists a type � such that

; ` c

1

: � ! 
. The induction hypothesis applied to expression c

1

shows that it is a class value.

Since it has a functional type, it must be a function fun (x) c

0

. But then expression c could be

reduced.

Cas c is fun (x) c

1

: By de�nition, expression c is a value.

Cas c is struct b end: The induction hypothesis shows that class body b is a value. Then,

expression c is also a value.
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Cas b is d; b

1

: The induction hypothesis shows that object component d and object body b

1

are

in normal forms. d is thus a �eld or method de�nition, and it is not overridden by b

1

(otherwise, b

could be reduced.)

Cas b is ;: By de�nition, object body b is a value.

Cas d is inherit c as s: It is not possible. A derivation of (6.35) ends as:

A ` self : �

y

(6.36) A ` c : sig (�

y

) '

1

end

(Inherit)

A ` inherit c as s : '

1

+ (super s : '

1

)

The induction hypothesis applied to c shows that it is a class value. According to its type, it is of

the form struct w end. But then, the inheritance clause could be reduced.

Cas d is methodm = a: By de�nition, expression d is in normal form.

Cas d is field u = a: If A ` d : field u : � , then ; ` a : � , as A contains only field and method

bindings. By induction hypothesis, expression a is in normal form. Then, so is object component

d.



Chapter 7

Poly ML: une extension de ML avec

du polymorphisme d'ordre sup�erieur.

Ce chapitre, publi�e dans [46], est le r�esultat d'un travail en collaboration avec Jacques Gar-

rigue.

Extension de ML avec du polymorphisme d'ordre sup�erieur semi-implicite

Nous proposons une extension modeste et conservatrice de ML qui autorise l'utilisation du poly-

morphisme d'ordre sup�erieur de fa�con semi-implicite. L'introduction des types polymorphes reste

enti�erement explicite, c'est-�a-dire que leur introduction et leur valeur exacte doivent simultan�ement

être indiqu�ees. En revanche, leur �elimination est semi-explicite : il su�t d'indiquer leur �elimination

et le type polymorphe est lui-même synth�etis�e. Cette extension est particuli�erement utile dans le

langage Objective ML qui utilise le polymorphisme de fa�con essentielle et souvent �a la place du

sous-typage.

Extending ML with Semi-Explicit Higher-Order Polymorphism

We propose a modest conservative extension to ML that allows semi-explicit �rst-class polymor-

phism while preserving the essential properties of type inference. In our proposal, the introduction

of polymorphic types is fully explicit, that is, both introduction points and exact polymorphic

types are to be speci�ed. However, the elimination of polymorphic types is semi-implicit: only

elimination points are to be speci�ed as polymorphic types themselves are inferred. This extension

is particularly useful in Objective ML where polymorphism replaces subtyping. Objective ML that

sustains polymorphism and neglects subtyping.

169
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Introduction

The success of the ML language is due to its combination of several attractive features. Undoubt-

edly, the polymorphism of ML [35] |or polymorphism �a la ML| with the type inference it allows,

is a major advantage. The ML type system stays in close correspondence with the rules of logic,

following the Curry-Howard isomorphism between types and formulas, which provides a simple

intuition, and a strong type discipline. Simultaneously, type inference relieves the user from the

burden of writing types: an algorithm automatically checks whether the program is well-typed and,

if true, returns a principal type.

Many extensions that are based on this simple system have been proposed: polymorphic records,

�rst-class continuations, �rst-class abstract datatypes, type-classes, overloading, objects, etc. In

all these extensions, type inference remains straightforward �rst-order uni�cation with toplevel

polymorphism. This shows the robustness of ML-style type inference.

There are of course cases where one would like to have �rst-class polymorphism, as in system F .

ML allows for polymorphic de�nitions, but abstractions can only be monomorphic. Traditionally,

ML polymorphism is used for de�nitions of �rst-class functions such as folding or iteration over

a parameterized datatype. Some higher-order functionals require polymorphic functions as argu-

ments. These situations mostly appear in encodings, and occurrences in real programs can usually

be solved by using functors of the module language.

This simple picture, which relies on a clear separation between data and functions operating

on data, has recently been invalidated by several extensions. For instance, data and methods are

packed together inside objects. This decreases the need for polymorphism, since methods can be

specialized to the piece of data they are embedded with. However, data transformers such as folding

functions remain parametric in the type of the output. For instance, a function fold with the ML

type 8�; �: � list ! (� ! � ! �) ! � ! � should become a method for container objects, of

type 8�: (� ! �! �)! �! � where � is the type of the elements of the container. The extension

of ML with �rst-class abstract types [65, 108] also requires �rst-class polymorphic functions: for

instance, an expression such as �f: open x as y in f y can only be typed if the argument f is

polymorphic in its argument, so that the abstract representation of y is not revealed outside the

scope of the open construct. First-class polymorphism seems to be also useful in Haskell to enable

the composition of monads.

First-class polymorphic values have been proposed in [108, 83] based on ideas developed in [65].

After de-sugaring, all these proposals reduce to the same idea of using explicit, mutually inverse

introduction and elimination functions to coerce higher-order types into basic, parameterized type

symbols and back. Therefore, they all face the same problem: types must be written explicitly,

both at the introduction and elimination of polymorphism.

Recent results on the undecidability of type inference for system F [123, 59, 90] do not leave

many hopes for �nding a good subset of system F that signi�cantly extends ML, moreover with

decidable type inference and principal types. Previous attempts to accomplish this task were

unsuccessful.

This is not the path we choose here. We do not infer higher-order types and thus avoid higher-

order uni�cation, undecidable in general. Furthermore, we maintain the simplicity of the ML type

system, following the premise that an extension of ML should not modify the ML polymorphism

in its essence, even if it is an extension that actually increases the level of polymorphism.

The original insight of our work is that, although ML polymorphism allows type inference,

actual ML programs do already contain a lot of type information. All constants, all constructors,
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and all previously de�ned functions already have known types. This information is only waiting to

be used appropriately.

In comparison to previous works, we remove the requirement for type annotations at the elim-

ination of polymorphism by using type inference to propagate explicit type information between

di�erent points of the program. In our proposal, tagging values of polymorphic types with type

symbols becomes super
uous. A type annotation at the introduction of a polymorphic value is

su�cient and can be propagated to the elimination site (following the data-
ow view of programs).

This makes the handling of such values considerably easier, and reasonably practical for use in a

programming language.

In a �rst section, we present our solution informally, and explain how it simpli�es the use

of higher-order types in ML. Then, we develop this approach formally, proving all fundamental

properties. In a third section, encodings are provided, both for previous formulations of �rst-class

polymorphism, and for system F itself. Section 7.4 shows how our system can be used to provide

polymorphic methods for Objective ML, in an almost transparent way. In section 7.5 we discuss

how the value-only restriction to polymorphism can be applied here. Lastly, we compare with

related works, and conclude. Proofs of main theorems are given in appendix.

7.1 Informal approach

In this section we present our solution informally. We �rst introduce a naive straightforward

proposal. We show that this solution needs to be restricted to avoid higher-order uni�cation. Last,

we describe a simple solution that allows for complete type inference.

7.1.1 A naive solution

Naively, ML types can be easily extended with polymorphic types. A typical program that cannot

be typed in ML and could be typed in system F is �f: ff . This expression is not very interesting

for itself. However, a few variations are su�cient to illustrate most aspects of type inference in the

presence of higher-order types. Useful examples can be found in section 7.4 in addition to those

suggested in the introduction.

Although �f: ff is not typable in ML, the expression let f = �x: x in f f is. One can

see let-de�nitions as a special syntax, combined with a special typing rule, for the application

(�f: ff) (�x: x). Let us exercise by replacing the Let polymorphic binding by �rst-class poly-

morphism. The identity �x: x of type � ! � has also type scheme 8�:� ! �. We shall write

[�x: x : 8�:� ! �] for the creation (or introduction) of the polymorphic value �x: x with type

scheme 8�:� ! �. In order to avoid confusion with ML types, we explicitly coerce 8�:� ! � to

a regular ML type [8�:� ! �], adding the type constructor [ ]. We call 8�:� ! � a polymorphic

type or a type scheme and [8�:�! �] a polytype.

Let f be the expression [�x: x : 8�:�! �], which has type [8�:�! �]. As any �rst-class value,

f can be passed to other functions, be stored in data-structures, etc. For instance (f; 1) is a pair

of type ([8�:�! �] � int). A polymorphic function (i.e. a polymorphic value that is a function)

cannot be applied directly, since it is typed with a polytype, which is incompatible with an arrow

type. We must previously open (or eliminate) the polytype. We introduce a new construct h i for

that purpose. Hence, hfi is a function of type an instance of the polymorphic type 8�:�! �, i.e.

� ! � for some type � . Its principal type is �! �.

The raw expression �f: ff is not well typed. It should be passed a polymorphic value as

argument, for instance, of type [8�:� ! �]. Here, we shall introduce polymorphism by a type
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constraint on the argument: �f : [8�:�! �]: hfi f . The �rst occurrence of f in the body is opened

to eliminate polymorphism before it is applied. The following de�nition of g is well-typed

g

def

== �f : [8�:�! �]: hfi f : [8�:�! �]! [8�:�! �]

So are the two following variants:

h

def

== �f : [8�:�! �]: hfi hfi : [8�:�! �]! �

0

! �

0

k

def

== �f : [8�:�! �]: [hfi hfi : 8�:�! �] : [8�:�! �]! [8�:�! �]

In h, the occurrence of f in the argument position is also opened, so the result type is no longer a

polytype. In k, polymorphism is lost as in h, then it is recovered explicitly. Finally, we can apply

g to f :

(�f : [8�:�! �]: hfi f) [�x: x : 8�:�! �] : [8�:�! �]

More interestingly, the following expression is also well-typed

(�u: u [�x: x : 8�:�! �]) (�f : [8�:�! �]: hfi f) : [8�:�! �]

There is no term typable in ML that has the same erasure (untyped �-term) as this one. Note that

no type annotation is needed on u since although u has a polytype as result, it is never opened.

7.1.2 An obvious problem

The examples above mixed type-inference and type-checking (using type-annotations). The obvious

problem of type inference in the presence of higher-order types remains to be solved: what happens

when expressions of unknown type are opened. Should the program �f: hfi f or simpler �x: hxi be

typed?

The answer is clearly negative, since this would amount to inferring higher-order types, which

we choose to avoid here. We should keep all user-provided polymorphism, but never guess poly-

morphism.

The attempt to forbid lambda abstraction of unspeci�ed type to be a polytype does not work. It

would violate the assumption that polytypes are regular ML types. Thus, if �x: x has type �! �,

it should also have type [�]! [�] for any polymorphic type �. Actually, it is important that �x: x

possesses all these types. For instance, both (�x: x) f and �x: f x should be typable and have the

same type as f .

When typing �f: hfi f , variable f is �rst given an unknown type � . Guessing [8�:� ! �]

for � would be correct, but not principal, since [8�:� ! � ! �] would also be a possible type

for � . More subtle, the expression �f: hfi (g f) may only be typed with [8�:�! �]! [8�:�! �]

and has a principal derivation. However, we should also reject this program. Informally, type

inference would imply backtracking: f is �rst assumed of unknown type � ; we cannot type hfi so

we backtrack; typing the application g f forces f to be of type [8�:�! �], then hfi can be typed,

and so on. This causes two problems. Firstly, backtracking may lead to a combinatorial explosion

of the search space, and we would rather fail in every case where some inference order would fail.

Worse, typing constraints may disappear during reduction. Traditionally, this is not a problem

since it only allows to infer better types. However, in our case, the removal of polytype constraints

will leave some polytypes unspeci�ed and lead to failure. Consequently, we would loose the subject

reduction property. For instance, �f: hfi (g f) reduces to �f: hfi f but the latter is not typable.
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7.1.3 A simple solution

The essence of our proposal is a simple mechanism based on uni�cation that distinguishes polytypes

that have been user-provided from those that have just been guessed. Each occurrence of a polytype

[�] is labeled with a label �. That is, we write [�]

�

rather than [�]. Actually, we keep [�] as an

abbreviation for [�]

�

where � is an anonymous label, i.e. one that does not appear anywhere else.

Intuitively, labels indicate sharing of polytype nodes.

The elimination of polymorphism hai is possible whenever a can be typed with [�]

�

where �

does not appear anywhere else. Informally, we could just say when a has polytype [�] (since � is

anonymous). The intuition is that an anonymous label � ensures that the corresponding polytype

does not appear anywhere else and a fortiori does not appear as an hypothesis (i.e. in a negative

occurrence, such as the context or the left hand-side of an arrow); thus, it must have been user-

provided.

For instance, in the expression �f: hfi f , the �-bound variable f can be given the polytype

[8�:�! �]

�

, with a monomorphic label �; since all instances of f share the same label �, the label

cannot be anonymous as required when typing hfi. Indeed, the type of the variable f in hfi is

a polytype only under the assumption that the binding occurrence of f is typed with exactly the

same polytype.

On the contrary, when a polytype is explicitly given, it can be propagated top-down. We use

polymorphism to generate new anonymous labels from older ones. We allow quanti�cation on

anonymous labels, and later instantiation of quanti�ed labels to new anonymous labels.

When typing the expression �f : [8�:�! �]: hfi f , the type assumption f : 8�:[8�:� ! �]

�

is

added to the context in which hfi f is typed. Thus, variable f has type [8�:� ! �]

�

1

with a

di�erent, anonymous, label �

1

, and therefore hfi is well-typed. For technical reasons we chose not

to allow type annotation of abstracted variables in our system, but instead �x: � : a can be seen as

�x: let x = (x : �) in a. Type annotation ( : �) renames all �'s free in � into fresh ones.

7.2 Formal approach

We formalize our approach as a small extension to core ML.

7.2.1 The core language

Types We assume given two collections of type variables � 2 V, and labels � 2 E . The syntax of

types is:

� ::= � j � ! � j [�]

�

Monotypes

� ::= � j 8�:� Type schemes

& ::= � j 8�:& Generic schemes

� ::= � j � Variables

The construct [�]

�

is used to coerce a type scheme � to a monotype. We call [�]

�

a weak polytype.

The label � is used to keep track of sharing between weak polytypes, or allow them to be usable

polytypes, when it is quanti�ed as 8�:[�]

�

. We do not quantify labels in �, since this would not add

any power to the system (it would be redundant with explicit type annotations).

Free type variables and free labels of a generic scheme, type scheme, or monotype & are written

FV (&) and FL(&), and are de�ned as usual. In a type scheme 8�:&, 8 acts as a quanti�er, and the

variable or label � is bound (i.e. not free) in 8�:&. We consider type schemes equal by renaming
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(Var)

x : & 2 A

A ` x : &

(Fun)

A� x : �

0

` a : �

A ` �x: a : �

0

! �

(App)

A ` a

1

: �

2

! �

1

A ` a

2

: �

2

A ` a

1

a

2

: �

1

(Gen-V)

A ` a : � � =2 FV (A)

A ` a : 8�:�

(Gen-E)

A ` a : & � =2 FL(A)

A ` a : 8�:&

(Inst-V)

A ` a : 8�:�

A ` a : �f�=�g

(Inst-E)

A ` a : 8�:&

A ` a : &f�

0

=�g

(Let)

A ` a

1

: & A� x : & ` a

2

: �

A ` let x = a

1

in a

2

: �

(Ann)

A ` a : �

1

(�

1

: � : �

2

)

A ` (a : �) : �

2

(Intro)

A ` a : �

1

(�

1

: � : �

2

)

A ` [a : �] : [�

2

]

�

(Elim)

A ` a : 8�:[�]

�

A ` hai : �

Figure 7.1: Typing rules

and reordering of bound variables and labels, and removal of useless quanti�ers (i.e. 8�:� � �

whenever variable � is not free in �). As usual, substitutions leave bound variables and bound

labels unchanged. For example (�! [8�:� ! �]

�

)f�=�g is � ! [8�:� ! � ]

�

provided � is not free

in � . An instance of a type scheme 8��; ��:�

0

is �f��

0

; ��=��; ��g.

Expressions

a ::= x j �x: a j a a j let x = a in a

j [a : �] j hai j (a : �)

The �rst line corresponds exactly to core ML. We then introduce three new constructs: introduction

and elimination of �rst-class polymorphism and type annotation.

Typing rules are given in �gure 7.1. All typing rules but the last three ones are standard. Rules

Ann and Intro use an auxiliary relation ( : : ). Given a type scheme �, we write (�

1

: � : �

2

)

if there exists a substitution � from type variables to types and two substitutions �

1

and �

2

from

labels to labels, such that �

1

= �(�

1

(�)) and �

2

= �(�

2

(�)). The intuition is that if � is the identity,

then �

1

and �

2

are both equal to � except maybe in their labels. Indeed, (�

1

(�) : � : �

2

(�)) for

any label renamings �

1

and �

2

. If � does not contain any label, then (�

1

: � : �

2

) is equivalent to

�

1

and �

2

being the same generic instance of �. An important property of the relation ( : � : ) is

its stability by substitution. That is, if (�

1

: � : �

2

), then (�(�

1

) : � : �(�

2

)) for any substitution �.

Note that � is user-given and is not a�ected by the substitution.

This relation is used to type explicit annotations. For typechecking purposes, the construct

( : �) could have been replaced by a countable collection of primitives �x: (x : �) indexed by � and

given with principal type scheme 8��

1

; ��

2

; FV (�): �f��

1

=��g ! �f��

2

=��g where ��

1

and ��

2

are di�erent

renamings of the labels ��. That is, to type an expression (a : �), let �

1

and �

2

be two copies

of � where their labels have been renamed, and � be a substitution such that a has type �(�

1

);

then (a : �) has type �(�

2

). We kept annotation as a primitive construct because of its dynamics

semantics.
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Rule Intro uses the same relation, except that types schemes replace types. To type [a : �],

let �

1

and �

2

be two copies of � where labels have been renamed; �nd a substitution � such that a

has type �(�

1

) (i.e. �(�

1

) is a generic instance of the principal type scheme of a); then [a : �] has

type [�(�

2

)]

�

for any label �.

Last, rule Elim says that polymorphism can be used only if the label of the polytype does not

occur anywhere else.

As an example, we have the following derivation, where � abbreviates 8�:� ! � and A is

f : [�]

�

1

:

(Var)

A ` f : [�]

�

1

([�]

�

1

: [�]

�

: [�]

�

2

)

(Ann)

A ` (f : [�]

�

) : [�]

�

2

(Gen-E)

A ` (f : [�]

�

) : 8�

2

:[�]

�

2

(� � 8�:�! �) (Elim)

A ` hf : [�]

�

i : 8�:�! �

(�  [�]

�

1

) (Inst-V)

A ` hf : [�]

�

i : [�]

�

1

! [�]

�

1

.

.

.

(Var)

A ` f : [�]

�

1

(App)

A ` hf : [�]

�

i f : [�]

�

1

(Fun)

` �f: hf : [�]

�

i f : [�]

�

1

! [�]

�

1

7.2.2 Dynamic semantics

We give a call-by-value semantics for the core language. Values and evaluation contexts are:

v ::= w j [v : �]

w ::= �x: a j (w : �

1

! �

2

)

E ::= fg j E a j v E j let x = E in a j [E : �] j (E : �) j hEi

One step is either a reduction of the form:

(�x: a) v

Fun

�! afv=xg

let x = v in a

Let

�! afv=xg

h[v : 8��:� ]i

Elim

�! (v : �)

(v

1

: �

2

! �

1

) v

2

Tfun

�! (v

1

(v

2

: �

2

) : �

1

)

([v : 8��:� ] : [�]

�

)

Tint

�! [(v : �) : �]

(v : �)

Tvar

�! v

or an inner reduction obtained by induction:

a

1

r

�!
a

2

Efa

1

g

r

�! Efa

2

g

Note that �, in rule Tvar, is really a variable and not a meta-variable. It is a major di�erence

with ML that type annotations are not just a means to restrict principal types to instances. On

the opposite, they allow better typings. Thus, reduction must preserve type annotations as long as

they provide useful typing information. Indeed, while terms are only reduced by rules Fun, Let,

and Elim, we need the rules Tfun and Tint to maintain this type information. Rule Tvar erases

empty type information. Although types are preserved during reduction, they do not actually
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participate in the reduction. In particular, it would be immediate to de�ne an untyped reduction

u

�! and a type-erasure er, and to show that if a

1

�! a

2

, then er(a

1

)

u

�! er(a

2

) or er(a

1

) and

er(a

2

) are equal.

