Mémozire d’habilitation a diriger des recherches

en informatique

présenté a

I’Université de Paris 7

par

Didier Rémy

Des enregistrements aux objets

Soutenu le 7 septembre 1998 devant le jury composé de :

MM. Gérard Berry
Guy Cousineau
Jean-Pierre Jouannaud
Claude Kirchner
Jean-Jacques Lévy
Benjamin Pierce
Christian Queinnec

Table des matiéeres

1 Un raccourci

1.1 Lelangage ML o .
1.2 Les enregistrements polymorphes L o oL 0oL

1.2.1 Enregistrements partiels de domaine fini

1.2.2 Enregistrements totaux de domaine infini
1.3 Concaténation des enregistrements L Lo
1.4 Les objets vus comme des enregistrements L 0oL
1.5 Objective ML o
1.6 Polymorphisme de premiere classe oL
1.7 Des classes aux objets par la relation de sous-typage

Synthése des types enregistrements

2.1 A simple solution when the set of labels is finite
2.1.1 Themethod e
2.1.2 A formulation

2.2 Extension to large records Lo oL
2.2.1 An intuitive approacho oL o L
2.2.2 Extending a free algebra with a record algebra
2.2.3 Extending the types of ML with a sorted equational theory
2.2.4 Typechecking record operations oo

2.3 Programming with recordso oL
2.3.1 Typingexamples
2.3.2 Limitations Lo e e
2.3.3 Flexibility and Improvements oo
2.3.4 Extensions e e

2.4 Unification on record typeso

Projective ML

3.1 The projective lambda calculuso o oo o
3.1.1 Thecalculus PA
3.1.2 Projective types
3.1.3 A typesystem for PA
3.1.4 Subject reduction. L

3.2 The language PML
3.2.1 Let polymorphism
3.2.2 Concrete data typeso e

3.3 The three views of PML

13
13
16
17
19
21
22
27
37
39

41
44
44
45
46
46
48
ol
92
93
93
o4
95
o8
60

Records with default values
3.3.2 Classical records
3.3.3 Projection polymorphism
Unification on projective types

A simpler set of typing rules for the projective calculus
Type inference

La concaténation des enregistrements
4.1 Encoding of concatenation
The untyped translation
4.1.2 The tagged translation
4.1.3 Concatenation with removal of fields
Application to a natural extension of ML
An extension of ML for records
4.2.2 An extension of ML with record concatenation
4.2.3 Strength and weakness of IIl
Other applications
Application to Harper and Pierce’s calculus

TABLE DES MATIERES

4.3.2 Application to Cardelli and Mitchell’s calculus. 95

4.3.3 Multiple inheritance without record concatenation

Programmer les Objects

5.1 Failure to program objects with value abstraction
5.2 The language
The core language
Extensible records
Mutable data structures
Recursive types
Projective types
Existential types
Universal types
Mixing the extensions
Objects and Inheritance
An intuitive approach to objects and inheritance
5.3.2 Safe fix-points of non-functional values
5.3.3 Objects without recursive values
5.3.4 Extensions
Definition of the language ML-ART
Expressions
Sorts and types
Type equality
Typing rules
Syntactiness of recursive projective types and type inference

TABLE DES MATIERES

6 Objective ML
6.1 An overview of Objective ML
6.2 Objects e e e
6.3 Classes L e e
6.4 Coercion e e
6.5 Semantics L. L e e e e e e
6.6 Typeinference L
6.7 Abbreviation enhancementso oL L
6.8 Abbreviating object types L
6.9 Extensions.
6.9.1 Imperative features oL
6.9.2 Local bindings
6.9.3 Coercion primitives.o e e
6.10 Future work L
6.10.1 Restriction of class interfaces oL oL
6.10.2 Polymorphic methods
6.10.3 Integrating classes and modules
6.11 Comparison to other works
6.1 Typing rules for core ML
6.2 Binary methods L
6.3 Proofs of type soundness theorems. o oo oL
7 Poly ML
7.1 Informal approach
7.1.1 Amnaivesolution
7.1.2 Anobvious problem
7.1.3 Asimplesolution L
7.2 Formal approach
7.2.1 Thecorelanguage
7.2.2 Dynamic semantics e
7.2.3 Typesoundness.
7.2.4 Typeinference
7.2.5 Printing labels as sharing constraints 000
7.3 Encodings e
7.4 Application to Objective ML L
7.5 Value-only polymorphism L L
7.6 Related Work e
7.7 Proofs of main theorems L o
8 Des classes aux objets
8.1 Imtroduction. e
8.2 Informal presentation L
8.3 Formal developments L
8.3.1 Types
8.3.2 Typeextension
8.3.3 Expressions e
8.3.4 Well formation of types and subtyping

133
134
136
139
142
144
145
146
148
150
150
151
152
153
153
153
155
156
159
159
160

169
171
171
172
173
173
173
175
176
177
181
181
184
186
189
190

6 TABLE DES MATIERES

8.3.0 Typingrules 205
8.3.6 Operational semantics oo 206
8.4 Soundness of the typing rules L o L 207
8.5 Examples e 208
8.5.1 Objects e e 209
8.5.2 Abstraction via subtyping 209
8.5.3 Virtual methods 209
8.5.4 Traditional class-based perspective oL 209
8.5.5 Anadvanced exampleo 210
8.5.6 Encoding of the lambda-calculus oL, 211
8.6 Discussion e e e e 212
8.6.1 Variations L 212
8.6.2 Better subtyping for object types oo 212
8.6.3 Extensions e 212
8.6.4 Imperativecalculus. 213
8.6.50 Equational theory 213
8.6.6 Higher-order types, row variables, matching, and binary methods 213
8.6.7 Encoding of objects 214
8.7 Comparison with other works 214
8.8 Conclusion e e e 216
8.9 Type computation L 216
8.10 Subject reduction L 217

9 Conclusions 221

Introduction

L’intelligence pour s’exercer a besoin d'un support linguistique. Ne serait-ce que pour devenir
un nez, il faut d’abord apprendre le langage des aro6mes. De cette primordialité du langage dans la
pensée, il n’est pas surprenant que les langages de programmation soient aussi un point d’articula-
tion entre la conception d’un logiciel et sa réalisation. Bien que la structure globale, les algorithmes
particuliers mis en oeuvre et le soin apporté au codage soient des facteurs essentiels, le langage de
programmation est souvent lui-méme déterminant pour la rapidité de la mise au point, la qualité
et la clarté du code et la stireté du logiciel.

Les langages de programmation dits généraux, c’est-a-dire non spécialisés a certains types de
problémes, sont complets au sens de Turing. Cela veut dire qu’ils permettent d’écrire tous les
algorithmes calculables. Ils ne sont cependant pas tous équivalents, car ils different énormément
par leur expressivité, c’est-a-dire leur capacité a exprimer succintement certains algorithmes. Nous
sommes donc poussés a une recherche —sans fin— de nouvelles structures de programmation, plus
abstraites, permettant de décrire des algorithmes de facon plus concise. Nous ne recherchons pas
toutefois I'expressivité & tout prix et nous nous efforcons de n’introduire que des constructions
générales, mais aussi simples et intuitives, modulaires, bien formalisées et stires.

En contrepartie de la complétute des langages de programmation généraux, il faut abandonner
tout espoir de pouvoir décider de propriétés importantes telles que la terminaison d’un programine,
ou ce qui est équivalent, sa bonne exécution. Mais il ne faut pas pour autant abandonner la sireté
de l'exécution, sous prétexte de ne rien sacrifier & ’expressivité. Il est possible et important de
conserver ’expressivité tout en se limitant a une sous-classe décidable des programmes qui s’évaluent
normalement.

Apres une étude approfondie du typage des enregistrements avec synthese des types, nous
proposons une extension du langage ML avec des objets et des classes, et les opérations les plus
avancées qui leurs sont associées. Nous augmentons ainsi significativement 1’expressivité du langage
sans en perdre l’esprit.

Typage

Le typage est un outil général permettant de définir, par un critéere simple et décidable, un
sous-ensemble des expressions bien formées qui s’évaluent correctement. Il consiste & abstraire les
détails d’'un programme, les valeurs particulieres prises par les arguments, et n’en retenir que leur
structure. Par exemple, on distingue les entiers de type int des chaines de caracteres de type string,
mais on confond tous les entiers entre eux et toutes les chaines de caracteres entre elles. Une fonction
sur les entiers a le type int — int. Le lien précis entre le résultat et 'argument est alors perdu, les
types des arguments et du résultat étant uniquement retenus. Ainsi, les fonctions successeurs ou
prédécesseurs ont toutes deux le type int — int et, comme la preuve par neuf, le typage ne détectera
pas les erreurs de signe.

8 TABLE DES MATIERES

Le polymorphisme paramétrique permet de donner a une expression un ensemble de types ob-
tenus de facon uniforme. Ainsi, la fonction identité a pour type Va.(a — «), ce qui signifie qu’elle
a le type 7 — 7 pour tout type 7. Par exemple, elle a les types int — int et string — string. Dans
les langages fonctionnels, les fonctions peuvent étre passées comme arguments d’autres fonctions
ou retournées comme résultats. La fonction identité a donc aussi le type (int — int) — (int — int).
Le polymorphisme permet de retrouver une dépendance entre le type du résultat et le type de
I’argument, mais moins précise bien stur que le lien exact qui relie le résultat a I’argument.

Le polymorphisme non paramétrique est dit ad hoc. Par exemple, le polymorphisme de surcharge
permet de regrouper sous un méme nom plusieurs fonctions ayant des comportements différents. Le
choix de la fonction effectivement appliquée est déterminé statiquement par le type précis de I’argu-
ment, voire pendant le calcul par la valeur de 'argument. Dans ce travail, nous nous intéresserons
plus particulierement au polymorphisme paramétrique et nous parlerons simplement de polymor-
phisme.

Le typage est en général modulaire. Par exemple, le type de 'application d’une expression a une
autre peut étre obtenu en typant séparément chacune des expressions puis en combinant les types
obtenus. Plus généralement, il est souhaitable de pouvoir calculer le type d’un programme & partir
des types des différentes parties qui le composent.

Une propriété intéressante mais difficile a satisfaire, donc qui n’est pas toujours vraie, est l'exis-
tence de types minimaux pour tous les programmes. Un type est minimal pour une expression
lorsqu’il est correct et que tous les autres types corrects en sont des instances.

Enfin, un systeme de typage doit étre concu de facon a garantir la correction de I’évaluation.
Cela signifie que I’évaluation des expressions peut se poursuivre jusqu’a 'obtention d’une valeur, ou
indéfiniment, mais ne peut pas s’arréter sur un calcul inachevé. En général, on montre la combinai-
son de deux propriétés simultanément plus fortes. D’une part le type d’un programme est préservé
au cours du calcul (appelé réduction du programme). D’autre part les seuls programmes bien typés
qui ne peuvent plus étre réduits sont les valeurs.

Le systeme de types de ML possede toutes les propriétés énoncées ci-dessus. Il est simple, robuste
et en fait relativement puissant : nous verrons dans les chapitres suivants comment I’étendre sans en
perdre l'essence. Dans [102], le systéme de type de ML est enrichi en munissant I’algebre des types
d’une théorie équationnelle. Cette extension préserve 'harmonie et la simplicité de présentation du
langage. De plus, on retrouve la version d’origine en considérant la théorie équationnelle vide. Le
systeme de typage obtenu, plus riche, est a la base du typage des enregistrements et des objets,
c’est-a-dire de ’essentiel des travaux présentés ici.

En fait, la simplicité de cette extension repose sur un enrichissement en largeur. Les théories
équationnelles permettent d’augmenter la structure des types sans passer a ’ordre supérieur. L’en-
semble des types possibles est ensuite restreint par des sortes. L’usage des sortes est important car
en limitant les formes possibles des types, il simplifie remarquablement le probléme de 'unification
dans les théories équationnelles considérées. La combinaison de ces deux techniques s’avere tres
efficace. Elle est illustrée dans le chapitre 2 et appliquée au typage des enregistrements.

Synthése des types et vérification de types

Dans le langage ML le typage est implicite, c’est-a-dire que les types ne font pas partie des
programmes, mais sont synthétisés. C’est 'approche de Curry. D’autres langages sont, au contraire,
explicitement typés. Les expressions n’ont plus de sens si les informations de types sont retirées; le
systeme de typage n’est alors utilisé que pour vérifier la cohérence des annotations de type : c’est
I’approche de Church.

TABLE DES MATIERES 9

Cette différence n’est pas toujours essentielle. En effet, la sémantique d’un langage explicitement
typé manipule les types, mais en général, les types ne participent pas activement a la réduction. 11
est alors possible d’obtenir une présentation a la Curry par effacement des informations de types
dans les expressions, puis en projetant la relation de réduction typée dans ’ensemble des termes
non typés. Inversement, les expressions d’un langage & la Curry peuvent étre enrichies par des
informations de types, et possedent donc une présentation naturelle & la Church.

D’ailleurs les visions de Curry et de Church sont deux positions extrémes. Bien souvent, nous
nous trouvons dans une situation intermédiaire ou certaines informations de types sont explicites
alors que d’autres restent implicites. La différence entre les deux approches n’est pas non plus abso-
lument rigoureuse. Prenons comme exemple le langage ML, présenté comme un langage ou les types
sont entierement synthétisés. Il permet des déclarations de types concrets qui consistent & introduire
un nouveau constructeur de type et des fonctions de construction et de destruction pour les valeurs
de ce type. L’utilisation d’une fonction de construction ainsi déclarée porte une information de type
implicite si étroitement liée au constructeur que ’on pourrait considérer cette information comme
explicite. Dire qu’une construction du langage est explicitement ou implicitement typée comporte
donc une part de convention. Il serait sans doute plus approprié de comparer la quantité d’infor-
mation de type portée, implicitement ou explicitement, par des constructions équivalentes dans
des langages différents. Par exemple, les types concrets de ML sont typés plus explicitement que
les variantes polymorphes dans lesquelles les constructeurs sont des étiquettes sans appartenance &
un type particulier. De méme, lorsqu’elles sont surchargées les opérations arithmétiques sont plus
implicites que dans un langage ou le symbole 1 est forcément un entier et le symbole + I'addition
des entiers. En effet, cela reviendrait a lire 1 comme (1:int) dans un langage avec surcharge.

La syntheése des types dans le langage ML n’est donc pas totale. La différence entre la synthese
des types et leur vérification est aussi une différence de point de vue. Dire que ML est implicite-
ment typé c’est dire que l'on suit ’approche de Curry, mais on ne peut pas pour autant définir les
déclarations de types concrets sans introduire la notion de type. Inversement dire que le systeme
F' est explicitement typé, c’est reconnaitre qu’une des constructions principales du langage, 1’abs-
traction comporte obligatoirement une information de type.

L’augmentation de 'expressivité du systeme de typage, inéluctable, rend la synthese des types
plus difficile et nécessite plus d’annotations dans le programme source. Nous avons mentionné ci-
dessus le cas des variantes polymorphes et celui de la surcharge. C’est évidemment le cas aussi pour
I’ajout de polymorphisme d’ordre supérieur, pour lequel il n’est plus possible de synthétiser tous
les types. Au mieux, nous ne pouvons plus que faire de la synthese partielle des types. La difficulté
est alors de permettre de ne pas indiquer certains types tout en conservant la propriété des types
minimaux.

Dans ces travaux nous choisissons la présentation traditionnelle du langage ML en prenant le
point de vue de Curry. Dans le chapitre 7 nous étendons ML avec des types d’ordre supérieur
tout en préservant ’essence de ML, donc aussi ’approche a la Curry. Toutefois, de plus en plus de
travaux s’orientent vers une approche typée. Sur le plan théorique, cela permet de présenter ML
comme un sous-ensemble d’un langage explicitement typé plus puissant (le systéme F). Sur le plan
pratique, cela permet de préserver les types pendant la compilation (donc pendant une certaine
partie du calcul), méme s’ils n’y participent pas activement.

Aussi, la frontiére entre ces deux styles qui a été autrefois tres nette ne cesse aujourd’hui de
s’estomper. Plusieurs travaux récents vont dans le sens d’un rapprochement des deux points de
vue, que ce soit en augmentant le langage ML avec des annotations de types explicites, ou en
introduisant de la synthese partielle des types dans le systeme F ou les langages qui en sont dérivés
F“ et F¥, [96, 89, 37].

10 TABLE DES MATIERES

Les enregistrements pas a pas

La notion d’enregistrement est extrémement simple et se retrouve dans la plupart des langages
de programmation. Les enregistrements sont des produits & champs nommés. A la différence des
tuples, ils permettent d’accéder aux composantes par nom plutot que par position. Dans toute leur
généralité, les enregistrements peuvent également étre construits en ajoutant de nouveaux champs
a des enregistrements déja existants. Dans un langage non typé ils peuvent simplement étre simulés
par des listes d’associations clé-valeur. Les enregistrements sont donc une construction simple avec
une sémantique simple. Leur typage monomorphe ne pose d’ailleurs aucune difficulté. Cependant,
une étiquette ne peut plus appartenir qu’a un seul type d’enregistrement dans tout le programme.

L’intérét, mais aussi les difficultés de typage, commencent avec les enregistrements polymorphes.
Ceux-ci permettent de ne pas déclarer leur type préalablement a leur utilisation comme il faut le faire
dans le langage ML. Puisque les étiquettes n’appartiennent plus a un enregistrement particulier,
elles peuvent étre utilisées librement pour construire des enregistrements, ou bien accéder a leurs
composantes. On peut ainsi écrire une fonction d’accés polymorphe, c¢’est-a-dire une fonction qui
projette sur une étiquette fixée tout enregistrement défini sur cette étiquette, indépendemment
des autres étiquettes. On ne saurait parler d’enregistrements polymorphes sans cette construction
primordiale. Une autre opération, plus difficile a typer, est 'extension polymorphe. Elle permet
I’ajout d’un champ donné & un enregistrement quelconque, que ce champ soit ou non défini dans
Ienregistrement initial. On parle alors d’enregistrements extensibles.

L’acces polymorphe est essentiel parce qu’il modélise I’envoi de messages dans la programmation
a objets. L’opération d’extension, importante elle aussi, modélise I’héritage simple.

Les objets un grand pas

La notion de programmation avec objets est connue depuis longtemps. Elle a d’abord été motivée
par le besoin d’écrire les programmes de maniere plus modulaires, pour mieux les comprendre dans
leur ensemble, les corriger plus facilement, ou les adapter, mais aussi pour pouvoir réutiliser certaines
composantes dans des contextes différents.

La notion de module est apparue avec des motivations trés similaires. Dans leur réalisation
les modules sont assez éloignés des objets, bien qu’ils reposent sur des mécanismes analogues : les
structures d’enregistrements, ’abstraction de type, le sous-typage.

D’apparence simple, les objets (au sens de la programmation & objets) sont réellement com-
pliqués. Cela peut surprendre le novice qui ne connait des objets que leur popularité, mais surpren-
dra moins le lecteur averti plus conscient de la multitude et de la complexité des mécanismes mis
en ceuvre.

Un objet comporte avant tout des données, passives, présentées en général comme un enregis-
trement. Ce sont les variables d’instance dans le jargon des langages a objets. Celles-ci peuvent étre
accédées directement, comme les champs d’un enregistrement. Les données peuvent aussi étre exa-
minées indirectement, en invoquant une méthode de ’objet. Les méthodes peuvent étre vues comme
des fonctions opérant sur les données de I'objet, donc qui recoivent ’objet lui-méme en argument.
Elles sont ajoutées a l'enregistrement des variables d’instance comme des champs supplémentaires.
Cela permet aux méthodes d’appeler d’autres méthodes du méme objet. Ainsi, I'envoi d’un mes-
sage & un objet, (on dit aussi 'invocation d’une méthode d’un objet) consiste & sélectionner la
fonction correspondante puis lui passer I'objet en argument. Cela induit une forme de récursivité
qui introduit beaucoup de difficultés : le type d’un objet est celui d’une structure d’enregistrement
dont certaines composantes, les méthodes, ont des types fonctionnels de domaine le type de 'objet

TABLE DES MATIERES 11

lui-méme. C’est donc un type récursif.

D’autres opérations sur les objets viennent en compliquer davantage le concept. Par exemple, une
rm 8ri n général réalisé r intermédiair . n modé
forme d’héritage est en général réalisée par 'intermédiaire des classes. Les classes sont des modeles
. Y . . ‘v . os (vari
d’objets, c’est-a-dire des objets abstraits par rapport aux valeurs particuliéres des données (variables
instance). j n rs créé r instanciation . 8ri un mécanism
d’instance). Les objets sont alors créés par instanciation des classes. L’héritage est écanisme
qui permet de construire de nouvelles classes a partir de classes déja existantes. La combinaison de
I’héritage et de la récursion nécessite un mécanisme supplémentaire, la ltaison tardive, qui permet
aux appels récursifs entre les méthodes d’étre résolus a la création de I'objet plutét qu’a leur
définition. D’autres constructions moins fondamentales n’en sont pas moins difficiles, comme par
exemple la possibilité de cacher des méthodes a posteriori, et ne sont pas encore entiérement résolus.

Des enregistrements aux objets il n’y a qu’un pas

Dans I’ensemble des travaux présentés ici, enregistrements et objets sont intimement liés. Dans
un premier temps nous nous sommes attachés & mieux comprendre les objets. Pour cela nous en
avons d’abord étudié une version dégradée : les objets enregistrements. Notre motivation était
alors que les mécanismes fondamentaux de la programmation avec objets devaient correspondre
aux opérations d’acces et d’extension dans les enregistrements. Cela a abouti sur des outils et des
techniques robustes, nécessaires autant pour le typage des objets que pour celui des enregistrements.

Poursuivant dans cette direction, nous avons étudié les objets vus comme des enregistrements.
Cette expérience largement positive, nous a permis d’exprimer toutes les constructions importantes
des langages & objets. Au deld de notre attente, nous avons aussi pu mettre en ceuvre facilement
des mécanismes réputés difficiles comme I’héritage multiple. Cela n’a été possible qu’en s’appuyant
fortement sur I'ensemble des outils mis au point pour les enregistrements. Il est aussi intéressant
de remarquer qu’en retour, ce travail a augmenté notre compréhension des objets et notre habileté
a les expliquer.

Une fois le terrain débroussaillé, munis des bons outils et de concepts simplifiés, nous avons alors
pris la direction inverse, et proposé des opérations primitives sur les objets. Le langage Objective
ML est une extension & objets puissante et parfaitement intégrée au langage ML, malgré toutes les
difficultés imposées par la synthese des types en ML. Cela a facilité I’élimination des points rugueux
de la proposition précédente, notamment ceux reliés a l'affichage des types et le report d’erreurs, en
utilisant un mécanisme d’abréviation automatique. Puis, nous avons & nouveau enrichi cette base
solide avec des méthodes polymorphes pour donner aux classes paramétriques toute leur puissance.

Mais il restait une derniere étape importante : refaire le chemin inverse jusqu’au point de
départ, les enregistrements, et se demander quel autre chemin aurait été possible. C’est cette sorte
d’introspection fructueuse que nous proposons dans le chapitre 8. En nous libérant de la contrainte
de la synthese des types, mais en conservant le lien étroit entre objets et enregistrements nous
proposons d’unifier le concept de classe a celui d’objet.

Ainsi, la thése que nous défendons dans ce mémoire est que les objets sont une forme enrichie
des enregistrements. Nous justifions alors a posterior: le terme objets-enregistrements puisque les
enregistrements deviennent une forme dégénérée des objets. Notre thése ne contredit pas ’'idée plus
traditionnelle que les objets sont des enregistrements de fonctions. Mais les objets ne sont pas que
cela.

Le plus court chemin des objets aux enregistrements que nous présentons dans ce mémoire s’ap-
puie sur un ensemble de travaux publiés dans des conférences ou des journaux. Chacun approfondit
une ou plusieurs des notions décrites ci-dessus. Ces articles, présentés dans ’ordre chronologique le
sont aussi dans l'ordre logique des dépendances. Chaque travail s’appuie en effet sur une partie en

12 TABLE DES MATIERES

général assez grande des travaux précédents et en prolonge certains aspects ou en explore des voies
nouvelles.