7.2.3 Type soundness

We could easily show that evaluation cannot go wrong by means of translation into system F . We

prefer to prove it in a more direct way. Subject reduction is an intermediate result of the direct

proof that is neither required nor implied by type soundness. However, it is quite important for

itself, since it shows that each reduction step preserves typings, and thus that the static semantics

is tightly related to the dynamic semantics.

Subject reduction is not obviously preserved by extension to polytypes: the new constructions

allow more programs to be typed, but simultaneously, their reduced forms need more programs to

be typable. In particular, subject reduction would not hold if we threw away type constraints too

early during reduction.

Both subject reduction and type inference are simpli�ed by restricting ourselves to canonical

derivations. A similar result existed for the original Damas-Milner presentation of ML, but ML is

now often presented in its syntax directed form.

Canonical derivations are those where occurrences of rules Gen and Inst are restricted as

follows:

� rule Gen only occurs as the last rule of the derivation or right above rule Intro, Elim, the

left premise of rule Let, or another rule Gen.

� rule Inst may only occur right after rule Var, rule Elim, or another rule Inst.

Lemma 32 (Canonical derivations) A valid typing judgment A ` a : � has a canonical deriva-

tion.

Another classical result is the stability of typing judgments by substitution:

Lemma 33 (Stability) If A ` a : � , then for any substitution �, �(A) ` a : �(�).

It is important to notice that the substitution is not applied to the expression a, in particular type

constraints inside a are left unchanged: their free variables must be understood as if they were

closed by existential quanti�cation.

We de�ne a relation a

1

� a

2

between programs stating that all typings of a

1

are also typings of

a

2

, i.e.

a

1

� a

2

def

== (8A; &; A ` a

1

: & =) A ` a

2

: &)

Theorem 3 (Subject reduction) Reduction preserves typings, i.e. if a

1

�! a

2

, then a

1

� a

2

.

Subject reduction is not su�cient to prove type soundness, since the full relation (every program

has every type in any context) satis�es subject reduction but does not prevent from type errors. It

must be complemented by the following result:

Theorem 4 (Canonical forms) Irreducible programs that are well-typed in the empty environ-

ment are values.

Type soundness is a straightforward combination of the two previous theorems.
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7.2.4 Type inference

First-order uni�cation on simple types must be extended to handle polytypes. During uni�cation,

a polytype is treated as a rigid skeleton corresponding to the polymorphic part, on which hang

simple types. We present both uni�cation and type inference as solving uni�cation constraints,

following [57]. The formalism used is that of conditional rewriting, where we distinguish between

assumed conditions, which can always be satis�ed, written let : : : in , and conditions that may fail,

providing dynamic control during the inference process, written if : : : then.

Uni�cation for simple types First, we remind uni�cation for simple types. In this part only,

we exclude polytypes from types � . A uni�cation problem is a formula U de�ned by the following

grammar.

U ::= ? j > j U ^ U j 9�:U j e Uni�cation problems

e ::= � j � _= e Multi-equations

The symbols > and ? are respectively the trivial and unsatis�able uni�cation problems. We treat

them as a unit and a zero for ^. That is U ^> and U ^? are equal to U and ?, respectively. We

also identify > with singleton multi-equations. That is, we can always consider that a uni�cation

problem U contains at least one multi-equation � _= e for each variable of U . A complex formula is

the conjunction of other formulas or the existential quanti�cation of another formula. The symbol

^ is commutative and associative.

The symbol 9 will be needed later for polytypes. It acts as a binder, i.e. free variables of 9�:U

are free variables of U except �. Bound variables can freely be renamed. We identify 9�

1

:9�

2

: U

and 9�

2

:9�

1

: U and simply write 9�

1

; �

2

: U . The symbol _= is associative and commutative. This

makes multi-equations behave as multi-sets of terms.

The substitution of terms is extended to uni�cands in a straightforward way. For existentials,

the application of a substitution � to a uni�cand 9�:U is the uni�cand 9�

0

: �(Uf�

0

=�g) where �

0

is chosen outside of both the domain and the codomain of � and outside free variables of U .

A substitution � is a solution of a multi-equation if it sends all terms of the multi-equation

to the same codomain. The substitution � satis�es a conjunction of subproblems if it satis�es all

subproblems; � is a solution of 9�:U if it can be extended on �

0

into a solution of Uf�

0

=�g where

�

0

is chosen outside of both the domain and the codomain of � and outside free variables of U .

Two uni�cation problems are equivalent if they have the same set of solutions. One can check

that all previous structural equalities are indeed equivalences. We write U

1

� U

2

when the uni�-

cation problems U

1

and U

2

are equivalent. We also write U

1

�

�

�

�> U

2

to mean that the uni�cation

problem U

1

can be rewritten into the equivalent uni�cation problem U

2

.

Given a uni�cation problem U , we de�ne the containment ordering �

U

as the transitive closure

of the immediate precedence ordering containing all pairs � � �

0

such that there exists a multi-

equation � _= � _= e in U where � is a non-variable term that contains �

0

. A uni�cation problem is

strict if �

U

is strict. Remark that strictness is syntactic and is not preserved by equivalence. The

detection of cycles by a non strict containment ordering is always sound; it is also complete, but

only for fully merged and decomposed uni�cation problems.

A problem is in solved form if it is either ? or >, or if it is strict, merged, decomposed, and

of the form 9 ��:

V

i21::n

e

i

. In particular, multi-equations e

i

contain at most one non-variable term,

and if i 6= j then e

i

and e

j

contain no variable term in common. An explicit principal solution � can

be read straightforwardly from a problem in solved form. We also write U �

�

�

�> 9

�

�: � if � is a principal

solution of U and variables

�

� are not free in U , or by abuse of notation, if U is unsatis�able and
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Occur-Check

if�

U

is not strict then

U �

�

�

�> ?

Merge

� _= e ^ � _= e

0

�

�

�

�> � _= e _= e

0

Absorb

� _= � _= e �

�

�

�> � _= e

Decompose

if size(�

1

! �

2

) � size(�

0

1

! �

0

2

) then

�

1

! �

2

_= �

0

1

! �

0

2

_= e �

�

�

�> �

1

! �

2

_= e ^ �

1

_= �

0

1

^ �

2

_= �

0

2

Figure 7.2: First-order uni�cation for simple types

� is ?. This is consistent with the previous notation since � could be seen as ^

�2dom (�)

� _= �(�)

whenever its domain and codomain are disjoint.

The uni�cation algorithm is given as a set of rewriting rules that preserve equivalence in �g-

ure 7.2. There are implicit context rules that allow to rewrite complex formulas by rewriting any

sub-formula. We write size(�) the size of term � counted as the number of occurrences of symbols

( ! ) or [ ] in �. These rules are all standard. It is well-known that given an arbitrary uni�cation

problem, applying these rules always terminate with a uni�cation problem in solved-formed. The

rule Occur-Check rejects solutions with recursive types. If it were omitted the algorithm would

infer recursive types.

Uni�cation for simple-types with polytypes We now allow polytypes [�]

�

. In order to allow

a natural decomposition of polytypes, we extend typing problems with equations between type

schemes.

U ::= : : : j � _= �

These are not multi-equations. In particular, a variable cannot be equated to a polymorphic type

scheme, and as a result, equations involving type schemes are never merged.

A substitution � is a solution of a polytype equation 8��:� _= 8��

0

:�

0

(1) if �(8��:�) = �(8��

0

:�

0

),

where equality is the usual equality for type schemes in ML, i.e. it is taken modulo reordering and

renaming of universal quanti�ers, and removal of useless universal variables. This is equivalent to

the existence of two injective substitutions � and �

0

of respective domain �� and ��

0

and of codomain

����

0

, a renaming � from ����

0

outside of free variables of �, � , �

0

, and ����

0

such that � �� is a solution

of �(�) = �

0

(�

0

). We could solve such uni�cation problems by �rst unifying �(�) and �

0

(�

0

) and then

checking the constraints. However, this would force some unnecessary dependence. Intuitively, the

renaming � can be dealt with by existential quanti�cation of uni�cands. In particular, � can be

the identity when � is disjoint from ����

0

.

Without loss of generality, we can restrict ourselves to the case where �� \ ��

0

, FV (�) \ ��

0

, and

FV (�

0

) \ �� are all empty sets (1). Let �

0

be (� + �

�1

) � � � � � (� + �

0

). The substitution �

0

also

decomposes as (� � � n ����

0

) + (�+ �

0

). Clearly, it satis�es the three following properties:

1. �

0

(�) = �

0

(�

0

),

2. �

0

j

�

�� and �

0

j

�

��

0

are injective in ����

0

, and
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Decompose-Poly

if size(�) � size(�

0

) then

[�]

�

_= [�

0

]

�

0

_= e �

�

�

�> [�]

�

_= e ^ � _= �

0

^ � _= �

0

Clash

[�]

�

_= � ! �

0

_= e

0

�

�

�

�> ?

Polytypes

let �� \ ��

0

= ; and �� \ FV (�

0

) = ; and ��

0

\ FV (�) = ; in

8��:� _= 8��

0

:�

0

�

�

�

�> 9 ����

0

: � _= �

0

^ ��$ ��

0

Renaming-True

let �� = (�

i

)

i21::n+p

and ��

0

= (�

0

i

)

i21::n+q

in

9 ����

0

: (�

i

_= �

0

i

)

i21::n

^ ��$ ��

0

�

�

�

�> >

Renaming-False

if � 2 �� and � =2 ��

0

[ f�g then � _= � _= e ^ ��$ ��

0

�

�

�

�> ?

if � 2 �� \ FV (�) and � 6= � then 
 _= � _= e ^ ��$ ��

0

�

�

�

�> ?

Figure 7.3: First-order uni�cation for simple types with polytypes

3. no variable of ����

0

appears in im (�

0

n ����

0

).

Conversely, a substitution �

0

satisfying these three conditions is a solution of 8��:� _= 8�

0

:�

0

.

Indeed, the condition 1 above is a uni�cation problem. We introduce a new kind of uni�cands

�� $ ��

0

whose solutions are substitutions satisfying the conditions 2 and 3. We consider �� and ��

0

as multi-sets (i.e. the comma is associative and commutative). In order to avoid special cases, we

also require that no variable is listed twice in the sequence ����

0

(in particular ��\ ��

0

is empty). The

symbols _= (in polytype equations) and $ are commutative. Then � is a solution of 8��:� _= 8��

0

:�

0

under the assumption (1), if and only if it is a solution 9 ����

0

: (� _= �

0

^ �� $ ��

0

). Remark that

uni�cands are no longer stable by arbitrary substitutions as long as they contain free variables

appearing in renaming uni�cands (otherwise, renaming uni�cands could even become ill-formed.)

Still, uni�cands remain stable by renamings. Indeed this is necessary to give meaning to existentially

quanti�ed uni�cands.

Rules for uni�cation with polytypes are those of �gure 7.2 plus those of �gure 7.3. Rule Clash

handles type incompatibilities. Rule Polytypes transforms polytype equations as described above.

Rule Renaming-True allows to remove a satis�able renaming constraint that became garbage,

i.e. independent of all other multi-equations. On the opposite, rule Renaming-False detects

unsolvable renaming constraints. In the �rst case, a solution � of ��$ ��

0

would identify a variable

� of �� with another variable of �� (thus � would not be injective) or with a term outside of �� [ ��

0

.

In the second case, the image of a variable 
 would contain properly a variable � of ��, making it

leak into a wider environment (thus, violating condition 3).

It can be easily checked that if U is merged and decomposed, then for every renaming constraint

that remains either rule Renaming-True or -False applies. Therefore, renaming constraints can

always be eliminated.

Theorem 5 Given a uni�cation problem U , there exists a most general uni�er � which is computed

by the set of rules in �gures 7.2 and 7.3, or there is no uni�er and the rules reduce to ?.
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Var

let 8

�

�:�

0

= A(x) and

�

� \ FV (�) = ; in

A . x : � �

�

�

�> 9

�

�: � _= �

0

Fun

let �

1

; �

2

=2 FV (A) [ FV (�) in

A . �x: a : � �

�

�

�> 9�

1

; �

2

: (A� x : �

1

. a : �

2

) ^ � _= �

1

! �

2

App

let � =2 FV (A) [ FV (�) in

A . a

1

a

2

: � �

�

�

�> 9�: (A . a

1

: �! �) ^ (A . a

2

: �)

Let

let � =2 FV (A) in

if A . a

1

: � �

�

�

�> 9

�

�: � then

A . let x = a

1

in a

2

: � �

�

�

�> 9

�

�; �: � ^A� x : Gen (�(�); �(A)) . a

2

: �

else A . let x = a

1

in a

2

: � �

�

�

�> ?

Ann

let ��

0

= FL(�

0

) and ��

1

and ��

2

be disjoint copies of ��

0

outside of A and �

and ��

0

= FV (�

0

) and ��

1

be a copy of ��

0

outside of A and �

and �

1

= �

0

f��

1

=��

0

g in

A . (a : �

0

) : � �

�

�

�> 9 ��

1

; ��

2

; ��

1

: A . a : �

1

f��

1

=��

0

g ^ � _= �

1

f��

2

=��

0

g

Intro

let � = 8��:�

0

and �� \ FV (A) = ;

and ��

0

= FL(�) and ��

1

and ��

2

be disjoint copies of ��

0

outside of A and �

and ��

0

= FV (�) and ��

1

be a copy of ��

0

outside of A, � and ��

and �

1

= �

0

f��

1

=��

0

g in

if A . a : �

1

f��

1

=��

0

g �

�

�

�> 9

�

�: � and �� \ (dom (�) [ FV (im (�))) = ; then

A . [a : �] : � �

�

�

�> 9

�

�; ��

1

; ��

2

; ��

1

; �: � ^ � _= [8��:�

1

f��

2

=��

0

g]

�

else A . [a : �] : � �

�

�

�> ?

Elim

let � =2 FV (A) in

if A . a : � �

�

�

�> 9

�

�: � then

if �(�) = [8��

0

:�

0

]

�

and � =2 FL(�(A)) then A . hai : � �

�

�

�> 9

�

�; �; ��

0

: � ^ �

0

_= �

else if �(�) = �

0

and �

0

=2 FV (�(A)) then A . hai : � �

�

�

�> 9

�

�; �: �

else A . hai : � �

�

�

�> ?

else A . hai : � �

�

�

�> ?

Figure 7.4: Type inference algorithm

Type inference For type inference, we extend atomic formulas with typing problems. A typing

problem is a triple, written A . a : � , of an environment A, a term a, and a type � . A solution

of a typing problem A . a : � is a substitution � such that �(A) ` a : �(�). By lemma 33, the

set of solutions of a typing problem is stable under substitutions. Thus, typing problems can be

treated as uni�cation problems, following [102]. The rules for solving typing problems are given in

�gure 7.4. The generalization Gen (�;A) is, as usual, 8

�

�:� where

�

� are all free variables and free

labels of � that do not occur in A. To lighten the presentation we leave it implicit that whenever

we write 9

�

�: �, variables

�

� are asumed to be distinct from all other variables appearing in the rule.
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Theorem 6 Given a typing problem (A . a : �) there exists a principal solution, which is computed

by the set of rules described in �gures 7.2, 7.3 and 7.4, or there is no solution and the rules reduce

to ?.

7.2.5 Printing labels as sharing constraints

We propose here an alternative interface to the system, potentially enhancing readability of types

shown to the user. It is robust, and could also have been used in the presentation of our type

system. We preferred the other, more traditional approach for sake of readability.

Labels are used to trace the sharing of polytypes. Types can be restricted so that two polytypes

with the same label are necessarily equal. This property is not required in the present type system,

but it is stable: if satis�ed by all initial type assumptions in A and type annotations in a, then it

remains valid in all types appearing in a principal derivation of A ` a : � . The grammar of types

can be extended with a sharing construct

1

:

� ::= : : : j (� where � = �)

Using sharing, any type can always be written such that every label occurs at most once,

and thus can be omitted. In fact, in our presentation, sharing of types is preserved during type

inference. Sharing was just ignored when reading principal solutions from uni�cands in solved form.

The where construct allows to read and print all sharing present in the solved form. Actually, only

the sharing involving polytypes needs to be printed; the other sharing can be ignored.

For instance, the expression �x: (x : [�]) has type [�] ! [�], since the two polytypes have

di�erent labels, but the expression �x: let y = (x : [�]) in x has type (�! � where � = [�]).

Both notations (sharing constraints and label variables) actually coincide when all polytypes

are anonymous (i.e. no label variable occur twice) and polytypes are simply written [�] for instance

�x: (x : �) has type [�] ! [�]. This is an important case, since the only types the user actually

needs to write are of this form. Indeed, types written by the user are only type annotations,

which become more general by removing sharing constraints. More precisely, if �' is a type scheme

obtained from � by a label substitution �, then for any expression a, we have (a : �) � (a : �

0

) and

[a : �] � [a : �

0

]. This is an easy consequence of � being more general than �

0

.

Thus, the user never needs to write labels or sharing constraints, but he must read them in

both inferred types and type-error messages.

7.3 Encodings

In this section, we give encodings in our language for both system F and explicit polymorphism

with datatypes. This last encoding is direct, and makes our language an alternative to system F .

Type annotation on arguments

It is convenient to allow �x: � : a in expressions. We see such expressions as syntactic sugar for

�x: let x = (x : �) in a. The derived typing rule is:

(Poly-Fun)

A� (x : 8FL(�

2

) n FL(�

1

):�

2

) ` a : �

0

(�

1

: � : �

2

)

A ` �x: � : a : �

1

! �

0

1

Alternatively, one could use the binding � as � as in Objective ML, although the binding scope of as is less clear

and harder to deal with, formally.
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The derived reduction is (�x: � : a) v

Fun

�! af(v : �)=xg. Note that �

1

is not just the result of

renaming label variables of � . It may also be an instance of � . Hence, the set FL(�

2

) n FL(�

1

)

contains only labels corresponding to copies of those of � and do not include any label that would

have been brought by the instance of a free type variables of � (since those would also appear in

�

1

).

Polymorphic datatypes

Previous works have used data types to provide explicit polymorphism [65, 108, 83]. Omitting other

aspects that are irrelevant here, all these works amount to an extension of ML with expressions of

the form:

t ::= � j t! t j T �� Types

M ::= x jM M j �x:M j T M j T

�1

M Terms

j type T �� = � inM Type declarations

where T ranges over datatype symbols. In expressions, T and T

�1

act as mutually inverse intro-

duction and elimination functions to coerce the higher-order type � into the simple type T ��.

The translation is an inductive de�nition hh ii

�

. The environment � is a list of type de�nitions

type T �� = �

0

and �(T ) is the function ���: �

0

, i.e. given type arguments �� , it returns the type

�

0

f��=��g, using the right most de�nition of T in �. The translation of these types into types of our

language is straightforward. The translation does not actually use type annotations smartly, and

uses a single label �. It could also make all labels of the translation di�erent, i.e. anonymous, but

this is not needed.

hh�ii

�

= � hht

1

! t

2

ii

�

= hht

1

ii

�

! hht

2

ii

�

hhT

�

tii

�

= [�(T ) hhtii

�

]

�

We translate programs as follows.

hhxii

�

= x hh�x:Mii

�

= �x: hhMii

�

hhM

1

M

2

ii

�

= hhM

1

ii

�

hhM

2

ii

�

hhT Mii

�

= [hhMii

�

: �(T ) ��] hhT

�1

Mii

�

= hhhMii

�

: [�(T ) ��]

�

i

hhtype T �� = t in aii

�

= hhMii

�;type T ��=t

Indeed, the pattern h : [�]i amounts to the explicit elimination of polymorphism. Since, in the

translation, the elimination of polymorphism is always explicit, it can easily be shown that the

translation of a well-typed term is always well-typed. (While the program uses only one label, the

type derivation need at least two other labels to locally type the elimination patterns hhhMii

�

:

[�(T ) ��]

�

i.)