Le langage ML est le témoin de cette unité thématique. L’ensemble des travaux est motivé par
le souhait d’ajouter des objets & ML, qui sera réalisé dans le chapitre 6. Support de ces travaux, le
langage ML en est donc aussi le premier bénéficiaire in fine. Mais chaque étape intermédiaire lui
offre aussi des applications importantes : les objets enregistrements dans le chapitre 2, le typage de
la concaténation des enregistrements dans le chapitre 4 qui systématise un style de programmation,
ou encore le polymorphisme d’ordre supérieur dans le chapitre 7.

Cette étude va, bien sur, au dela du langage ML. D’une part parce que les extensions proposées
suggerent et incitent a une meilleure intégration du langage ML avec un systéme de types d’ordre
supérieur. D’autre part, la simplicité et ’expressivité du typage des objets en Objective ML renforce
I’idée que l'utilisation des types-enregistrements et du polymorphisme des variables de rangée doit
étre privilégiée par rapport au sous-typage qui peut étre ajouté ultérieurement. On peut donc
espérer au-dela du langage ML une simplification des calculs d’objets primitifs avec typage explicite.

Notations

Comme certains chapitres ont été écrits en collaboration avec d’autres personnes, les nota-
tions et les conventions typographiques changent donc forcément d’un chapitre & un autre. Nous
avons toutefois essayé de les uniformiser autant que possible. Il reste néanmoins des différences de
notations ou de style incompatible d’un chapitre a I'autre, et les notations doivent toujours étre
comprises en prenant le chapitre comme unité.

Chapitre 1

Un raccourci

Ce chapitre est un survol, en langue francaise, du reste du mémoire, composé d’articles en
langue anglaise. Toutefois, pour éviter un simple résumé des différents articles, nous avons choisi
un style plus informel et un contenu technique plus léger permettant de décrire plus librement les
intuitions qui sous-tendent les idées développeés. Nous nous permettons également de présenter
certains chapitres principalement au travers d’exemples. A la différence des autres chapitres écrits
dans 'ordre chronologique et insérés sans “retouches”, nous profitons ici du recul qui nous est offert
pour mettre ’accent sur les points les plus importants ou simplement moins connus. Nous espérons
que ce mélange de raccourcis et de détours aidera le lecteur sans le perdre, et lui montrera ces
travaux sous une lumiere légerement différente.

1.1 Le langage ML

Avant d’étudier plusieurs extensions sophistiquées de ML, nous nous devons de commencer par
un bref rappel sur le langage ML lui-méme. Sans apport technique, ce rappel permet d’introduire
quelques notations, un peu de vocabulaire et le formalisme qui se retrouveront dans tous les chapitres
suivants. Nous en profitons également pour mettre en avant les principes du langage sur lesquels
s’appuient les différentes extensions.

Nous pouvons restreindre notre étude au noyau ML, composé du A-calcul avec constantes et
d’une construction de liaison.

a:=z|fun(z)a|aa|letz=aina zu=z|c

Les identificateurs, désignés par la lettre z, regroupent les variables = et les constantes c. Cette
décomposition permet de factoriser une partie de la présentation. Par de nombreux aspects, no-
tamment pour tout ce qui concerne le typage, les constantes se comportent comme des variables.

D’autres constructions, notamment des constructions impératives, sont nécessaires dans un vrai
langage de programmation. Afin qu’elles puissent étre facilement ajoutées ultérieurement, nous
choisissons une sémantique d’appel par valeur. La plupart des résultats qui seront présentés restent
valides, parfois apres adaptation, pour une stratégie de réduction arbitraire (par exemple, le cha-
pitre 4 se place dans un cadre plus général). Cependant, pour I’étude du typage, la paramétrisation
de la sémantique par une stratégie de réduction particuliere apporte peu, tout en compliquant
notablement la présentation.

Dans le A-calcul sans constante les valeurs sont les fonctions. En présence de constantes, il faut
leur ajouter les valeurs construites et les primitives partiellement appliquées. Pour les définir de

13

14 CHAPITRE 1. UN RACCOURCI

fagon paramétrique, nous attribuons & chaque constante une arité fixe k et nous distinguons les
constructeurs C' des primitives f. Une constante d’arité k est une valeur si elle est appliquée au
moins de k fois. Un constructeur d’arité k appliqué k fois est aussi une valeur. (Il serait possible
d’utiliser la notion habituelle d’arité, plus rigide, qui impose exactement k applications, mais celle-
ci compliquerait la formalisation en obligeant une forme d’application n-aire. Aussi nous préférons
cette forme plus tolérante, qui par ailleurs est assez naturelle et revient & autoriser les applications
partielles pour les constantes.)

k= CF | fF Constantes d’ordre k.
vi=fun(z)a|CFay ...ar|Far ... q sig <k

Nous donnons une sémantique opérationnelle & petits pas pour ML. Elle est définie par un ensemble
de contextes d’évaluation et des regles de réduction. Les contextes d’évaluation F sont définis par
la grammaire suivante :

E:=[|Ea|vE Contextes d’évaluation

Les radicaux sont de la forme (53,) ou (d). La B-réduction est définie par la régle :

(fun (z) a) v LN v[a/x]

qui est une version restreinte de la régle () & une stratégie d’appel par valeur. Les d-réductions
sont définies par des regles de la forme
For a

et données en parametre, définissant ainsi la sémantique des primitives. La relation de réduction
— est la fermeture des relations (3,) et (0) par la régle de congruence :
a] — a2
E [al] — F [CI,Q]

On note — la fermeture transitive de —» (Par abus, on note aussi parfois simplement — pour
ENY

Les types sont les variables, les fleches et les types construits. Les types sont donc paramétrés
par un ensemble de symboles de types donnés avec leur arité. Les schémas de types sont des types
quantifiés par un ensemble de variables. Les environnements de types sont des fonctions partielles

des variables dans les schémas de types.

Tu=alT—71]g(7) Types
o==VYa.r Schémas de type
A:=0|A® (z— o) Environnements de typage

Un jugement de typage est de la forme A F a : 7 et signifie que dans le contexte A, le programme
a a le type 7. Nous donnons une présentation du typage dirigée par la syntaxe dans la figure 1.1.
Le systeme de typage est aussi paramétré par un environnement initial Ay de domaine ’ensemble
des constantes.

Il est possible de montrer la correction de la sémantique vis a vis du typage a condition toutefois
que les sémantiques statiques et dynamiques des constantes soient cohérentes.

La correction du typage s’exprime par deux propriétés (a elles deux plus fortes que la cor-
rection) : auto-réduction et progression. La propriété d’auto-réduction signifie que les typages sont
préservés par réduction. Définissons le typage d’une expression a comme ’ensemble des paires (A, 7)
telles que A F a : 7, et notons C le transfert naturel de la relation d’inclusion sur les ensembles de
typages en une relation d’inclusion sur les expressions.

1.1. LE LANGAGE ML 15

(VAR-INST) (Fun) (App)

z:Vampe A A (z—=m)Fa:n AbFal:m—7 AFas:m

AlFz:7[T/a] AFfun (z)a:m — 7 AFajas:m
(GEN-LET)

Alar:m A® (x— Gen(r,A)) Fag:m

AFletx=a; inas : 1

L’expression Gen(7, A) est la généralisation du type 7 dans Penvironnement A. C’est le schéma de
types obtenu en quantifiant toutes les variables qui sont libres dans 7 mais pas dans A.

FiG. 1.1: Regles de typage pour le noyau ML.

Théoréme 1 (Auto-réduction) Les typages sont préservés par réduction (la relation C est une
sous-relation de —).

Théoréme 2 (Progression) Les expressions bien typées qui ne sont pas des valeurs peuvent étre
réduites.

Ces deux théoremes dépendent évidemment du choix des d-regles. Ils sont valides pourvu que
les deux hypotheses suivantes soient satisfaites.

1. Auto-réduction 0 est une sous relation de C,

2. Progression Une expression bien typée de la forme f¥ v, ...v; peut toujours se réduire par
une d-regle.

Une autre propriété importante pour le langage ML est I'existence de types principaux et d’un
algorithme qui les calcule. Les systemes de typage que nous considérons vérifient tous le lemme
suivant.

Lemme 1 (Stabilité par substitution) Si A - a : 7 est un jugement valide, alors pour toute
substitution 0 le jugement O(A) b a : 0(7) est aussi valide.

Cela permet de considérer la synthese des types comme un probléme d’'unification et de profiter des
formalismes et des outils développés dans le domaine de I'unification pour le résoudre (voir [102]).
Un probléeme de typage est la donnée d’un environnement de typage A, d’'un programme a et
d’un type 7 et consiste en la recherche de I’ensemble des substitutions 6 telles que le jugement
O(A) - a: 0(7) soit valide. La stabilité par substitution implique que I’ensemble des solutions d’un
probleme de typage est fermé par composition avec une substitution arbitraire. L’existence de types
principaux se rameéne alors ’existence de solutions minimales aux probléemes de typage.

Théoréme 3 (Types principaux) Un probléme de typage qui admet une solution admet une
solution minimale. Il existe un algorithme qui étant donné un probléme de typage retourne une
solution minimale ou un échec si le probleme de typage n’a pas de solution.

Sortes et théorie équationnelle Les résultats s’étendent également lorsque 1'algebre des types
est sortée ou munie d’une théorie équationnelle réguliere (les deux membres d’une équation
possedent toujours le méme ensemble de variables). L’existence de types principaux dépend alors de
I'existence d’unificateurs principaux dans 1’algebre considéré. Cette extension est étudiée dans [102].
On pourra se reporter a [58] pour une autre étude dans le cas des théories équationnelles non
régulieres. La correction du typage pour l'évaluation dépend alors de conditions supplémentaires
entre les types des primitives et leur domaine définition.

16 CHAPITRE 1. UN RACCOURCI

Types récursifs Les résultats s’étendent également au cas des types récursifs dans ’algebre libre.
Toutefois, en présence d’équations, il faudra prendre garde a ce que les types récursifs commutent
avec les équations. Nous traitons seulement un cas particulier dans le chapitre 5 (et nous ne donnons
que des résultats purement syntaxiques).

Des variations sur les définitions Une solution d’un probléeme de typage peut donc instancier
les variables libres du contexte de typage autant que les variables du type attendu pour I'expres-
sion typée. C’est en ce sens (1) que nous assurons l’existence de solutions principales. Les types
principaux sont quelques fois énoncés en interdisant d’instantier les variables libres dans le contexte
(2). Lorsque les types sont les termes d’une algebre libre, il n’y a pas de différence entre les deux
résultats. En effet si la solution principale du probléeme (1) restreinte aux variables du contexte de
typage est un renommage, alors on en déduit une solution principale de (1); sinon il n’y a pas de
solution au probléme (2). (La réciproque est facile.) Cette propriété n’est plus nécessairement vraie
en présence d’une théorie équationnelle.

Constructions impératives Les résultats présentés dans cette partie s’étendent aux construc-
tions impératives lorsque la construction de liaison let £ = a in a est remplacée par la forme
plus restreinte let x = v in a. En fait, il est possible de relacher cette condition, et il suffit que
v Soit une expression non expansive, c’est-a-dire qui s’évalue sans créer d’effet de bord. On peut
aussi, de fagon encore plus souple permettre de lier une expression a quelconque, mais interdire la
généralisation des variables de types qui apparaissent dans le typage d’une sous-expression de a qui
n’est pas elle-méme une sous expression d’une expression non-expansive de a.

1.2 Les enregistrements polymorphes

Le langage ML peut étre facilement étendu avec des enregistrements déclarés, analogues aux
types concrets. Ces enregistrements ne sont pas suffisamment puissants pour simuler les objets.
En particulier, il n’est pas possible d’écrire une fonction polymorphe qui puisse accéder au méme
champ ¢ de deux enregistrements de types différents, mais ayant tous deux le méme champ 4. Le
langage SML propose une variante des enregistrements déclarés autorisant la surcharge statique
des étiquettes, mais la restriction a de la surcharge statique ne permet pas d’augmenter réellement
I’expressivité du langage et revient & une simple convenance de notation.

Les enregistrements polymorphes sont au coeur du typage des objets, comme l'ont trés tot
remarqué Cardelli [20], puis Wand [119] dans le cadre du langage ML.

Le typage des enregistrements s’appuie sur les types-enregistrements et le polymorphisme des
variables de rangée proposé par Wand [119]. Elaboré précisément dans mes travaux de thése [100],
sa présentation a été ensuite simplifiée et son étude poursuivie dans divers articles : les résultats
les plus techniques sont présentés dans [104, 102] et appliqués & une proposition concrete présentée
dans le chapitre 2 qui reproduit [106]. Toutefois, nous montrons dans le chapitre 3 que le typage
des enregistrements polymorphes peut se décomposer en deux fonctionnalités orthogonales :

— les enregistrements partiels de domaine fini,
— les enregistrements totaux (constants presque partout) de domaine infini.

Cette décomposition permet une présentation plus simple des enregistrements; elle est aussi enri-
chissante, car chacun des mécanismes peut étre utilisé indépendemment de Pautre. Aussi c’est la
présentation que nous suivrons ici. Cette décomposition n’est pas apparue immédiatement, bien
que notre premier travail, présenté dans [99], ne couvrait techniquement que le premier aspect. Les

1.2. LES ENREGISTREMENTS POLYMORPHES 17

idées pour traiter les domaines infinis étaient présentes, mais pas encore tout a fait matures. Cette
décomposition est aussi intéressante parce que le premier aspect peut s’exprimer entierement dans
le langage ML, alors que le second demande une extension significative du langage.

Plusieurs variantes du calcul sur les enregistrements ont été proposées, en général pour éviter des
difficultés de typages. Notre séparation en deux fonctionnalités orthogonales permet de les retrouver
presque toutes en gardant le méme moteur des enregistrements totaux et en modifiant seulement
les opérations sur les champs des enregistrements partiels, ou en en ajoutant de nouvelles. Par
exemple dans le chapitre 3, nous montrons comment ajouter des opérations de retrait et d’échange
de champs. Cela confirme également que pour bien comprendre le typage des enregistrements (ou
de structures similaires), il est essentielle de les étudier d’abord sur un champ unique (A la rigueur
quelques uns), le mécanisme général en découle alors facilement. Cela sera mis a profit dans le
chapitre 8.

1.2.1 Enregistrements partiels de domaine fini

Dans cette partie, nous considérons un ensemble fini d’étiquettes. Pour simplifier la présentation
nous pouvons nous limiter & deux ou trois étiquettes. Un enregistrement a égal & {a = 1 ; b = true}
peut étre écrit dans le langage ML apres avoir effectué la déclaration de type suivante :

type bar = {a :int; b : bool}

L’expression a a le type bar. La phrase ci-dessus est en quelque sorte une déclaration de type abstrait
avec une fonction de construction fun (z) fun (y) {a = z ; b = y} et deux projections fun (y) (y.a)
et fun (y) (y.b) pour fonctions d’élimination. L’exemple peut étre généralisé en déclarant le type
bar polymorphe :

type (a,) bar = {a : a; b : [}

Mais un enregistrement b défini seulement sur le champ a est nécessairement d’un autre type
bar’, préalablement déclaré, différent et incompatible avec bar. Le probléeme du typage des enre-
gistrements apparailt des que 'on souhaite écrire une fonction d’acces polymorphe, c’est-a-dire une
fonction d’acces & un champ £ fixé qui puisse prendre en argument tout enregistrement ayant au
moins le champ ¢ défini, indépendamment des autres champs.

En 'absence d’enregistrements polymorphes, une solution naive en ML consisterait a utiliser
un enregistrement suffisamment grand possédant tous les champs nécessaires et a ne pas remplir
certains champs. Cela se traduit en ML par 'utilisation de valeurs du type suivant :

type & option = Some of « | None; ;

On pourrait ainsi écrire {a = Some 1; b = Some true} et {a = Some 0; b = None} pour
représenter respectivement les enregistrements {a = 1; b = true} et {a = 0}. Cependant cette
solution oblige & exécuter un test dynamiquement & chaque acces a un champ de ’enregistrement : le
typage ne rend pas compte de la présence ou ’absence d’un champ. Nous avons donc aussi le risque
d’une erreur dynamique, alors que nous souhaitons détecter ’absence d’un champ statiquement.

En fait, il existe une solution trés simple en ML pour distinguer par le typage si une valeur
est présente ou pas. Elle consiste & remplacer le type optionnel par deux déclarations de types
indépendantes :

type @ pre = Pre of «w and abs = Abs;;

Chacun des constructeurs appartenant alors a un type différent, il est possible de distinguer stati-
quement les deux cas. Plus précisément, chacun des constructeurs est superflu (ici car unique dans

18 CHAPITRE 1. UN RACCOURCI

son type), et pourrait étre omis. En tous cas, méme s’il reste présent dynamiquement, le test ne
peut jamais échoué, et en fait n’est pas effectué. Reprenons le codage de facon plus systématique
(nous en profitons pour ajouter un champ supplémentaire) :

type (a, [, 7) record = {a: a; b: (3; c: 7};;
let get (Pre x) = x;;

let a_ x = get x.a and b_ x = get x.b;;

val a_ : («a pre, [3, y) record — « = (fun)

val b_: (o, [pre, y) record — [3 = (fun)

Nous pouvons écrire le programme suivant en toute sécurité :

let x = {a = Pre 1; b = Pre true; c = Abs};;
let y = {a = Pre 0; b = Abs; c = Abs};;
(a- x) + (a- y)3;;

L’acces & un champ non défini sera détecté statiquement.

b-y;;
Characters 3—4:
This expression has type (int pre, abs, abs) record

but is here used with type (int pre, « pre, (3) record
L’ i ’ i g h égal ¢ Sfinie :
extension d’un enregistrement donné avec un nouveau champ peut également étre définie :

let ar x = {a = Pre x; b = r.b; C:r.c} and br x = {a = r.a; b = Pre x; C:r.c};;
val _a: (a, (3,) record — 6 — (J pre, [3, y) record = (fun)
val b : (a, 3, 7) record - 6 — («, O pre,) record = (fun)

Nous vérifions sur un exemple que ’extension d’un champ est libre, c’est-a-dire qu’elle peut se faire
que le champ soit ou non défini (cela se voit également sur le type de _a ci-dessus).

let x? = _a x false and y’ = _b y false;;

Le codage que nous venons de présenter peut étre évité en utilisant des enregistrements extensibles
primitifs tout en conservant le mécanisme de typage. Nous avons alors deux applications possibles :

— Utiliser le codage tel quel et sans extension du langage lorsqu’une situation nécessite des
enregistrements partiellement définis.

— Ajouter du sucre syntaxique ou, mieux, en déduire des constructions primitives pour les
enregistrements polymorphes extensibles de domaine fini pré-défini (c’est en fait la solution
exposé dans [99]).

Toutefois, I'une ou 'autre ne convient que pour un usage peu fréquent ou avec des constructions
primitives pour de petits ensembles d’étiquettes, et un programme complet. En effet, on ne peut
longtemps cacher le probléeme de la taille des types enregistrements proportionnels au nombre total
d’étiquettes apparaissant dans le programme. Lorsque celui-ci devient trop grand et lorsque les
enregistrements sont définis sur un trés petit sous-ensemble d’étiquettes, les types ont une taille
démesurée par rapport aux valeurs et deviennent du bruit illisible.

Pire, cela exclut un ensemble potentiellement infini d’étiquettes, puisque les étiquettes ne sont
pas connues a ’avance. Pour des raisons de modularité, il est important de ne pas fixer I’ensemble
des étiquettes en fonction d’un programme particulier, mais de se donner des le départ un ensemble
potentiellement infini dénombrable de toutes les étiquettes possibles.

1.2. LES ENREGISTREMENTS POLYMORPHES 19

Pour bien expliquer la modularité ou le mécanisme qui permet de ne retenir que les étiquettes
significatives, il faut inévitablement considérer un ensemble infini d’étiquettes. L’intuition facile que
le cas infini est la limite du cas fini est tout a fait informelle et ne dispense en rien d’une étude
rigoureuse.

Ce codage a été repris, avec les limitations que nous venons d’exposer dans [121] dans le cadre
de ML et [24] dans un systeme de types de second ordre. D’autres études plus récentes sur les
codages dans le m-calcul suivent une démarche analogue.

Pour aller plus loin, et finaliser complétement ’ajout de constructions primitives, il est souhai-
table d’ajouter des sortes aux expressions de types de facon & distinguer les types des champs P 7
et A ainsi que les variables de champs des types usuels. Pour cela, on utilisera une signature tres
simple qui est 'une des deux signatures présentées dans le chapitre 2.

1.2.2 Enregistrements totaux de domaine infini

Nous résolvons ici le probleme orthogonal. Il ne s’agit plus de savoir si un champ est défini ou
non, puisque nous supposons tous les champs définis, mais de connaitre le type des valeurs portées
par tels ou tels champs.

Nous nous limitons ici & des enregistrements totaux presque partout constants. C’est-a-dire que
les projections sont toutes égales sauf au plus celles d’un nombre fini de champs. Intuitivement,
une valeur d’un enregistrement peut étre représentée par ses valeurs particulieres sur les champs
significatifs et une valeur par défaut sur les autres champs.

{li=v1;...0, =0y ;7}
Il est donc naturel de typer un tel enregistrement par une expression de type analogue :
{r=m1;... 8y =1p;7}

Toutefois, nous apportons quelques corrections : Pour éviter un symbole {_} d’arité variable, il est
préférable de voir le type précédent comme {(¢1:71 ;5 (... 4y: 7 ; 7)} qu'il faut lire

06 i (o la(ma,))

C’est-a-dire que {_} est un constructeur d’arité 1 et (£: _;_) est un constructeur d’arité deux pour
tout £ € L. Les expressions (£ : 7;7) sont dites expressions de rangée et ne peuvent pas étre utilisées
en dehors des types enregistrements. Pour distinguer les types usuels 7 des expressions de rangée p
nous introduisons un nouveau symbole (_) et nous écrirons (7) pour utiliser 7 comme une rangée.
Finalement, nous écrivons {¢; = 71 ; (... ¢, = 7, ; [7])}. La grammaire des expressions de type est :

Tu=alT—=71]|{p} pu=@|{:7;7)[(T)

Remarquons que nous avons ajouté des variables de rangée ¢ qui s’averent jouer un role essentiel.
Pour retrouver l'idée intuitive que l'utilisation d’étiquettes permet de ne plus tenir compte de
lordre, les rangées sont considérées modulo une équation de commutativité gauche, i.e.

(411 a1; (b ag;) = (b2 ag; (41 & a5) Ve, by € L

Enfin, 'autre intuition que le type en fin de rangée représente le type des projections sur tous les
champs non significatifs est rendue par une équation d’idempotence :

() = (:75(7)) Ve L

20 CHAPITRE 1. UN RACCOURCI

Enfin, certaines expressions de type telles que {£: v ; £: ' ; 8} — {0} sont mal formées. D’une part,
le champ / est répété deux fois : quel valeur faut-il lui donner 7 Il serait possible de choisir la valeur
la plus & gauche, comme cela est fait dans [8, 66], mais au prix d’une complication inutile. D’autre
part la variable 6 apparait dans deux contextes différents n’étant pas précédés des mémes ensembles
d’étiquettes explicitement définies. L’élimination du cas précédent nous oblige & éliminer ce second
cas de fagon a ce que l'instance d’un type bien formé soit toujours bien formé. Les expressions de
type mal formées peuvent étre éliminées par des sortes (se reporter au chapitre 2).

Il est maintenant facile de définir les primitives essentielles sur les enregistrements totaux avec
leur types :

Primitive Type Sémantique intuitive

(-/0)

l:a; ¢ = Acces au champ £

la;d) = o = [L:d ;P Modification du champ /¢

[a = [{o)]

Enregistrement constant

L’expression [v] crée un enregistrement partout égal & v. L’expression vi[¢ = wvg] retourne un
enregistrement égal & v; sauf sur le champ £ ou il vaut ve. L’expression v/¢ retrouve la valeur de
v sur le champ ¢. Par exemple, [0] est ’enregistrement qui vaut 0 sur toutes ses projections et a
pour type [(int)]. L’enregistrement [0] || [b = true] qui vaut true sur le champ b et 0 sur tous
les autres champs ; il a pour type [b : bool; (int)]. L’expression ([0] || [b = truel) / bs’évalue
en 0.

Pour retrouver les enregistrements partiels de domaine infini, il suffit de composer les deux

solutions précédentes. On obtient les primitives décrites dans le tableau ci-dessous :

Primitive

Traduction

Type

(~f)

fun (z) get (z/4)

[l:Pa;d]— a

=3

fun (r z) (r || {¢:Pre z})

[l:Pa;d]—=d = [6:Pd ;]

[(8)]

{3 [Abs]

Ce tableau peut & nouveau se lire de deux maniéres différentes, selon la vision (style de program-
mation ou nouvelles primitives) des enregistrements partiels. La premiere lecture est celle retenue
dans le chapitre 3. La seconde est plus dans I'esprit du chapitre 2. Les types des enregistrements
partiels de domaine infini sont restreints par une double signature, chacune correspondant a une
des extensions.

Une extension naturelle La version donnée ici des enregistrements totaux est une simplification
de celle étudiée dans le chapitre 3. En particulier, les modeles sont ici des variables ou des types
usuels (7). Pour atteindre toute leur puissance, la structure des types est hiérarchisée et inclue une
copie des types usuels dans les rangées. Cette extension n’est pas nécessaire pour les enregistrements
polymorphes classiques mais elle ’est pour la variante utilisée dans le chapitre 5.

Types étiquetés Les types-étiquetés de Berthomieu, reformalisés ensuite par Le Monier de Sa-
gazan [8] sont une autre solution aux enregistrements totaux de domaine infini. On en déduit

1.3. CONCATENATION DES ENREGISTREMENTS 21

immédiatement une autre solution au typage des enregistrements polymorphes partiels de domaine
infini par composition avec notre solution pour les enregistrements partiels. Dans leur version de
base, les types-étiquetés et les types-enregistrements ont méme expressivité, mais ils different rapi-
dement dés que ’on en considere des extensions. Nous pensons aussi que les types enregistrements
sont plus simples parce qu’ils rentrent dans le formalisme bien compris des algebres sortées et des
théories équationnelles et ne nécessitent pas de modifier les regles de typage de ML.

Autres applications Les enregistrements totaux sont des enregistrements avec valeurs par
défaut. Leur intérét ne se limite pas a cette application immédiate. Ils sont aussi une forme duale
des variantes : en effet les variantes ont naturellement un cas d’action par défaut pouvant s’appli-
quer & n’importe quel constructeur (portant une valeur du bon type). Ils permettent également de
décrire des types plus précis. Cela n’est pas sans importance car cette extension sera indispensable
pour définir les types des objets et des messages dans le langage ML-ART.

Polymorphisme et variables de rangée Dans notre approche du typage des enregistrements,
les opérations de sélection et d’extension reposent uniquement sur le polymorphisme (des variables
de rangées), ce qui évite toute perte d’information de type. La finesse des types-enregistrements
permet de les manipuler exactement. Il est possible d’extraire I'information de types sur tous les
champs sauf un nombre fini pour reconstruire un nouvel enregistrement, avec des types différents
sur ces champs particuliers, mais exactement le méme comportement sur les autres champs, qu’ils
soient définis ou non. Ce sont ces deux aspects, tous deux absents dans 'approche plus fréquente
avec du sous-typage, qui nous permettent de rester au premier ordre, donc de conserver la simpli-
cité du langage ML pour typer précisément et simplement les enregistrements, mais aussi et c’est
sans doute encore plus important, les objets dans les chapitres 5 et 6. Les types-enregistrements
possedent des « destructeurs de types » dans le sens de Hofmann et Pierce [53]. Toutefois, les types
enregistrements n’offrent que 1'opération tres simple d’expansion. La contraction, plus compliquée,
étudiée dans [100], est en fait un raffinement qui n’est pas vraiment nécessaire. L’ajout de sous-
typage est possible, mais il est secondaire, et permet simplement de confondre des enregistrements
de domaines différents, en cachant le sous-domaine sur lequel ils different.

1.3 Concaténation des enregistrements

Le probleme de la concaténation des enregistrements se pose naturellement comme une
généralisation de I'opération d’extension. En pratique son importance est justifiée par son analogie
avec I’héritage. Alors que I'extension des enregistrements permet de simuler 'ajout de méthodes a
un objet existant donc la notion d’héritage simple, la concaténation des enregistrements correspond
naturellement & 'héritage multiple.

Le probléme de la concaténation est celui de donner un type suffisamment général & la primitive ||
qui prend deux enregistrements et en retourne un troisiéme composé de tous les champs du second
plus ceux qui sont dans le premier mais pas dans le second. La seule contrainte sur les arguments
est qu’ils soient des enregistrements, donc de types {a} et {&/}. Mais comment exprimer le type
du résultat ? Intuitivement, nous souhaiterions écrire {« || &'} pour les types des champs pris par
priorité dans o/ et dans a lorsqu’ils ne sont pas définis (i.e. de type A) dans . Pour formaliser
cette proposition, il faudrait introduire un constructeur || avec des équations et une stratégie de
résolution pour étendre les algorithmes d’unification sur de tels termes. La plupart des tentatives
pour résoudre ce problemes ont échoué, au moins partiellement. Les premiéres sont restreintes et
compliquées [50, 27]. Une proposition récente tres simple change la sémantique des enregistrements

22 CHAPITRE 1. UN RACCOURCI

et la rend dépendante des types [125]. D’autres propositions utilisent une forme de types intersection
et sont plus cotiteuses [121]. Nous avons également étudié la concaténation & partir d’'un mécanisme
de sous-typage dans [110] qui ressemble & une forme dégradée de types intersection.

Nous proposons ici une solution opposée qui est plutot un contournement de la difficulté que
sa résolution effective. Elle consiste & considérer (donc & typer) un enregistrement r comme une
fonction fun (u) (u || r) qui ajoute ses propres champs & un enregistrement w arbitraire regu
en argument. L’intérét de cette construction provient du fait que l'enregistrement r est toujours
connu, seul 'argument v restant arbitraire. En s’appuyant sur la composition, on ramene ainsi la
concaténation de deux enregistrements arbitraires a la concaténation a gauche, c’est-a-dire & une
opération d’extension.

Nous donnons ci-dessous les primitives sur les enregistrements avec concaténation, leur codage
en terme d’enregistrements avec extension, et le type des expressions primitives et codées.

Concaténation (primitive) Traduction

o) fun () fun (u) (u || {€ = 2})
a—{l:d"=Pd;a} a—{ld" ;a} = {L:Pd;a}

{} fun (u) u

{a=a} {a} = {a}

1) fun (r r') fun (u) (v ||) || v’

{a=d} = {d=d"}t=>{a=d"} | {a} = {d}) = {d} = {"}) = {a} = {"}

Le constructeur de type = utilisé ici est distributif par rapport aux symboles (£: _;_).

Au sens strict, cette proposition est d’abord un style de programmation qui permet d’éviter
le probleme de la concaténation des enregistrements. C’est aussi un systéeme de typage pour la
concaténation des enregistrements permettant la synthese des types. Plus généralement, c’est une
méthode pour étendre un systeme de typage avec une opération d’extension a un systeme plus riche
avec une opération de concaténation.

1.4 Les objets vus comme des enregistrements

Le lien entre les objets et les enregistrements a été mis en évidence par L. Cardelli dés 1984 [20] et
repris par M. Wand [121] dans le contexte de ML en 1988. Toutefois, une correspondance plus étroite
et typée n’a été réalisée que vers 1994 [93] par B. Pierce et D. N. Turner. Dans le chapitre 5 présenté
aussi dans [108], nous reprenons cette démarche, mais avec deux contraintes supplémentaires. Nous
nous imposons une efficacité et une concision du code source qui soient réalistes pour une utilisation
dans un vrai langage ; d’autre part nous choisissons le langage ML ce qui nous oblige & synthétiser
tous les types, donc & rester pour I'essentiel au premier ordre.

Les objets

Dans leur version la plus simple, les objets sont des enregistrements de valeurs. Afin de distinguer
les objects des autres enregistrements, il serait naturel de définir le type suivant!.

!Les exemples de cette partie sont typables dans une maquette du langage ML-ART.

1.4. LES OBJETS VUS COMME DES ENREGISTREMENTS 23

type (a) objet = Objet of {a}

Toutefois cette notation obligerait & expliquer que le parametre a du type objet est une variable de
rangée et donc & expliquer les sortes a 1'utilisateur. Pour éviter ce probléme, mais aussi pour rendre
les types des objets plus lisibles, nous préférons utiliser une extension de la notion d’abréviation de
type introduite par B. Berthomieu dans LCS [7]. Celle-ci permet 'utilisation du filtrage dans les
expressions de type en parametre. Par exemple, on pourra écrire :

type (a * §) fst — «;;

Un telle définition impose que 'argument du constructeur £st soit filtré par le motif de sa définition,
c’est-a-dire ici une expression de type paire. Cette forme d’abréviation est d’autant plus pratique
qu’elle est compatible avec 1’égalité sur les types enregistrements. Nous écrirons plutot :

type ({a}) object = Object of {a};;

Dans cette vision simplifiée, I’envoi de message se réduirait a ’acces au champ correspondant dans
I’enregistrement.

let sendm (Object p) = p.m;;

Séparer les variables d’instance des méthodes

En fait, on distingue dans un objet les variables d’instance qui sont des champs d’enregis-
trements comme décrits ci-dessus, et des méthodes qui sont des procédures qu’il faut exécuter a
I'invocation d’un message. Pour plusieurs raisons, il est important de distinguer les variables d’ins-
tance des méthodes. D’une part, il est fréquent qu’un objet possede quelques variables d’instance
et de nombreuses méthodes. De plus, de nombreux objets ont les mémes méthodes et ne different
que par leurs variables d’instance. L’enregistrement des méthodes peut alors étre partagé.

Pour renforcer cette distinction, et simplifier la présentation, nous considérons un objet comme
une paire composée d’un état interne R (les variables d’instance) et d’un vecteur de méthodes
M. Les méthodes doivent pouvoir consulter 1’état interne de 'objet. Pour rendre les méthodes
indépendantes de I'état interne R (ce qui permettra ensuite d’en hériter), il est préférable de les
abstraire systématiquement par rapport a R

Avant de donner le type des objets, précisons que la structure des types enregistrements de ML-
ART est une variante de ceux décrits ci-dessus (elle est présentée plus en détail dans le chapitre 2) :

pu=0|P7|A est remplacé par pu=60|nT ou nu=e€|P|A

Ainsi, au lieu de dire qu'un champ est absent ou présent avec un certain type, nous décrivons
séparément le type possible (au sens usuel) des valeurs d’un champ, qu’il soit présent ou absent,
et sa présence. Par exemple, l'enregistrement a égal & {¢; =1 ; ¢5 = true} a maintenant pour type
{€1:P .int ; ¢5:P .bool ; A.a}. Cette variante présentée a la fin du chapitre 2 est strictement plus
expressive. 1l est facile de traduire les types précédents dans cette forme enrichie. Cette structure
permet aussi de manipuler le type d’un enregistrement de fonctions roff (for record of functions)
comme celui d’une fonction retournant un enregistrement.

type ({’arg — (’attendance. ’methods)}) roff — {’attendance. ’arg — ’methods};;

Nous « jouons » avec les équations de distribution des types enregistrements pour en donner une
lecture plus concise : lorsque le type ’arg est identique dans tous les champs de ’enregistrement,
I’écriture de gauche permet de ne le mentionner qu'une seule fois.

Cette notation permet de définir le type des méthodes comme suit :

24 CHAPITRE 1. UN RACCOURCI

type ("R, {’I}) objectM = {[’R] — ’I} roff;;

Ainsi, les méthodes {[’R] — ’I} roff sont un enregistrement de fonctions de domaine commun
'R. En effet, ici [’R] est un “modele” constant partout égal & ’R. De fagon plus importante, cette
notation permet de séparer le type commun ’R de ’état interne des objets de celui de leur interface
{’1}, ce qui permettra ensuite d’abstraire I’état interne.

type ("R, {’I}) objectRM = (’R * ('R, {’I}) objectM);;

Cacher 1’état interne

Dans de nombreuses situations, les variables d’instance déterminent la représentation de I’objet
qui est souvent un choix d’implantation dont ne dépendent que les méthodes de ’'objet. Inversement
les méthodes déterminent I'interface de 'objet qui est utilisée par les autres parties du programime.
Il est fréquent de vouloir cacher la représentation de I’objet, que ce soit pour des raisons de sécurité,
de lisibilité ou simplement pour permettre & des objets ayant des implantations différentes mais
des interfaces identiques d’étre échangés. Un exemple classique est celui des points dans le plan que
I’on peut représenter en coordonnées polaires ou en coordonnées cartésiennes selon les opérations
que P'on souhaite privilégier.

Pour cacher I’état interne, nous reprenons la solution B. Pierce et D. Turner [93]. Pour cela, il
suffit ajouter des types existentiels au langage, par exemple en reprenant la proposition de K. Latfer
et M. Odersky [64, 65]. On peut alors abstraire ’état interne ’R dans le type des objets

type ({’I}) object = Object of Exist (’R) ('R, {’I}) objectRM;;

Permettre les appels récursifs

Dans la programmation avec objets, il est important qu’une méthode puisse envoyer
récursivement d’autres messages a l'objet qui 'a invoquée. Dans [93]. B. Pierce et D. N. Tur-
ner résolvent ce probléme en définissant les méthodes d’un objet récursivement. Cependant, en
raison de la difficulté & définir un point fixe sur les enregistrements avec une stratégie d’évaluation
en appel par valeur, leur codage ne s’applique que dans un langage avec une stratégie d’évaluation
en appel par nom. Il en résulte que chaque appel récursif réévalue, donc recopie, I’enregistrement
des méthodes. Pour éviter cette source d’inefficacité (et d’autres problémes), nous préférons utiliser
le mécanisme dit d’auto-application. Il consiste & abstraire les méthodes par rapport a R et M plutot
que par rapport a R seul. En contrepartie, le type des méthodes devient récursif :

type ("R, {’I}) objectM = rec ’M in ({[’R * ’M] — ’I}) roff;;

En effet, les méthodes qui composent un objet ont pour domaine le type de ’objet lui-méme. En
revanche ’enregistrement des méthodes lui-méme n’est plus récursif (& I'inverse de la proposition
précédente ou les objets étaient récursifs, mais pas leurs types). Nous reprenons alors les définitions
précédentes inchangées pour obtenir le type final des objets dans ML-ART :

type ("R, {’I}) objectRM = (’R * ('R, {’I}) objectM);;

type ({’I}) object = Object of Exist (’R) (’R, {’I}) objectRNM;;
L’état interne caché a ’extérieur de I'objet, reste visible par les méthodes. Pour cela, il est important
que la récursion soit a l'intérieur de I'abstraction, et non ’inverse. En particulier, les méthodes sont

définies en ayant une vision exacte de ’état interne ’R, ce qui leur permet d’accéder ou de modifier
I’état interne. Bien siir, on aurait pu écrire directement :

type ({’I}) object = Object of Exist (’R) rec ’RM in (’R * ({[’RM] — ’I}) roff)

1.4. LES OBJETS VUS COMME DES ENREGISTREMENTS 25

Définir des messages polymorphes

Lorsqu’un message est utilisé a 'intérieur d’un objet, il interagit avec I'état interne puisqu’il
sélectionne une méthode (donc une fonction) qui regoit 1’état interne de I'objet comme argument.
Si un tel message est importé de facon monomorphe, il en résulte une extrusion de 1’état interne
a lextérieur de 'objet par 'intermédiaire du message. Les fonctions importées de I'extérieur pour
étre appliquées & une valeur comportant des parties cachées doivent étre suffisamment polymorphes
pour laisser les parties cachées bien cachées... Cette observation, qui semble ne pas avoir été re-
marquée auparavant, est pourtant générale : la présence de types existentiels n’a guere d’intérét
sans l'existence simultanée de types universels. Heureusement, ces derniers peuvent étre rattachés
a des déclarations de types concrets comme les types existentiels tout en étant techniquement plus
simples que ceux-ci. Le type des messages est :

type ({’I}, @) message = Message of
A1l (’R) ('R, {’I}) objectM — (’R, {’I}) objectRM — a;;

Les messages sont polymorphes par rapport a la représentation interne des objets. L’envoi de
messages est une fonction uniforme.

let repr S = fst S;;
let meth S = snd S;;
let send message P =
let (Object S) = P in let (Message extractor) = message in extractor (meth S) S;;

Reste & définir quelques messages...

let setx = Message (fun x — x.setx);;

let getx = Message (fun x — x.getx);;

Enfin, un objet!

let point =
let pointR = {mutable abscisse = 0} in
let pointM =
let getx self = (repr self).abscisse
and setx self x = (repr self).abscisse < x

and move self x = send setx (Object self) (x + send getx (Object self))
in emptyM || {getx; setx; move}
in Object (pointR, pointM);;

La valeur emptyM est simplement I’enregistrement vide mais avec le type
(o — {abs. null}) objectM ou null est un nouveau symbole de type, utilisé simplement
pour rendre les objets monomorphes.

Les classes

Comme nous ’avons rappelé, de nombreux objets ne different que par leurs variables d’instance.
En fait, les objets sont en général counstruits & partir de classes. Une classe doit permettre deux
opérations bien distinctes : générer des objets de cette classe et créer d’autres classes par héritage.
En particulier, une classe est abstraite par rapport aux variables d’instance. Puisque les méthodes
ne dépendent pas des variables d’instance, il suffit d’abstraire ’état interne par rapport a celles-ci.
Une premiere tentative est donc est de représenter une classe par la paire d’une fonction pour

26 CHAPITRE 1. UN RACCOURCI

créer I’état interne, et d’un enregistrement de méthodes. Pour hériter d’une classe, il suffirait de lui
ajouter les variables d’instance et les méthodes supplémentaires de la classe héritée.

Toutefois, il est plus facile de prendre en compte directement I’héritage multiple. Par analo-
gie avec la concaténation des enregistrements, ’enregistrement des méthodes M d’une classe C est
abstrait par rapport aux méthodes superM d’une classe parente hypothétique a laquelle la classe
C pourrait ultérieurement étre ajoutée. De méme, 1’état interne R de la classe C est abstrait par
rapport au constructeur de I’état interne superR de la classe parente. Concretement, la classe des
points sera définie ainsi :

let pointC =
let pointR superR v = superR || {mutable abscisse = v} in

let pointM superM =

let getx self = (repr self).abscisse

and setx self x = (repr self).abscisse < x

and move self x = send setx (Object self) (x + send getx (Object self))
and print self = print_int (send getx (Object self))

in superM || {getx; setx; move; print}

in Class (pointR, pointM);;
Le lien entre les classes et les objets est clarifié par la fonction d’instantiation :
let new (Class (RR, MM)) v = Object (RR {} v, MM emptyM);;

Le constructeur de type Class ci-dessus est utilisé principalement pour imposer une contrainte sur
le type des composantes et ainsi anticiper certaines erreurs de types. Sa définition n’est elle-méme
ni facile ni treés lisible, mais le constructeur permet aussi de rendre le type des classes plus lisible,
car moins polymorphe. Une définition approchée est :

type (’superR — ’init — ’R, {’superI — ’I}) class = Class of
(’superR — ’init — ’R) *
({ [CR, {’I}) objectRM] — ’superI} roff — (’R, {’I}) objectM)

La définition réelle est légerement différent car il faut dissocier les occurrences de ’R dans le construc-
teur de ’état interne et dans I’enregistrement des méthodes.

Le codage des classes par des enrouleurs (wrappers) offre directement l'acces aux messages
de la super-classe. Pour envoyer un message a la classe parente, il suffit d’extraire la fonction
correspondante dans superM et de lui passer la vision interne de self en argument. Pour illustrer
I’héritage multiple, nous définissons une classe couleur :

let colorC =
let colorR superR ¢ = superR || {color = c} in
let colorM superM = superM || {
print = fun self — superM.print self; print_string (repr self).color

} in Class (colorR, colorM);;
L’héritage est obtenu par composition des composantes génératrices des classes.

let inherit (Class (RR1, MM1)) (Class (RR2, MM2)) =
let RR superR (v1,v2) = RR2 (RR1 superR vl1) v2 in
let MM superM = MM2 (MM1 superM) in
Class (RR, MM);;

let colored.pointC() = inherit pointC colorC;;

1.5. OBJECTIVE ML 27

Et voici le point coloré!

let p = new (colored pointC()) (1,"blue");;
send print p;;
iblue— : unit = ()

Le langage ML-ART permet de nombreuses autres constructions, plus avancées. Par exemple, il
est possible de retourner self exactement, une copie de self, ou une version de self dans laquelle
certaines variables d’instance ont été modifiées. Nous verrons ces opérations ci apres dans le langage
Objective ML.

Notre proposition est avant tout un style de programmation avec objets qui s’appuie de facon
essentielle sur les enregistrements polymorphes extensibles. Nous avons pour cela fourni une librairie
pour les objets écrite dans le langage ML-ART. Cette librairie utilise toutes les constructions mises
au point dans les chapitre 2, 3, 4, les types existentiels de K. Laiifer et M. Odersky [64], les types
universels qui sont un complément indispensable aux types existentiels. Nous avons également
ajouté des définitions de types avec filtrage, mais seulement pour rendre les expressions de type
plus lisibles.

Comparée avec la proposition de B. Pierce and D. N. Turner, notre solution est plus avancée.
D’une part elle prend en compte un ensemble plus complet d’opérations sur les objets. Elle est
également plus réaliste, dans le sens ou le code source est concis et non redondant. On pourrait en
fait reprendre le codage de ML-ART dans un calcul avec types explicites d’ordre supérieur. Cela
permettrait en outre de résoudre le probléme de la lisibilité des types grace a des opérateurs de
types plus puissants.

1.5 Objective ML

L’expérience précédente est satisfaisante sur le plan théorique. En revanche elle est un peu
décevante sur le plan pratique. En effet, les types des classes que nous nous sommes bien gardés de
montrer deviennent vite tres gros, et donc illisibles. La compréhension des erreurs de typage qui non
seulement oblige a les lire, mais aussi & les comparer est encore plus difficile. Le probléeme n’est pas
surprenant, et il est lié & la combinaison de deux facteurs aggravants. D’une part la synthese totale
des types signifie aussi ’absence d’abréviations de types. Les types des objets refletent entierement
leur structure. D’autre part, les objets sont par essence des structures compliquées. Chaque donnée
est accompagnée de ’ensemble de toutes les opérations qui peuvent étre effectuées sur cette donnée.
Dans la vision tout objet, un entier devient une structure comportant une variable d’instance
décrivant la valeur de l’entier et autant de méthodes que de fonctions disponibles sur les entiers,
certainement plus d’une vingtaine. Ce facteur est encore aggravé par la structure récursive des
objets. Cela n’augmente pas nécessairement la taille des types & condition de les représenter (et de
les afficher) comme des graphes, mais dans tous les cas, en diminue leur lisibilité. Il devient donc
nécessaire d’abréger les types des objets.

C’est la premiere justification d’Objective ML. Le systeme des types d’Objective ML est en fait
moins expressif que celui de ML-ART. L’exercice consistait & simplifier le systéme de types de ML-
ART autant que possible, pour en simplifier la présentation théorique, mais en conservant tous les
exemples pratiques. La plupart des simplifications sont permises par 'utilisation de constructions
primitives et par la restriction des classes & étre déclarées au niveau le plus haut du langage (i.e.
elles ne sont pas autorisées sous abstraction). Ces restrictions, en plus des simplifications théoriques
ont permis de mettre en place un mécanisme d’abréviation automatique des types tres sophistiqué.
C’est la seule technique vraiment nouvelle développée pour Objective ML, mais elle est essentielle

28 CHAPITRE 1. UN RACCOURCI

et réellement efficace. La plus grande partie du travail reste toutefois I'ajustement et la mise en
ceuvre harmonieuse de techniques connues. La puissance, la souplesse et la légereté du langage en
dépendent simultanément.