Encoding system F

La�ufer and Odersky have shown an encoding of system F into polymorphic datatypes [83]. This

guarantees by composition that system F can be encoded into semi-explicit polymorphism. We

give here a direct encoding of system F , which is much simpler than the encoding into polymorphic

datatypes.

The types and the terms of system F are

t ::= � j t! t j 8�:t Types

M ::= x jM M j �x: t:M j ��:M jM t Terms
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The translation of types of system F into types of our language is again straightforward, and may

use a single label �:

hh�ii = � hht

1

! t

2

ii = hht

1

ii ! hht

2

ii hh8�:tii = [8�:hhtii]

�

The translation hh ii is extended to typing environments in an homomorphic way. The translation

of typing derivations of terms of system F into terms of our language is given by the following

inference rules:

x : t 2 A

A ` x : t) x

A� (x : t) `M : t

0

) a

A ` �x: t:M : t! t

0

) �x: hhtii: a

A `M : t

0

! t) a A ` e

0

: t

0

) a

0

A `M e

0

: t) a a

0

A `M : t) a � =2 FV (A)

A ` ��:M : 8�:t) [a : 8�:hhtii]

A `M : 8�:t

0

) a

A `M t : t

0

ft=�g ) hai

Since the translation rules copy the typing rules of system F , the translation is de�ned for all

well-typed terms. There is no ambiguity and the translation is deterministic.

Lemma 34 For any term M of system F , if A `M : t) a, then hhAii ` a : hhtii.

Proof: The proof is by structural induction on M . The only di�culty is to ensure that when

typing hai the polytype [�]

�

of a is always anonymous. This is immediate: since the translation of

all abstractions is annotated with the exact type of the variable, the unique label may always be

quanti�ed in the environment; therefore there are no free labels in the environment, and rule Elim

will always succeed.

If we choose for system F the semantics where type abstraction does not stop evaluation (i.e.

��:E is an evaluation context whenever E is), then the translation preserves the semantics in a

strong sense (reduction steps of a term can be mapped to the reduction of the translated term).

Another semantics would need easy adjustment, either of the translation or of the semantics of our

system.

Let us compare a term M of system F with its translation a in our language, syntactically.

Our types di�er by having an extra type constructor [ ] surrounding any polymorphic type. Our

term variables do not carry type information. Lambda abstractions carry exactly the same type

information in both M and a. The type information at elimination of polymorphism is always

omitted in a. The counterpart is that type information at introduction of polymorphism appears

explicitly in [a : 8�:hh�ii]. In ��:M , only variable � is mentioned; the type � is deduced from the

type information located at application nodes in M .

The di�erence can be illustrated on the following example:

hh�f : t

f

: �x: t

x

: (f �

fx

) xii = �f : �

f

: �x: �

x

: hfi [x : �

x

]

Type expressions with similar indices correspond to one another. The type �

f

x is such that the

type �

f

�

fx

reduces to an arrow of domain �

x

. The di�erence between the two approaches reduces

to putting the type annotation t

fx

on the function or the annotation �

x

on the argument. It is

di�cult to tell which option is more user-friendly. Obviously, examples can be found to make either

side shorter. On the one hand, it could be argued that in many cases �

f

x is likely to be a subterm of

�

x

, which favors system F . For instance, when polymorphic map is applied to a list of integers, t

fx

is int and �

x

is list@int. On the other hand, our language is also more 
exible: type annotations
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are mandatory in system F , but not in our proposal. In particular, ML programs do not require

any explicit type information at all. That is, in the above example, list int would not need to be

provided since it would be fully inferred. While functions are often polymorphic, their arguments

are frequently monomorphic.

There is another insigni�cant, but interesting di�erence betweem the two approaches. Ours

allows for multiple abstractions to be introduced simultaneously, as in [a : 8�

1

; �

2

:� ]. Since type

application is explicit in system F , the expression ��

1

; �

2

:M would be ambiguous; thus it is not

allowed. This does not give us more concision that system F , but it allows to avoid the common

pattern [[f : 8�:� ] : 8�

0

:8�:� ]. In most cases, instantiation of all variables will be simultaneous and

we can simply write [f : 8�

0

:8�:� ].

The simplicity of our encoding of system F compared to its encoding into polymorphic datatypes

is permitted by the introduction of polytypes as �rst-class types, and does not rely on the inference

of polytypes at their elimination points. As we have shown by using only one label in the translation,

if we made the elimination of polymorphism always explicit, we could keep �rst-class polytypes and

omit all labels in polytypes. We would obtain a weaker but simpler proposal that would still extend

ML and be as powerful as system F , however more verbose.

7.4 Application to Objective ML

In this section we show how the core language can be used to provide polymorphic methods in

Objective ML

2

[113]. Polymorphic methods are useful in parameterized classes. Indirectly, they

may also reduce the need for explicit coercions.

While Objective ML has parametric classes, it does not allow methods to be polymorphic. For

instance, the following class de�nition fails to type.

let � collection = class (l)

val contents = l

meth mem = �x. mem x contents

meth fold : (� ! � ! �) ! � ! �

= �f.�x. fold left f x contents

end

The reason is that variable � is free in the type for method fold and it is not bound to a class

parameter. The solution is to have the method fold be polymorphic in �. With polytypes, we can

write

meth fold = [�f.�x. fold left f x contents

: 8�. (� ! � ! �) ! � ! �]

Still, we have to distinguish between polymorphic and monomorphic methods, in particular when

sending a message to the object. The aim of the remainder of this section is to make invocation

polymorphic and monomorphic methods similar, and more generally, to make the invocation of

polymorphic methods lighter.

The �rst step is to give polytypes to all methods. This is easily done by wrapping monomorphic

methods into polytypes. For instance, we shall write

meth mem = [�x. mem x l : �]

2

The examples of objects and classes given below are rather intuitive, and could be translated in other class-based

object-oriented languages; the reader may refer to [113] for a formal presentation of Objective ML.
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Elim

let � =2 FV (A) in

if A . a : � �

�

�

�> 9

�

�: � then

if �(�) = [8��

0

:�

0

]

�

and � =2 FL(�(A))

then A . hai : � �

�

�

�> 9

�

�; �; ��

0

: � ^ �

0

= �

else if �(�) = �

0

and �

0

=2 FV (�(A)) then A . hai : � �

�

�

�> 9

�

�; �: �

else let �

0

62 (FL(A) [ FL(�)) in A . hai : � �

�

�

�> 9

�

�; �

0

; �: � ^ � _= [� ]

�

0

else A . hai : � �

�

�

�> ?

Figure 7.5: Type inference rule for use of monomorphic polytypes

However, we still want to be able to use monomorphic methods without type annotations. There

is a small but very convenient extension to the core language that solves this problem. We add a

new typing rule Elim-M:

(Elim-M)

A ` a : [� ]

�

A ` hai : �

As opposed to rule Elim, this one allows � to appear in A. Inference problems are solved by forcing

the polytype to be monomorphic.

Both rules Elim and Elim-M apply when � is anonymous and the polytype is monomorphic,

but they produce the same derivation. If either � is free in A, or the polytype is polymorphic, then

only one of the two rules may be used. As a result, principal types are preserved. The type inference

algorithm can be modi�ed as shown in �gure 7.5. The subject reduction property is preserved.

The expression (�x: �y: hx#memi y) is then typable with principal type hmem : [� ! �]; ::i !

�! �. Since all methods are now given polytypes, we shall change our notations (the new notations

are given in term of the old ones): in types, we now write m : � for m : [�]; in expressions, we

now write m : � = a for m = [a : �], m = a for m = [a : �] and a#m for ha#mi. With the new

notations, the collection example is written:

let � collection = class (l)

val contents = l

meth mem = �x. mem x contents

meth fold : 8�. (� ! � ! �) ! � ! �

= �f.�x. fold left f x contents

end;;

value collection : class � (� list)

meth mem : � ! bool

meth fold : 8�. (� ! � ! �) ! � ! �

end

A monomorphic method is used exactly as before.

let coll mem c x = c#mem x

coll mem : hmem : � ! �; ..i ! � ! �

However, when polymorphic methods are used under abstractions, the type of the object should

be provided as an annotation,
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let simple and double (c : � collection) =

let l1 = c#fold (�x.�y. x::y) [] in

let l2 = c#fold (�x.�y. (x,x)::y) [] in

(l1, l2);;

simple and double : � collection ! (� list * (� * �) list)

Since the method fold is used with two di�erent types, this example could not be typed without

�rst-class polymorphism.

Polymorphic methods also appear to be useful to limit the need for explicit coercions. In

Objective ML, coercions are explicit. For instance, assume that objects of class point have the

interface hx : int; y : inti, and that we want to de�ne a class circle with a method giving the

distance from the circle to a point.

let circle = class (x,y,r) ...

meth distance = �p:point. ...

end;;

value circle : class (int * int * int) ...

meth distance : point ! float

end

Given a point p and a circle c, we compute their distance by c#distance p. However, an object

cp of a class color point where color point is a subtype of point (e.g. its interface is hx : int; y :

int; color : colori) needs to be explicitly coerced to point before its distance to the circle can be

computed:

c#distance (cp : color point :> point)

This coercion could be avoided if distance were a toplevel function rather than a method:

let distance c p = c#distance (p :> point);;

value distance : hdistance : point ! � ; ..i ! #point ! �

The type expression #point represents any subtype of point. Actually, it is an abbreviation for

the type hx : int; y : int; �i. Here, #point contains a hidden row variable that is polymorphic in

the function distance. This allows di�erent applications to use di�erent instances of the generic

row variable and thus to accept di�erent objects all matching the type of points.

Explicit polymorphism allows to recover the same power inside methods:

meth distance : 8�:#point. � ! float = �p. ...

Then, c#distance cp is typable just by instantiation of these row variables, without explicit co-

ercion. Of course, we must know here that c is a circle before using method distance, like would

happen in more classical object-oriented type systems. There is an alternative between using ex-

plicit coercions or providing more type information. The advantage of type information is that

it occurs at more convenient places. That is, it is necessary in method de�nitions and at the in-

vocation of a method of an object of unknown type. On the opposite, explicit coercions must be

repeated at each invocation of a method even when all types are known.

7.5 Value-only polymorphism

For impure functional programming languages, value-only polymorphism has become the standard

way to handle the ubiquity of side-e�ects. It preserves type-soundness in the presence of side-

e�ect, without making the type system overly complex. It is based on a very simple idea |if an
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expression is expansive, i.e. its evaluation may produce side-e�ects, then its type should not be

polymorphic [124].

This is usually incorporated by restricting the Gen rule to a class of expressions b, called non-

expansive, composed of variables and functions. Equivalently, this restriction can be put on the

Let rule: both ways give exactly the same canonical derivations in the core language. We actually

prefer the latter, since we also need rule Gen to precede rules Elim and Intro.

Thus, we replace rules Intro and Let by the following four rules, each rule being split in its

expansive and non-expansive versions.

(Poly-V)

A ` b : �

1

(�

1

: � : �

2

)

A ` [b : �] : [�

2

]

�

(Poly-E)

A ` a : �

1

(�

1

: � : �

2

)

A ` [a : � ] : [�

2

]

�

(Let-V)

A ` b : & A� x : & ` a : �

A ` let x = b in a : �

(Let-E)

A ` a

1

: �

0

A� x : �

0

` a

2

: �

A ` let x = a

1

in a

2

: �

The class of non-expansive expressions can be re�ned, provided the evaluation cannot produce

side-e�ects and preserves non-expansiveness. For instance, in ML, we can consider let-bindings

of non-expansive expressions in non-expansive expressions as non-expansive. In our calculus, type

annotations are also non-expansive. More generally, any expression where every application is

protected (i.e. appears) under an abstraction is non-expansive (creation of mutable data-structure

would be the application of a primitive):

b ::= x j �x: a j let x = b in b j (b : �) j [b : �] j hbi

This system works perfectly, and all properties are preserved.

However, it seems too weak in practice. Since we use polymorphism of �'s to denote con�rmation

of polytypes, as soon as we let-bind an expansive expression, all its �'s become monomorphic, and

all its polytypes need an explicit type annotation before they can be eliminated. For instance, the

following program is not typable, because labels in the type of the binding occurrence of g cannot

be generalized.

let f = [�x: x : 8�:�! �] in let g = (�x: x) f in hgi g

When ML polymorphism is restricted to values, the result of an application is monomorphic (here,

the result of applying �x: x to f). Traditionally, the typical situation when a polymorphic result

is restricted to be monomorphic is partial application. There, polymorphism is easily recoverable

by �-expansion. However, the same problem appears when objects are represented as records of

methods, with no possibility of �-expansion. In our core language, the only way to recover at least

explicit polymorphism in such a case is to annotate the use of let-bound variables with their own

types:

let f = [�x: x : 8�:�! �] in let g = (�x: x) f in hg : [8�:�! �]i g

In practice, with objects, this means recalling explicit polymorphism information at each method

invocation. The strength of our system being its ability to omit such information, its interest would

be signi�cantly reduced by this limitation.

One might think that allowing quanti�cation on � in Let-E, i.e. write 8��:�

0

in place of �

0

, is

harmless. Indeed, �'s polymorphism does not allow type mismatches like �'s polymorphism would:
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verifying identity of type schemes is done separately. However, this rule would break principal

types. Consider, for instance, the following expression:

let x = id [] in let y = hhd xi in x

It can be assigned type [�]

�

list for any type scheme �. Since type schemes of polytypes are not

ordered, there is no principal type for this expression.

This problem is pathological, but not anecdotical. It can be solved by restricting to minimal

judgments. That is, we replace Let-V and Let-E by the following restricted rules. A `

?

a : &

means that & is a minimal type scheme for a under assumptions A, i.e. there exists no &

0

strictly

greater than & in the instantiation order, such that A ` a : &

0

. (Since we happen to be keeping

principality, & is the principal scheme for a under assumptions A.)

(Let-V

?

)

A `

?

b : & A� x : & ` a : �

A ` let x = b in a : �

(Let-E

?

)

A `

?

a

1

: 8����:�

0

a

1

6� b A� x : (8��:�

0

)f��=��g ` a

2

: �

A ` let x = a

1

in a

2

: �

The rule Let-E

?

may seem strange, since it is not an instance of the original Let rule, but rather

a combination of Inst and Let. The original derivation would have been:

A ` a

1

: 8����:�

0

.

.

.

A ` a

1

: 8��:�

00

A� x : 8��:�

00

` a

2

: �

A ` let x = a

1

in a

2

: �

The restriction to principal judgments is not new: it has already been used for the typing of

dynamics in ML [72], for instance. One has to reject the program �x: (dynamic x) because, in

the principal judgment x : � ` x : �, some variable of the type of x occurs free in the context.

A non principal judgment obtained by choosing int for � would be correct, but arbitrary. More

recently, it has been used for local type inference in system F

�

[96]. Type inference is only allowed

locally at application nodes, and upon the condition there is a principal solution to the local

inference problem. Without this condition, choices made at an application node would in
uence

other nodes, and inference would loose its locality.

We use minimality here in a somewhat di�erent way. In the above two systems, requiring a

principal solution was a way to have the inference fail on some ambiguous cases. Contrary to

dynamics, our types do not need to be ground; they may share variables with the environment.

Contrary to local type inference, all our satis�able inference problems have principal solutions.

Thus, our minimality condition never makes a type inference problem fail, but only restricts the

set of types that can be assigned to a variable in a let statement. Notice that `

?

judgments do

not actually require the derivation to be principal, but only minimal; they do not eliminate all

di�erent derivations, but only those that would be obtained by unnecessarily instantiating some

types. We may then prove the existence of principal types by showing that all minimal schemes

are equal modulo renaming of bound variables, and as a result our minimality condition happens

to be a principality condition. This condition is not harmful when reasoning about derivations:

the property of minimality of a derivation is kept by substitution of free type variables, so that the

stability lemma is still valid in the extended system.

Still, we do not consider this solution as fully satisfactory, and we view it as an example of the

di�culties inherent to value-only polymorphism.
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7.6 Related Work

Full type inference of polymorphic types is undecidable [123]. Several works have studied the

problem of partial type inference in system F .

Some implementations of languages based on system F relieve the user from the burden of writ-

ing all types down. In Cardelli's implementation of the language Fun [23] polymorphic types are

marked either as implicit (actually their variables are marked) and they are automatically instan-

tiated when used, or as explicit and they remain polymorphic until they are explicitly instantiated

This mechanism turns out to be quite e�ective in inferring type applications. However, types of

abstracted values are never inferred. Thus, the expression �x: x cannot be typed without provid-

ing a type annotation on the variable x, which shows that this is not an extension to ML. Pierce

and Turner have extended this partial inference mechanism to F

!

�

in the design of the language

Pict [95]. By default they also assign \uni�cation variables" to parameters of functions with no

type annotations. Their solution requires surprisingly little type information in practice, especially

in the absence of subtyping. Still, as for Cardelli's solution, it is quite di�cult to know exactly the

set of well-typed programs, since the description is only algorithmic.

Conscious of this problem, they more recently proposed to replace this unpredictable approach

by one based on predictable local inference [96, 94]. Their approach is somewhat opposite of ours:

while we provide some inference-free type checking without modifying ML type inference, they add

some type inference to F

�

and keep a checking based system. In their approach, the uniqueness

of typing is still valid at every step. As we, they distinguish between the speci�cation and the

algorithm of type inference, but this distinction is only limited to one rule, the one doing local

inference. This rule has two provably equivalent versions: one is a speci�cation of the inferred type

in terms of a universal property; the other one is algorithmic and is presented in a constraint-solving

style. The di�erence of approach and the fact that they also handle subtyping make it di�cult to

compare the respective strength of the two systems.

A di�erent approach is taken by Pfenning [89]. Instead of providing type annotations on

lambda's, he indicates possible type applications (this corresponds to the notation h i in our lan-

guage). Then, he shows that partial type inference in system F corresponds to second-order

uni�cation and is thus undecidable [90]. As ours, his solution is an extension of ML. It is also

more powerful; the price is the loss of principal types and decidability of type inference. However,

a decidable subcase of higher-order uni�cation has also been considered in [37]. Neither solution

handles subtyping yet.

Kfoury and Wells show that type inference could be done for the rank-2 fragment of system

F [59]. However, they do not have a notion of principal types. It is also unclear how partial type

information could be added.

In [83], L�aufer and Odersky actually present two di�erent mechanisms. First, as we explained

in the introduction they add higher-order polymorphism with fully explicit introduction and elimi-

nation. As we have seen, our framework subsumes theirs. They also introduce another mechanism

that allows annotations of abstractions by type schemes as in �x:�: x together with a type contain-

ment relation on type schemes similar to the one of Mitchell [80] but with some serious restriction.

Type schemes may be of the form 8�:�

1

! �

2

, where �

i

are type scheme themselves. However,

universal variables such as � can only be substituted by simple types. Thus, the only way to

apply a function of type 8�:�! � to a polymorphic value remains to embed the argument inside

an explicitly de�ned polytype. Actually, one of the reasons for complementing universal-datatype

polymorphism by restricted type-containment is to obtain an encoding of system F . In our case,

the encoding of system F is permitted by the use of polytypes.
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In [39], Duggan proposes an extension to ML with objects and polymorphic methods. His

solution heavily relies on the use of kinds and type annotations. These are carried by method

names that must be declared before being used. In this regard, his solution is similar to having

fully explicit polymorphism both at introduction and elimination, as in [83]. His use of recursive

kinds allows some programs that cannot be typed in our proposal (section 7.4). However, this is

due to a di�erent interpretation of object types rather than a stronger treatment of polymorphism.