Plutot que de montrer les détails techniques du mécanisme d’abréviation ou I’étude formelle du
langage, nous préférons illustrer le résultat au travers d’une petite démonstration de la couche objet
du langage Ocaml [70]. Nous renvoyons le lecteur au chapitre 6 pour une présentation formelle du
langage ou du mécanisme d’abréviation.

Montrer la réussite d'un langage avec synthese des types est une tache difficile, car plus le
systeme de types est expressif, moins il y a de types & montrer! Les exemples de cette partie ont
tous été exécutés automatiquement dans la boucle interactive du langage Objective Caml (Ocaml
en abrégé). Les types ne sont imprimés que lorsqu’ils sont significatifs ou dans la partie 1.5 ot nous
nous intéressons plus précisément au typage.

De la programmation classique aux objets

Nous en profitons pour rappeler quelques idées qui ne sont pas particulierement liées au langage
Ocaml, mais au style de programmation avec objets. De fagon traditionnelle, les données sont
distinguées des fonctions qui operent sur celles-ci. Les données sont les entiers, les caracteres, mais
aussi les types concrets :

type pierre = Opal | Perle | Diamant;;
type « liste = Cons of & * « liste | Nil;;

Les fonctions sont primitives ou définies sur les types de bases, ou bien définies par filtrage. Ci-
dessous la fonction concasser séparent des cailloux en leurs éléments constituants :

let concasse = function
Dpal - [707; ,P,; >a>; 717;) 7]
|Per1e - [7P7; 767; 71.7; ;1;; ;e;; ’]
|Dia.mant — [7D7; ’i’; ;a;; 71117; 7a7; 7117; ’t’;) ;];;

Dans cette vue traditionnelle, le calcul est décrit par I’application d’une fonction & des données

let imprime _caillou x = List.iter print_char (concasse x);;

imprime caillou Opal;;

Dans le style a objets, une donnée est regroupée avec ’ensemble de toutes les fonctions qui peuvent
opérer sur celle-ci, dans une structure appelée objet. Les objets sont construits a partir des classes.
Les classes décrivent au travers des méthodes le comportement d’un ensemble d’objets, mais elles
abstraient les valeurs particulieres qui différencient les objets de la classe.

class entier n =

object
val valeur = n
method zéro = (valeur = 0)
method successeur = {(valeur = valeur + 1)}
method prédécesseur = {(valeur = min 0 (valeur—1))}
method imprime = print_int valeur
end;;

L’expression {(valeur = valeur + 1)} retourne une copie modifiée de self, et ne produit pas
d’effet de bord.

1.5. OBJECTIVE ML 29

class caillou roche =

object
method concasse = concasse roche
method imprime = imprime_caillou roche
end;;

Un objet est créé comme instance d’une classe.

let treize = new entier 13;;

let pierre = new caillou Diamant;;
Le calcul est maintenant décrit pas enwvoi de message.

treize # imprime; pierre # imprime;;
13Diamant — : unit = ()

Plusieurs messages du méme nom (comme imprime dans ’exemple ci-dessus) peuvent avoir un
comportement différent. Cela est rendu possible parce que le comportement qui doit étre exécuté
a la réception du message est porté par 'objet qui le regoit, du moins formellement. Cette apti-
tude fournit une nouvelle forme de polymorphisme appelée envoi de messages polymorphes. Pour
illustration, nous définissons une fonction écho qui répete I'envoi du message imprime.

let écho x = x # imprime; x # imprime;;
val écho : (imprime : «; .. > — o = (fun)

Cette fonction peut étre appliquée a n’importe quel objet possédant une méthode imprime.

écho treize; écho pierre;;
1313Diamant Diamant — : unit = ()

L’envoi de messages polymorphes est une opération essentielle. Un langage avec cette possibilité
peut déja prétendre offrir le “style” de la programmation avec objets.

Héritage et liaison tardive

Un langage & objets doit aussi posséder un mécanisme d’héritage qui permette de construire
de nouvelles classes & partir de classes existantes, oli éventuellement, de nouveaux objets & partir
d’autres objets. La classe des cailloux peut étre enrichie en une classe de bijoux, par ajout d’un
champ valeur et d’une méthode pour calculer le prix & partir de la valeur.

class bijou roche valeur =
object
inherit caillou roche as pierre
method prix = 2 * valeur
method imprime = pierre # imprime; print_int valeur; print_string " carats"

end;;

Un bijou est imprimé en le considérant d’abord comme une pierre sans valeur (le mot clé as lie
le bijou & la variable pierre avant que les nouvelles méthodes ne soient ajoutées), puis le prix est
affiché suivi de 'unité.

let solitaire = new bijou Diamant 13;;

solitaire # imprime;;

Diamant 13 carats— : unit = ()

30 CHAPITRE 1. UN RACCOURCI

Les fonctions récursives jouant un réle essentiel dans le style de programmation traditionnel, les
méthodes doivent elles aussi pouvoir étre récursives. Cela est réalisé en général par 1'utilisation d’'un
mot clé self dans le corps des méthodes qui réfere a I'objet ayant invoqué la méthode. Nous lui
préférons une construction de liaison récursive au niveau des définitions de classes. Nous illustrons
la liaison récursive en prenant pour exemple le jeu de la roulette russe.

class roulette () =
object (jeu)

val mutable position = 0O

method roulette = position ¢<— Random.int 8; jeu

method coup = position < (position + 1) mod 8; position = 0

method je_joue = if jeu # coup then "Je meurs" else jeu # tu_joues

method tu_joues = if jeu # coup then "Tu meurs" else jeu # je_joue
end;;

Il est important que les méthodes je_joue et tu_joues s’appellent récursivement pour obliger I’ad-
versaire a jouer quand son tour est venu. Une fois commencé, le jeu ne peut plus s’arréter que par
la mort de I'un des deux joueurs. Sinon, le huitiéme coup ne serait jamais tiré. .. Jouons!

(new roulette ()) # je_joue;;

— : string = "Tu meurs"

Heureusement, c¢’était un coup & blanc! Rejouons pour de bon, mais sans oublier de faire tourner
la roulette auparavant. ..

(new roulette ()) # roulette # je_joue;;

— : string = "Tu meurs"

La capacité pour un objet de s’envoyer récursivement des messages réalise simultanément le
mécanisme de la liaison tardive. En effet la résolution des appels récursifs n’est pas effectuée au
moment de la définition de la classe (comme c’est le cas dans les langages fonctionnels), mais elle
est retardée jusqu’au moment de la création de I’objet. Nous illustrons cela en spécialisant la classe
de la roulette & un jeu a deux contre un. La classe roulette_d_deux_contre_un hérite de la classe
roulette et redéfinit la méthode je_joue pour qu’elle tire un deuxiéme coup —si le premier n’a pas
tué le joueur— avant d’appeler la méthode tu_joues comme auparavant.

class roulette_a deux_contre_l () = object (jeu)

inherit roulette () as vieux_jeu

method je_joue = if jeu#coup then "Je meurs" else vieux_jeu # je_joue
end;;

(new roulette d deux contre_l ()) # roulette # tu_joues;;
— : string = "Tu meurs"

Il est important que la méthode tu_joues bien qu’inchangée appelle maintenant la nouvelle méthode
je_joue, sinon le joueur croyant avoir I’avantage serait trompé.

Une nouvelle forme de modularité

Le style de programmation traditionnel permet de définir de nouvelles fonctions opérant sur une
donnée existante de facon modulaire, c’est-a-dire sans avoir & connaitre ou & redéfinir les autres
opérations. Par contre, le moindre changement dans la représentation des données oblige a redéfinir
toutes les fonctions opérant sur ce type de donnée.

1.5. OBJECTIVE ML 31

Le style & objets permet d’effectuer les deux types d’extensions, i.e. 'ajout d’opération (exten-
sion verticale) ou l'extension de la structure de donnée (extension horizontale), de facon modulaire.

Nous illustrons cela sur la structure bien connue de cellules. Par opposition & la classe caillou
nous choisissons une approche objet plus fine pour les cellules. Chaque type de donnée, i.e. chaque
constructeur de valeur sera codé par une classe différente, mais ayant la méme interface, de facon
a pouvoir mélanger toutes les valeurs indépendemment de leur constructeur. Nous groupons ces
définitions de classes dans un module, mais c’est seulement pour mieux gérer ’espace des noms.

La classe principale cons définit les vraies cellules. L’autre classe définit la cellule vide nil. Pour
lui donner la méme interface que la classe cons nous y définissons les fonctions car et cdr qui levent
une exception. Cela n’est pas une perte de sécurité, mais la contrepartie d’une exception de filtrage
incomplet en Ocaml, par exemple lorsqu’on demande la téte d’une liste vide.

module Cell = struct
class [a, (] cons (h:) (t:8) =
object method null = false method car = h method cdr = t end

exception Null
class [, (] nil =

object
method null = true
method car = (raise Null : «)
method cdr = (raise Null : (3)
end

end;;

Ces cellules sont tres générales. En particulier, il est possible d’affecter des valeurs indépendantes
& chacune des cases.

new Cell.cons treize solitaire;;

— : (entier, bijou) Cell.cons = (obj)

Elles different des paires seulement par la possibilité qu’elles ont d’étre non initialisées (la cellule
nil).

Ne nous privons pas d’un détour amusant par le probleme des listes alternées qui ont été proposé
par la communauté Java comme un exemple difficile. Pour augmenter la lisibilité, nous définissons
une abréviation de type («a,) alt_list pour la structure de liste alternée dont les éléments sont
alternativement de type « et de type (.

type (a, () alt_list = (a, (B, (a, () alt_list) Cell.cons) Cell.cons;;
Puis nous définissons un exemple arbitraire de liste alternée.

let x = ref (new Cell.nil : (a, () alt_list) in

x := new Cell.cons treize (new Cell.cons solitaire (!x)); !'x;;

Cet exemple générique est compatible avec ’héritage. Les sous-classes des cellules construites par
héritage pourront encore étre utilisées pour fabriquer des listes alternées (par exemple avec une
opération d’itération). La structure de liste traditionnelle se retrouve simplement en for¢cant le type
des cellules & étre récursif de période un.

module L = struct
class [a] cons h t = object (self : ’mytype) inherit [, ’mytype] Cell.cons h t end
class [a] nil = object (self : ’mytype) inherit [a, ’mytype] Cell.nil end

end;;

32 CHAPITRE 1. UN RACCOURCI

Extension verticale Elle est réalisée par ’héritage qui est une opération entierement modulaire
en Ocaml. Le code de la classe héritée ne doit pas étre réécrit. De plus, I’héritage multiple permet
de définir ’ajout d’une fonctionnalité séparément, puis d’effectuer cet ajout sur différentes classes
parentes. Par exemple, on peut définir une palette d’extensions et choisir ultérieurement la bonne
combinaison des options pour une application donnée.

Pour ajouter une opération d’itération sur les listes, nous définissons dans un premier temps un
module Iter qui décrit I'opération & la fois sur les vraies cellules et sur les cellules vides. Dans la
classe cons les méthodes car et cdr sont dites virtuelles, parce qu’elles sont utilisées sans avoir été
définies. Les méthodes virtuelles d’une classe devront étre définies dans une sous-classe, et il n’est
pas possible de construire d’objet d’une classe virtuelle.

module Iter = struct
class virtual [a] cons =
object (self : [3)
method virtual car : @ method virtual cdr :
method iter (f : o — unit) = f self#car; self#cdr#iter £; ()
end
class [a] nil = object method iter (f : o — unit) = () end

end;;
Les listes avec itération sont obtenues par héritage.

class [a] cons h t = object (self) inherit [a] L.cons h t inherit [a] Iter.cons end
class [a] nil = object inherit [a] L.nil inherit [a] Iter.nil end;;

Comme test, nous pouvons construire une liste de nombres premiers et 'imprimer.

let primes = List.foldright (new cons) [2;3;5;7;11;13] (new nil);;
val primes : int cons = (obj)

primes#iter print_int;;

23571113— : unit = ()

L’extension verticale consiste a ajouter un constructeur a un type de donnée existant. Supposons
par exemple que les listes soient souvent concaténées. Pour éviter le calcul de la concaténation il
est possible, dans le style traditionnel, d’ajouter un nouveau constructeur Append au type des listes.
Cependant cela crée un nouveau type, incompatible avec le précédent et il faut en conséquence
redéfinir toutes les opérations sur les listes.

Avec des objets, il suffit de définir une nouvelle classe append qui décrit le comportement du
nouveau constructeur. Les anciens constructeurs restent compatibles et n’ont donc pas besoin d’étre
modifiés.

class [a] append 1 r = object (self : ’mytype)
val left = (1 : ’mytype) val right = (r : ’mytype)
method null = left#null && right#null
method car = if left#null then right#car else (left#car : «)
method cdr =
if left#null then right#cdr
else if left#fcdr#null then right else {(left = left#cdr)}
method iter (f : @ — unit) = left#iter f; right#iter £; ()

end;;

Nous introduisons une notation infixée, et vérifions le comportement sur un exemple arbitraire.

1.5. OBJECTIVE ML 33

let (@@) = new append;;

let double primes = primes @@ (new nil @@ new nil) Q@ primes;;

double primes#iter print_int;;
2357111323571113— : unit = ()

Typage

Nous finissons cette section par une illustration du typage en Ocaml. Apres avoir décrit
brievement les mécanismes principaux, nous montrerons que les constructions réputées difficiles
a typer sont résolues sans difficulté en Objective ML.

L’utilité du typage est pour nous une évidence. Mais, c’est une évidence encore plus flagrande
en présence d’objets, car les objets permettent de séparer des parties de programmes qui coopérent
étroitement et de surcroit récursivement.

En Objective ML, le typage des objets s’appuie trés fortement et a tous les niveaux sur le
polymorphisme des variables de rangée, comme pour le langage ML-ART. Le typage des messages
n’y fait pas exception. Les diverses contraintes liées & I'envoi de message sont accumulées dans
le type de 'objet comme dans un type enregistrement, les nouvelles contraintes s’accrochant aux
précédentes en instantiant leur variable de rangée.

let g x = xffcar;;
Valg:(car:a; ..)—)a:<fun>

Elles introduisent a leur tour une nouvelle variable de rangée plus faible a laquelle les contraintes
suivantes s’accrocheront.

let g x = if x#null then x#car else x#cdr;;
val g : (car : (¢; cdr : «; null : bool; ..) — Q@ = (fun>

Rappelouns le type de la fonction écho, définie ci-dessus.

écho;;
- :(imprime:a; ..) - o = (fun>

Elle peut étre appliquée aux cailloux et aux bijoux, mais pas a la liste primes.

écho pierre; écho solitaire;;
Diamant Diamant Diamant 13 caratsDiamant 13 carats— : unit = ()

% écho primes;;

Sous-typage Les langages explicitement typés utilisent souvent le sous-typage plutot que le po-
lymorphisme pour typer ’envoi de messages. Pour illustrer 'usage du sous-typage sur un exemple
simple, il nous faut empécher le polymorphisme artificiellement en utilisant une contrainte de type.
La version monomorphe de la fonction écho définie ci-dessous peut-étre appliquée aux cailloux mais
plus aux bijoux.

let échomonomorphe (x : caillou) = écho x;;
val écho_monomorphe : caillou — unit = (fun>
écho_monomorphe pierre;;

Diamant Diamant — : unit = ()

% écho_monomorphe solitaire;;

34 CHAPITRE 1. UN RACCOURCI

Dans certains langages explicitement typés le sous-typage est en partie implicite (les bornes des
variables polymorphes doivent toujours étre indiquées explicitement). Dans Ocaml, & U'inverse, les
types sont implicites mais le sous-typage doit étre explicite. Ainsi, nous devons écrire :

let comme_un_caillou x = (x :> caillou);;
val comme_un_caillou :
(concasse . char list; imprime : unit; .. > — caillou = (fun)

La fonction écho monomorphe peut étre indirectement appliquée & des bijoux & condition de les
considérer explicitement comme des cailloux, en utilisant la fonction de coercion ci-dessus ou une
annotation de type :

écho_monomorphe (comme un caillou solitaire);;
Diamant 13 caratsDiamant 13 carats— : unit = ()
écho_monomorphe (solitaire :> caillou);;

Diamant 13 caratsDiamant 13 carats— : unit = ()

Il est possible de rentre le polymorphisme et le sous-typage simultanément implicites en utilisant
un formalisme de typage avec contraintes [98], mais il reste & comprendre comment adapter le
mécanisme d’abréviation automatique des types, indispensable & leur lisibilité.

La récursion est souvent difficile & typer correctement. En fait, puisque Ocaml utilise le polymor-
phisme paramétrique plutdt que le sous-typage, toutes les difficultés s’estompent. Nous résumons
toutes les opérations autour de la récursion dans une classe démoniaque.

class démon =
object (lui_méme)
val mutable génes = Random.int 9999999
method identité = génes
method méme = lui_méme
method clone = {(>}
method reproduction = {(génes = génes + 1)}
method mutation = génes <~ génes + Random.int 9999999
end;;
class démon
object (a)
val mutable génes : int
method clone : «
method identité . int
method mutation : unit
method méme . «
method reproduction : «

end

Une instance du démon, appelons-la dolly, mémorise son identité dans ses genes. Elle posseéde une
méthode méme qui retourne dolly elle-méme, une méthode clone qui duplique dolly, et deux méthodes
reproduction et mutation qui retournent une copie modifiée de dolly ou modifie dolly elle-méme.
Les types et les propriétés annoncées sont vérifiées ci-dessous :

let dolly = new démon;;
val dolly : démon = (obj>

1.5. OBJECTIVE ML 35

dolly = dolly # méme && dolly # dolly # clone;;

— : bool = true

let id = dolly # identité in dolly # reproduction; id = dolly # identité;;
— ! bool = true

let id = dolly # identité in dolly # mutation; id # dolly # identité;;

— : bool = true

Le démon n’est pas une abstraction de ’esprit. Chaque classe concrete peut cacher un petit démon
en son sein. Pour illustration, voici une liste démoniaque.

module D = struct
class [a] cons h t = object inherit démon inherit [a] L.cons h t end
class [a] nil = object inherit démon inherit [a] L.nil end

end;;

suivie d’une expérimentation. . .

let expérience = new D.cons solitaire (new D.nil);;
val expérience : bijou D.cons = (obj)
expérience # méme # reproduction # clone # méme # car # concasse;;

— Cha.r llst — [}D}; }i}; }a};)m);)a);)n); }t};) }J

Les méthodes binaires s’écrivent aussi naturellement en Ocaml. Un exemple typique de
méthode binaire (ici nous utilisons la comparaison polymorphe >) :

class compare = object (self) method better x = x > self end;;
class compare : object («) method better : o — bool end

peut étre ajouté a la plupart des objets. Par exemple,

class joaillier c v = object inherit bijou c v inherit compare end;;

Une solutions simple a un probleme réputé difficile

La simplicité d’Objective Caml n’entame en rien son expressivité. Au contraire, en s’appuyant
sur le polymorphisme paramétrique et la synthétise les types, nous obtenons la garantie d’'un
meilleur compromis entre expressivité et simplicité. L’exemple qui suit, connu comme 'exemple du
sujet et de ’observateur, a été proposé dans la littérature comme un probléeme difficile d’héritage car
mettant en jeu des classes inter-connectées, et il a fait couler beaucoup d’encre dans la communauté
Java.

La classe observateur possede une méthode distinguée signale qui attend deux arguments, un
sujet et un événement pour exécuter une action.

class virtual [’sujet, ’événement] observateur =

object method virtual signale : ’sujet — ’événement — unit end;;

Un objet de la classe sujet maintient a jour une liste de ses observateurs et possede une méthode
signale observateurs qui distribue le message signale a tous les observateurs avec un événement
particulier e.

class [’observateur, ’événement] sujet =
object (self)
val mutable observateurs = ([]:’observateur list)

36 CHAPITRE 1. UN RACCOURCI

method ajoute_observateur obs = observateurs < (obs :: observateurs)
method signale observateurs (e : ’événement) =
List.iter (fun x — x#signale self e) observateurs
end;;
La difficulté réside habituellement dans la définition d’une instance de ce motif récursif par héritage.
En objective Caml, cela se fait naturellement.

type event = Raise | Resize | Move; ;
let string of _event =
function Raise — "Raise" | Resize — "Resize" | Move — "Move'";;
let count = ref 0;;
class [’observateur] fenétre_sujet =
let id = count := succ !count; !count in
object (self)
inherit [’observateur, event] sujet
val mutable position = 0O
method identité = id
method déplace x = position ¢ position + x; self#signale observateurs Move
method dessine = Printf.printf "{Position = %d}\n" position;
end;;
class [’sujet] fenétre observateur =

object
inherit [’sujet, event] observateur
method signale s e = s#dessine
end;;

Les objets de la classe fenétre_sujet sont sans surprise récursifs.

let fenétre — new fenétre_sujet;;
val fenétre : (signale . &« — event — unit; _..) fenétre_sujet as o =
(obj)

Cependant les classes fenétre sujet et fendtre observateur ne sont elles-mémes pas récursives.

let fenétre_observateur — new fenétre_observateur;;

fenédtre#ajoute observateur fenédtre observateur;;

fenédtre#déplace 1;;

{Position = 1}

— unit = ()

Les classes sujet et fenédtre observateur peuvent a nouveau étre étendues par héritage. Par
exemple, il est possible d’ajouter un nouveau comportement au sujet et de raffiner celui de 1’obser-

vateur.

class [’observateur] grande fenétre_sujet =
object (self)
inherit [’observateur] fenétre sujet

val mutable size = 1
method resize x = size < size + x; self#signale observateurs Resize

val mutable top = false
method raise = top ¢ true; self#signale observateurs Raise

1.6. POLYMORPHISME DE PREMIERE CLASSE 37

method draw = Printf.printf "{Position = Jd; Size = %d}\n" position size;
end;;

class [’sujet] grande fenétre observateur =

object

inherit [’sujet] fen&tre observateur as super

method signale s e = if e # Raise then s#raise; super#signale s e
end;;

Nous pouvons aussi ajouter un nouvel observateur :

class [’sujet] trace_observateur =
object
inherit [’sujet, event] observateur
method signale s e =
Printf.printf "(Window %d <= %s)\n" s#identité (string of_event e)
end;;

et combiner ’ensemble ainsi :

let fenétre = new grande_fenétre_sujet;;

fendtre#ajoute observateur (new grande fendtre_observateur);;
fenédtre#ajoute observateur (new trace_observateur);;
fendtre#déplace 1; fenétrefagrandit 2;;

Dans cette partie, nous avons montré ’expressivité et la souplesse d’Ocaml. Mais quelqu’en soit
la réussite, il y a toujours des aspects a améliorer. Nous connaissons trois problemes : 'absence de
méthodes polymorphes, la difficulté a cacher les méthodes a posteriori, et le choix difficile entre les
styles de programmation objets et modulaire.

1.6 Polymorphisme de premieére classe

Une limitation importante d’Ocaml qui est résolue dans le chapitre 7 est 'absence de méthodes
polymorphes. Nous avons montré comment équiper les listes avec une méthode d’itération. Malheu-
reusement, ’ajout d’une méthode fold n’est pas possible en Ocaml, car cela nécessite des méthodes
polymorphes. Passant d’un style traditionnel & un style objet, les fonctionnelles se retrouvent étre
des méthodes dans un objet et ne peuvent plus étre polymorphe.

Nous avons montré dans le langage ML-ART comment ajouter du polymorphisme de premiere
classe en utilisant des constructeurs de types. Ajouter cette construction au langage Ocaml per-
mettrait de définir des méthodes polymorphes. Cependant leur usage serait trés pénible car chaque
méthode polymorphe devrait étre précédée d’une définition de type, et chaque utilisation d’un mes-
sage polymorphe devrait mentionner explicitement le constructeur réalisant la coercion du type
polymorphe vers un type ML.

Dans le chapitre 7, nous proposons une autre approche permettant d’ajouter des types d’ordre
supérieur & ML, & la fois plus expressive et plus souple que celle introduite dans le chapitre 5. Bien
que cette extension soit motivée par son application au langage Objective ML, elle est de facon
plus générale, une extension de ML avec du polymorphisme d’ordre supérieur. Nous I’étudions en
détail dans le cadre du langage ML, puis nous I'appliquons au cas des méthodes polymorphes.

Nous donnons ici une présentation plus intuitive, mais moins formelle que dans le chapitre 7. Un
problémes 1ié & la déclaration préalable des types polymorphes est de toujours distinguer des types
polymorphes construits de fagon différente méme s’ils sont équivalents. Par exemple, la déclaration

38 CHAPITRE 1. UN RACCOURCI

type « général = Général of All B. a * (f —)

définit un constructeur Général qui permet de coercer le type polymorphe A11 3. a * (8 —)
vers le type MLL & général et inversement en utilisant le filtrage. De fagon analogue, on peut définir

type a fléche = Fléche of All . (@ — @) *x (8 —)

Cependant, les types (y — 7) général et vy fléche sont incompatibles bien que représentant le
méme type polymorphe A11 8. (y —) * (8 — (). Ce probléeme est corrigé en fournissant une
notation [o] pour manipuler directement un type polymorphe o comme un type ML de premiere
classe.

Ti=a|T— 7|0 o =71 |Va.o

Nous étendons les expressions avec les constructions suivantes
az=...|la:0]|{a)|(a:T)

L’expression [a : o] introduit une expression a de type polymorphe o. A Iinverse, (a) coerce une
expression polymorphe a en une expression ordinaire. Enfin (a : 7) force 'expression a & étre de
type T.

Le principe de notre proposition est de mélanger polymorphisme explicite et polymorphisme
implicite, mais sans jamais avoir & deviner le polymorphisme. En effet, cela nous entrainerait dans
les problemes bien connus d’unification d’ordre supérieur. “Deviner” signifie ici introduire un type
polymorphe. Par exemple, fun (z) (z!) x n’est pas typable (les exposants sont des marques per-
mettant d’identifier les différentes occurrences d’une méme variable) parce qu'il faut deviner le type
polymorphe de la variable z!, Plus précisément, I'expression (z') est rejetée parce que z' & un type
polymorphe inconnu. Par contre, nous nous autorisons a propager le polymorphisme. L’expression

let z = [fun (y) y : Voo = o in (z) =

est bien typée parce que x a le type polymorphe connu Ya.a — «. En fait, le polymorphisme ne
peut étre extrait par la construction (_) que lorsqu’il est connu. Au besoin, nous pouvons insérer des
contraintes de type explicites pour indiquer (faire connaitre) le polymorphisme d’une expression.
Par exemple, fun (z) (z : Ya.a — «) x est bien typé.

La difficulté consiste a formaliser les notions de « polymorphisme connu » et de « propagation ».
En ML, la propagation d’information de type repose sur 'unification, bidirectionelle, verticale et
transversale, alors que la notion de propagation ci-dessus est unidirectionnelle et seulement verticale.
Par exemple, considérons I'expression fun (z) (z!) (z? : Va — «). L’occurrence de z? porte une
contrainte qui peut remonter vers le lieur et redescendre vers 'occurrence z', produisant Ieffet
d’une propagation transversale de z? vers z'. Avec ce scénario, 'expression (z) serait typable.
Cependant pour un autre scénario dans lequel la variable z! serait typée en premier, donc sans que
la contrainte portant sur z? ne puisse étre transmise, Pexpression (z) devrait étre rejetée car z a
un type polymorphe inconnu a ce stade. Pour éviter un mécanisme de retour en arriére pendant le
typage, nous rejetons cet exemple, donc nous refusons la liaison transversale.

Le résultat important que nous obtenons est une spécification simple de la propriété de pro-
pagation obtenue en considérant les types comme des graphes plutot que des arbres, ou ce qui
revient au méme en gardant trace du partage. Nous mettons ce partage en évidence aux nceuds
[-] en les marquant par une variable de type. C’est-a-dire que nous remplagons [o] dans la gram-
maire des types par [0]¢. Pour typer I'expression z! dans fun (z) (z') z, nous pouvons typer
z! : [0] dans le contexte z : [0]¢. Le fait que la marque € de [0] apparaisse dans le contexte signifie
que le nceud est partagé et nous refusons d’en extraire le polymorphisme. Inversement, I’expression

1.7. DES CLASSES AUX OBJETS PAR LA RELATION DE SOUS-TYPAGE 39

let 2 = [fun (y) y : Ya.a — o] in (z') est bien typée car le type de &, [Va.co — @] est polymorphe,
et la variable z! a le type [Vo.oo —)¢ dans Penvironnement z : [Vo.ce — @], pour une variable ¢”
différente de €. L’expression fun (z) (z : Va.a — «) z est typable & condition que la contrainte de
type explicite (- : Ya.ae — «) rompe le partage entre le type de 'argument et le type du résultat.
Une telle contrainte se comporte comme une fonction de type Vee'.[Vo.ao = a]¢ = Voo — af.

Nous donnons une formalisation précise du systeme de typage dans le chapitre 7 et nous mon-
trons qu’il admet des types principaux.

Le polymorphisme semi-explicite permet avant tout d’étendre Objective ML avec des méthodes
polymorphes. En fait, cette proposition s’integre parfaitement dans le langage qui fait déja bon
usage du partage par le mécanisme d’abréviation des types. Avec un peu de sucre syntaxique et
quelques variations, on pourra y définir la classe suivante.

module P = struct
class [a] cons h t = object (self) inherit [a] L.comns h t
method (fold : A1l 8. (a = B —) = B — B) £ x =
self#cdr#fold £ (f selffcar x)

end

class [a] nil = object inherit [«] L.nil
method (fold : A1l 8. (a > B — () - B —) £ x =x
end

end

L’envoi d’'un message & un objet se fait toujours par la méme construction, mais il sera typé de
fagon polymorphe ou monomorphe selon que le type est connu et polymorphe ou, au contraire,
inconnu ou monomorphe.

let deux = new P.cons 1 (new P.cons 2 (new nil));;

deux # fold (fun x y — new cons (x#car * xFcar) y) # iter print_int;;

De facon plus générale, le polymorphisme semi-explicite s’applique & toutes les situations ou le
polymorphisme de ML est trop limité.

Dans la proposition présente, deux schémas de types qui ne sont pas égaux (au regard de leur
squelettes polymorphes, les parties monomorphes pouvant étre instanciées librement) sont incom-
patibles. En particulier, il n’est pas possible d’intancier une schéma de type par un autre qui serait
moins précis. Il serait intéressant d’étendre notre proposition avec un mécanisme d’affaiblissement
permettant dans certaines conditions d’unifier des types actuellement considérés comme incompa-
tibles. C’est une direction de recherche que nous poursuivons.

1.7 Des classes aux objets par la relation de sous-typage

Objets et classes se ressemblent évidemment. De facon intuitive, on peut considérer une classe
comme une fonction qui retourne un objet. Cependant, cette vision trop simplifiée des objets exclue
I'héritage. Dans les langages ML-ART ou objective ML, nous avons donné aux classes des formes
plus compliquées.

Une notion importante qui n’est pas prise en compte par le modele précédent est ’abstraction.
Les variables d’instance sont visibles dans les classes. Elles sont cachées automatiquement dans les
objets par un mécanisme d’abstraction. Elle peuvent également étre cachées dans les classes, mais
explicitement.

40 CHAPITRE 1. UN RACCOURCI

Par exemple, on peut protéger la structure des cellules en cachant leur représentation interne
par une contrainte de signature. En revanche, il est plus difficile de cacher les méthodes. Le sous-
typage permet de les cacher dans les objets & condition qu’il ne reste pas d’autres méthodes binaires.
Cela peut aussi étre fait automatiquement, par exemple en déclarant une méthode protégée. Une
méthode protégée se comporte comme une variable d’instance, implicitement cachée dans les objets,
et pouvant étre explicitement cachée dans sa classe par une contrainte de signature. Inversement,
une méthode qui n’a pas été déclarée protégée ne peut pas le devenir. En effet, une autre méthode
m' aurait pu supposer la méthode m visible de type 7, et 'oubli de la méthode m serait dangereux
parce qu'il permettrait de redéfinir m avec un autre type 7' incompatible, brisant ainsi ’hypothese
faite par m' sur m.

Le mécanisme d’abstraction n’est pas simple. Bien que traditionnellement il se limite & I’ins-
tantiation d’une classe en un objet, on le retrouve a la fois dans les classes et les objets, avec des
propriétés trés similaires. Le mécanisme d’abstraction de type est compliqué par un mécanisme
simultané d’abstraction de valeurs, puisque les classes sont en plus abstraites (au sens fonctionnel)
par rapport a des parametres d’initialisation. Les classes et les objets partagent des mécanismes
similaires pas toujours bien dissociés. Ces mécanismes sont au centre de la notion d’abstraction
actuellement trop limitée. Aussi, nous avons cherché & établir un lien plus étroit entre les objets et
les classes.

Nous menons cette étude dans le chapitre 8 en considérant un calcul d’objets primitifs similaire
a celui de M. Abadi et L. Cardelli [3]. Nous choisissons un systéme de type explicite pour nous
libérer des contraintes liées & la synthese des types. Nous montrons qu’un enrichissement de la
structure des types des objets avec toute la richesse des types-enregistrements permet de tracer a
la fois les types des méthodes, leur présence, et leur usage par liaison tardive.

Nous pouvons ainsi distinguer entre une méthode présente avec le type 7 (mais pas utilisée)
et une méthode exigée avec le type 7. La premiere peut étre oubliée et redéfinie, éventuellement
avec un autre type. La seconde peut devenir virtuelle —sa présence est oubliée mais son type est
conservé— puis étre redéfinie ultérieurement avec le méme type; elle peut aussi étre cachée (son
type n’est alors plus visible), mais elle ne pourra plus étre redéfinie.

L’utilisation de méthodes virtuelles au niveau des objets nous permet de distinguer entre I'in-
troduction d’une méthode et sa définition réelle, qui peut étre retardée. On peut alors considérer
les classes comme des objets avec des méthodes virtuelles. Les variables d’instance sont des champs
virtuels, alloués mais non définis et 'opération de création d’une instance revient a définir ces
champs avec des valeurs précises. Nous identifions ainsi classes et objets, méthodes et variables
d’instance.

Les résultats que nous obtenons qui doivent étre approfondis, ouvrent de nouvelles directions &
la fois vers la simplification des concepts, mais aussi vers plus de flexibilité et d’expressivité dans
les opérations d’abstraction.

Chapter 2

Synthese des types enregistrements
dans une extension naturelle de ML

Ce chapitre a été publié dans [106].

Synthese des types enregistrements dans une extension naturelle de ML

Nous proposons une extension de ML avec des enregistrements ou ’héritage est obtenu par le poly-
morphisme générique de ML. Toutes les opérations sur les enregistrements, excepté la concaténation,
sont traitées sans restriction, y compris de nouvelles opérations telles que le renommage des champs.
La solution proposée repose sur une généralisation des types qui sont simultanément munis de sortes
et considérés modulo une théorie équationnelle et qui conduit & la notion de types-enregistrements.
La solution est simple et modulaire, et I'algorithme d’inférence est efficace en pratique.

Typeckecking records in a natural extension of ML

We describe an extension of ML with records where inheritance is given by ML generic polymor-
phism. All common operations on records but concatenation are supported, in particular the free
extension of records. Other operations such as renaming of fields are added. The solution relies
on an extension of ML, where the language of types is sorted and considered modulo equations,
and on a record extension of types. The solution is simple and modular and the type inference
algorithm is efficient in practice.

41

42 CHAPTER 2. SYNTHESE DES TYPES ENREGISTREMENTS

Introduction

The aim of typechecking is to guarantee that well-typed programs will not produce runtime errors.
A type error is usually due to a programmer’s mistake, and thus typechecking also helps him in
debugging his programs. Some programmers do not like writing the types of their programs by
hand. In the ML language for instance, type inference requires as little type information as the
declaration of data structures; then all types of programs will be automatically computed.

Our goal is to provide type inference for labeled products, a data structure commonly called
records, allowing some inheritance between them: records with more labels should be allowed where
records with fewer labels are required.

After defining the operations on records and recalling related work, we first review the solution
for a finite (and small) set of labels, which was presented in [99], then we extend it to a denumerable
set of labels. In the last part we discuss the power and weakness of the solution, we describe some
variations, and suggest improvements.

Without records, data structures are built using product types, as in ML, for instance.

(" Peter”, "John", "Professor”, 27, 5467567, 56478356, ("toyota”, "old", 8929901))
With records one would write, instead:

{name = "Peter”; lastname = "John"; job = "Professor’; age = 27; id = 5467567;
license = 56478356; vehicle = {name = "Toyota”; id = 8929901; age = "old" }}

The latter program is definitely more readable than the former. It is also more precise, since
components are named. Records can also be used to name several arguments or several results of
a function. More generally, in communication between processes records permit the naming of the
different ports on which processes can exchange information. One nice example of this is the LCS
language [7], which is a combination of ML and Milner’s CCS [78].

Besides typechecking records, the challenge is to avoid record type declarations and fix size
records. Extensible records introduced by Wand [121, 27] can be built from older records by
adding new fields. This feature is the basis of inheritance in the view of objects as records [121, 27].

The main operations on records are introduced by examples, using a syntax similar to CAML
syntax [33, 122]. Like variable names, labels do not have particular meanings, though choosing
good names (good is subjective) helps in writing and reading programs. Names can, of course, be
reused in different records, even to build fields of different types. This is illustrated in the following
three examples:

let car = {name = "Toyota”; age = "old"; id = 7866};
let truck = {name = "Blazer”; id = 6587867567};;
let person = {name = "Tim"; age = 31; id = 5656787}

Remark that no declaration is required before the use of labels. The record person is defined on
exactly the same fields as the record car, though those fields do not have the same intuitive meaning.
The field age holds values of different types in car and in person.

All these records have been created in one step. Records can also be build from older ones. For
instance, a value driver can be defined as being a copy of the record person but with one more field,
vehicle, filled with the previously defined car object.

let driver = {person with vehicle = car};;

Note that there is no sharing between the records person and driver. You can simply think as if
the former were copied into a new empty record before adding a field car to build the latter. This

43

construction is called the extension of a record with a new field. In this example the newly defined
field was not present in the record person, but that should not be a restriction. For instance, if our
driver needs a more robust vehicle, we write:

let truck_driver = {driver with vehicle = truck};;

As previously, the operation is not a physical replacement of the vehicle field by a new value. We
do not wish the old and the new value of the vehicle field to have the same type. To distinguish
between the two kinds of extensions of a record with a new field, we will say that the extension is
strict when the new field must not be previously defined, and free otherwise.

A more general operation than extension is concatenation, which constructs a new record from
two previously defined ones, taking the union of their defined fields. If the car has a rusty body but
a good engine, one could think of building the hybrid vehicle:

let repaired_truck = {car and truck};

This raises the question: what value should be assigned to fields which are defined in both car and
truck? When there is a conflict (the same field is defined in both records), priority could be given to
the last record. As with free extension, the last record would eventually overwrite fields of the first
one. But one might also expect a typechecker to prevent this situation from happening. Although
concatenation is less common in the literature, probably because it causes more trouble, it seems
interesting in some cases. Concatenation is used in the standard ML language [48] when a structure
is opened and extended with another one. In the LCS language, the visible ports of two processes
run in parallel are exactly the ports visible in any of them. And as shown by Mitchell Wand [121]
multiple inheritance can be coded with concatenation.

The constructions described above are not exhaustive but are the most common ones. We
should also mention the permutation, renaming and erasure of fields. We described how to build
records, but of course we also want to read them. There is actually a unique construction for this
purpose.

let id x = x.id;; let age x = x.age;;

Accessing some field a of a record = can be abstracted over z, but not over a: Labels are not values
and there is no function which could take a label as argument and would access the field of some
fixed record corresponding to that label. Thus, we need one extraction function per label, as for id
and age above. Then, they can be applied to different records of different types but all possessing
the field to access. For instance,

age person, age driver;;
They can also be passed to other functions, as in:

let car_info field = field car;; car_info age;;
The testing function eq below should of course accept arguments of different types provided they
have an id field of the same type.

let eq x y = equal x.id y.id;; eq car truck;;

These examples were very simple. We will typecheck them below, but we will also meet more tricky
ones.

44 CHAPTER 2. SYNTHESE DES TYPES ENREGISTREMENTS

Related work

Luca Cardelli has always claimed that functional languages should have record operations. In 1986,
when he designed Amber, his choice was to provide the language with records rather than poly-
morphism. Later, he introduced bounded quantification in the language FUN |, which he extended
to higher order bounded quantification in the language QUEST. Bounded quantification is an ex-
tension of ordinary quantification where quantified variables range in the subset of types that are
all subtypes of the bound. The subtyping relation is a lattice on types. In this language, subtyping
is essential for having some inheritance between records. A slight but significant improvement of
bounded quantification has been made in [19] to better consider recursive objects; a more general
but less tractable system was studied by Pavel Curtis [34]. Today, the trend seems to be the sim-
plification rather than the enrichment of existing systems [26, 49, 25]. For instance, an interesting
goal was to remove the subtype relation in bounded quantification [49]. Records have also been
formulated with explicit labeled conjunctive types in the language Forsythe [116].

In contrast, records in implicitly typed languages have been less studied, and the proposed
extensions of ML are still very restrictive. The language Amber [20, 21] is monomorphic and
inheritance is obtained by type inclusion. A major step toward combining records and type inference
has been Wand’s proposal [119] where inheritance is obtained from ML generic polymorphism.
Though type inference is incomplete for this system, it remains a reference, for it was the first
concrete proposal for extending ML with records having inheritance. The year after, complete type
inference algorithms were found for a strong restriction of this system [56, 86]. The restriction
only allows the strict extension of a record. Then, the author proposed a complete type inference
algorithm for Wand’s system [99], but it was formalized only in the case of a finite set of labels
(a previous solution given by Wand in 1988 did not admit principal types but complete sets of
principal types, and was exponential in size in practice). Mitchell Wand revisited this approach
and extended it with an “and” operation' but did not provide correctness proofs. The case of an
infinite set of labels has been addressed in [100], which we review in this article.

2.1 A simple solution when the set of labels is finite

Though the solution below will be made obsolete by the extension to a denumerable set of labels, we
choose to present it first, since it is very simple and the extension will be based on the same ideas.
It will also be a decent solution in cases where only few labels are needed. And it will emphasize a
method for getting more polymorphism in ML (in fact, we will not put more polymorphism in ML
but we will make more use of it, sometimes in unexpected ways).

We will sketch the path from Wand’s proposal to this solution, for it may be of some interest to
describe the method which we think could be applied in other situations. As intuitions are rather
subjective, and ours may not be yours, the section 2.1.1 can be skipped whenever it does not help.

2.1.1 The method

Records are partial functions from a set £ of labels to the set of values. We simplify the problem
by considering only three labels a, b and c. Records can be represented in three field boxes, once

1Tt can be understood as an “append” on association lists in lisp compared to the “with” operation which should
be understood as a “cons”.

2.1. A SIMPLE SOLUTION WHEN THE SET OF LABELS IS FINITE 45

labels have been ordered:

Defining a record is the same as filling some of the fields with values. For example, we will put the
values 1 and true in the a and c fields respectively and leave the b field undefined.

1 true

Typechecking means forgetting some information about values. For instance, it does not distinguish
two numbers but only remember them as being numbers. The structure of types usually reflects
the structure of values, but with fewer details. It is thus natural to type record values with partial
functions from labels (£) to types (7), that is, elements of £L — T. We first make record types
total functions on labels using an explicitly undefined constant abs (“absent”): £ — T U {abs}.
In fact, we replace the union by the sum pre(7) + abs. Finally, we decompose record types as

follows:
L — [1, Card (L)] — pre(T) + abs

The first function is an ordering from £ to the segment [1, Card (£)] and can be set once and for
all. Thus record types can be represented only by the second component, which is a tuple of length
Card (L) of types in pre(T) 4+ abs. The previous example is typed by

1 true

II(pre(num) , abs , pre(bool))

A function _.a reading the a field accepts as argument any record having the a field defined with a
value M, and returns M. The a field of the type of the argument must be pre(7) if 7 is the type
of M. We do not care whether other fields are defined or not, so their types may be anything. We
choose to represent them by variables 6 and €. The result has type a.

_a: (pre(a),8,e) = «

2.1.2 A formulation

We are given a collection of symbols C with their arities (C")nen that contains at least an arrow
symbol — of arity 2, a unary symbol pre and a nullary symbol abs. We are also given two sorts
type and field. The signature of a symbol is a sequence of sorts, written ¢ for a nullary symbol and
t1...® 1, = ¢ for a symbol of arity n. The signature S is defined by the following assertions (we
write S F f o for (f,0) € S):

S F pre :: type = field

S F abs :: field
S+ 11 = field®@ L) = type
St [type” = type fec™\ {pre,abs,II}

The language of types is the free sorted algebra 7(S,V). The extension of ML with sorted types is
straightforward. We will not formalize it further, since this will be subsumed in the next section.

46 CHAPTER 2. SYNTHESE DES TYPES ENREGISTREMENTS

The inference rules are the same as in ML though the language of types is sorted. The typing
relation defined by these rules is still decidable and admits principal typings (see next section for
a precise formulation). In this language, we assume the following primitive environment:

{}:II (abs,...abs)
—a:11(0, ..., pre(a), ...0,) = «
{_witha=_}:11(0,,...0,) > a—=1L(6,..., pre(a), ...0,)

Basic constants for IIML;,

The constant {} is the empty record. The _.a constant reads the a field from its argument, we
write r.a the application (_.a) r. Similarly {r with a = M} extends the records r on label a with
value M.

2.2 Extension to large records

Though the previous solution is simple, and perfect when there are only two or three labels involved,
it is clearly no longer acceptable when the set of labels is getting larger. This is because the size
of record types is proportional to the size of this set — even for the type of the null record, which
has no field defined. When a local use of records is needed, labels may be fewer than ten and the
solution works perfectly. But in large systems where some records are used globally, the number of
labels will quickly be over one hundred.

In any program, the number of labels will always be finite, but with modular programming,
the whole set of labels is not known at the beginning (though in this case, some of the labels may
be local to a module and solved independently). In practice, it is thus interesting to reason on an
“open”, i.e. countable, set of labels. From a theoretical point of view, it is the only way to avoid
reasoning outside of the formalism and show that any computation done in a system with a small
set of labels would still be valid in a system with a larger set of labels, and that the typing in
the latter case could be deduced from the typing in the former case. A better solution consists in
working in a system where all potential labels are taken into account from the beginning.

In the first part, we will illustrate the discussion above and describe the intuitions. Then we
formalize the solution in three steps. First we extend types with record types in a more general
framework of sorted algebras; record types will be sorted types modulo equations. The next step
describes an extension of ML with sorts and equations on types. Last, we apply the results to a
special case, re-using the same encoding as for the finite case.