Conclusion

We have presented a conservative extension to ML that allows for �rst-class polytypes and �rst-class

polymorphic values. In our proposal as in ML, let-polymorphism remains implicit. While �rst-class

polymorphism must be introduced explicitly, type information is inferred at the elimination point.

This allows for polymorphic methods in Objective ML, which are particularly useful in parametric

classes.

We have also shown that polymorphism can be restricted to values, so as to be sound in the

presence of side-e�ects. This naive standard restriction weakens the propagation of �rst-class

polymorphism, and forces unnecessarily some type annotations. Thus, we have also proposed an

extension that covers all useful cases and does not present any known limitations. Even though

the speci�cation of typechecking becomes technically more di�cult, since it involves the notion of

minimal judgements, the principal-type property is preserved. Although practically insigni�cant,

this di�culty exposes a drawback of the value-only restriction of polymorphism.

As future work, two extensions of importance are to be studied. Firstly, we should consider

applying our technique to existential types. The encoding of these into universal types introduces

inner quanti�ers, which removes all opportunities for inference. It remains unclear whether primi-

tive existential types could bene�t from our work. Secondly, the replacement of the core ML type

system by one with subtyping constraints as in [4, 40], would combine �rst-order generic polymor-

phism and subtyping polymorphism in an ML-like language. The issues of constraint checking and

type generalization are rather orthogonal. However, some recent and more general presentation

[97, 41] signi�cantly di�ers from ML. Thus, more investigation is required.

The principle of our approach was to keep type inference �rst-order. While we believe this to

be su�cient in practice, we would still like to formulate our type system in terms of partial type

inference for second-order lambda-calculus.

Appendix

7.7 Proofs of main theorems

Lemmas 32 (canonical derivations) and 33 (stability by substitution) are tedious but essential in

ML. Their proofs easily cary over with the three new rules, Ann, Intro, and Elim.

Proof of type soundness for the core language

Lemma 35 (Term substitution) If A�x : �

2

` a : �

1

and A ` v : �

2

hold, then A ` afv=xg : �

1

also holds.

Proof: The proof is an easy induction on the structure of v.
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Theorem 1 (Subject reduction) Reduction preserves typings, i.e. if a

1

�! a

2

, then a

1

� a

2

.

Proof: We show that every rule in the de�nition of �! is satis�ed by the relation �. Since �! is

the smallest relation verifying those rules, then � must be a super-relation of �!. All cases are

independent. In each case but Context, we assume that A ` a

1

: & (1) and that a

1

�! a

2

, (the

structure of a

1

depending on the case) and we show that A ` a

2

: & (2).

We �rst assume that the derivation does not end with a rule Gen. If the derivation ends with

a rule Gen, it is of the form:

�

A ` a

1

: &

0

(Gen*)

A ` a

1

: 8

�

�:&

0

where the derivation � of (1) does not end with a rule Gen. Thus we have A ` a

2

: &

0

and (2)

follows by the same sequence of generalizations.

Case Fun and Let: This is a straightforward application of term-substitution lemma.

Case Elim: A canonical derivation of (1) ends with

A ` a : �

1

(�

1

: �

0

: �

2

)

(Intro)

A ` [a : �

0

] : [�

2

]

�

(Gen)

A ` [a : �

0

] : 8�:[�

2

]

�

(Elim)

A ` h[a : �

0

]i : �

2

The type schemes �

1

, �

0

, and �

2

are of the form 8��:�

1

, 8��:�

0

, and 8��:�

2

, and such that (�

1

: �

0

: �

2

).

Choosing variables �� that do not occur free in A, we can contract this derivation into the following

derivation of (2):

A ` a : �

1

(Inst*)

A ` a : �

1

(�

1

: �

0

: �

2

)

(Ann)

A ` (a : �

0

) : �

2

(Gen*)

A ` (a : �

0

) : �

2

Case Tfun: A canonical derivation of A ` a

1

: � ends with

A ` v

1

: �

0

2

! �

0

1

(�

0

2

! �

0

1

: �

2

! �

1

: �

00

2

! �

00

1

) (3)

(Ann)

A ` (v

1

: �

2

! �

1

) : �

00

2

! �

00

1

A ` v

2

: �

00

2

(App)

A ` (v

1

: �

2

! �

1

) v

2

: �

00

1

Since the relation (3) implies both (�

00

2

: �

2

: �

0

2

) and (�

0

1

: �

1

: �

00

1

), we can build the derivation:

A ` v

1

: �

0

2

! �

0

1

A ` v

2

: �

00

2

(�

00

2

: �

2

: �

0

2

)

(Ann)

A ` (v

2

: �

2

) : �

0

2

(App)

A ` v

1

(v

2

: �

2

) : �

0

1

(�

0

1

: �

1

: �

00

1

)

(Ann)

A ` (v

1

(v

2

: �

1

) : �

2

) : �

00

1
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Case Tint: The last derivation of (1) ends with:

A ` v : �

0

1

(3) (�

0

1

: �

1

: �

00

1

) (4)

(Intro)

A ` [v : �

1

] : [�

00

1

]

�

1

([�

00

1

]

�

1

: [�

2

]

�

2

: [�

3

]

�

3

) (5)

(Ann)

A ` ([v : �

1

] : [�

2

]

�

2

) : [�

3

]

�

3

Let 8��:�

1

be �

1

. From (4), we know that we can write �

0

1

and �

00

1

as 8��:�

0

1

and 8��:�

00

1

. Moreover,

we have (�

0

1

: �

1

: �

00

1

). From (5), we also get (�

00

1

: �

2

: �

3

). Thus, we have

(3)

(Inst*)

A ` v : �

0

1

(�

0

1

: �

1

: �

00

1

)

(Ann)

A ` (v : �

1

) : �

00

1

(Gen*)

A ` (v : �

1

) : �

00

1

(�

00

1

: �

2

: �

3

)

(Intro)

A ` [(v : �

1

) : �

2

] : [�

3

]

�

3

Case Tvar: Annotating with a type variable does nothing.

Case Context: Here, we need to show that if a

1

� a

2

then for any evaluation context E we also

have Efa

1

g � Efa

2

g. The proof is by structural induction on E. All cases are immediate since

evaluation contexts do not contain any binding.

Theorem 2 (Canonical forms) Irreducible programs that are well-typed in the empty environ-

ment are values.

Proof: We �rst relate the shape of types and the shape of values. Let v be a value of type � . By

considering all possible canonical derivations, we see that:

� if v is a poly expression, possibly with a type constraint, then � is a polytype;

� otherwise, v is of the form w and � is a functional type.

Since polytypes and functional types are incompatible, we can invert the property:

� if � is a polytype, then v is a poly expression, possibly with a typed constraint.

� otherwise, � is a functional type, and v is of the form w.

Then, the theorem follows: considering a program a that is well-typed in the empty environment

and that cannot be reduced, it can easily be shown by structural induction that a is a value.

Proof of the principal type property

Lemma 36 (uni�cation) Each of the rules given in �gures 7.2 and 7.3, is correct and complete.

Proof:

Cases Occur-Check, Merge, Absorb, and Decompose: those are standard rules for �rst-

order uni�cation.
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Case Decompose-Poly and Clash: immediate.

Case Polytypes: This case amounts to fully formalizing the discussion in section 7.2.4. Assume

that �� \ ��

0

, �� \ FV (�

0

), and ��

0

\ FV (�) are all empty (1).

Soundness: Assume that � is a solution of 9 ����

0

: � _= �

0

^ ��$ ��

0

. Let � be a renaming of ����

0

into variables outside of free variables of �, � , �

0

, and ����

0

. The substitution ��� is also a solution of

the same uni�cand. Since its image has no variable in common with ����

0

, the substitution ���n ����

0

can be extended by a substitution � of domain ����

0

such that the substitution �

0

equal to � � � n ����

0

is a solution of � _= �

0

^ ��$ ��

0

. Since �

0

is a solution of � $ �

0

, the substitution � is injective on ��

and ��

0

taken separately. Moreover, its image is in ����

0

. The subsitution (� + �

�1

) � �

0

decomposes

as (� n ����

0

) + (� � �), which is actually equal to � � � � �; it must be a solution of � _= �

0

. Therefore

the subsitution � is a solution of 8��:� _= 8��

0

:�

0

.

Completeness: Let � be a solution of 8��:� _= 8��

0

:�

0

. Reusing the reasoning and the de�nitions

of section 7.2.4, the substitution (� � � n ����

0

) + � is a solution of � _= �

0

^ �� $ ��

0

where � is a

renaming of ����

0

into variables taken outside of free variables of �, � , �

0

, and ����

0

. Thus, � � � is a

solution of 9 ����

0

: � _= �

0

^ ��$ ��

0

and so is � by composition with �

�1

.

Case Renaming-True: The completeness is obvious. For the soundness, let � be any sub-

stitution. Let � be a renaming of ����

0

outside of ����

0

and free variables of �. The substitution

(� � �) n ����

0

can be extended with the substitution (�

i

7! �

0

i

)

i21::n

. Clearly, this extension satis�es

both (�

i

_= �

0

i

)

i21::n

and ��$ ��

0

. Thus � is a solution of 9 ����

0

: (�

i

_= �

0

i

)

i21::n

^ ��$ ��

0

.

Case Renaming-False: The soundness is obvious. For the completeness let us consider the two

following cases:

� 2 �� and � =2 ��

0

[ f�g: Assume that there exists a solution � of both � _= � _= e and ��$ ��

0

.

Since �(�) is equal to �(�), it must be a variable, and so should � itself. Since � n ����

0

should not

have variables in common with ����

0

, � must be in ����

0

. However, since it is not in ��

0

, it must be

another variable 
 of � distinct from �, which contradicts with the fact that � j

�

�� must be injective

(condition 1).

� 2 �� \ FV (�) and � 6= �: In particular, � must be a proper term. Assume that there exists

a solution � of both 
 _= � _= e and �� $ ��

0

. The term �(
), equal to �(�), is a proper term; thus,


 cannot be a variable of ����

0

. However, �(
) contains the variable �(�) that belongs to ����

0

. This

contradicts condition 3.

Theorem 4 Given a typing problem (A . a : �) there exists a principal solution, which is computed

by the set of rules described in �gures 7.2, 7.3 and 7.4, or there is no solution and the problem

reduces to ?.

Proof: We �rst show the soundness and completeness of each rewriting rule:

Cases Var, Fun, App, and Let: are as in ML.

Case Ann: The case Ann is not special since the construct ( : �) could be treated as the

application of a primitive.
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Case Intro: We assume that all the conditions of the �rst four lines are satis�ed. We write �

i

for �f��

1

��

i

=��

0

��

0

g.

Soundness: Let us assume that A ` a : �

1

f��

1

=��

0

g �

�

�

�> 9 �: � and �� \ dom (�) [ FV (im (�)) = ;.

We have �(A) ` a : �(�

1

) by generalization of �� in the judgment �(A) ` a : �(�

1

f��

1

=��

0

g). Since by

construction (�(�

1

) : � : �(�

2

)), we also have �(A) ` [a : �] : �([�

2

]

�

). That is, � is a solution of

A ` [a : �] : [�

2

]

�

. Thus, a solution of � ^ � = [�

2

]

�

is a solution of A ` [a : �] : � . Moreover, no

variable of ��

1

; ��

2

; �; ��

1

appears in A or � .

Completeness: Let us assume that �

0

is a solution of A . [a : �] : � . A canonical derivation

of �

0

(A) ` [a : �] : �

0

(�) must end with rule Intro. Thus, there exists some type schemes �

0

1

and �

0

2

and some label � such that �

0

(A) ` a : �

0

1

(1), (�

0

1

: � : �

0

2

) (2), and �

0

(�) = [�]

�

2

(3). By

de�nition of the relation ( : � : ) the pair (�

0

1

; �

0

2

) must be of the form (�

00

(�

1

); �

00

(�

2

)) for some

substitution �

00

of domain ��

1

��

2

��

0

. A canonical derivation of (1) must end with a succession of rules

Gen. Thus we have �

0

(A) ` a : �

00

(�

1

f��

1

=��

0

g). On the one hand, the substitution �

0

+ �

00

is a

solution of A ` a : �

1

f��

1

=��

0

g, and consequently a solution of �. On the other hand, it is a solution

of � = [�

1

f��

2

=��

0

g]

�

. Moreover, it extends �

0

on ��

0

, ��

0

, ��

1

, �, and

�

�.

The completeness of the else branch is straightforward; The proof above actually applies if � is

?. If � is not ?, the right condition may always be satis�ed since �� is disjoint from free variables

of the typing problem.

Case Elim: We assume that the condition of the �rst line is satis�ed.

Soundness: If �(�) = [8��

0

:�

0

]

�

and � =2 FL(�(A)) then rule Elim applies, and an extension of

� such that �(�) = �(�

0

) is a solution of A . hai : � . If �(�) = �

0

and �

0

=2 FV (�(A)) then from

�(A) ` a : �

0

we deduce �(A) ` a : [� ]

�

for some � not in FV (�(A)). By generalization of � and rule

Elim, we get �(A) ` hai : �(�). The substitution � is thus a solution of A . hai : � .

Completeness: Let us assume that �

0

is a solution of A ` hai : � . The canonical derivation of

�

0

(A) ` hai : �

0

(�) must end with rule Elim. Thus, we must have �

0

(A) . a : [�]

�

0

for some �

0

that

does not appear in �

0

(A) and some type scheme � of which �

0

(�) is an instance. Since 9

�

�: � is a

principal solution of A . a : �, �

0

can be extended on

�

� into a solution of � ^ �(�) _= [�]

�

0

(1).

Therefore �(�) cannot be an arrow type. If it is a variable, then it cannot belong to �(A),

otherwise �

0

would belong to �

0

(A). Hence, together with (1) the completeness of the second and

third cases.

If �(�) = [8��

0

:�

0

]

�

then � cannot belong to FL(�(A)), otherwise �

0

would belong to FL(�

0

(A)).

Since �

0

is a solution of [�]

�

0

_= [8��

0

:�

0

]

�

, it is also a solution of � = 8��

0

:� . Since �

0

(�) is an instance

of �, it is an instance of 8��

0

:� . Thus �

0

can be extended on ��

0

into a solution of � = �

0

. Together

with (1), �

0

is a solution of � ^ � = �

0

.

Termination: We now show that applying the rules in any order always terminates, with a

uni�cation problem in solved form.

Each rule of the algorithm decreases of the lexicographic ordering composed of successively

1. the sum of sizes of program components,

2. the sum of monomials X

size(�)

for all type and type-scheme components of the system,

3. the number of polymorphic constraints,

4. the number of multi-equations,

5. the sum of the lengths of multi-equations, and
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6. the number of renaming problems.

Moreover, uni�cation problems that cannot be reduced are in solved form. Clearly, there cannot

remain any typing problem since for each construction of the language some rule applies. Similarly,

polytypes can always be decomposed. Let us consider a renaming problem �� $ ��

0

for which rule

Renaming-False would not apply. Then variables of ����

0

ccould only appear in multi-equations

composed of the variables in ����

0

. Moreover at most one variable of each set �� and ��

0

could appear

in each of these multi-equations. Therefore rule Renaming-True would apply. The remaining

rules are standard rules for uni�cation for simple types.
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Chapter 8

Des classes aux objets par la relation

de soustypage

Ce chapitre �a �et�e publi�e dans [111].

Des classes aux objets par la relation de sous-typage

Nous �etendons le calcul d'objets primitif d'Abadi et Cardelli avec une op�eration d'extension sur les

objets. Nous enrichissons les types des objets en leur donnant une structure plus pr�ecise, 
exible

et uniforme. Cela permet de typer le sous-typage en largeur et en profondeur simultan�ement. Les

objets peuvent aussi avoir des m�ethodes virtuelles interdites en lecture et des m�ethodes co-variantes

interdites en �ecriture. La relation de sous-typage r�esultante est plus riche et les types des objets

peuvent être progressivement a�aiblis le long de la relation de sous-typage, passant du niveau des

classes au niveau plus traditionnel des objets.

From Classes to Objects via Subtyping

We extend the Abadi-Cardelli calculus of primitive objects with object extension. We enrich ob-

ject types with a more precise, uniform, and 
exible type structure. This enables to type record

extension under both width and depth subtyping. Objects may also have extend-only or virtual

contra-variant methods and read-only co-variant methods. The resulting subtyping relation is

richer, and types of objects can be weaken progressively from a class level to a more traditional

object level along the subtype relationship.

197
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8.1 Introduction

Object extension has long been considered unsound when combined with subtyping. The problem

may be explained as follows: in an object built with two methods `

1

and `

2

of types �

1

and �

2

, the

method `

1

may require `

2

to be of type �

2

. Forgetting the method `

2

by subtyping would result

in the possible rede�nition of method `

2

with another, incompatible type �

3

. Then, the invocation

of `

1

may fail.

Indeed, the �rst strongly-typed object-based languages that have been proposed provided either

subtyping [1] or object extension [82] to circumvent the problem described above. However, each

proposal was missing an important feature supported by the other one.

Both of them were improved later following the same principle: At an earlier stage, object

components were assembled in prototypes [81] or classes [2], relying on some extension mechanism

to provide inheritance. Objects were formed in a second, atomic step, immediately losing their

extension capabilities for ever, to the bene�t of subtyping.

In contrast to the previous work, we allow both extension and subtyping at the level of ob-

jects, avoiding strati�cation. Our solution is based on the enrichment of the structure of object

types. Thus, our type-system rejects the above counter-example while keeping many other useful

programs. In our proposal, an object and its class are uni�ed and can be considered as two di�er-

ent perspectives on the same value: the type of an object is a supertype of the type of its class.

Fine grain subtyping allows type information to be lost gradually, both width-wise and depth-wise,

slowly fading classes into objects. As is well-known, when more type information is exposed, more

operations can be performed (class perspective). On the contrary, hiding a su�cient amount of

type information allows for more object interchangeability, but permits fewer operations (object

perspective).

We add object extension to the object calculus of Abadi and Cardelli [3]. We adapt their typing

rules to our enriched object types. In particular, we force methods to be parametric in self, that

is, polymorphic over all possible extensions of the respective object. In this sense, our proposal is

not a strict extension of theirs.

In addition to object extension, the enriched type structure has other bene�ts. We can allow

virtual methods in objects (i.e. methods that are required by some other method but that have

not been de�ned yet) since we are able to described them in types. Using co-variant subtyping

forbids further re-de�nition of the corresponding method, as in [3]. Since classes are objects, such

methods are in fact �nal methods. Final methods can only be accessed but no more rede�ned

(except, indirectly, by the invocation of a previously de�ned method).

Virtual methods are useful because they allow objects to be built progressively, component by

component, rather than all at once. They also improve security, since they sometime avoid the

arti�cial use of dangerous default methods. While �nal methods are co-variant, virtual methods,

are naturally contra-variant.

Other annotations are also possible. For instance, we are able to tell that a method is indepen-

dent, that is, no method of the object depends on it. Such a method can be hidden, or rede�ned

with a method of any type.

The rest of the paper is organized as follows. In the next section, we describe our solution infor-

mally. The following section is dedicated to the formal presentation. In section 8.4, we show some

properties of the type system, in particular the type soundness property. Section 8.5 illustrates the

gain in security and 
exibility of our proposal by running a few examples. To a large extend, these

examples can be understood intuitively and may also be read simultaneously with or immediately

after the informal presentation. In section 8.6 we discuss possible extensions and variations of our
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proposal, as well as further meta-theoretical developments. A brief comparison with other works is

done in section 8.7 before concluding.

8.2 Informal presentation

Technically, our �rst goal is to provide method extension, while preserving some form of subtyping.

The counter-example given above does not imply that both method extension and width subtyping

are in contradiction. It only shows that combining two existing typing rules would allow to write

unsafe programs. Thus, if ever possible, a type system with both method extension and subtyping

should clearly impose restrictions when combining them. Our solution is to enrich types so that

subtyping becomes traceable, and so that extension can be limited to those �elds whose exact type

is known.