2.2.1 An intuitive approach

We first assume that there are only two labels a and b. Let r be the record {a =1 ; b = true} and
f the function that reads the a field. Assuming f has type 7 — 7' and r has type o, f can be
applied to r if the two types 7 and o are unifiable. In our example, we have

T=1I(a:pre(a) ; b:6),
o =1I(a: pre(num) ; b: pre(bool)),

and 7' is equal to a. The unification of 7 and o is done field by field and their most general unifier

1s:
{ o — num

0y — pre (bool)

2.2. EXTENSION TO LARGE RECORDS 47

If we had one more label ¢, the types 7 and o would be

T=I(a:pre(a) ;b:0,;c:0.),
o =1 (a: pre(num) ; b: pre(bool) ; c: abs).

a — num
{ 0, — pre (bool)

0. — abs

and their most general unifier

We can play again with one more label d. The types would be

T=I(a:pre(a) ; 0:0, ; c:0.; d:0y),
o =1 (a: pre(num) ; b: pre(bool) ; c: abs ; d: abs).

whose most general unifier is:
o — num

0y — pre(bool)
0. +— abs
0, +— abs

Since labels ¢ and d appear neither in the expressions r nor in f, it is clear that fields ¢ and d behave
the same, and that all their type components in the types of f and r are equal up to renaming of
variables (they are isomorphic types). So we can guess the component of the most general unifier
on any new field ¢ simply by taking a copy of its component on the c field or on the d field. Instead
of writing types of all fields, we only need to write a template type for all fields whose types are
isomorphic, in addition to the types of significant fields, that is those which are not isomorphic to
the template.

T=1II(a:pre(a) ; b: 0, ; 00:0s),
o =1l (a: pre(num) ; b: pre(bool) ; oo : abs).

The expression II((£: 77)pes 53 00 : 05) should be read as
ior " | o¢ otherwise, where oy is a copy of o

The most general unifier can be computed without developing this expression, thus allowing the
set of labels to be infinite. We summarize the successive steps studied above in this figure:

Labels a b c d 00
T pre(«) Oy 0. 04 0o
o pre (num) | pre (bool) abs abs abs
TAO pre (num) | pre(bool) abs abs abs

This approach is so intuitive that it seems very simple. There is a difficulty though, due to the
sharing between templates. Sometimes a field has to be extracted from its template, because it
must be unified with a significant field.

The macroscopic operation that we need is the transformation of a template 7 into a copy
7' (the type of the extracted field) and another copy 7" (the new template). We regenerate the

48 CHAPTER 2. SYNTHESE DES TYPES ENREGISTREMENTS

template during an extraction mainly because of sharing. But it is also intuitive that once a field
has been extracted, the retained template should remember that, and thus it cannot be the same.
In order to keep sharing, we must extract a field step by step, starting from the leaves.

For a template variable a, the extraction consists in replacing that variable by two fresh variables
[and -y, more precisely by the term ¢ : 3 ; v. This is exactly the substitution

a—L0:0;y

For a term f(«), assuming that we have already extracted field ¢ from «, i.e. we have f(£: (3 ;),
we now want to replace it by £: f(«) ; f(). The solution is simply to ask it to be true, that is, to
assume the axiom

f:B5y)=2€:f(a); f(7)
for every given symbol f but II.

2.2.2 Extending a free algebra with a record algebra

The intuitions of previous sections are formalized by the algebra of record terms. The algebra
of record terms is introduced for an arbitrary free algebra; record types are an instance. The
record algebra was introduced in [100] and revisited in [104]. We summarize it below but we
recommend [104] for a more thorough presentation.

We are given a set of variables V and a set of symbols C with their arities (Cp)nen-

Raw terms

We call unsorted record terms the terms of the free unsorted algebra 7'(D’,V) where D’ is the set
of symbols composed of C plus a unary symbol II and a collection of projection symbols {(£:_; _) |
¢ € L} of arity two. Projection symbols associate to the right, that is (a: 7 ; b: o ; 7') stands for
(@:7 ;5 (b:o;1)).

Example 1 The expressions
Il (a : pre(num) ; c: pre(bool) ; abs) and II(a: pre(b: num ; num) ; abs)

are raw terms. In section 2.2.4 we will consider the former as a possible type for the record
{a =1 ; c=true} but we will not give a meaning to the latter. There are too many raw terms.
The raw term {a: o« ; x} — x must also be rejected since the template composed of the raw
variable x should define the a field on the right but should not on the left. We define record terms
using sorts to constrain their formation. Only a few of the raw terms will have associated record
terms.

Record terms

Let £ be a denumerable set of labels. Let X be composed of a sort type, and a finite collection of
sorts (row (L)) where L range over finite subsets of labels. Let S be the signature composed of the
following symbols given with their sorts:

S H1I:: Row(() = Type
SFfEuK'"= K feC Kek
SEF:_;) Type® Row(L U {¢}) = Row(L) te L,L e Prn(L\{L})

The superscripts are parts of symbols, so that the signature & is not overloaded, that is, every
symbol has a unique signature. We write D the set of symbols in S.

2.2. EXTENSION TO LARGE RECORDS 49

Definition 1 Record terms are the terms of the free sorted algebra 7(S,V). O

Example 2 The left term below is a record term. On the right, we drew a raw term with the
same structure.

II II
nype \gROW({a}) f / g
| | | |
B (b:5)t B (b:-5)
/N 7\
p Y p Y

Script erasure

To any record term, we associate the raw term obtained by erasing all superscripts of symbols.
Conversely, for any raw term 7', and any sort ¢ there is at most one record term whose erasure
is 7/. Thus any record term 7 of sort ¢ is completely defined by its erasure 7’ and the sort ¢. In the
rest of the paper we will mostly use this convention. Moreover we usually drop the sort whenever
it is implicit from context.

Example 3 The erasure of
I (aﬂ . fLypegTypey (C{a} . fIype(q) hROW({a,c})))
is the raw term

M(a: f(g) 5 c: fla) 5 h)

There is no record term whose erasure would be
Ia: f(b:g;a);h)

Record algebra

The permutation and the extraction of fields in record terms will be obtained by equations, of left
commutativity and distributivity respectively. Precisely, let E be the set of axioms

e Left commutativity. For any labels a and b and any finite subset of labels L that do not
contain a and b,

ol (bLU{a}:ﬁ;fy):bL:ﬁ; (aLU{b}:a;fy)

e Distributivity. For any symbol f, any label a and any finite subset of labels L that do not
contain a,

ROV GE a5 By, ab oy 5 By) = ab s fTIPE(an,) 5 fROVED (5,)

50 CHAPTER 2. SYNTHESE DES TYPES ENREGISTREMENTS

With the raw notation the equations are written:

e Left commutativity. At any sort row (L), where L does not contain labels a and b:
a:a; b:Bsy)=b:0;(a:a;y)
e Distributivity. At any sort row (L) where L does not contain label a, and for any symbol f:

flatag; Bi,...ar0p; By) =a: floa,...op) ;5 f(Br,...0p)

All axioms are regular, that is, the set of variables of both sides of equations are always identical.
Example 4 In the term
Il (a : pre(num) ; c: pre(bool) ; abs)

we can replace abs by b: abs ; abs using distributivity, and use left commutativity to end with
the term:
Il (a: pre(num) ; b: abs ; c: pre(bool) ; abs)

In the term
II(a: pre(a) ; 0)

we can substitute @ by b: 60, ; ¢ ; 0. ; € to get
M(a:pre(a) ;0:0, ; ¢c: 0, ;)
which can then be unified with the previous term field by field.

Definition 2 The algebra of record terms is the algebra 7 (S, V) modulo the equational theory E,
written 7(S,V)/E. O

Unification in the algebra of record terms has been studied in [104].

Theorem 4 Unification in the record algebra is decidable and unitary (every solvable unification
problem has a principal unifier).

A unification algorithm is given in the appendix.

Instances of record terms

The construction of the record algebra is parameterized by the initial set of symbols C, from which
the signature S is deduced. The signature S may also be restricted by a signature S’ that is
compatible with the equations F, that is, a signature S’ such that for all axioms r and all sorts ¢
of &,

SFrlc, = S'Fr

The algebra (7/E)}S" and (T1S')/(E}S’") are then isomorphic, and consequently unification in
(T18")/(E}S') is decidable and unitary, and solved by the same algorithm as in 7/E. The S'-
record algebra is the restriction 7(S,V)[S’ of the record algebra by a compatible signature S’.

2.2. EXTENSION TO LARGE RECORDS ol

We now consider a particular instance of record algebra, where fields are distinguished from
arbitrary types, and structured as in section 2.1. The signature S’ distinguishes a constant symbol
abs and a unary symbol pre in C, and is defined with two sorts type and field:

S'H 11 :: field = type

S’ abs" :: field LEK
S’ + pre : type = field
S+ £ Iype . typen = type f ec™\ {abs,pre,Il}

S' (L :_;) field ® field = field te L,LePrn(L\{l})

The signature S’ is compatible with the equations of the record algebra. We call record types the
S'-record algebra.

In fact, record types have a very simple structure. Terms of the sort Row(L) are either of
depth 0 (reduced to a variable or a symbol) or are of the form (a : 7 ; 7'). By induction, they are
always of the form

(@ :71;...ap:7p ; 0)

where o is either abs or a variable, including the case where p is zero and the term is reduced to o.
Record types are also generated by the pseudo-BNF grammar:

Tu=al|T =7 | PP types
pl u=xL | abst | a: @ ; pttied a¢ L rows
p =0 |abs | pre(r) fields

where a, 0, v and § are type variables, x, m and £ are row variables and ¢ and ¢ are field variables.
We prefer the algebraic approach which is more general.

2.2.3 Extending the types of ML with a sorted equational theory

In this section we consider a sorted regular theory 7 /E for which unification is decidable and
unitary. A regular theory is one whose left and right hand sides of axioms always have the same
set of variables. For any term 7 of 7 /E we write V(1) for the set of its variables. We privilege a
sort Type.

The addition of a sorted equational theory to the types of ML has been studied in [100, 102].
We recall here the main definitions and results. The language ML that we study is lambda-calculus
extended with constants and a LET construct in order to mark some of the redexes, namely:

M = Terms M, N

T Variable X,y

| c Constant c
Ax. M Abstraction

|

| M M Application
let . = M in M Let bindin

g

The letter W ranges over finite set of variables. Type schemes are pairs noted VW - 7 of a set of
variables and a term 7. The symbol V is treated as a binder and we consider type schemes equal
modulo a-conversion. The sort of a type scheme VW - 7 is the sort of 7. Contexts as sequences of
assertions, that is, pairs of a term variable and a type. We write A the set of contexts.

52 CHAPTER 2. SYNTHESE DES TYPES ENREGISTREMENTS

Every constant ¢ comes with a closed type scheme VW - 7, written c: VW - 7. We write B the
collection of all such constant assertions. We define a relation - on A x ML x 7 and parameterized
by B as the smallest relation that satisfies the following rules:

z:VW-1€A pw:W =T c:YW-1€B pwW =T

(VAR-INST) (CONST-INST)
Abgx:p(r) Abgc:pu(r)
Az :7|FM: 0o TeT (FUN) AFM:0—=T AFN:o (App)
AFde. M:7—0 AFMN:7T

AFs M : T Az :VYW -1]Fg N : 0o WNVA) =0

(LET-GEN)
Ablgletz =M inN : o

AFM:o o=gT
AFEM: 7

They are the usual rules for ML except the rule EQUAL that is added since the equality on types
is taken modulo the equations E.

A typing problem is a triple of A x ML x T written A>M : 7. The application of a substitution
i to a typing problem A > M : 7 is the typing problem p(A) > M : p(7), where substitution of a
context is understood pointwise and only affects the type part of assertions. A solution of a typing
problem A>M : 7 is a substitution p such that u(A) = M : (7). It is principal if all other solutions
are obtained by left composition with x4 of an arbitrary solution.

(EQuAL)

Theorem 5 (principal typings) If the sorted theory T /E is reqular and its unification is decid-
able and unitary, then the relation = admits principal typings, that is, any solvable typing problem
has a principal solution.

Moreover, there is an algorithm that given a typing problem computes a principal solution if one
exists, or returns failure otherwise.

An algorithm can be obtained by replacing free unification by unification in the algebra of record
terms in the core-ML type inference algorithm. A clever algorithm for type inference is described
in [104].

2.2.4 Typechecking record operations

Using the two preceding results, we extend the types of ML with record types assuming given the
following basic constants:
{}: I (abs)
—a:1(a:pre(a) ; 0) -«
{-witha=_}:1l(a:0; x) - a—1(a:pre(a) ; x)
Basic constants for [IML

There are countably many constants. We write {a; = z; ; ...a, = z,} as syntactic sugar for:
ey =21 ...apn1 =zp_1} with ay, : z,,}

We illustrate this system by examples in the next section.

The equational theory of record types is regular, and has a decidable and unitary unification.
It follows from theorems 5 and 4 that the typing relation of this language admits principal typings,
and has a decidable type inference algorithm.

2.3. PROGRAMMING WITH RECORDS 93

2.3 Programming with records

We first show on simple examples how most of the constructions described in the introduction
are typed, then we meet the limitations of this system. Some of them can be cured by slightly
improving the encoding. Finally, we propose and discuss some further extensions.

2.3.1 Typing examples

A typechecking prototype has been implemented in the CAML language. It was used to automat-
ically type all the examples presented here and preceded by the # character. In programs, type
variables are printed according to their sort in S’. Letters x, m and & are used for field variables
and letters «, (3, etc. are used for variables of the sort type. We start with simple examples and
end with a short program.

Simple record values can be built as follows:

#let car = {name = "Toyota”; age = "old"; id = 7866};;
car : Pi (name : pre (string); id : pre (num); age : pre (string); abs)

#let truck = {name = "Blazer"; id = 6587867567 };;
truck : Pi (name : pre (string); id : pre (num); abs)

#let person = {name = "Tim"; age = 31; id = 5656787};
person : Pi (name : pre (string); id : pre (num); age : pre (num); abs)

Each field defined with a value of type 7 is significant and typed with pre(7). Other fields are
insignificant, and their types are gathered in the template abs. The record person can be extended
with a new field vehicle:

#let driver = {person with vehicle = car};;
driver :
Pi (vehicle : pre (Pi (name : pre (string); id : pre (num); age : pre (string); abs));
name : pre (string); id : pre (num); age : pre (num); abs)

This is possible whether this field was previously undefined as above, or defined as in:

#let truck_driver = {driver with vehicle = truck};;
truck_driver :
Pi (vehicle : pre (Pi (name : pre (string); id : pre (num); abs)); name : pre (string);
id : pre (num); age : pre (num); abs)

The concatenation of two records is not provided by this system.
The sole construction for accessing fields is the “dot” operation.

#let age x = x.age;; #let id x = x.id;;

age : Pi (age : pre (@); x¥) = « id : Pi (id : pre (a); x) = «
The accessed field must be defined with a value of type «a, so it has type pre («), and other fields
may or may not be defined; they are described by a template variable x. The returned value has
type a. As any value, age can be sent as an argument to another function:

#let car_info field = field car;;
car_info : (Pi (name : pre (string); id : pre (num); age : pre (string); abs) — a) — «

#car_info age;;
it : string

o4 CHAPTER 2. SYNTHESE DES TYPES ENREGISTREMENTS

The function equal below takes two records both possessing an id field of the same type, and possibly
other fields. For simplicity of examples we assume given a polymorphic equality equal.

#let eq x y = equal x.id y.id;;

eq : Pi (id : pre (@); x) — Pi (id : pre (a); m) — bool
#eq car truck;;

it : bool

We will show more examples in section 2.3.3.

2.3.2 Limitations

There are two sorts of limitations, one is due to the encoding method, the other one results from
ML generic polymorphism. The only source of polymorphism in record operations is generic poly-
morphism. A field defined with a value of type 7 in a record object is typed by pre (7). Thus, once
a field has been defined every function must see it defined. This forbids merging two records with
different sets of defined fields. We will use the following function to shorten examples:

#let choice x y = if true then x else y;;
choice : o = o = «

Typechecking fails with:

#choice car truck;;
Typechecking error: collision between pre (string) and abs

The age field is undefined in truck but defined in car. This is really a weakness, since the program

#(choice car truck).name;;
Typechecking error: collision between pre (string) and abs

which should be equivalent to the program

#choice car.name truck.name;;

it : string
may actually be useful. We will partially solve this problem in section 2.3.3. A natural generaliza-
tion of the eq function defined above is to abstract over the field that is used for testing equality

#let field_eq field x y = equal (field x) (field y);;
fieldeq : (¢ = B) —» a — a — bool

It is enough general to test equality on other values than records. We get a function equivalent to
the program eq defined in section 2.3.1 by applying field_eq to the function id.

#let id_eq = field_eq id;;
ideq : Pi (id : pre (a); x) — Pi (id : pre (a); x) — bool

#id_eq car truck;;
Typechecking error: collision between pre (string) and abs

The last example fails. This is not surprising since field is bound by a lambda in field_eq, and
therefore its two instances have the same type, and so have both arguments x and y. In eq, the
arguments x and y are independent since they are two instances of id. This is nothing else but ML
generic polymorphism restriction. We emphasize that, as record polymorphism is entirely based on
generic polymorphism, the restriction applies drastically to records.

2.3. PROGRAMMING WITH RECORDS 95

2.3.3 Flexibility and Improvements

The method for typechecking records is very flexible: the operations on records have not been fixed
at the beginning, but at the very end. They are parameters that can vary in many ways.

The easiest modification is changing the types of basic constants. For instance, asserting that
{_ with a = _} comes with type scheme:

{_witha=_}:1l(a:abs ; x) > a—I(a:pre(a) ; x)

makes the extension of a record with a new field possible only if the field was previously undefined.
This slight change gives exactly the strict version that appears in both attempts to solve Wand’s
system [56, 86]. Weakening the type of this primitive may be interesting in some cases, because
the strict construction may be easier to implement and more efficient.

We can freely change the types of primitives, provided we know how to implement them cor-
rectly. More generally, we can change the operations on records themselves. Since a defined field
may not be dropped implicitly, it would be convenient to add a primitive removing explicitly a field
from a record

Na:1I(a:60; x) = (a:abs ; x),

In fact, the constant {_ with a = _} is not primitive. It should be replaced by the strict version:
{-withla=_}:1I(a:abs ; x) - a—1I(a: pre(a) ; x),

and the _\a constant, since the original version is the composition {_\ a with !la = _}. Our encoding
also allows typing a function that renames fields

rename® " : T (a:0 ;b:e; x) = H(a:abs ;b:0; x)

The renamed field may be undefined. In the result, it is no longer accessible. A more primitive
function would just exchanges two fields

exchange®?? : 1l (a: 0 ; b:e;x) = (a:e;b:0; x)

whether they are defined or not. Then the rename constant is simply the composition:

(_\ @) o exchange®**
More generally, the decidability of type inference does not depend on the specific signature of the
pre and abs type symbols. The encoding of records can be revised. We are going to illustrate this
by presenting another variant for type-checking records.

We suggested that a good type system should allow some polymorphism on records values
themselves. We recall the example that failed to type

#choice car truck;;
Typechecking error: collision between pre (string) and abs

because the age field was defined in car but undefined in truck. We would like the result to have a
type with abs on this field to guarantee that it will not be accessed, but common, compatible fields
should remain accessible. The idea is that a defined field should be seen as undefined whenever
needed. From the point of view of types, this would require that a defined field with a value of
type 7 should be typed with both pre(7) and abs.

56 CHAPTER 2. SYNTHESE DES TYPES ENREGISTREMENTS

Conjunctive types [32] could possibly solve this problem, but they are undecidable in general.
Another attempt is to make abs of arity 1 by replacing each use of abs by abs(a) where « is a
generic variable. However, it is not possible to write V@ - §(7) where 6 ranges over abs and pre.
The only possible solution is to make abs and pre constant symbols by introducing an infix field
symbol “.” and write abs.«a and pre.« instead of abs(«) and pre(«). It is now possible to write
Ve (e.7). Formally, the signature S’ is replaced by the signature 8" given below, with a new sort
flag:

S" H 11 :: field = type

8"+ abs' :: flag LEK
S" \ pre' :: flag LeK
S" .t flag ® type = field LeK
S"+ fIype . typeeld) = type fec\{abs,pre,.}

S" & (0L : ;) i field ® field = field teL,LePpn(L\{l})
Record constants now come with the following type schemes:
{} : I (abs.a)
—a:1l(a:pre.a; x) =«
{_witha=_}:II(a:0;x) 2a—=I(a:c.a; x)
Basic constants for [IML’

It is easy to see that system IIML' is more general than system IIML; any expression typeable in
the system TIML is also typeable in the system IIML': replacing in a proof all occurrences of abs
by abs.a and all occurrence of pre(7) by pre.7 (where o does not appear in the proof), we obtain
a correct proof in IIML'.

We show the types in the system IIML' of some of previous examples. Flag variables are
written ¢, # and 1. Building a record creates a polymorphic object, since all fields have a distinct
flag variable:

#let car = {name = "Toyota”; age = "old”; id = 7866};;

car : Pi (name : (p.string; id : @.num; age : 9 .string; abs.«x)

#let truck = {name = "Blazer"; id = 6587867567 };;

truck : Pi (name : @.string; id : @.num; abs.«)
Now these two records can be merged,

#tchoice car truck;;

it : Pi (name : @.string; id : f.num; age : abs.string; abs.«x)
forgetting the age field in car. Note that if the presence of field age has been forgotten, its type has
not: we always remember the types of values that have stayed in fields. Thus, the type system
IIML' rejects the program:

#let person = {name = "Tim"; age = 31; id = 5656787};

person : Pi (name : @.string; id : f.num; age : 1.num; abs.a)

#choice person car;;

Typechecking error: collision between num and string

This is really a weakness of our system, since both records have common fields name and id,
which might be tested on later. This example would be correct in the explicitly typed language
QUEST [22]. If we add a new collection of primitives

Na:II(a:0; x) > 1(a:abs.a; x),

2.3. PROGRAMMING WITH RECORDS o7

then we can turn around the failure above by explicitly forgetting label age in at least one record

#-choice (car \ age) person;;
it : Pi (age : abs.num; name : (p.string; id : €.num; abs.a)

#choice car (person \ age);;
it : Pi (age : abs.string; name : (.string; id : 6.num; abs.«x)

#choice (car \ age) (person \ age);;
it : Pi (age : abs.cr; name : @.string; id : 6.num; abs.(3)

A more realistic example illustrates the ability to add annotations on data structures and type
the presence of these annotations. The example is run into the system IIML’, where we assume
given an infix addition + typed with num — num — num.

#type tree (¢) = Leaf of num

| Node of {left: pre.tree (); right: pre.tree (¢);

annot: @.num; abs.unit}

#:

New constructors declared:

Node : Pi (left : pre.tree (p); right : pre.tree (); annot : @.num; abs.unit) — tree ()
Leaf : num — tree ()

The variable ¢ indicates the presence of the annotation annot. For instance this annotation is absent
in the structure

#let winter = 'Node {left = 'Leaf 1; right = 'Leaf 2 };;
winter : tree (abs)

The following function annotates a structure.

#let rec annotation =

function

Leaf n — 'Leaf n, n

| Node {left = r; right = s} —

let (r,p) = annotation r in
let (s,q) = annotation s in
'Node {left = r; right = s; annot = p+q}, p+q;;

annotation : tree () — tree (f) * num

#let annotate x = match annotation x with y,_ — y;;
annotate : tree () — tree (@)

We use it to annotate the structure winter.

#let spring = annotate winter;;
spring : tree ()

We will read a structure with the following function.

#let read = function 'Leaf n — n | 'Node r — r.annot;;
read : tree (pre) — num

It can be applied to the value spring, but not to the empty structure winter.

o8 CHAPTER 2. SYNTHESE DES TYPES ENREGISTREMENTS

#read winter;; #read spring;;
Typechecking error: collision be- it : num
tween pre and abs

But the following function may be applied to both winter and spring:

#let rec left = #left winter;;
function it : num
it ’Leaf n—n #left spring;;
| 'Node r — left (r.left);; .

It : num

left : tree (¢) — num

2.3.4 Extensions

In this section we describe two possible extensions. The two of them have been implemented in a
prototype, but not completely formalized yet.

One important motivation for having records was the encoding of some object oriented features
into them. But the usual encoding uses recursive types [20, 121]. An extension of ML with variant
types is easy once we have record types, following the idea of [99], but the extension is interesting
essentially if recursive types are allowed.

Thus it would be necessary to extend the results presented here with recursive types. Unification
on rational trees without equations is well understood [54, 77]. In the case of a finite set of labels,
the extension of theorem 5 to rational trees is easy. The infinite case uses an equational theory,
and unification in the extension of first order equational theory to rational trees has no decidable
and unitary algorithm in general, even when the original theory has one. But the simplicity of the
record theory lets us conjecture that it can be extended with regular trees.