We �rst recall record types with symmetric type information. Using a similar structure for

object types, some safe uses of subtyping and object extension can be typed, while the counter-

example given in the introduction is rejected.

Record types

Record values are partial functions with �nite domains that map labels to values. Traditionally,

the types of records are also partial functions with �nite domains that map labels to types. They

are represented as records of types, that is, f`

i

: �

i

i2I

g. This type says that �elds `

i

's are de�ned

with values of type �

i

's. However, it does not imply anything about other �elds.

Another richer, more symmetric structure has also been used for record types, originally to

allow type inference for records in ML [104, 106]. There, record types are treated as total functions

mapping labels to �eld types, with the restriction that all but a �nite number of labels have

isomorphic images (i.e. are equal modulo renaming). Thus, record types can still be represented

�nitely by listing all signi�cant labels with their corresponding �eld types and then adding an extra

�eld-type acting as a template for all other labels.

In their simplest form, �eld types are either P � (read present with type �) or A (read absent). For

instance, a record with two �elds `

1

of type �

1

and `

2

of type �

2

is given type h`

1

: P �

1

; `

2

: P �

2

; Ai.

It could also, equivalently, be given type h`

1

: P �

1

; `

2

: P �

2

; `: A ; Ai where ` is distinct from `

1

and

`

2

.

In the absence of subtyping, standard types for records f`

i

: �

i

i2I

g can indeed be seen as a

special case of record types, where �eld variables are disallowed; their standard subtyping relation

then corresponds to the one generated by the axiom P �<:A (and obvious structural rules). The type

f`

1

: �

1

; ::`

n

: �

n

g becomes an abbreviation for h`

1

: P �

1

; ::`

n

: P �

n

; Ai. However, record types are

much more 
exible. For instance, they inherently and symmetrically express negative information.

Before we added subtyping, a �eld ` of type A was known to be absent in the corresponding record.

This is quite di�erent from the absence of information about �eld `. Such precise information

is sometimes essential; a well-known example is record concatenation [50]. Instead of breaking

the symmetry with the subtyping axiom P � <: A, we might have introduced a new �eld U (read

unknown), with two axioms P � <: U and A <: U. This would preserve the property that a �eld of

type A is known to be absent, still allowing present and absent �eld to be interchanged but at their

common supertype U.

Field variables and row variables also increase the expressiveness of record types. However, for

simplicity, we do not take this direction here. Below, we use meta-variables for rows. This is just

a notational convenience. It does not add any power.
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Object types

In their simplest form, objects are just records, thus object types mimic record types. We write

object types with [�] instead of h�i to avoid confusion. An object with type [`

1

: P �

1

; `

2

: P �

2

; A]

possesses two methods `

1

and `

2

of respective types �

1

and �

2

. Intuitively, an object [`

1

= a

i

i2I

]

can be given type [`

i

: P �

i

i2I

; A] provided methods a

i

's have type �

i

's.

However, objects soon di�er from records by their ability to send messages to themselves, or to

return themselves in response to a method call. More generally, objects are of the form [`

i

= &(x

i

)a

i

].

Here, x

i

is a variable that is bound to the object itself when the method `

i

is invoked. Consistently,

the expression a

i

must be typed in a context where x

i

is assumed of the so-called \mytype",

represented by some type variable � equal to the object type � . The following typing rule is a

variant of the one used in [3].

� � �(�)[`

i

: P �

i

i2I

; A] A;� = �; x

i

: � ` a

i

: �

i

A ` �(�; �)[`

i

= &(x

i

)a

i

i2I

] : �

(The type annotation (�; �) in the object expression binds the name of mytype locally and speci�es

the type of the object.)

An extendible object v may also be used to build a new object v

0

with more methods than v

and thus of a di�erent type, say �

0

. The type �

0

of self in v

0

is di�erent from the type � of self

in v. In order to remain well-typed in v

0

, the methods of v, should have been typed in a context

where the type of self could have been �

0

as well as � . This applies to any possible extension v

0

of

v. In other words, methods of an object of type � should be parametric in all possible types of all

possible successive extensions of an object of type � . This condition can actually be expressed with

subtyping by � <: # � , where # � is called the extension type of � (also called the internal type of

the object). That is, the least upper bound of all exact

1

types of complete extensions (extensions

in which no virtual method remains) of objects of external type � .

A �eld of type A can be overridden with methods of arbitrary types. Thus, the best type for

that �eld in the self parameter is U, i.e. we choose #A to be U. Symmetrically, we choose #(P �)

to be U. This makes methods of type P � internally unaccessible. Fields of type P � are known

to be present externally, but are not assumed to be so internally. Thus, �elds of type P � can

be overridden with methods of arbitrary types, such as �elds of type A. To recover the ability to

send messages to self, we introduce a new type �eld R � (read required of type �). A �eld of type

R � is de�ned with a method of type � , and is required to remain of at least type � , internally.

Such a �eld can only be overridden with a method of type � . Therefore, self can also view it as a

�eld that is, and will remain, of type � . In math, #R � is R � . A �eld of type P � , can safely be

considered as a �eld of type R � . Thus, we assume P � <: R � . We also assume R � to be a subtype

of U. As an example, # �(�)[`

1

: R �

1

; `

2

: P �

2

; `

3

: U ; A] is �(�)[`

1

: R �

1

; `

2

: U ; `

3

: U ; U], or shortly

�(�)[`

1

: R � ; U].

The extension of a �eld with a method of type � requires that �eld to be either of type A or R �

in the original record (the �eld may also be of type P � , which is a subtype of R � .) It is possible

to factor the two cases by introducing a new �eld type M � (read maybe of type �), and the axioms

R � <: M � , A <: M � , and M � <: U. Intuitively, M � is the union type R � [ A. This allows, in a

�rst step, to ignore the presence of a method while retaining its type, and, in a second step, to

forget the type itself. The type of object extension becomes more uniform. Roughly, if the original

1

The exact type of an object is the type with which the methods can initially be typed. The external type of an

object may be a supertype of the exact type.
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object has type [`

1

: M �

1

; �

2

] and the new method `

1

has type �

1

then the resulting object has type

[`

1

: R �

1

; �

2

].

A �eld of type M � may later be de�ned or rede�ned with some method of type � , becoming of

type R � , which is a subtype of M � . It may also be left unchanged and thus remain of type M � .

Thus, a �eld of type M � will always remain of a subtype of M � . That is, #(M �) is M � .

Deep subtyping

Subtyping rules described so far allow for width subtyping but not for depth subtyping, since all

constructors have been left invariant. The only constructor that could be made covariant without

breaking type-soundness is P. Making R co-variant would be unsafe. However, we can safely

introduce a new �eld type R

+

� to tell that a method is de�ned and required to be of a subtype of

� , provided that a �eld of type R

+

� is never overridden. On the other hand, a method `

1

can safely

be invoked on any object of type [`

1

: R

+

�

1

; U], which returns an expression of type �

1

. Of course,

we also add R � <: R

+

� to just forget the fact that we are revealing the exact type information.

Symmetrically, a �eld ` of type M � cannot be accessed, but it can be rede�ned with a method of

a subtype of � . Still, it would be unsound to make M � contra-variant. By contradiction, consider an

object p of type �(�)[`: R � ; `

0

: P � ; A] where calling method `

0

overrides ` in self with a new method

of type � . By subtyping p

0

could be given type �(�)[`: M �

0

; `

0

: P � ; A] where �

0

is a subtype of � .

Then let p

2

of type �(�)[`: M �

0

; `

0

: P � ; `

00

: P unit ; A] be the extension of p

1

with a new method

`

00

that requires ` of type �

0

. Calling method `

0

of p

2

restore �eld ` of p

2

to some method of type �

and returns an object p

3

. However, calling method `

00

of p

3

expects a method ` of type �

0

but �nds

one of type � .

We can still introduce a contra-variant symbol M

�

with the axiom M � <: M

�

� . Then, a method

M

�

� can be rede�ned, but the method in the resulting object remains of type M

�

� and is thus

unaccessible. This is still useful in situations where contra-variance is mandatory or to enforce

protection against accidental access (see sections 8.5.6, 8.5.2 and [3].)

Virtual methods

A method ` is virtual with type � (which we write V �) if other methods have assumed ` to be of type

R � , while the method itself might not have been de�ned yet. When an object has a virtual method,

no other method of that object can be invoked. Thus, V � should not be a subtype of U. A method

of type V � can be extended as a method of type R � . Virtual methods may also be contra-variant.

We use another symbol V

�

� to indicate that deep subtyping has been used. A contra-variant

virtual method can be extended, but it must remain contra-variant after its extension, i.e. of type

M

�

� , and thus inaccessible. This may be surprising at �rst. The intuition if that #(V

�

�) should be

R

�

� . However, a method of �eld-type R

�

� would be inaccessible, since its best type is unknown.

Thus R

�

� has been identi�ed with M

�

� .

For convenience, we also introduce a new constant F that is a top type for �elds. That is, we

assume V

�

� <: F and U<: F (all other relations hold by transitivity).

The �nal structure of �eld types and subtyping axioms are summarized in �gure 8.1. Thick

arrows represent the function #. Thick nodes are used instead of re
exive thick arrows, that is,

thick nodes are left invariant by #. Thin arrows represent subtyping. We added a redundant but

useful distinction between continuous and dashed thin arrows. They are respectively covariant and

contra-variant by type-extension: when a continuous arrow connects �

1

and �

2

, then # �

1

is also a

subtype of # �

2

; the inverse applies to dashed arrows.
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P �

A

R �

M �

V �

M

�

�

V

�

�

R

+

�

U

F

Static Dynamic Allowed

' #' Pre Type :`

(

)

P � U

p

<:� � 8

A U <:� ? 8

R � '

p

<:� � �

R

+

� '

p

<:� � ?

M � ' <:� ? �

M

�

� ' 8 ? �

U ' 8 ? ?

V � R � <:� ? �

V

�

� M

�

� 8 ? �

Figure 8.1: Structure of �eld types

Although it is easy to give intuitions for parts of the hierarchy taken alone (variances, virtual

methods, idempotent �eld-types), we are not able to propose a good intuition for the whole hier-

archy. The di�erent components are modular technically, but their intuitive, thus approximative

descriptions, cannot be composed here. We think that the �eld-type hierarchy should be understood

locally, and then considered as such.

The table on the right is a summary of �eld types and their properties. The entry ' in the �rst

column indicates the static external type. The second column #' is its extension type, i.e. the

static internal type. The two following columns tell whether the �eld is guaranteed to be present

(

p

sign) and its type if present. The reason for having <:� instead of � is the covariance of P. The

symbol 8 means any possible type. The last two columns describe access and overriding capabilities

(? means disallowed).

8.3 Formal developments

8.3.1 Types

We assume given a denumerable collection of type variables, written �, �, or �. Type expres-

sions, written with letter � , are type variables, object types, or the top type T. An object type

�(�)[`

i

:'

i

i2I

; '] is composed of a �nite sequence of �elds `

i

: '

i

, without repetition, and a tem-

plate ' for �elds that are not explicitly mentioned. Variable � is bound in the object type, and

should only appear positively in '

i

's as in '.

� ::= � j �(�)[`

i

:'

i

i2I

; '] j T

' ::= A j P � j R � j M � j V � j R

+

� j M

�

� j V

�

� j U j F
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The variance of an occurrence is de�ned in the usual way: it is the parity of the number of times a

variable crosses a contra-variant position (i.e., the number of symbols V

�

or M

�

) on that path from

the root to that occurrence. The set of free variables of � is fv(�). We write fv

�

(�) the subset of

those variables that occurs negatively at least once.

Object types are considered equal modulo reordering of �elds. They are also equal modulo

expansion, that is, by extracting a �eld from the template:

�(�)[`

i

:'

i

i2I

; '] = �(�)[`

i

:'

i

i2I

; `:' ; '] ` 6= `

i

;8i 2 I

Rules for the formation of types will be de�ned jointly with subtyping rules in �gure 8.2 and are

described below.

Notation For convenience and brevity of notation, we use meta-variables � for rows of �elds,

that is, syntactic expressions of the form (`

i

:'

i

i2I

; '

0

), where '

i

's and I are left implicit. We

write �(`) the value of � in `, that is, '

i

if ` is one of the `

i

's, or '

0

otherwise. We write � n ` for

(`

i

:'

i

i2I;`

i

6=`

; '

0

). and ` : '; � for (`:' ; `

i

:'

i

i2I;`

i

6=`

; '

0

). If R is a relation, we write �R �

0

for

8`; �(`)R �

0

(`).

This is just a meta-notation that is not part of the language of types. It can always be expanded

unambiguously into the more explicit notation (`

i

:'

i

i2I

; ').

8.3.2 Type extension

We de�ne the extension of �eld type ', written #' by the two �rst columns of the table 8.1. Type

extension is lifted to object types homomorphically, i.e., # �(�)[�] is �(�)[# �]. The extension is

not de�ned for type variables, nor for F. Note that the extension is idempotent, that is #(# �) is

always equal to # � .
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Well-formation of environments

(Env ;)

; ` �

(Env x)

E ` � <: T x =2 dom (E)

E; x : � ` �

(Env �)

E ` � <: T � =2 dom (E)

E;� <: � ` �

General subtyping

(Sub Var)

E;� <: �; E

0

` �

E;� <: �; E

0

` � <: �

(Sub Ref F)

E ` ' <: F

E ` ' <: '

(Sub Ref T)

E ` � <: T

E ` � <: �

(Sub Trans T)

E ` �

1

<: �

2

E ` �

2

<: �

3

E ` �

1

<: �

3

(Sub Trans F)

E ` '

1

<: '

2

E ` '

2

<: '

3

E ` '

1

<: '

3

Field subtyping (assuming E ` � <: T)

(Sub PA)

E ` P � <: A

(Sub PR)

E ` P � <: R �

(Sub AM)

E ` A<: M �

(Sub UF)

E ` U<: F

(Sub RR

+

)

E ` R � <: R

+

�

(Sub RM)

E ` R � <: M �

(Sub R

+

U)

E ` R

+

� <: U

(Sub MV)

E ` M � <: V �

(Sub MM

�

)

E ` M � <: M

�

�

(Sub M

�

U)

E ` M � <: U

(Sub VV

�

)

E ` V � <: V

�

�

(Sub V

�

F)

E ` V

�

� <: F

(Sub PP)

E ` � <: �

0

E ` P � <: P �

0

(Sub R

+

R

+

)

E ` � <: �

0

E ` R

+

� <: R

+

�

0

(Sub M

�

M

�

)

E ` � <: �

0

E ` M

�

�

0

<: M

�

�

(Sub V

�

V

�

)

E ` � <: �

0

E ` V

�

�

0

<: V

�

�

Object subtyping

(Sub TT)

E ` �

E ` T<: T

(Sub Obj OK)

E;� <: T ` � <: F � =2 fv

�

(�)

E ` �(�)[�]<: T

(Sub Obj Invariant) (� � �(�)[�]; �

0

� �(�)[�

0

])

E ` � <: T E ` �

0

<: T E;� <: T ` � <: �

0

E ` � <: �

0

Figure 8.2: Types and Subtypes

8.3.3 Expressions

Expressions are variables, objects, method invocation, and method overriding.

a ::= x j �(�; �)[`

i

: &(x

i

)a

i

] j a:` j a:`

(

)

�(�; �)&(x)a

The expression a:`

(

)

�(�; �)&(x)a

`

is the extension of a on �eld ` with a method &(x)a

`

. The

expression (�; �) binds � to the type of self in a

`

and indicates that the resulting type of the

extension should be � . This information is important so that types do not have to be inferred but
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only checked. Field update is just a special case of object extension. This is more general, since

the selection between update and extension is resolved dynamically.

8.3.4 Well formation of types and subtyping

Typing environments are sequences of bindings written with letter E. There are free kinds of

judgments (the second and third ones are similar):

E ::= ; j � <: � j x : � Typing environments

E ` � Environment E is well-formed

E ` � <: �

0

Regular type � is a subtype of �

0

in E

E ` ' <: '

0

Field type ' is a subtype of '

0

in E

E ` a : � Expression a has type � in E

The subtyping judgment E ` � <: T is used to mean that � is a well-formed regular type in E,

while E ` ' <: F means that ' is a well-formed �eld-type in E. Thus, T and F also play a

role of kinds. For sake of simplicity, we do not allow �eld variables � <: F in environments. We

have used di�erent meta-variables � and ' for regular types and �eld-types for sake of readability,

although this is redundant with the constraint enforced by the well-formation rules. The formation

of environments is recursively de�ned with rules for the formation of types and subtyping rules

given in �gure 8.2.

The subtyping rules are quite standard. Most of the rules are dedicated to �eld subtyping; they

formally described the relation that was drawn in �gure 8.1. A few facts are worth noticing. First

we cannot derive E ` F <: F . Thus F is only used in E ` ' <: F to tell that ' is a well-formed

�eld type. It prevents using F in object types. The typing rule Sub PA is also worth consideration.

By transitivity with other rules, it allows P � to be a subtype of M �

0

, even if types � and �

0

are

incompatible. However, it remains true, and this is essential, that P � is a subtype of R �

0

if and

only if � is a subtype of �

0

.

The rule Sub Obj Invariant describes subtyping for object types. As explained above, row

variables are just a meta-notation; thus, the judgment E ` � <: �

0

is just a short hand for E `

�(`) <: �

0

(`) for any label `, which only involves a �nite number of them. This rule is restrictive

and prevents (positive) occurrences of self to be replaced by # � where � is the current type of the

object. In particular, object types cannot be unfolded (see section 8.6.2).

8.3.5 Typing rules

Typing rules are given in �gure 8.3. The rules for subsumption, variables, and method invocation

are quite standard.

Rule Expr Object has been discussed earlier. The last premise says that the �elds `

i

may

actually be super-types of P �

i

in � and other �elds may also be super types of A. One cannot

simply require that � be (`

i

: P �

i

i2I

; A) and later use subsumption, since the assumption made on

the type of x

i

while typing a

i

could then be too weak.

Rule Expr Update is similar to the overriding rule in [3]. This rule is important since it

permits both internal and external updates: the result type of the object is exactly the same as

the one before the update.

On the contrary, rule Expr Extend is intended to add new methods that were not necessarily

de�ned before, and thus change the type of the object. There are three di�erent sub-cases in rule

Expr Extend; the one that applies is uniquely determined by the given type � . Then the type of

�eld ` in the argument is deduced from the small table.
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(Expr Subsumption)

E ` a : � E ` � <: �

0

E ` a : �

0

(Expr Var)

E; x : �; E

0

` �

E; x : �; E

0

` x : �

(Expr Object) (� � �(�)[�])

E;� <: # �; x

i

: � ` a

i

: �

i

; i 2 I E; � <: # � ` (P �

i

i2I

; A)<: �

E ` �(�; �)[`

i

= &(x

i

)a

i

i2I

] : �

(Expr Select)

E ` a : � E ` � <: �(�)[`: R

+

�

`

; U]

E ` a:` : �

`

f�=�g

(Expr Update)

E ` a : � E ` � <: �(�)[`: R �

`

; �

0

] E;� <: # �; x : � ` a

`

: �

`

E ` a:`

(

)

�(�; �)&(x)a

`

: �

(Expr Extend) (� � �(�)[�])

('

0

; �(`)) 2 f(A; P �

`

); (V �

`

; R �

`

); (V

�

�

`

; M

�

�

`

)g

E ` a : �(�)[`:'

0

; � n `] E;� <: # �; x : � ` a

`

: �

`

E ` a:`

(

)

�(�; �)&(x)a

`

: �

Figure 8.3: Typing rules

Rules Expr Extend and Expr Update both apply only when � is of the form �(�)[`: P �

`

; �]

or �(�)[`: R �

`

; �]. Then, the requirements on the type of a are the same (letting the premise

of Sub Extend be preceded by a subsumption rule). Thus, di�erent derivations lead to the

same judgment. It would also be possible to syntactically distinguish between object extension and

method update, as well as to separate the extension between three di�erent primitive corresponding

to each of the three typing cases.