Another extension, which was sketched in [99], partially solves the restrictions due to ML
polymorphism. Because subtyping polymorphism goes through lambda abstractions, it could be
used to type some of the examples that were wrongly rejected. ML type inference with subtyping
polymorphism has been first studied by Mitchell in [79] and later by Mishra and Fuh [44, 45].
The LET-case has only been treated in [55]. But as for recursive types, subtyping has never been
studied in the presence of an equational theory. Although the general case of merging subtyping
with an equational theory is certainly difficult, we believe that subtyping is compatible with the
axioms of the algebra of record types. We discuss below the extension with subtyping in the finite
case only. The extension in the infinite case would be similar, but it would rely on the previous
conjecture.

It is straightforward to extend the results of [45] to deal with sorted types. It is thus possible
to embed the language IIMLy;, into a language with subtypes IIMLc. In fact, we use the language
IIML{- that has the signature of the language IIML' for a technical reason that will appear later. The
subtype relation we need is closed structural subtyping. Closed? structural subtyping is defined
relatively to a set of atomic coercions as the smallest F-reflexive (i.e. that contains =p) and

*In [45], the structural subtyping is open. With open structural subtyping only some of the atomic coercions are
known, but there are potentially many others that can be used (opened) during typechecking of later phrases of the
program. Closed subtyping is usually easier than open subtyping.

2.3. PROGRAMMING WITH RECORDS 99

transitive relation C that contains the atomic coercions and that satisfies the following rules [45]:

cCT T co
T717Co—=o

71 CO1,...Tp COp
f(r1,...1) C flo1,...0p)

feC\{=}

In IIML{-, we consider the unique atomic coercion pre C abs. It says that if a field is defined, it
can also be view as undefined. We assign the following types to constants:

{} : I (abs.ai,...abs.qp)
—a:11(0, ..., pre.a...0) = «
{-witha=_}:1I(0,,...0,) >a—11(0,..., pre.a, ...0,)

Basic constants for [IML

If the types look the same as without subtyping, they are taken modulo subtyping, and are thus
more polymorphic. In this system, the program

let id_eq = field_eq id;;
is typed with:
ideq : {id : pre.c; x} — {id : pre.a; x} — bool

This allows the application modulo subtyping id_eq car truck. The field age is implicitly forgotten in
truck by the inclusion rules. However, we still fail with the example choice person car. The presence
of fields can be forgotten, yet their types cannot, and there is a mismatch between num and string
in the old field of both arguments. A solution to this failure is to use the signature S’ instead of
S". However the inclusion relation now contains the assertion pre(«) C abs which is not atomic.
Such coercions do not define a structural subtyping relation. Type inference with non structural
inclusion has not been studied successfully yet and it is surely difficult (the difficulty is emphasized
in [99]). The type of primitives for records would be the same as in the system IIML z;,, but modulo
the non-structural subtyping relation.

Conclusion

We have described a simple, flexible and efficient solution for extending ML with operations on
records allowing some sort of inheritance. The solution uses an extension of ML with a sorted
equational theory over types. An immediate improvement is to allow recursive types needed in
many applications of records.

The main limitation of our solution is ML polymorphism. In many cases, the problem can be
solved by inserting retyping functions. We also propose structural subtyping as a more systematic
solution. But it is not clear yet whether we would want such an extension, for it might not be
worth the extra cost in type inference.

Acknowledgments

I am grateful for interesting discussions with Peter Buneman, Val Breazu-Tannen and Carl Gunter,
and particularly thankful to Xavier Leroy and Benjamin Pierce whose comments on the presentation
of this article were very helpful.

60 CHAPTER 2. SYNTHESE DES TYPES ENREGISTREMENTS

UN(a—o)e

)
IfaeV(r)ATee\V, — (GENERALIZE)
UNJa- (eNa=o0)

UANa:7 ;17 =abs =e¢ UNa:a;ad =b:8;0 =e¢
— — (MUTATE)
abs =e b:B; 8 =e
UNA T,:abs UANIy- Ao/ =b:8;
7 = abs I — a0y -
B =a:a;y
UNf(ri,...7) = flaa,...0p) =€
— (DECOMPOSE)
U AN f(al,...ap)-:e
T = O, 1€ [l,p]
UNa=ehNa=¢
— (Fusg)

UNa=e=¢

Figure 2.1: Rewriting rules for record-type unification

Appendix

2.4 Unification on record types

The algorithm is an adaptation of the one given in [104], which we recommend for a more thorough
presentation. It is described by transformations on unificands that keep unchanged the set of
solutions. Multi-equations are multi-sets of terms, written 7y = ... 7,, and unificands are systems
of multi-equations, that is, multi-sets of multi-equations, with existential quantifiers. Systems of
multi-equations are written U. The union of systems of multi-equations (as multi-sets) is written
UAU'" and - U is the existential quantification of a in U. Indeed, 3 acts as a binder and systems
of multi-equations are taken modulo a-conversion, permutation of consecutive binders, and da - U
is assumed equal to U whenever « is not free in U. We also consider both unificands U A Ja- U’
and 3a - U AU’ equal whenever « is not in U. Any unificand can be written 3W - U where W is
a set of variables, and U does not contain any existantial.

The algorithm reduces a unificand into a solved unificand in three steps, or fails. The first step
is described by rewriting rules of figure 2.1. Rewriting always terminates. A unificand that cannot
be transformed anymore is said completely decomposed if no multi-equation has more than one
non-variable term, and the algorithm pursues with the occur check while instantiating the equations
by partial solutions as described below, otherwise the unificand is not solvable and the algorithm
fails.

We say that a multi-equation €’ is inner a multi-equation e if there is at least a variable term
of €’ that appears in a non-variable term of e, and we write ¢’ < e. We also write U’ £ U for

Ve'eU', Vee U, e £e

The system U is independent if U £ U.

2.4. UNIFICATION ON RECORD TYPES 61

The second step applies the rule

e AU,

IfeAnU £ e, — (REPLACE)
eNél)

until all possible candidates e have fired the rule once, where € is the trivial solution of e that sends
all variable terms to the non-variable term if it exists, or to any (but fixed) variable term otherwise.
If the resulting system U is independent (i.e. U £ U), then the algorithm pursues as described
below; otherwise it fails and U is not solvable.

Last step eliminates useless existential quantifiers and singleton multi-equations by repeated
application of the rules:

da- (a=eAU) {T} AU
Ifa¢enl, — " (GARBAGE)
eNU U

This always succeeds, with a system dW - U that is still independent. A principal solution of the
system is U, that is, the composition, in any order, of the trivial solutions of its multi-equations.
It is defined up to a renaming of variables in W. The soundness and correctness of this algorithm
is described in [104].

The REPLACE step is actually not necessary, and a principal solution can be directly read from
a completely decomposed form provided the transitive closure of the inner relation on the system
is acyclic (see [104] for details).

With the signature S” the only change to the algorithm is the addition of the mutation rules:

A A _ e e B — _
CL.T,T—pI‘ef—\ﬁ a:a; B=y12=c¢
pre =e Y1-Y2 =€
A\ T =Dpre o= (.02
7' = pre Jaraz6182 - N B = P12
Y1 =a:ap

Yo =a:az.fr

Note that in the first mutation rule, all occurrences of pre in the conclusion (the right hand side)
of the rewriting rule have different sorts and the three equations could not be merged into a multi-
equation. They surely will not be merged later since a common constant cannot fire fusion of two
equations (only a variable can). As all rules are well sorted, rewriting keeps unificands well sorted.

62

CHAPTER 2. SYNTHESE DES TYPES ENREGISTREMENTS

Chapter 3

Projective ML

Ce chapitre a été publié dans [105].

Projective ML

Nous proposons un lambda-calcul projectif comme base pour exprimer les opérations sur les en-
registrements. Les projections sont des enregistrements avec une valeur par défaut qui est comme
projetée & l'infini. Le calcul étend le A-calcul tout en conservant ses propriétés essentielles. Nous
construisons le langage projective ML au dessus de ce calcul en ajoutant des liaisons polymorphes au
A-calcul projectif simplement typé. Nous montrons que projective ML possede la propriété d’auto-
réduction a la base de la slireté de ’évaluation. Les projections sont une structure de donnée utile
qui peut étre compilée efficacement. De plus, les opérations habituelles sur les enregistrements
peuvent étre définies en termes de projections.

Projective ML

We propose a projective lambda calculus as the basis for operations on records. Projections operate
on elevations, that is, records with defaults. This calculus extends lambda calculus while keeping
its essential properties. We build projective ML from this calculus by adding the ML Let typing
rule to the simply typed projective calculus. We show that projective ML possesses the subject
reduction property, which means that well-typed programs can be reduced safely. Elevations are
practical data structures that can be compiled efficiently. Moreover, standard records are definable
in terms of projections.

63

64 CHAPTER 3. PROJECTIVE ML

Introduction

The importance of records in programming languages is commonly accepted. There have been
many proposals for adding records in strongly typed functional languages [20, 119, 56, 86, 84, 99,
106, 27, 25, 49, 50]. However the topic is still active and there is not yet a best solution. Even for
the most popular of them, ML, each implementation extends the core language with records of a
very different kind.

For experts of record calculi, the multitude of works converges continuously towards a better
comprehension of records, but it appears as a jungle of proposals for the novice that can hardly
understand their very insidious differences. There is a lack of a simple formalism in which evaluation
of row expressions could be described concisely and precisely. Furthermore, in a typed language,
the typing rules often add technical restrictions that increase the confusion. This work started as
a modest attempt to find a simple untyped record calculus in which most classical operations of
records could be described. It ended in yet another proposal, but one that subsumes some others.

In the simplest view of records, there are only two operations. A record is a finite collection
of objects, each component being addressed by name. The creation of a record takes as many
name-object pairs as there are components and creates the corresponding record. The names used
to address components are called labels; a label together with its component is a field. Reading
information from a record takes a label that defines a field in the record and returns the component
of that field. Thus the access of a component in a record should only require that the label does
define a field in the record. Some type systems are more drastic, and require that the labels of all
other fields of the records be also given at access time. This makes it impossible to use the same
function to access the same field in two records having that field in common, but differing by other
fields — a feature that is highly desirable.

The most popular extension of simple records is the creation of a record from another one by
adding one field. This operation is called record extension. If the component may already be defined
in the argument the extension is free, otherwise it is strict. Conversely, record restriction creates a
record from another one by removing one of its field. As for extension, restriction can be free or
strict.

The most difficult operation to type is still the concatenation of records that creates a record by
combining the fields of two others [121, 50]. Again, record concatenation can be free or strict. There
is also recursive concatenation that recursively merges the components of common fields, provided
they are records themselves [86]. Record concatenation can be encoded with record extension,
which gives one way of typechecking record concatenation [107]. However, none of the proposal for
typing record concatenation is fully satisfactory.

Between extension and concatenation, there exists an intermediate operation that takes two
records and a label and builds a record by copying all the fields of the first record except for
the given label whose field is taken from the second one, whether it is defined or not. That is,
either the label is undefined in both the second argument and the result or it is defined with the
same value in both records. This operation, called modification, is strictly more powerful than
extension and restriction, but much easier to type than concatenation, since it involves only one
field. Other constructions, such as the exchange or renaming of fields are less popular, though they
easily typecheck in some systems.

We introduce a projective lambda calculus as the basis for designing functional languages with
records. In the first section, we study the Projective Lambda Calculus, written PA, extends the
lambda calculus while preserving the Church-Rosser property. There is a simple projective type
system for this calculus, for which the subject reduction theorem holds. In the second section, we

3.1. THE PROJECTIVE LAMBDA CALCULUS 65

extend the simple projective type system with the ML Let typing rules and add concrete data types
to the language: this defines the language we call projective ML. In the last section we elaborate
on the significance of Projective ML from three different standpoints.

By lack of space, most of the proofs have been omitted, other are roughly sketched. See [103]
for a more thorough presentation.

3.1 The projective lambda calculus

In this section we introduce the untyped projective lambda calculus. Then, we propose a simple
type system for this calculus, we prove the subject reduction property and show that there are
principal typings.

3.1.1 The calculus PA

The projective lambda calculus PA is the lambda calculus extended with three constructions,
namely the elevation, the modification and the projection. It is defined relatively to a denumerable
collection of labels, written with letters a and b.

M=z Variable
| Az. M Abstraction
| M M Application
| [M] Elevation
Mla =M Modification
| M|]
M/a Projection
| j

The intended meaning of these constructions is given by the reduction rules of the projective lambda
calculus. Namely, the rules are the classical g rule:

(Az. M) N — M|z := N] (B)

plus the following projective rules (P):

[M]/a — M (DEFAULT)
Mla = N]/a — N (ACCESS)
MI[b= N]/a — M/a (SK1P)

As opposed to records, elevations can be projected on all labels.
The compatible closure of — is written —— . The transitive closure of —— is written
—— and call fP-reduction.

Theorem 6 (Church-Rosser) The calculus BP is Church-Rosser.

This means that if M SP-reduces to N and N’, then there exists a term M’ such that both N and
N' BP-reduces to M'.

Proof: The reductions 8 and P are Church-Rosser. The reduction P is a rewriting system that
has no critical pair and is ncetherien, thus it is Church-Rosser. The reductions 8 and P commute,

66 CHAPTER 3. PROJECTIVE ML

since the diagram

M N
P
g B
v
M e w- N/
P
commutes (this is checked by considering the relative positions of 8- and P-redexes). [|

3.1.2 Projective types

Projective types extend the record types that have been introduced in [100, 104] in order to get a
type system for the record extension of ML presented in [100, 106].

Record types are based on the idea that types of records should carry information on all fields
saying for every label either the field is present or absent [99]. The way to deal with an infinite
collection of labels is to give explicit information for a finite number of fields and gather all infor-
mation about other fields in a template, called a row. Record types allow sharing between the same
fields of two rows, but do not allow sharing between all fields of the same row (except for ground
rows). When a type is coerced to a row, all projections must be shared for the same reason that
lambda bound variables in ML cannot have polymorphic types.

T = type 7 and o
« type variable «a and 3
|7 — 71 arrow type
| (p) projection type
p = row type p and 6
%) row variable @ and
lp=p arrow row
la:7;p defined row
| 0T shared row

In fact, rows are sorted according to the set of labels that they cannot define. We omit this
distinction here. The reader is referred to [104] for a more thorough presentation.
The equality on types is defined by the following axioms. Left commutativity:

a:a; b:B;0)=b:0;(a:a; ¢)
simply means that the order of definition of rows does not matter. Replication:
da=a:a; 0a

means that shared rows are the same as rows defining the same type on all labels. Distributivity
of arrows:

da=df=0(a—p)

and
(@:as90)=(a:f59)=a:(a—=pB); (¢=19)

means that arrow rows are truly rows of arrows.

Lemma 2 The theory of projective types is reqular, unitary unifying and has a decidable unification
algorithm.

3.1. THE PROJECTIVE LAMBDA CALCULUS 67

Hint: The regularity directly follows from the shape of the axioms. The theory of projective types
is shown syntactic by extending the method developed in [104] for simple record terms. This is the
difficult part of the proof. It is a consequence that the rewrite rules given in the appendix 3.4 are
sound and complete. The termination of the algorithm is quite standard. Then, since the rewrite
rules never introduce any disjunction, the theory is unitary. [|

The unification algorithm is described in the appendix 3.4.

3.1.3 A type system for PA

There are two kinds of typing judgements. A type assertion is the binding of a variable x to a
type, written z :” 7 and a row assertion is the binding of a variable z to a row p, written z :% p.
A context is a list of assertions with rightmost priority. Mixed contexts contain both type and
row assertions. Row contexts only contain row assertions. Concatenation of contexts is written by
juxtaposition.

The judgement H ' M : 7 means that in the mixed context H, the program M has type
7. The judgement H, K F® M : p means that in the mixed context H and the row context K,
the program M has row p. The first set of typing rules are the ones of the simply-typed lambda

calculus:

Ll reH

H+- ¢ 7 T-VAR
Hiz: " 7|F' M : 0
H-T') e. M:7 >0 T-FuN

H-'M:0 571 HF'N:o
H-'M N:r T-App

The next set of rules deals with the elevations:

HF'M :{a:0;p) HF'N:7T
H Y M[a= N]:{a:7;p) MODIFY

HF' M : {a:7; p)

HF'"M/a:T PROJECT
HO0FEM:p
HF[M]: (p) ELEVATE

The first two rules are quite standard with record calculi. The last one describes the typing of an
elevation. The elevated expression must be assigned a row. The row context shall binds variables
that will be introduced during the typing of the current elevation, while previously bound variables
are in the mixed context H. All expressions can be elevated, thus we need to assign rows to

68 CHAPTER 3. PROJECTIVE ML

applications and abstractions as well:
r:tpe K
HKF:z:p R-VAR
H, K[z R plFE M : 0
HEKFE e, M:p=6 R-FUN

HEKFEM:0=p HKFEN:0
HKFtM N:p R-APP

Sometimes, one might get a type when a row is required. For instance, when a type derivation of
Az. [z], the variable z will be assigned a type 7, but a row will be expected when typing z in the
elevation. The type 7 can be lifted to a shared row.

HKF' M : 7
HKFREM:07 LIFT

Conversely, a variable bound to the row 0 (7) can be used with type 7:

zRoreH
H+- ¢ 7 DROP-VAR

Finally, since types are taken modulo E-equality:

HF'M: o O=fT
H-'M: 7 T-EQUAL

HFREM:0 O0=pp
HFEM:p R-EQUAL

We presented the previous set of rules (RT') since there are simple and very intuitive. There is a
smaller and more regular set (5), given in the appendix 3.5, that are equivalent to the rules (RT).
The judgements of (S) are H, K F°: p were both H and K are row contexts (where superscript
is omitted).

Lemma 3 The judgement H -1 M : 7 is derivable if and only if the judgement H,) = M : O is

derivable where z X' 7 in T is translated as z : 07 in S.

Hint: The proof is by successive transformations of (RT) into equivalent systems ending with
(S). The first step converts every type assertion z :I 7 in contexts into row assertions z :% 9 (7),
replacing in the derivations, every occurrence of the rule T-VAR by a rule DROP-VAR. Rule T-VAR
is removed. The converse of the LIFT rule:

HEKFEM:0T
HKW' M1 DROP

is derivable in (RT'), by an easy induction on the size of the derivation of the premise and by cases
on the last rule of the derivation. It is added to (RT).

Successively, rules FUN and APP are removed, record rules of (S) are added, then those of (RT)
can be removed, rule VAR is added and rule DROP-VAR is removed. Last, DROP and LIFT are
shown to be useful only at the end of a derivation. [

3.2. THE LANGUAGE PML 69

Lemma 4 (Stability by substitution) Typings are stable by substitution.

This property is quite immediate in the case of the a simple calculus.

The type inference problem is: given a triple H, K > M : p, find all substitutions yx such that
pw(H), u(K) = M : pu(p). The type system (S) has principal typings if the set of solutions of every
type inference problem is either empty, or has a maximal element called a principal solution, and
if, in addition, there exists an algorithm that takes a type inference problem as input and returns
a principal solution or an indication of failure if no solution exists.

Theorem 7 (Principal typings) The type system of PA has principal typings.

Hint: Type inference for PA is in the general framework of extending the ML type system with an
equational theory on types. The comma that splits the contexts into two parts is a detail, since the
system (.5) is still syntax directed. The principal type property for such a system holds in general
whenever the axiomatic theory on types is regular, unitary unifying and as a decidable unification
algorithm [100].

Type inference is based on the syntacticness of the theory of projective types and the unification
algorithm that follows. It proceeds exactly as for the language with record extension presented
in [106]. [

The algorithm for type inference can be found in the Appendix 3.6 for the language PML
presented in the next section.
3.1.4 Subject reduction

Subject reduction holds if reduction preserves typings: for any program M and N, if M has type
7 in the context H, K and BP-reduces to N, then N has type 7 in context H, K.

Theorem 8 (Subject reduction) Subject reduction holds in PA.

Hint: It is shown independently for all cases of reduction at the root, then it easily follows for
deeper reductions. The difficult case is ELEVATE. It uses the lemma if HK,0 - M : (a : 7;0) is
derivable in S, then so is HK,) = M : 01 which is proved with a little stronger hypothesis by
induction on the length of the derivation of the premise and cases on the last rule that is not an
equality rule. [|

3.2 The language PML

Since the simply typed projective lambda calculus behaves nicely, we extend it to a full language,
PML, in two steps. We add the ML Let typing rule and then concrete data types. In each case we
check that the principal type property and subject reduction still hold.

3.2.1 Let polymorphism

We extend the projective calculus with a let construction

M:=...|letx=MinN

70 CHAPTER 3. PROJECTIVE ML

The let is syntactic sugar for marked redexes
(Az. N)* N
Thus, there is no special reduction rule for let redexes but the (5) rule:
Az. M)* N — (z— N)(M) (B)

Therefore the calculus remains Church-Rosser.

Types are extended with type schemes. Type schemes are pairs of a set of variables and a type
or a row, written VW -7 or VW - p. Formally, variables should be annotated with their sorts,
but the sorts can be recovered from the occurrences of variables in their scheme. We identify type
schemes modulo a-conversion of bound variables, and elimination of quantification over variables
that are not free.

Type assertions now bind variables to type schemes. The rules VAR are changed to:

z:VW-peK dom (u) C W
H, Ktz p(p)

z:YW-0re H\ K dom (u) C W
H K&Fz:0u(p)

The LET rule is
HKFM:p
H K[z:V(p)\VHK)|FN:0

HKFletx=MinN :0 LET

where V(p) is the set of free variables in p and V is naturally extended to contexts.
The extension of PA with let binding does not interfere with projections, and the substitution
lemma, and the principal typing property and subject reduction theorems easily extend to PML.

3.2.2 Concrete data types

The language is now parameterized by a finite collection of concrete data types. For sake of simplic-
ity, we consider a single two-constructor data type. We shall make other simplifying assumptions
on types below, but it is possible to generalize to arbitrary data types.

The data type that we consider could be declared in ML as:

type bar(p) = A| B of p

The syntax is extended with:

M= ...
| A B(M)
| match M with A= M | B(y) = M

The new reduction rules are:

(match A with A= M
| Bly) = N) — M
(match B(L) with A= M
| Bly) = N) — (Ay. N) L

3.3. THE THREE VIEWS OF PML 71

These d-reductions are CR and commute with SP. Therefore the language PML with sums is still
Church-Rosser.
Types are also extended with a symbol bar of arity one.

Tu= ... Old type
bar (1) bar type

pu= ... Old row
bar (p) bar row

We should have used two different symbols for bar types and bar rows, but the context will distin-
guish them. The symbol bar obeys the two distributivity axioms:

bar (a : a; p) = a : bar(«); bar (@)
0 (bar (o)) = bar (0 «)
We add the three typing rules:

HKFM:p
H,K A: bar(p) H,K\ B(M) : bar(p)

H,K I\ L: bar(0)
HKFM:p HKFANy.N:0=p
match L with A= M | B(y) = N :p

Theorem 9 The language PML with sums has principal typings.

Theorem 10 Subject reduction holds for PML with sums.

3.3 The three views of PML

Projective ML is a practical language of records with default values. It is also a language in which
all operations of classical records but concatenation are definable. Finally, computation inside
elevations introduces a new kind of polymorphism.

3.3.1 Records with default values

To the author’s knowledge, this feature has never been introduced in the literature before. Instead
of starting with empty records that can be extended with new fields, projective ML initially creates
records with the same default value on all fields. Then a finite number of fields can be modified.
Thus, all fields are always defined and can be read.