8.3.6 Operational semantics

We give a reduction semantics for a call-by-value strategy. Values are reduced to objects. A leftmost

outermost evaluation strategy is enforced by the evaluation contexts C.

v ::= �(�; �)[`

i

= &(x

i

)a

i

i2I

] C ::= fg j C:` j C:`

(

)

�(�; �)&(x)a

The reduction rules are given in �gure 8.4. Since programs are explicitly typed, the reduction must

also manipulate types in order to maintain programs both well-formed and well-typed, even though

it is not type-driven. In fact, the reduction uses an auxiliary binary operation on types '

(

)

'

0

, to

recompute the witness type of object values during object extension. It is de�ned in �gure 8.5. The

partial '

(

)

'

0

is extended to object types homomorphically, i.e., �(�)[�]

(

)

�(�)[�

0

] is �(�)[�

(

)

�

0

].

Type extension is de�ned so as it validates lemma 40. When there is some 
exibility, we sought for

more uniformnity. Type extension is unde�ned when the cell is left empty in the �gure. Those are

cases that will never meet the hypotheses of lemma 40.
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Let ` and `

i

i2I

be distinct labels, j in I,

and v be of the form �(�; �)[`

i

= &(x

i

)a

i

i2I

].

v:`

j

�! a

j

f�=�gfv=xg (Select)

v:`

j

(

)

�(�; �

0

)&(x)a �! �(�; �

(

)

�

0

)[`

i

= &(x

i

)a

i

i2I�j

; `

j

= &(x)a] (Update)

v:`

(

)

�(�; �

0

)&(x

0

)a

0

�! �(�; �

(

)

�

0

)[`

i

= &(x

i

)a

i

i2I

; ` = &(x)a] (Extend)

if a

1

�! a

2

then Cfa

1

g �! Cfa

2

g (Context)

Figure 8.4: Reduction rules
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8.4 Soundness of the typing rules

The soundness of the typing rules results from a combination of subject reduction and canonical

forms. The proof of subject reduction is standard (see [3] for instance). A few classical lemmas

help simplifying the main proof.

Lemma 37 (Bound weakening) If E ` � <: �

0

and E;� <: �

0

; E

0

` J , then E;� <: �; E

0

` J .

Proof: By induction on the size of the proof of the derivation of the second.

Lemma 38 (Substitution)

1. If E;� <: �; E

0

` J and E ` �

0

<: � , then E;E

0

f�

0

=�g ` J f�

0

=�g.

2. If E; x : �; E

0

` J and E ` a : � , then E;E

0

` J fa=xg.

Lemma 39 (Structural subtyping)

1. If � � �(�)[�] and E ` � <:�

0

, then �

0

is either T or of the form �(�)[�

0

] and E;�<:T ` �<:�

0

.

2. If E ` ' <: R �

`

, then ' is either R �

l

or P �

0

where E ` �

0

<: �

`

.
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3. If E ` ' <: R

+

�

`

, then ' is either P �

0

, R �

0

, or R

+

�

0

where E ` �

0

<: '

`

.

4. If E ` ' <: P �

`

, then ' is P �

0

where E ` �

0

<: �

`

.

Etc.

Proof: By induction on the size of subtyping derivations. Should use the fact that transitivity rules

can be pushed to the leaves.

The proof of subject reduction also uses an essential lemma that relates computation on types

to subtyping. Actually, the proof does not depend on the particular de�nition of #, but only on

the following lemma.

Lemma 40 (Type computation) Let � and �

0

be two object types �(�)[�] and �(�)[�

0

]. Assume

that there exists a row �

00

such that E;� <: T ` � <: �

00

and for each label `, the pair (�

00

(`); �

0

(`))

is one of the four forms (A; P �

`

), (V �

`

; R �

`

), (V

�

�

`

; M

�

�

`

), or (';'). Let �̂ be �

(

)

�

0

and �̂ be

�

(

)

�

0

. Then,

E ` �̂ <: �

0

E ` # �̂ <: # � E ` # �̂ <: # �

0

Moreover, in the three �rst cases, if E;�<:T ` �(`)<:�

0

(`), then E;�<:T ` �(`)<: �̂(`); otherwise

E;� <: T ` P �

`

<: �̂(`).

The proof can be found in the appendix 8.9.

Lemma 41 (Virtual methods) If E ` � <: �(�)[U], then E ` � <: # � .

Proof: This is obviously true �eld by �eld: the only �eld that does not satisfy E ` � <: # � are

virtual �elds, which are excluded if E ` � <: U. The property easily follows for object types.

Theorem 5 (Subject Reduction) Typings are preserved by reduction. If E ` a : �

a

and a �! a

0

then E ` a

0

: �

a

.

The proof can be found in the appendix 8.4.

Theorem 6 (Canonical Forms) Well-typed expressions that cannot be reduced are values. If

; ` a : � and there exists no a

0

such that a �! a

0

, then a is a value.

Proof: If a value v has type �(�)[`: P � ; U], then v must have a �eld `. The theorem is then a trivial

induction on the size of a, assuming that a cannot be reduced.

8.5 Examples

For simplicity, we assume that the core calculus has been extended with abstraction and application.

This extension could either be primitive or derived from the encoding given in section 8.5.6. For

brievity, we write a:`

(

)

a

0

instead of a:`

(

)

�(�; �)&(z)a

0

when a

0

does not depend on the self

parameter z. In practice, other abbreviations could be made, but we avoid them here to reduce

confusion.

We consider the simple example of points and colored points. These objects can of course

already be written in [3]. The expressiveness of our calculus is not so much its capability to write

new forms of complete objects but to provide new means of de�ning them. This provides more


exibility, increases security in several ways (see parts 8.5.2, 8.5.3, and 8.5.6), and removes the

complexity of the encoding of classes into objects.
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8.5.1 Objects

A point object p

0

can be de�ned as follows:

�(�; point)[x = 0 ; mv = &(z)�y:(z:x

(

)

y) ; print = &(z)print int z:x]

where point is �(�)[x: R int ; mv: P int! � ; print: P unit ; A]. As in [3], new points can be cre-

ated using method update as in p

0

:x

(

)

�(�; point)&(z)1. Moreover, colored points can be de�ned

inheriting from points:

cpoint

4

= �(�)[x: R int ; c: R bool ; mv: P int! � ; print: P unit ; A]

cp

4

= (p

0

:c

(

)

�(�; cpoint)&(z)true):print

(

)

�(�; cpoint)&(z)if z:c then print int z:x

When two values of di�erent types have a common super-type � , they can be interchanged in

any context that expects a term of type � . Here, cpoint is not a subtype of point, since

both types carry too precise type information. However, they admit the common super-type

�(�)[x: R int ; c: U ; mv: P int! � ; print: P unit ; A]:.

8.5.2 Abstraction via subtyping

Subtyping can also be used to enforce security. For instance, �eld x may be hidden by weakening

its type to U. Similarly, method mv may be protected against further rede�nition by weakening its

type to R

+

� . That is, by giving p

0

the type �(�)[mv: R

+

int! � ; print: R unit ; U]. While method

mv can no longer be directly rede�ned, there is still a possibility for indirect rede�nition. For

instance, method print could have been written so that it overrides method mv before printing.

To ensure that a method can never be rede�ned, directly or indirectly, it must be given type R

+

�

at its creation.

8.5.3 Virtual methods

The creation of new points by updating the �eld of an already existing point is not quite satisfactory

since it requires the use of default methods to represent the unde�ned state, which are often

arbitrary and may be a source of errors. Indeed, a class of points can be seen as a virtual point

lacking its �eld components.

POINT

4

= �(�)[x: V int ; mv: P int! � ; print: P unit ; A]

P

4

= �(�; POINT)[mv = &(z)�y:(z:x

(

)

y) ; print = &(z)print int z:x]

New points are then created by �lling in the missing �elds:

new point

4

= �y:(P:x

(

)

�(�; point)&(z)y) p

1

4

= new point 0

8.5.4 Traditional class-based perspective

To keep closer to the traditional approach, we may by default choose to hide both �elds cor-

responding to instance variables and the extendible capabilities of the remaining methods. For

instance, treating x as an instance variable, and mv and print as \regular" methods, we choose

�(�)[mv: R

+

int! � ; print: R

+

unit ; U] for point. Intuitively, the object-type point hides all in-

formation that is not necessary to increase security. Conversely, the class-type POINT remains as
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precise as possible, to keep expressiveness. Indeed, a class of points is still an object. However,

as opposed to the previous section, we adopt some uniform, more structured style, treating \real"

objects di�erently from those representing classes.

In colored points, we may choose to leave �eld c readable and overridable, as if we de�ned two

methods set c and get c.

cpoint

4

= �(�)[c: R bool ; mv: R

+

int! � ; print: R

+

unit ; U]

Single inheritance is obtained by class extension:

CPOINT

4

= �(�)[x: V int ; c: V bool ; mv: P int! � ; print: P unit ; A]

CP

4

= (P:print

(

)

�(�; CPOINT)&(z)if z:c then print int z:x)

new cpoint

4

= �y:�w:(CP:x

(

)

�(�; cpoint)&(z)y):c

(

)

�(�; cpoint)&(z)wq

0

4

= new cpoint

0 true

While CPOINT is not a subtype of POINT at the class level, we recover the usual relationship that

cpoint is a subtype of point at the object level. Moreover, at the object level, types are invariant

by #. Thus, we also recover the subtyping relation of [3]. In particular, object types can be

unfolded. For example,

cpoint<: �(�)[c: R bool ; mv: R

+

int! point ; print: R

+

unit ; U]

8.5.5 An advanced example

A colorable point p

0

is a point prepared to be colored without actually being colored. It can be

obtained by adding to the point p

0

an extra method paint that when called with an argument y

returns the colored point obtained by adding the color �eld c with value y and by updating the

print method of p

0

.

p

0

4

= p

0

:paint

(

)

&(z; point

0

)�y:

((z:c

(

)

y):print

(

)

�(�; cpoint)&(z)if z:c then print int z:x)

where point

0

is

�(�)[x: R int ; mv: R

+

int! � ; print: R unit ; paint: P bool! cpoint ; c: M bool ; U]

This example may be seen as the installation (method paint) of a new behavior (method print)

that interacts with the existing state x and adds some new state c. The above solution becomes

more interesting if each installation involves many methods, and especially if several installation

are either di�erent �elds of the same objects or the same �eld of di�erent objects. Then, the

installation procedure can be selected dynamically by message invocation instead of manually by

applying an external function to the object.
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8.5.6 Encoding of the lambda-calculus

This part improves the encoding proposed in [3]. It also illustrates the use of virtual methods and

variances. The untyped encoding of the lambda-calculus into objects in [3] is the following

2

:

hhxii

4

= x:arg hh�x:Mii

4

= [arg = &(x)x:arg ; val = &(x):hhMii]

hhM M

0

ii

4

= (hhMii:arg

(

)

&(x)hhM

0

ii):val

A function is encoded as an object with a diverging method arg. The encoding of an application

overrides the method arg of the encoding of the function with the encoding of the argument and

invokes the method val of the resulting object. Programs obtained by the translation of functional

programs will never call val before loading the argument. However, if the encoding is used as a

programming style, the type system will not provide as much safety as a type system with primitive

function types would. The method val could also be called, accidently, before the �eld arg has

been overridden. In general, this will, in turn, call the method arg and diverge. The use of default

diverging methods is a hack that palliates the absence of virtual methods. It can be assimilated to

a \method not understood" type error and one could argue that the encoding of [3] is not strongly

typed.

The encoding can be improved using object extension to treat a function �x:M as an object

[val = &(x):hhMii] with a virtual method arg (remember that x:arg may appear in hhMii). The

type-system will then prevent the method val to be called before the argument has been loaded.

More precisely, let us consider the simply typed lambda-calculus:

t ::= � j t! t M ::= x j �x : t:M jM M

Functional types are encoded as follows:

hh�ii

4

= � hht! t

0

ii

4

= �(�)[arg: V

�

hhtii ; val: R

+

hht

0

ii ; U]

This naturally induces a subtyping relation between function types that is contra-variant on the

domain and covariant on the co-domain. The typed encoding is given by the following inference

rules:

x : t 2 A

A ` x : t) x:arg

A; x : t `M : t

0

) a x =2 dom (A)

A ` �x : t:M : t! t

0

) �(�; hht! t

0

ii)[val = &(x):a]

A `M : t

0

! t) a A `M

0

: t

0

) a

0

A `M M

0

: t) (a:arg

(

)

�(�;#hht! t

0

ii)&(x)a

0

):val

It is easy to see that the translation transforms well-typed judgments ; ` M : t into well-typed

judgments ; ` hhMii : hhtii.

As in [3], the translation provides a call-by-name operational semantics for the lambda-calculus.

The encoding of [3] also provides an equational theory for the object calculus and, thefore, for the

lambda calculus, via translation, which we do not.

2

If both functions and objects co-exist, one should actually mark variables introduced by the encoding of functions

so as to leave the other variables unchanged.
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8.6 Discussion

8.6.1 Variations

Several variations can be made by consistently modifying �eld-types, their subtyping relationship,

and the typing rule for object extension. The easiest is to drop some subtyping asumption (such

as Sub PP, or Sub PA) or drop the �eld-type P � altogether. This weakens the type system (some

examples are not typable any longer), but it retains the essential features. More signi�cant sim-

pli�cations can be made at the price of a higher restriction of expressiveness. For instance, virtual

�eld-types could be removed.

Some extensions or modi�cations to the type hierarchy are also possible. For instance, one

could introduce �elds of type yP � that do no depend on any other method. These methods would

be dual of those of type P � on which no other method depend; somehow they would behave as

record �elds in the sense they could always be called even if the object is virtual. This extends to

�eld-types yR � and yR

+

� similarly.

8.6.2 Better subtyping for object types

The subtyping rule Sub-Obj-Invariant does not allow unfolding of object types. It is thus weaker

than the Abadi-Cardelli:

(Sub Obj Deep) (� � �(�)[�]; �

0

� �(�)[�

0

])

E ` � <: T E ` �

0

<: T E;� <: � ` � <: �

0

E ` � <: �

0

This rule would not be correct, since it would not be transitive. Indeed transitivity would require

that A ` � <: �

0

implies A ` # � <: # �

0

which is not true.

Just replacing the bound T of � in Sub Obj Deep by # � would actually not behave well with

respect to transitivity. In a preliminary version of this work [112], we added another premise to

recover transitivity. However, this simultaneously weakens the subtyping relationship, and some

useful examples become untypable.

It should be possible to de�ne a subtyping rule that allows unfolding of object types only when

there are no more extension capabilities. It seems however, that the subtyping structure of �elds

should either be simpli�ed (eliminating the arrow from M � to V �) or enriched (e.g. avoid M � <:V �

but only once in a certain de�nite state).

8.6.3 Extensions

Imperative update is an orthogonal issue to the one studied here, and it could be added without

any problem. Object extension should, of course, remain functional.

Equational theory We see no di�culty in adding an equational theory to our calculus, but this

remains to be investigated. Treating object extension as a commutative operator would allow to

reduce object construction to a sequence of object extensions of the empty object (virtual methods

would be crucial here).

Higher-order types As shown above, our objects are su�ciently powerful to represent classes.

As opposed to [3], this does not necessitate higher-order polymorphism because methods are already

required to be parametric in all possible extensions of self.
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The addition of higher-order polymorphism might still be useful, in particular to enable para-

metric classes. We believe that there is no problem in constraining type abstraction by some

supertype bound, written �<: � as in F

<:

. However, it would also be useful to introduce #-bounds

of the form � <: # � . This might require more investigation.

Row variables and binary methods We have used row variables only as a meta-notation for

simplifying the presentation. It would be interesting to really allow row variables in types. This

would probably augment the expressiveness of the language, since it should provide some form of

matching that revealed quite useful, especially for binary methods [18, 16, 113].

Actually, it remains to investigate how the presented calculus could be extended to cope with

binary methods. Row variables might not be su�cient to express matching, and some new form of

matching might have to be found. It is unclear whether the known solutions [17] could be adapted

to our calculus.

In this section, we review extensions and future works.

8.6.4 Imperative calculus

In our proposal objects are functional. This is, of course, the harder case. Adding imperative

operations should not be a problem. The overriding primitive may be given an imperative semantics.

However, the extension should remain functional, since it changes types.

8.6.5 Equational theory

We see no di�culty in adding an equational theory to the calculus, following [3]. The encoding of

the lambda-calculus given in section 8.5.6 should validate the � and � equalities.

The addition of an equational theory would be particularly interesting for our proposal because

objects would then become equal to a sequence of extensions, modulo re-ordering, and thus could

be removed from the calculus (only the empty object need to be kept.)

8.6.6 Higher-order types, row variables, matching, and binary methods

As shown above, our objects are su�ciently powerful to represent classes. As opposed to [3],

this does not necessitate higher-order polymorphism because methods are already required to be

parametric in all possible extensions of self.

The addition of higher-order polymorphism might still be useful, in particular to enable para-

metric classes. We believe that higher-order polymorphism could be easily added. Bounded quan-

ti�cation allows to constrain type variables by some bound � , written � <: � so that they can

only be instantiated by subtypes of the � . It might also be useful to constrain type variables by

#-bounds written �#<:� so that they can only be instantiated by types whose type-extension is

a subtype of � . This is certainly a more di�cult task.

Rows have been used as a meta-notation, but �eld and row variables have been carefully avoided

for simplicity. Having �eld and row variables in the language of types would turn the meta-notation

into an internal concept. Furthermore, it would increase expressiveness, especially when combined

with polymorphism. Again, variable type-extension bounds might be necessary to obtain the whole

bene�t from �eld and row variables.

To illustrate some of the di�culties, consider the following example. It would be interesting

to give the function new point a polymorphic type; then, it could be reused in the de�nition of



214 CHAPTER 8. DES CLASSES AUX OBJETS

new cpoint. The function new point could be de�ned as:

8� <: T:8� <: T) F:

�P : �(�)[x: V � ; �(�)]:�y : �:(P:x

(

)

�(�; �(�)[x: P � ; �(�)])&(z)y)

Formally, this requires, however, a lot of machinery: higher-order abstraction, type operators, row

variables, and variable type-extension bounds. Moreover, this is one of the simplest example, since

here, the new method does not uses self.

In fact, type extension allows to express abstraction over all (types of all) objects that extend

an object of the current type; in other words over all (types of) objects of an instance of a subclass

of the class the current object. This is clearly related to the notion of matching [18, 16]. While

matching with simple object types can advantageously be replaced, or simulated, by row variables as

in Objective ML [113], row variables are likely to be insu�cient to provide the essence of matching

with the present enriched object types.

Matching and row variables may solve binary methods in some simpler object calculus. It is

not clear yet whether the use of matching, row variables, higher-order subtyping as in [3], or any

of the known solutions [17] could be adapted to our calculus. This is one of the most important

investigations to pursue.

8.6.7 Encoding of objects

It remains future work to �nd a good encoding of our objects into a typed lambda-calculus with

records. Our approach and many intuitions were in fact motivated by the self-application inter-

pretation of objects as records of functions [3]. This interpretation can model most operations

on object-based approaches, but delegation-based inheritance in an untyped calculus with records.

Unfortunately, in any known type system there is always some operation that cannot be typed.

Richer object types have made it possible to unify objects with classes. Richer record types are

certainly needed to see objects for what they really are|records of functions.

Methods are usually polymorphic in classes but they are specialized at the creation of objects,

whether the objects are primitive [3] or encoded [60]. Our methods are parametric in self inside

objects. This is a major di�erence that might help �nd other encodings that those proposed in

[60].

8.7 Comparison with other works

Our proposal is built on the calculus of objects of Abadi and Cardelli [3], which is invoked through-

out this paper. Our use of variance annotations is in principle similar to theirs. By attaching

variance annotations to �eld-types rather than to �elds themselves, we eliminate some useless

types such as M

+

� . Indeed, such a �eld could not be overriden, nor accessed, and thus it could

be just given type U. (Our use of variances also eliminate the ability to specify the type of a �eld

without specifying its variance, which may cause problem with type inference [88].) An essential

imported tool is the structure of record-types of [104], which was originally designed for type in-

ference in ML [106]. The use of a richer structure of record types has previously been proposed

for type checking records [49, 50, 27, 25]. To our knowledge, the bene�ts of symmetric information

were �rst transfered from record types to object types in [109]. There, �rst-order typing rules

for objects with extension and both deep and width subtyping were roughly drafted without any

formal treatment.
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A similar approach has also been independently proposed by Bono, Liquori and others. Their

�rst related work [11] has later lead to many closely related proposals [13, 12, 9, 75, 74, 76]. Most

of these are extensions of the Fisher-Honsel calculus of objects [81]. The di�erences between their

approach and the one of [3] (which is also ours) are not always signi�cant but they make a close

comparisson more di�cult. Only two of these works [76, 75] are extensions of the Abadi-Cardelli

calculus of objects [3] and are thus more connected to our proposal. The �rst-order version [76],

is subsumed by both [109] (which also covers deep subtyping) and [75] (which also addresses self

types.) Our proposal extends both [109] and [75].

The most interesting comparison can be made with [75]. The main motivation and the key idea

behind both proposals are similar: they integrate object subtyping and object extension, using a

richer type structure to preserve type soundness. Saturated vs diamond types correspond to our

object-types with a �eld template U vs A, respectively. Our treatment seems more uniform. We only

have one kind of object types. We distinguish between the \saturation" and \diamond" properties

in �elds instead of objects. As a result, we can write an object type that is saturated, except for

a few particular �elds. Our proposal also includes several additional features: it addresses deep

subtyping and virtual methods; it also allows methods to extend self. Moreover, in our proposal,

the subtyping relationship is structural for object types. Additionally, subtyping axioms are only

given at the level of �elds, each one of them treating a di�erent important subtyping capability. As

a result, object types have a more regular structure, and can easily be adapted to further extensions.

We think this is easier to understand, to modify, and to manipulate.

An alternative to virtual methods has also been studied in [9], using a quite di�erent approach,

which consists in annotating each method with the list of all other methods they depend on. Thus,

each method has a di�erent view of self. Their approach to incomplete objects is, in principle,

more powerful that ours; in particular, they can type programs that even traditional class-based

languages would reject. We found their types of objects too detailed, and thus their proposal less

practical than ours. (Tracing dependencies is closer to some form of program analysis than to

standard type systems.) In fact, we intendedly restricted our type system so that methods have a

uniform view of self. In practice, our solution is su�cient to capture common forms of inheritance.

In [81], pre-objects have pro-types and can be turned into objects with obj-types by subtyping.

Pro-types and obj-types are similar to our object types �(�)[`

i

: R �

i

i2I

; A] and �(�)[`

i

: R

+

�

i

i2I

; U].

One di�erence is that, in our case, subtyping is de�ned and permitted �eld by �eld rather than all at

once. Fisher and Mitchell also studied the relationship between objects and classes in [42]. They use

bounded existential quanti�cation to hide some of the structure of the object in the public interface.

This still allows public methods to be called, while private methods become innaccessible. In our

calculus, the richer structure of objects permits to use subtyping instead of bounded existential

quanti�cation to provide a similar abstraction. This is not suprising, theoretically, since subtyping,

as existential quanti�cation, is a lost of type information. However, this is practically a signi�cant

di�erence, since subtyping allows more explicit type information but is less expressive. Another

di�erence is that using the standard record types they had to introduce record sorts to express

negative type information. As pointed out in a more recent paper [10], the design of the language

of kinds becomes important for modularity. In particular, [10] improves over [42] by changing

default kinds from unknown (U in our setting) to absent (A). Instead, our record types express

positive and negative information symmetrically and are viewed as total functions from �elds to

types, which avoids the somehow ad hoc language of sorts.

In a recent paper, Riecke and Stone have circumvented the problem of merging extension with

deep and width subtyping by changing the semantics of objects [117]. In fact, their semantics remain

in correspondance with the standard semantics of objects in the general case, but the semantics
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of extension is changed so that the counter example becomes sound in the new semantics. They

distinguish between method update and object extension. Then, a �eld that is already de�ned is

automatically renamed by extension into an anonymous �eld that becomes externally inaccessible.

With their semantics, some of our enriched type information would become obsolete for ensur-

ing type soundness, but it might remain useful for compile-time optimizations. Other pieces of

information, e.g. virtual types, would remain quite pertinent.

8.8 Conclusion

We have proposed a uniform and 
exible method for enriching type systems of object calculi by

re�ning the �eld structure of object types, so that they carry more precise type information.

Applying our approach to the object calculus of Abadi and Cardelli, we have integrated object

extension and depth and width subtyping, with covariant �nal methods and contra-variant virtual

methods, in a type-safe calculus. When su�cient type information is revealed, objects may rep-

resent classes. Type information may also be hidden progressively, until objects can be used and

interchanged in a traditional fashion.

An important gain is to avoid the encoding of classes as records of pre-methods. Instead,

we provide a more uniform, direct approach. Another bene�t of this integration is to allow mixed

formed of classes and objects. The use of richer object types also increases both safety by capturing

more dynamic misbehavior as static type errors and security by allowing more privacy via subtyping.

Moreover, our approach subsumes several other unrelated proposals, and it might provide a uni�ed

framework for studying or comparing new proposals. Some extensions and variations are clearly

possible, provided the operations on objects, their types and the subtyping hierarchy are changed

consistently.

More investigation still remains to be done. Adding an equational theory to the calculus, would

simplify our primitives, since objects could always be built �eld by �eld using object extension only.

This might also be a �rst step towards a better integration of record-based and delegation-based

object calculi. In the future, we would also like to study the potential increase of expressiveness

that �eld and row variables could provide. Of course, investigating binary methods remains one of

the most important issues.

Classes can be viewed as objects. We hope that an even richer type structure would �nally

enable to see objects for what they really are |records of functions| in the (yet untyped) self-

application interpretation.

Appendix

8.9 Type computation

Lemma 4 (Type computation) Let � and �

0

be two object types �(�)[�] and �(�)[�

0

]. Assume

that there exists a row �

00

such that E;� <: T ` � <: �

00

and for each label `, the pair (�

00

(`); �

0

(`))

is one of the four forms (A; P �

`

), (V �

`

; R �

`

), (V

�

�

`

; M

�

�

`

), or (';'). Let �̂ be �

(

)

�

0

and �̂ be

�

(

)

�

0

. Then,

E ` �̂ <: �

0

E ` # �̂ <: # � E ` # �̂ <: # �

0

Moreover, in the three �rst cases, if E;�<:T ` �(`)<:�

0

(`), then E;�<:T ` �(`)<: �̂(`); otherwise

E;� <: T ` P �

`

<: �̂(`).
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Proof: Let E

0

be E;� <: T. By rule Sub Obj Invariant it su�cies to check

(1) E

0

` �̂ <: �

0

(2) E

0

` # �̂ <: # � (3) E

0

` # �̂ <: # �

0

(4)

�

E

0

` � <: �̂ if �

00

is �

0

,

9�

0

`

; E

0

` �

`

<: �

0

`

^E

0

` P �

0

`

<: �̂(`) otherwise.

independently for each cell of the table 8.5 and for any of the fourth possible forms (three �rst

forms for (4)).

Case ('): These cases cannot occur because all hypotheses cannot be met simultaneously.

Case �rst line: Note that this completely covers the case where ('

00

; '

0

) is (A; P �

`

). Properties

(1) and (3) are immediate since '̂ is '

0

and (2) is obvious since #' is U. Since '̂ is '

0

, E

0

` '<: '̂

follows from E

0

` ' <: '

0

, and E

0

` '

0

<: '̂ is always true, hence (4).

Case E

0

` ' <: '

0

: In particular, this covers the case where ('

00

; '

0

) is (';').

Subcase '̂ is ': Then (1), (2) and (4) are obvious. When #'

0

is '

0

, it happens that #' is

also ', thus (3) is true. There are 6 remaining cases in the last two columns:

� In the last column, we must show that E

0

` #'<:M

�

�

0

. If ' is V

�

� or M

�

� , then E ` �

0

<:� ,

and since #' is M

�

� , then E

0

` #' <: V

�

�

0

. Otherwise, ' is either R � or M � , invariant by

# and E

0

` ' <: M

�

� .

� In the preceding column, we must show that E

0

` #'<:R �

0

(5). Here and since E

0

` '<:'

0

,

' is one of the form R � or V � , types � and �

0

are equal, and #' is R � . Hence (5).

Other subcases: given that E

0

` ' <: '

0

, the only remaining subcase is when ' is M � and '

0

is

V �

0

. Then � and �

0

are equal and thus so are '̂ and '

0

. Hence (1) and (3). Clearly, we also have

E

0

` R � <: M � (2) and E

0

` M � <: V � (4).

Case ('

00

; '

0

) is (V �

`

; R �

`

), �rst line excluded: Then ' is either M � or V � with � and �

l

equal

and '̂ is R � . Hence (1) and, since '̂ and '

0

are here invariant by #, we also have (3). Since both

E

0

` R � <: M � and E

0

` R � <: V � , we also have (2). The hypothesis E

0

` ' <: R �

`

never holds.

However, E

0

` P �

l

<: R � holds since � and �

l

are equal.

Case ('

00

; '

0

) is (V

�

�

`

; M

�

�

`

), �rst line excluded: If ' is either M � or V � with � and �

l

equal

and we reason as in the previous case. That is � and �

l

are equal and '̂ is R � . In particular, (2)

is unchanged. Since E

0

` R �

l

<: M

�

�

l

, we also have (1), (3) and E

0

` P �

l

<: '̂. The hypothesis

E

0

` ' <: M

�

�

`

holds when ' is M � , and then (4) holds since '̂ is '.

Otherwise, ' is either M

�

� or V

�

� with E

0

` �

`

<: � and '̂ is M

�

� . Since E

0

` M

�

� <: M

�

�

`

, i.e.

E

0

` '̂ <: '

0

, we have (1). Since M

�

, i.e. both sides, are invariant by #, we also have (3). Since

both #' is equal to '̂, which is invariant by #, we also have (2). The inequality E

0

` '<:'

0

holds

when ' is M

�

� , i.e. '̂, and then E

0

` ' <: '̂ trivially holds. Otherwise, (4) holds taking � for �

0

`

.

8.10 Subject reduction

Theorem 1 (Subject Reduction) Typings are preserved by reduction. If E ` a : �

a

and a �! a

0

then E ` a

0

: �

a

.

Proof: By induction on the size of a and cases on the reduction.
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Case Red Select: The expression a is of the form v:`

j

where v is �(�; �)[`

i

= &(x)a

i

i2I

] and j

is in I. It reduces to a

j

f�=�gfv=xg. The derivation of E ` a : �

a

ends with a subsumption rule

preceded by rule Expr Select. Thus, there exists types �

0

and �

00

j

such that

E ` v : �

0

E ` �

0

<: �(�)[`

j

: R

+

�

00

j

; U] (8.1) E ` �

00

j

f�

0

=�g<: �

a

(8.2)

The derivation E ` v : �

0

itself ends with a subsumption rule preceded by rule Expr Object.

Thus, � is of the form �(�)[�] and there exist �

i

i2I

such that

E;� <: # �; x

i

: � ` a

i

: �

i

; 8i 2 I (8.3) E;� <: # � ` (`

i

: P �

i

i2I

; A)<: � (8.4)

E ` � <: �

0

(8.5)

By transitivity between (8.5) and (8.1), we have E ` � <: �(�)[`

j

: R

+

�

00

j

; U ] (8.6). By structural

subtyping (lemma 39), and transitivity with (8.4), we have, in particular, E;�<: T ` P �

j

<: R

+

�

00

j

.

By structural subtyping (lemma 39), E;�<:T ` �

j

<:�

00

j

. Thus, by subsumption applied to (8.3),

E;� <: # �; x

i

: � ` a

i

: �

00

j

(8.7). The judgment (8.6) also implies that E ` � <: �(�)[U], and by

lemma 41 we have E ` � <: # � . Therefore, applying substitution (lemma 38) to (8.7), we have

E; x

i

: � ` a

i

f�=�g : �

00

j

f�=�g. Since E ` v : � , by substitution again, we have E ` a

i

f�=�gfv=xg :

�

00

j

f�=�g (8.8). Since �

00

j

is covariant, it follows from (8.5) that E ` �

00

j

f�=�g <: �

00

j

f�

0

=�g . By

transitivity with (8.2), E ` �

00

j

f�=�g <: �

a

(8.9). We conclude using subsumption applied to (8.8)

with (8.9).

Case Red Extend: The expression a is of the form v:`

(

)

�(�; �

0

)&(x

0

)a

0

where v is

�(�; �)[`

i

= &(x

i

)a

i

i2I

] and ` is not one of the `

i

's. It reduces to �(�; �̂)[` = &(x

0

)a

0

; `

i

= &(x

i

)a

i

i2I

]

where �̂ is �

(

)

�

0

.

Let � and �

0

be �(�)[�] and �(�)[�

0

] (this is not restrictive) and �̂ be �

(

)

�

0

. A derivation

of v:`

j

(

)

�(�; �

0

)&(x)a ends with a subsumption rule preceded by rule Expr Extend. Thus, �

0

veri�es:

('

0

; �

0

(`)) 2 f(A; P �

`

); (V �

`

; R �

`

); (V

�

�

`

; M

�

�

`

)g (8.1) E ` v : �(�)[`:'

0

; �

0

] (8.2)

E;� <: # �

0

; x

0

: � ` a

0

: �

`

(8.3) E ` �

0

<: �

a

(8.4)

A derivation of (8.2) ends with subsumption preceded by rule Expr Object. Thus, � veri�es:

E;� <: # �; x

i

: � ` a

i

: �

i

; 8i 2 I (8.5) E;� <: # � ` (`

i

: P �

i

i2I

; A)<: � (8.6)

E ` � <: �(�)[`:'

0

; �

0

] (8.7)

From (8.7), by structural subtyping, we have E;�<:T ` �<:(` : '

0

; �

0

). Thus, E;�<:T ` �n`<:�

0

n`.

This, together with (8.1) meets the hypotheses of lemma 40. Therefore,

E ` �̂ <: �

0

(8.8) E ` # �̂ <: # � (8.9) E ` # �̂ <: # �

0

(8.10)

Moreover, for some �

0

`

:

E;�<:# � ` �n `<: �̂n ` (8.11) E;�<:# � ` �

`

<: �̂

0

`

(8.12) E;�<:# � ` P �

0

`

<: �̂(`) (8.13)

Combining (8.6), (8.11), and (8.13) we have E;� <: # � ` (` : P �

0

`

; `

i

: P �

i

i2I

; A)<: �̂. By bound

weakening, since (8.9), we get E;� <: # �̂ ` (` : P �

0

`

; `

i

: P �

i

i2I

; A) <: �̂ (8.14). Combining (8.3)

with (8.12), we have E;� <: # �

0

; x

0

: � ` a

0

: �

0

`

(8.15). By substitution lemma applied to (8.15)

and (8.5), with (8.9) we have

E;� <: # �̂ ; x

0

: � ` a

0

: �

0

`

E;� <: # �̂ ; x

i

: � ` a

i

: �

i

; 8i 2 I

Combining with (8.14), we have E ` a

0

: �̂ . By subsumption applied with (8.8) and (8.4), we

�nally have E ` a

0

: �

a

.
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Case Red Update: We reuse the same notations. The di�erence is that ` is now one the `

j

for

j in I. The expression a is of the form v:`

(

)

�(�; �

0

)&(x)a where v is �(�; �)[`

i

= &(x

i

)a

i

i2I

]. It

reduces to �(�; �̂)[`

j

= &(x)a ; `

i

= &(x

i

)a

i

i2I�j

].

We distinguish two subcases according to form of the typing derivation for a.

Subcase Expr Extend: This case is similar to the case for extension. The only di�erences

in the proof if that here, from (8.6), (8.9) and (8.13), we have E;� <: # �̂ ` (` : P �

`

; `

i

: P

�

i

i2I�j

; A)<: �̂ instead of (8.14).

Subcase Expr Update: A derivation of v:`

(

)

�(�; �

0

)&(x

0

)a

0

ends with a subsumption rule

preceded by rule Expr Update. Thus, �

0

veri�es:

E ` v : �

0

(8.1) E ` �

0

<: �(�)[`: R �

`

; �

0

] (8.2) E;� <: # �

0

; x

0

: � ` a

0

: �

`

(8.3)

E ` �

0

<: �

a

(8.4)

A derivation of (8.1) ends with subsumption preceded by rule Object. Thus, � veri�es:

E;� <: # �; x

i

: � ` a

i

: �

i

; 8i 2 I (8.5) E;� <: # � ` (`

i

: P �

i

i2I

; A)<: � (8.6)

E ` � <: �

0

(8.7)

From (8.7), by structural subtyping, we have E;�<: T ` �<: �

0

, which enables to apply lemma 40;

we get

E ` �̂ <: �

0

(8.8) E ` # �̂ <: # �(8.9) E ` # �̂ <: # �

0

(8.10) E;� <: # � ` � <: �̂ (8.11)

Combining (8.11) with (8.6), we have E;� <: # � ` (`

i

: P �

i

i2I

; A) <: �̂. By bound weakening,

since (8.9), we have E;� <: # �̂ ` (`

i

: P �

i

i2I

; A) <: �̂ (8.12). By structural subtyping (lemma

39) applied to (8.2), we have E;� <: T ` �

0

(`) <: R �

`

. By bound weakening with (8.10), we have

E;� <: # �̂ ` �

0

(`) <: R �

`

. By transitivity with (8.8) after applying structural subtyping, we get

E;� <: # �̂ ` �̂(`) <: R �

`

. By structural subtyping, we must have E;� <: # �̂ ` P �

`

<: �̂(`).

Combining this with (8.12), we have E;� <: # �̂ ` (` : P �

`

; `

i

: P �

i

i2I�j

; A)<: �̂ (8.13).

By substitution lemma applied to (8.3) and (8.5), we have

E;� <: # �̂ ; x : � ` a : �

`

E;� <: # �̂ ; x

i

: � ` a

i

: �

i

; 8i 2 I

Combining with (8.13), we have E ` a

0

: �̂ . By subsumption applied with (8.8) and (8.4), we

�nally have E ` a

0

: �

a

.

Case Context: Trivial using the induction hypothesis.
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Chapitre 9

Conclusions

Nous avons explor�e un des chemins possibles des enregistrements aux objets. Le remplacement

des enregistrements d�eclar�es par des enregistrements polymorphes et extensibles, dans le langage

ML, puis l'ajout d'une op�eration de concat�enation nous a permis de voir les objets comme des

enregistrements de fonctions et les classes comme des fonctions sur ces enregistrements. Le retour

�a des objets et des classes primitifs a facilit�e la mise en �uvre d'un m�ecanisme d'abr�eviation

automatique corrigeant les probl�emes d'interface li�es �a la structure ouverte des types d'objets. Cela

a abouti au langage Objective ML. C'est le r�esultat concret le plus important de notre travail.

Les derniers chapitres �etudient des am�eliorations du langage Objective ML. Tout en apportant des

r�eponses pr�ecises, ils soul�event aussi de nouvelles questions. L'ajout du polymorphisme de premi�ere

classe est-il un premier pas vers l'abandon de la synth�ese des types en ML et �a terme l'abandon

de ML? Ou, au contraire, est-ce une nouvelle porte qui s'ouvre vers des syst�emes de types plus

expressifs qui conserveraient l'essence donc la p�erennit�e du langage ML?

L'ensemble des travaux pr�esent�es s'appuient, autant dans les motivations initiales que dans la

formulation �nale sur la correspondance �etroite entre objets et enregistrements. Le dernier chapitre

va au del�a en identi�ant objets et classes. La compr�ehension de la programmation des langages �a

objets ne doit pas se limiter �a la compr�ehension des objets, et la prise en compte de la notion de

classe d�es le d�epart est un atout.

Le langage Objective ML, n'est sans doute pas une proposition �nale, et il devrait pouvoir

être simpli��e davantage. Pourtant, un peu comme s'il avait atteint un point d'�equilibre minimal,

plusieurs tentatives en ce sens ont �echou�e : elles ont entrâ�n�e une perte intol�erable d'expressivit�e,

ou inversement, une complication d�emesur�ee de la s�emantique statique ou dynamique. Mais nous

restons optimistes quant �a l'existence d'une pr�esentation d'Objective ML plus l�eg�ere et encore plus

expressive ! Cela pourrait passer par une meilleure identi�cation des objets et des classes, ou bien

par une g�en�eralisation de l'op�eration d'extension dans l'esprit de [117].

R�esultats th�eoriques et pratiques

Bien que le but de notre �etude soit l'extension de ML avec des objets et des classes, notre

parcours est jalonn�e de r�esultats auxiliaires.

L'extension de ML avec des enregistrements polymorphes est une �etape essentielle sur le plan

th�eorique. Elle est le point d'articulation et le fondement de tous les travaux pr�esent�es ici. C'est

en fait la mise en forme des variables de rang�ee dont le concept avait �et�e introduit dans [119], et

de l'ensemble des m�ecanismes qui permettent de les int�egrer �a ML tout en conservant la synth�ese

des types. Une id�ee capitale est l'adjonction des annotations de pr�esence au niveau des types qui

221
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permet de traiter les types enregistrements comme des fonctions totales plutôt que des fonctions

partielles sur les �etiquettes. Cette d�ecomposition augmente �a la fois l'expressivit�e et l'uniformit�e

donc �egalement la simplicit�e des types enregistrements. Mais le principe est g�en�eral, et nous l'avons

appliqu�e avec avantage aux types objets dans le chapitre 8 dans un contexte explicitement typ�e.

Bien que les enregistrements polymorphes extensibles ne soient pas int�egr�es dans le langage

Objective Caml (parce que les objets les rendent moins n�ecessaires, voire un peu super
us), cette

extension a plusieurs applications concr�etes. Elle a �et�e reprise (dans un cas particulier) pour le

typage des objets. Elle est aussi utilis�ee, de fa�con plus essentielle pour le typage des variantes avec

sous-typage [97].

L'enrichissement des types enregistrements propos�e dans le chapitre 3 est utilis�e de fa�con un

peu cach�ee mais essentielle dans le chapitre 5 pour d�e�nir les types des objets et des messages.

Cette extension permet aussi de typer des enregistrements avec des valeurs par d�efaut, rapprochant

ainsi les enregistrements de la forme duale des variantes (les variantes ayant naturellement un cas

par d�efaut).

Le typage de la concat�enation des enregistrements est une technique autant qu'une proposition

qui consiste �a simuler la composition de fonctions d'extensions associ�ees aux enregistrements. Cette

m�ethode est utilis�ee �a nouveau dans le chapitre 5 pour mod�eliser directement l'h�eritage multiple.

Cela revient �a voir les classes comme des mixins et ainsi remplacer l'h�eritage multiple par la com-

position des mixins. Il manquait au concept des mixins, connu mais trop peu consid�er�e, un lien

plus clair avec l'h�eritage multiple et la concat�enation des enregistrements que nous avons �etabli et

valoris�e dans ML-ART. Dans le langage Objective ML, nous avons pr�ef�er�e revenir �a une op�eration

d'h�eritage multiple parce qu'elle �etait plus standard, mais aussi parce qu'elle conduit �a des types

plus lisibles, ce qui est tr�es important dans un contexte de synth�ese des types. Mais la notion de

mixin reste avantageuse. Elle est de nouveau valoris�ee dans [43]. Nous pourrions aussi la r�eintroduire

dans une future version d'Objective ML, maintenant que la synth�ese des types et leur m�ecanisme

d'abr�eviation sont bien compris.

Objective ML est un langage avec des objets primitifs et une synth�ese compl�ete des types.

Mais il ne doit pas être con�n�e �a demeurer une extension de ML. C'est aussi une approche du

typage des objets qui repose de fa�con essentielle sur le polymorphisme des variables de rang�ee

qui malgr�e les contraintes (ou grâce �a elles) impos�ees par la volont�e de pr�eserver la synth�ese de

types s'av�ere extrêmement expressive et poss�ede bien des atouts que bien d'autres propositions,

typ�es explicitement, peuvent lui envier. De nombreuses constructions, r�eput�ees di�ciles, comme les

op�erations r�e
exives y compris les m�ethodes binaires s'y expriment simplement.

Ces propri�et�es r�esultent de l'usage du polymorphisme des variables de rang�ee plutôt que du

polymorphisme de sous-typage. En ce sens nous partageons l'avis de Kim Bruce que le sous-typage

n'est pas la bonne notion pour la programmation �a objets. Dans le langage PolyToil [18] il introduit

comme alternative une notion de �ltrage (matching) sur les types. Or, cette nouvelle op�eration,

trait�ee de fa�con un peu ad hoc, correspond par essence au polymorphisme des variables de rang�ee.

Objective ML et PolyToil partagent de nombreuses qualit�es, notamment la facilit�e �a traiter le type

de self et les m�ethodes binaires.

Toutefois, nous pensons que l'approche par variables de rang�ee est sup�erieure au �ltrage

parce que le polymorphisme est un concept simple, bien connu, et d�ej�a pr�esent dans les langages

consid�er�es. De plus le polymorphisme des variables de rang�ee est une forme sp�ecialis�ee d'une no-

tion plus g�en�erale de destructeur de type introduite r�ecemment dans [53]. Le polymorphisme des

variables de rang�ee permet aussi d'exprimer l'extension des enregistrements. Toutefois, il ne semble

pas être su�sant pour coder l'extension des objets pr�esent�ee dans le chapitre 8.

Objective ML est donc aussi la d�emonstration que le polymorphisme des variables de rang�ee
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remplace avantageusement le sous-typage mais aussi la quanti�cation �ltr�ee. Sans être tout �a fait

aussi g�en�eral, il s'arrête l�a o�u l'un ou l'autre deviennent simultan�ement plus compliqu�es et moins

utiles.

L'ajout du polymorphisme de premi�ere classe r�epond au besoin r�eel de m�ethodes polymorphes

dans les classes param�etriques. C'est aussi l'�elimination d'un point faible d'Objective ML, et il a

valeur de symbole. Mais au del�a de l'application aux objets c'est aussi une r�eponse �a un besoin

latent de petites doses d'ordre sup�erieur en ML. Ce probl�eme avait re�cu trop peu d'attention et

les solutions de principe propos�ee n'�etaient pas tr�es satisfaisantes en pratique. Ce r�esultat est aussi

une ouverture de ML vers un langage mixte avec typage implicite et explicite et synth�ese partielle

des types.

L'identi�cation des objets et des classes est pour l'instant un travail plutôt th�eorique qui simpli�e

plusieurs propositions existantes. Il corrige aussi un d�efaut de nombreuses �etudes qui tendent �a

rel�eguer les classes au second plan, et souvent les traitent par des codages. Mais son int�erêt est

surtout dans les prolongements auxquels il invite.

Les prolongements

Objective ML est un accomplissement, mais aussi une �etape. Ses qualit�es ne doivent pas cacher

pour autant les am�eliorations possibles qui restent �a faire. Objective ML est aujourd'hui la seule

version de ML distribu�ee avec des objets. Au del�a des extensions envisageables, il faut continuer �a

rechercher d'autres ajouts, directement li�es aux objets, ou d'autres alternatives �a la programmation

avec objets. Comme nous l'avons rappel�e en introduction, la recherche de constructions plus ex-

pressives, plus simples, sûres et e�caces est sans �n. Elle ne peut être abandonn�ee. Nous d�ecrivons

ci-dessous quelques directions de recherche pour �etendre les travaux pr�esent�es ici.

Types d'ordre sup�erieur

L'ajout de types d'ordre sup�erieur d�ecrit dans le chapitre 7 �a �et�e motiv�e avant tout par le besoin

de m�ethodes polymorphes dans les objets et cela reste sa plus importante application. Toutefois,

cette approche qui g�en�eralise la proposition plus facile faite dans le chapitre 5, doit être replac�ee

dans un cadre plus large de la quête d'un syst�eme interm�ediaire entre ML et le syst�eme F. Cette

id�ee n'est pas nouvelle, mais elle se trouve r�eactiv�ee aujourd'hui par le besoin plus pressant d'un

syst�eme de types plus riche comme celui du syst�eme F

!

<:

, et la volont�e de pr�eserver la synth�ese des

types pour continuer �a être, sinon pr�etendre, de la famille ML.

Notre proposition s'applique parfaitement aux m�ethodes polymorphes. Si l'on se restreint au

noyau ML, la solution propos�ee est convenable, mais on ressent le besoin d'aller au del�a et de rendre

encore plus implicite l'�elimination du polymorphisme. Nous avons d�ej�a commenc�e �a explorer cette

direction, mais la solution n'est pas pour l'instant satisfaisante. Il serait aussi int�eressant d'�etudier

l'interaction de cette proposition avec une forme semi-implicite de sous-typage.

Sous-typage

Nous avons mentionn�e �a plusieurs reprises le sous-typage tout en donnant l'impression de l'avoir

ignor�e ou critiqu�e. Tant l'absence de sous-typage est une faiblesse de ML, tant sa rel�egation au

second plan est un point fort d'Objective ML.

�

A notre connaissance, Ocaml, PolyToil et ses des-

cendants cit�es ci-dessus sont parmi les seuls langages �a ne pas s'appuyer sur un m�ecanisme de

sous-typage. Simultan�ement, ils traitent tous deux facilement les m�ethodes binaires.
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Nous n'avons pas pour autant n�eglig�e le sous-typage. Il permet d'ins�erer des coercions entre cer-

taines valeurs ayant une même repr�esentation mais des types di��erents. Il est pr�esent, explicitement

d�eclar�e dans Objective ML, o�u il s'av�ere tr�es utile, mais relativement peu souvent.

Le sous-typage avec inf�erence de types a �et�e �etudi�e pour ML et pour une extension de ML

avec des objets dans [40]. Toutefois les probl�emes d'interface d�ej�a di�ciles en ML-ART se trouvent

d�ecupl�es par la pr�esence du sous-typage. Bien qu'il ne soit pas pr�epond�erant, l'usage du sous-typage

pourrait être facilit�e en Objective ML s'il �etait synth�etis�e. Les travaux de Fran�cois Pottier [97]

permettent d'envisager maintenant l'�etude d'une version d'Objective ML avec synth�ese des sous-

types. Cependant, il restera |et c'est le plus di�cile| �a ajuster les techniques d'abr�eviation

automatique des types en pr�esence de sous-typage implicite.

Typage des objets et abstraction

Le typage des objets dans Objective ML est tr�es satisfaisant ; toutefois, son expressivit�e, la

robustesse et la simplicit�e de sa mise en �uvre et sa facilit�e d'utilisation r�ecemment am�elior�ee,

devraient maintenant laisser apparâ�tre les plus petits d�efauts.

Le probl�eme le plus �evident aujourd'hui est de ne pas pouvoir cacher les m�ethodes a posteriori,

ce qui nuit �a la modularit�e : une classe �ecrite en librairie r�ev�elera toutes les fonctionnalit�es qui

ne compromettent ni la s�ecurit�e ni l'abstraction. Un utilisateur qui trouve cette classe en librairie,

mais avec une interface plus restreinte, ne peut parfois pas l'utiliser parce qu'une partie non d�esir�ee

de l'interface ne peut être cach�ee.

Ce probl�eme s�erieux trouve son origine aux sources des objets dans le m�ecanisme de liaison tar-

dive. Par d�efaut, l'oubli de structure est une op�eration implicite qui ne change pas la repr�esentation

des objets. Le m�ecanisme de liaison tardive rend certaines de ces op�erations dangereuses. Les outils

d�evelopp�es dans le chapitre 8 permettent de tracer les op�erations d'oubli, et autorisent les op�erations

sûres tout en d�etectant celles qui sont dangereuses. Mais cette approche n'est pas toujours su�-

sante. Il est des cas o�u l'on veut e�ectivement cacher des m�ethodes, et red�e�nir d'autres m�ethodes

du même nom, mais ind�ependantes. Il faut pour cela un moyen d'interrompre la liaison tardive.

Une proposition r�ecente [117] enrichit le m�ecanisme de liaison tardive de fa�con �a pouvoir autoriser

l'oubli de m�ethodes sans restriction. Il serait int�eressant de voir comment cette nouvelle construc-

tion peut se combiner avec la solution orthogonale propos�ee dans 8. Une autre direction est de

reprendre cette proposition dans le cadre d'Objective ML et de mieux comprendre son adaptation

au polymorphisme des variables de rang�ee et son interaction avec les m�ethodes binaires.

Il est remarquable que la proposition pr�ec�edente [117] ou une variante [43] qui �etend la

s�emantique des objets soit le r�esultat d'un probl�eme de typage. Le typage des objets qui jusqu'�a

pr�esent se contentait de \rattraper" son retard par rapport aux langages �a objets non typ�es est

maintenant bien mature et propose des constructions nouvelles, utiles �egalement dans un contexte

non typ�e.

Modules et objets

Le langage ML poss�ede �a la fois un m�ecanisme de modules sophistiqu�e et un langage d'objets

performant. Victime de sa r�eussite multiple, se pose maintenant un nouveau probl�eme que l'on ne

doit pas sous-estimer. Les notions de modules et d'objets ont �et�e motiv�ees par des besoins similaires

de structuration de la programmation, d'abstraction, de partage et de r�eutilisation de code. L'une

et l'autre r�epondent aujourd'hui �a ces besoins avec succ�es, mais aussi de fa�con tr�es di��erente [118].

Alors que modules et objets se rejoignent dans leur accomplissement, ils di��erent dans leur mise

en �uvre. Pire, ils induisent chacun des styles de programmation divergents et peu compatibles.
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Ainsi, pour des raisons historiques les librairies �ecrites dans un style modulaire incitent peu �a

l'utilisation des objets. Inversement, une application �ecrite en style objet n�ecessite souvent de

r�e�ecrire une partie des librairies dans un style compatible.

Il est essentiel de rapprocher les deux notions et de donner �a l'utilisateur une vision uniforme

de la programmation incr�ementale et modulaire.

Co-objets

Il existe traditionnellement deux approches de la programmation avec objets. Celle que nous

avons �etudi�ee est dite �a enregistrements parce que les objets peuvent être consid�er�es comme des

enregistrements portant leurs m�ethodes, même si une implantation particuli�ere peut les repr�esenter

di��eremment. L'autre approche, dite �a surcharge, consid�ere que les objets ne portent que leurs

variables d'instance. Les m�ethodes sont alors des fonctions externes, globales, surcharg�ees. Alors

que le typage des objets dans l'approche �a enregistrements est aujourd'hui tr�es bien compris, le

typage des m�ethodes comme fonctions surcharg�ees est encore fort peu satisfaisant. Les m�ecanismes

de surcharge, d�ej�a di�ciles, ont trouv�e quelques solutions [28, 29, 14], mais l'application ult�erieure

aux objets passe encore par une analyse ou une transformation globale.

Cette di�cult�e de typage cache probablement une di�cult�e s�emantique plus profonde. Pour-

tant, l'approche �a surcharge est par certains aspects plus intuitive. Il faut aussi reconnâ�tre que

cette approche a concentr�e beaucoup moins d'e�ort. Fort de notre exp�erience et munis de bons

instruments, il serait int�eressant de rechercher un autre chemin menant des sommes aux objets.

Objets distribu�es

La distribution prend une importance croissante dans tous les syst�emes donc aussi dans la

plupart des langages de programmation.

Le transfert des techniques de typage d�evelopp�ees pour les objets en Objective ML au calcul

joint �a �et�e entrepris et ne pose pas de probl�eme particulier. Cependant, il est int�eressant de le mener

�a bien, en esp�erant surtout pro�ter du contexte distribu�e pour trouver de nouvelles contraintes et

d'autres exigences. Cela risque de nous amener �a nous orienter vers des constructions l�eg�erement

di��erentes, et ne peut �a terme qu'enrichir notre compr�ehension des objets.

�

Epilogue

S'il fallait retracer demain la route des objets, le point d'arriv�ee serait sensiblement le même,

mais la ligne serait droite, sans virage, courte et directe. Il est toujours intrigant de regarder derri�ere

soi et de s'apercevoir de la faible distance qui s�epare le point d'arriv�ee du point de d�epart. Mais

le fait que le trajet puisse être parcouru aujourd'hui en un temps plus court est le signe que notre

compr�ehension des objets est devenue mature et que les nouvelles constructions ont �et�e rattach�ees

�a des ancrages solides et connus de tous.

Alors que la plupart des recherches sur les objets d'hier s'attachaient �a comprendre et formali-

ser rigoureusement les nombreux concepts introduits pour la plupart il y a plus de deux d�ecennies,

les travaux en cours proposent de nouvelles op�erations plus puissantes, mais aussi souvent sim-

pli�catrices et uni�catrices. Tantôt les notions d'objets et de classes se d�ecomposent en atomes

plus �el�ementaires que sont les enregistrements, les fonctions et l'abstraction, tantôt elles deviennent

primitives, fusionnent et englobent tous ces aspects �a la fois.
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Notre sentiment de bien comprendre les objets ne peut pas pour autant nous empêcher de

rêver �a des objets meilleurs. Comme nous l'avons rappel�e au d�ebut de ce m�emoire, la recherche de

nouvelles structures de programmation est une histoire sans �n. Au fur et �a mesure que certains

concepts s'�eclaircissent, que des asp�erit�es disparaissent, notre toucher devient plus sensible et de

plus petites rugosit�es surgissent.

Les concepts d'objets et de modules, apparus simultan�ement par �ssion de l'id�ee de program-

mation structur�ee et incr�ementale et de r�eutilisabilit�e, compos�es avec la même mati�ere, sont parfois

aux antipodes l'un de l'autre. Il reste �a ouvrir la voie, encore presque vierge qui les reliera en attente

de leur in�evitable fusion.
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R�esum�e

Les enregistrements, produits �a champ nomm�es, sont une structure simple et fondamentale en

programmation, et sont pr�esents depuis longtemps dans de nombreux langages. Toutefois, certaines

op�erations sur les enregistrements, comme l'ajout de champs, restent d�elicates dans un langage

fortement typ�e. Les objets sont, au contraire, un concept tr�es �evolu�e, expressif, mais les di�cult�es

�a les typer ou �a les coder dans un lambda-calcul typ�e semblent re
�eter une complexit�e intrins�eque.

Une technique simple et g�en�erale permet d'�etendre le typage des enregistrements aux op�erations

les plus avanc�ees, telles que l'acc�es polymorphe, l'extension, la possibilit�e d'avoir des valeurs par

d�efaut et une forme de concat�enation. En ajoutant �a ces op�erations des types existentiels, objets

et classes deviennent directement programmables, sans sacri�ce pour leur expressivit�e, mais au

d�etriment de la lisibilit�e des types synth�etis�es.

Une extension de ML avec des objets primitifs, Objective ML, �a la base de la couche objet du

langage Ocaml, est alors propos�ee. L'utilisation de constructions primitives permet, en particulier,

l'abr�eviation automatique des types qui rend l'interface avec l'utilisateur conviviale. Une extension

harmonieuse du langage avec des m�ethodes polymorphes est �egalement possible.

Tout en expliquant l'imbrication entre les enregistrements, les objets et classes, ces travaux

montrent surtout que le polymorphisme de ML, un concept simple et fondamental su�t �a rendre

compte des op�erations les plus complexes sur les objets. La simplicit�e et la robustesse d'Objective

ML et de son m�ecanisme de typage, qui ne sacri�ent en rien l'expressivit�e, contribuent �a d�emysti�er

la programmation avec objets, et la rendent accessible en toute s�ecurit�e �a l'utilisateur, même novice.
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