The introductory examples below have been typechecked by a prototype typechecker written in
Caml-Light [67]. The first examples are:

#type unit = Unit;;

#let r = [Unit];;
| r : shared [unit]
ftr/as;

I it : shared unit

#type bool = True | False;;

72 CHAPTER 3. PROJECTIVE ML

#let s = r [a = True];;
| s : shared [a : bool; unit]
is/a;;
| it : shared bool

The a field of s cannot be removed, but it can be reset to its default value. Whenever the types
of fields are known statically, but not their presence, the attendance can be dynamically checked:

#type field (¢) = Absent | Present of ;;
#let r = [Abs] [a = Present (True)]
[b = Present (Unit)];;
| r : shared [a : field (bool); b : field (unit); field (¢)]
#let check x =
match x with Present y = y
| Absent = failwith "Absent field”;;
| check : field (p) = ¢
#let v = check (r/a);;
I v : shared bool

If the presence of fields is stactically known, the two-constructor data type can be replaced by two
one-constructor data types, leaving the typechecker check attendances.

#type absent = Absent;;

#type present () = Present (p);;
#let get x = match x with Present y = y;;

| get : present () = ¢

[Absent][a = Present (true)][b = Present (unit)];;
I it : shared [a : present (bool); b : present (unit); absent]

#let v = get (it/a);;
| v : shared bool

Record with defaults are not just an untractable toy feature. They can be compiled very
efficiently, as classical records [101].

3.3.2 Classical records

Continuing the example above, we show that classical records are definable in projective ML.
Precisely, classical record operations are just syntactic sugar for:

{} = [Absent]
{M with a = N} = M[a = Present (N)]
(M.a) = get (M/a)

Many other constructions are programmable as well, since projective ML allows the manipulation
of fields whether they are present or absent.

M\ a = MJ[a = Absent]

{M but a from N} = M[a = N/a]
{exchange a and b in M} = let u = M/a in
let v = M/b in
Mla = v][b = u]

3.3. THE THREE VIEWS OF PML 73

Though efficiency is not our main goal here, it is important to emphasize that dealing explicitly
with the presence of fields does not cost anything. Since both abs and pre data types have unique
constructors, the constructors need not be represented explicitly. That is, the presence of fields can
be statically computed by the typechecker. Even the default value Absent need not be represented,
since it is the only value in its type. Thus the (very small) overhead for computing with elevations
only costs when there are used.

Obviously, the projective implementation of standard records can be packed in an abstract data
type or a module so that the two types pre and abs and their constructors are not visible outside,
and the presence of fields cannot be manipulated by hand. But elevations and projections will
remain visible, can be used whenever defaults values in records are desirable, or also to implement
another variant of classical records.

3.3.3 Projection polymorphism

The last view of projective ML is quite unexpected. The elevations are assigned rows that are
in fact “template” types. That is, they can be read on any component by taking a copy of the
template; therefore the type of two projections will not be equal but isomorphic. For instance, with
classical records as in [106] (or using the syntactic sugar of the previous section) the function that
reads the a field of a record has type:

[a:preT;@] = T

But this type can also be seen as':

[a:preT;b:a;¢] = 7

With classical records, this polymorphism allows the finite representation of a potentially infinite
product of types, and nothing more. In projective ML, we can fill the elevations with any value
and even compute inside. The identity function elevation [Az. z]| has type [¢ = ¢]. Taking its
projection on two arbitrary fields gives twice the same value but with two isomorphic types a — «
and 8 — (. The program,

Az.z x) (\z.) (1)

cannot be written in ML without a LET. In projective ML one can write:
(Az.z/a z/b) [Az. z] (2)

which has type @ — «a. It can be argued that this is not exactly the same program, and that,
if program transformations are allowed, then the following ML program also computes the same
result.

Azy. z y) A\z.z) (Az.) (3)

This is certainly true, but the program (3) is much bigger than the program (1) and duplicates
some of the code. The expression (2) is almost as small as the expression (1) and takes less time
to typecheck (for bigger example of course, since all examples here are too small to allow any
comparison). In (3), the body of Az. z is typed twice, but it is typed only once in (2) before the
resulting type is duplicated by unification.

'Tn [104] we define canonical forms and show that both type have the same canonical form, though they are not
equal (the latter is less general).

74 CHAPTER 3. PROJECTIVE ML

Moreover, if we consider a variant of PML without the possibility of modifying elevations,
M:=z|Ae. M| M M| [M]|M/a

then projections always access the default value of elevations (since they could not be modified).
Elevation and projection can both be implemented as empty code. They only modifies the types
(they are called retyping functions), and helps the typechecker as if they were type annotations.
The elevation indicates that an expression may be used later with different types, and thus should
be typed with a row. The projection requires the use of a copy of the row template instead of the
row itself. The copy is kept inside the row for constraint propagation.

Breaking the expression (2), the subexpression (Az. z/a x/b) has type:

[a:7—=ob:7] >0 (4)

There are obvious similarities with conjunctive types [32, 91]. This expression would have the
conjunctive type
(T—=0oAT)—> 0 (5)

Projective ML differs from conjunctive types by naming the conjunctions, but also in some deeper
way. The projection, which correspond to the expansion in conjunctive types, is much more re-
strictive than the expansion. An interesting comparison would be with the decidable restriction of
conjunctive types that has been recently proposed by Coppo and Denzianni [31].

There is an important limitation in the type system of projective ML: it is a two-level design.
Elevations inside elevations get typed with shared rows and projective polymorphism is lost. A
stratified version with types, rows, rows of rows, etc. composing an infinite row tower can be
imagined. The author has actually worked on such a version but has not proved yet that it is
correct.

Another form of this limitation of projective polymorphism is its failure to cross elevations. The
best type for Az. [z] is 0 = [0], while we would expect ¢ = [p]. Variables in elevations that
are bound outside of the current elevation in which they appear can only have shared rows.

Projective polymorphism combines nicely with generic polymorphism. The two concepts are
orthogonal. Here is an example that combines both:

let F =Xf. Az,y. f/a z,f/b yin
F 1] (I,K),F [K] (I,K)

where I and K are abbreviations for Az. z and Azy. z. It is typeable in projective ML.

Conclusions

We have introduced Projective ML, and shown that it is a type-safe language. Projective ML
exceeds ML on two opposite fields.

e Elevations, modifications and projections are extensible records with defaults. With only
three operations that can be compiled very efficiently, they provide the ML language with
enough power to define all variants of classical records.

e Projective ML brings in the type system a restricted form of conjunctive polymorphism.

The curiosity of Projective ML is that both features are almost independent but one still need the
other. The most intriguing of the two is projective polymorphism, for which more investigation is
still needed.

3.4. UNIFICATION ON PROJECTIVE TYPES 75

Appendix

3.4 Unification on projective types

We describe the unification algorithm by transformation rules on unificands (multi-sets of equa-
tions). The formalism is the one of [104] in general, improved with existential unificands [57]. A
multi-equation is a multi-set of terms written 7 = ... 7,. A solution of a multi-equation is a sub-
stitution that unifies all the terms of the multi-equation. A multi-set of multi-equations is noted
Ui A...Up. Its solutions are the substitutions that satisfy all the multi-equations. We also use
existential unificands, written Ja.U, whose solutions are the restrictions of the solutions of U on
variables distinct from «. Indeed, 3 acts as a binder, and existential unificands are equal modulo
a-conversion. Consecutive binders can be exchanged, and Ja.U is equal to U whenever « is not
free in U. We identify unificands modulo the previous equalities.

Two unificands U and U’ are equivalent, and we write U = U’ if they have the same set of
solutions. The relation = is obviously an equivalence. It is also a congruence, that is, parts of
unificands can be replaced by equivalent parts. We also write | and T for unificands that are
respectively equivalent to the empty set and the set of all substitutions.

The input of the unification algorithm is a multi-set of equations. The output will be failure
or a most general solution of the input unificand. It proceeds in three steps. All of these steps are
described by transformations of unificands that are equivalences.

Most of the transformations are valid for both types and rows. We write x and ¢ for terms and
m for variables that can be of both kinds. The first step is the generalization:

GENERALIZE

An iteration of this rule will transform any system into one that contains only small terms (terms
of height at most one).

The second step is only defined on small unificands, and keeps them small. The mutation of
unificands is one of the four following transformations (f is a symbol of arity p and I is the segment

76 CHAPTER 3. PROJECTIVE ML

of integers [1,p]):

airip = £(0);
MuUT ¢
3 (i) (pi)g -
7= f(ai);
N p=fle),
0;=a:a5;p; 1€1
a:T;p=b:0;0
) 1\/IUTw>1J
p=b:o;p
3(’0'/\{9ia:7;<,0
o(r) =a:o;p
R R MUT61>b
a=0c=rT
da. .
. A{pza(a)
o(r) = f(pi);
MUTf[>3

7= f(ai);

a(ai)l'/\{piiﬁ(ai) iel

For all other pairs of terms (x, &), if they have identical top symbols, they are decomposable, that
is

X=¢ b
= ——— ECOMPOSE
Ar(xi =&/i)
otherwise they produce a collision
x=¢£
COLLISION

Ai(xsi =&):)

All mutation, decomposition and collision rules can be generalized to rules where the premise is a
multi-equation rather than an equation: for any mutation rule

X=¢
Q

we build the generalized mutation rule:

The fusion of multi-equations is:
T=eAmw=¢
:—I FUSE
T=e=e¢€
Applying the generalized mutation and the fusion in any order always terminates on small unifi-
cands. Unificands that cannot be reduced are necessarily in canonical forms, that is, completely

decomposed and fused.

3.4. UNIFICATION ON PROJECTIVE TYPES 77

The last step does the occur check on canonical unificands while instantiating the equations by
partial solutions. On canonical unificands @), we say that the multi-equation €’ is directly inner the
multi-equation e if there is at least a variable term of ¢’ that appears in a non variable term of e.
We note < its transitive closure. The occur check is the rule

Q
if = Occur
1Ie<qe, n
Otherwise, we can apply the rule:
enQ@
if NN, REPLACE
Her @ Q)

where ¢ is the trivial solution of e that sends all variable terms of e to the non variable term if it
exists, or to any variable term otherwise. The REPLACE rule is completed by the elimination of

useless existentials
dr.(r=eAQ)

ifr¢dena@, o) RESTRICT
(&

The succession of the three steps either fails or ends with a system IW.Q) where all multi-
equations are independent. A principal solution of the system is Q, that is, the composition, in any
order, of the trivial solutions of its multi-equations. It is defined up to a renaming of variables in
w.

The last step may be reduced to the occur check, and the equations in the unificand need
not be instantiated by rule REPLACE, since the canonical unificand itself is a good and compact
representation of a principal unifier.

Although it is described in a more general framework, the algorithm is very close to the one of
Martelli-Montanari for empty theories [77], some of the collisions have been replaced by mutations
in a way that copies the axioms of the theory. This is a property of syntactic theories [61, 62].
Proving the correctness of the algorithm is reduced to proving the syntacticness of the theory and
the termination of the second step. Proving the termination is standard, but proving that the
theory is syntactic is the difficult part.

The second step may not be restricted to small terms. In this case the generalized mutation
and decomposition rules need to include the minimum of generalization so that there is enough
sharing to ensure the termination.

78 CHAPTER 3. PROJECTIVE ML

3.5 A simpler set of typing rules for the projective calculus

The judgements are of the form H,K F M : p, where H and K are row assertions. The typing
rules, called (S5) are:

z:0r€ H\ K z:peK
HKrFzx:0T HKFzx:p VAR
H K[z:p/F-M:0
HEKtFAz.M:p=10 Fun
HEKFM:0=p HKFN:0
HKFMN:p AppP
HK,0FM:p
H,K & [M]:0(p) ELEVATE

HKFN:9(0)
HKFM:0(a:T;0)
H,Kt+ M[a= N]:0(a:0;0) MobDIFY

H, Kt [M]:0(a:T;86)
HKtFM/a:0T PRroJECT

HKFM:0 0=gp
HKFM:p EqQuaL

3.6 Type inference

The above set of rules is completed with:
HEKEFM:p
H K[z :V (V(p) \V(HK)) -p]F- N :0
HKFletz=MinN :0 LET

The rules are not exactly those of ML. The two rules MODIFY and PROJECT can be treated as ap-
plication of constants. The rule equal, due to an extended type equality, does not add any difficulty,
provided that the theory is regular and has a decidable and unitary unification algorithm [100]. The
only difference with ML (extended with equations on types) is the mark in the context. However,
the position of the mark is rigid, and the type inference algorithms of ML very easily extends to
the system S. We describe the algorithm in terms of unificands. The substitution lemma (that
extends to PML) allows to consider type inference problems as unificands, written H, K > M : p,
whose solutions are the substitutions p such that p(H), u(K) F M : u(p) is a valid judgement. We
give below equivalence transformations of these unificands.

Case VAR: Ifz:07isin H\ K, and p is a renaming of variables of V(7) outside of o, then
HKvz:o
AV (u(7)). 0 = p(7)

T-VAR

3.6. TYPE INFERENCE 79

If z:pisin K, and is a renaming of variables of V(p) outside of 6, then

HKb>z:0
R-VAR
IV(u(p)). 0 = pu(p)
If z is not in HK, then H, K > x : « is not solvable.
Case App:
H K>MN:p
App
JYy.H KoM:)ANH K>N:¢p=p
Case Fun:
HKvAiz.M:p
Fun

Jpp. H K[z :p]>bM:9pAp=p=1
Case LET: If 3 is outside of HK and dW. () is a solvable independent unificand equivalent to
H, K> M : (3, then
HKvletz=MinN :T1
~ LET
IW.H,K[z: Q(B)]>N : 7

If H K> M : 8 is not solvable, then neither is H, K >letz = M in N : a.

Case ELEVATE:
H K> [M]:p

Ja. HK,0> M :aNda =p

ELEVATE

The above rules applied in any order either fail or reduce any type inference problem to a unification
problem.

80

CHAPTER 3. PROJECTIVE ML

Chapter 4

Typage de la concaténation des
enregistrements a D’ceil

Ce chapitre a été publié dans [107].

Typage de la concaténation des enregistrements a 1’oeil

Nous montrons que dans un langage fonctionnel avec des enregistrements extensibles la
concaténation des enregistrements est gratuite. Nous donnons une traduction de la concaténation
en utilisant une opération d’extension. Nous obtenons un systéme de type pour un langage avec la
concaténation en composant la traduction avec le typage de ’extension des enregistrements. Nous
appliquons cette méthode a une version de ML avec une opération d’extension. Nous obtenons une
extension simple et flexible de ML avec une opération de concaténation symétrique ou asymétrique
qui possede un algorithme de synthese des types efficace en pratique. Pour obtenir dans le langage
avec concaténation une opération d’effacement des champs, il faut ajouter une nouvelle opération
aux enregistrements extensibles.

Les langages a objets bénéficient de ce codage puisqu’il montre que I’héritage multiple n’a pas
en fait besoin de la concaténation des enregistrements mais seulement d’une opération d’extension.

Typing Record Concatenation for Free

We show that any functional language with record extension possesses record concatenation for
free. We exhibit a translation from the latter into the former. We obtain a type system for a
language with record concatenation by composing the translation with typechecking in a language
with record extension. We apply this method to a version of ML with record extension and obtain
an extension of ML with either asymmetric or symmetric concatenation. The latter extension is
simple, flexible and has a very efficient type inference algorithm in practice. Concatenation together
with removal of fields needs one more construct than extension of records. It can be added to the
version of ML with record extension. However, many typed languages with records cannot type such
a construct. The method still applies to them, producing type systems for record concatenation
without removal of fields. Object systems also benefit from the encoding which shows that multiple
inheritance does not actually require the concatenation of records but only their extension.

81

82 CHAPTER 4. LA CONCATENATION DES ENREGISTREMENTS

Introduction

Dictionaries are an important data abstraction in programming languages. They are basically
partial functions from keys to values. A simple implementation of dictionaries is the association
list, commonly called A-list . A-lists are lists of pairs, the first component being the key to access
the value of the second component. The usual cons and append operations provide facilities for
extending the domain of an A-list and merging two A-lists into one defined on the union of the
domains of the input lists, respectively. Access to a given key may fail when the key is not in the
domain of the A-list, which cannot be checked statically. Records are a highly restricted form of
A-lists. Keys may no longer be any values, but belong to a distinguished set of atomic values,
called labels. All fields of a record must be specified at creation time. These restrictions make it
possible to perform static checks on accesses to record fields.

Then, an important goal in typechecking records, was to allow a record with many fields to be
used instead of a records with fewer fields. This was first suggested by Cardelli in the language
Amber [21] using inclusion on monomorphic types.

Later, Wand [119] used polymorphism instead of a specific inclusion relation on types. He also
re-imported the cons operation of A-lists which became the extension of records with new fields.
Originally, this construction was free (existing fields could be redefined), but strict versions (existing
fields could not be redefined) have been proposed [86, 56] to avoid typechecking difficulties. Note
that cons on A-lists naturally implements free extension.

Record extension quickly became popular, but many languages still only provide the strict
version [56, 84, 49]. Finally Wand re-imported the append of A-lists, calling it record concatenation.
An important motivation for this is the encoding of multiple inheritance [121] in object oriented
languages.

Record concatenation is still considered a challenge, since it is either very restricted [49] or leads
to combinatorial explosion of typechecking [120]. We propose a general approach to concatenation.
In fact we claim that concatenation comes for free once record extension is provided. We justify
this assertion by presenting an encoding of the latter into the former. The interest of the encoding
is to provide a type system for record concatenation by composing the coding with a type system
for record extension.

We introduce the translation in an untyped framework in section 4.1. In section 4.2, we apply
it to an extension of ML for record extension. In the last section we briefly illustrate the encoding
on a few other languages.

4.1 Encoding of concatenation
In this section we describe how concatenation can be encoded with extension. The language with

record extension, L, is an extension of the untyped A calculus plus distinguished constructs for
record expressions:

M:=z variable
| Az. M abstraction
| M M application
| {} empty record
| {M with a = M} record extension

| M.a record access

4.1. ENCODING OF CONCATENATION 83

The semantics of records is the usual one. Informally, they are partial functions from labels to
values. The empty record is defined nowhere. Accessing a field of a record is applying the record
to that field. It produces an error if the accessed field is not defined. The free extension of a record
with a new field defines or redefines that field with the new value. The strict extension does the
same if the field was undefined, but produces an error otherwise. In an untyped language the free
extension is preferred since the more well typed programs, the better.

The concatenation (or merge) operator || takes two records and returns a new record composed
of all fields defined in any of its arguments. There are different semantics given to the merge,
when both records define the same field: symmetric concatenation rejects this case [50] while
asymmetric concatenation takes the value from the last record [121]. We will not consider recursive
concatenation that would compute the concatenation of common fields by recursively concatenating
their values.

The language with record concatenation, L/l is

M:;:x‘,\m.M‘MM‘{}‘{a:M}‘M||M‘M.a

The language is an extension of L with a construct for concatenation, but record extension has
been replaced by one-field records that are more primitive in the presence of concatenation, since':

(M witha =N} =M | {a =N}

Reading this equality from right to left is also interesting: it means that one-field concatenation can
be written with record extension only. It gives the expected semantics of asymmetric concatenation
when the extension is free and the semantics of symmetric concatenation when the extension is
strict. We are going to generalize this to a translation from the language Ll to the language L.

4.1.1 The untyped translation

The following translation works for both asymmetric and symmetric concatenation. We arbitrarily
choose asymmetric concatenation.
The extension of fields provides the one-field concatenation operation:

Ar. (r || {a=M}) = Ar. {r with a = M},

which we write {a = M}. In fact, we can compute 7 || s whenever we know exactly the fields of s,
since
i {ar =M ;...ap=M,} ={...{r witha; = M }... with a, = M,}.

This equivalence could also have been deduced from the decomposition of s into one-field concate-
nations

(- (r [{ar = M) .. || {an = My}),
which is also the composition

({an = Mn}]L o...{a1 = Ml}T) T

We write
{a1 =M ; ...ap = My}t

!This is similar to the correspondence between append and cons on A-lists, in this particular case, the equality is
[M] append r = M cons r.

84 CHAPTER 4. LA CONCATENATION DES ENREGISTREMENTS

for the abstraction of the previous expression over r. More generally we define the transformation
T on record expressions, called record abstraction, by:

O =Xuu
{a =M} = \u. {u with a = M1}
(M || N)t =Nt o Mt

Since any record expression can be decomposed into a combination of the three previous forms, the
transformation is defined for all records. It satisfies the property

rf=Xu. (u]| r).

Thus 7 is equal to rf {}. If we transform all record expressions in a program, then we have to
replace the access r.a by (rf {}).a. Actually, it is enough to apply = to a record r’ that does not
contain the a field and read the a field from the result (r 7’').a. In a typed language this solution
will leave more flexibility for the type of r. Other constructs of the language simply propagate the
translation. Thus the translation is completed by

(M.a)t = (M{}).a
Az. M) =Xz MT
(M N) = Mt Nt

LETE.’L‘

The translation works quite well in an untyped framework. However, the encoding is not injective,
for instance it identifies the empty record with the identity function. In the next section we adapt
the translation to a typed framework.

4.1.2 The tagged translation

In this section we improve the translation so that the encoding becomes injective. The main
motivation is to prepare the use of the encoding to get a typed version of LIl by pulling back the
typing rules of a typed version of L. The well typed programs of LIl will be the reverse image
of the well typed programs of L. The translation should be injective on well typed programs. A
solution is to tag the encoding of records, so that they become tagged abstractions, distinct from
other abstractions.

In fact we replace L by LT28.Untag that is I plus two constants Tag and Untag used to tag
and untag values. The only reduction involving Tag or Untag is that Untag (Tag M) reduces
to M. Tag and Untag can be thought as the unique constructor and the unique destructor of an
abstract data type, respectively. In SML [48] they could be defined as:

abstype («, () tagged = Tagged of & — [with
val Tag = fn x = Tagged x
val Untag = fn Tagged x = x

end;

Their role is to certify that some functional values are in fact record abstractions, Tag stamps them
and Untag reads and removes the stamps. Obviously, these constants are not accessible in Ll ie.
they are introduced during the translation only.

Syntactically the existence of Tag and Untag is not a question, but semantically a model of
a calculus with record extension might not possess such constants. On the opposite, finding a

4.1. ENCODING OF CONCATENATION 85

particular model in which the constants Tag and Untag exist might be as difficult as finding a
direct model for concatenation. Anyhow, we limit our use of the encoding to syntactic issues.
The tagged translation is:

{3t = Tag (A u. u)
{a = M}t = Tag (\u. {u with a = MT})
(M || N)f = Tag (Au. Untag (NT (Untag M u)))
(M.a)t = ((Untag M) {}).a

It does not modify other constructs:

Az. M) = Xz, Mt
(M N) = mMT Nt

LETE.’L‘

We would like to show a property such as: starting with a calculus of record extension, we can
translate any program of a calculus with record concatenation into the first calculus enriched with
constants Tag and Untag using the translation above, and thereby get — in some sense — an
equivalent program.

ol 1 (Tag Untag}

M m

eval eval

Without any such result, the translation { is no more than a good intuition to understanding
record concatenation. In the next section it helps finding a type system for a language with
concatenation LIl from a typed language with extension L, by translating Ll programs and then
typing them in L.

4.1.3 Concatenation with removal of fields

We omitted one construction in the language L: the restriction of fields. We extend both languages
L and LIl with record restriction:

M:=...|M\a

Record restriction takes a record and removes the corresponding field from its domain. As for
extension of fields, restriction of fields can be free or strict. We consider free restriction here. The
question is obviously the extension of the transformation § to restriction of fields.

The guide line is to keep the equality

(M\ @)t = Au.ul| (M\ o)

true, since it was true before the introduction of restriction of fields. Actually this equality is
needed since it is the basis of the translation of the extraction of fields.

86 CHAPTER 4. LA CONCATENATION DES ENREGISTREMENTS

Unfortunately, the attempt
(M\ a) = Au. (MTu)\ a
does not work: the record u || (M \ a) is not equal to (M u) \ a, since if the record u provides an
a field, this field is defined in the left expression but it is undefined in the right expression. In fact
u || (M \ a) is equal to MT u on all fields but a. On the @ field it is undefined if u is, or defined
with the value of the a field of u otherwise. This operation cannot be written in the language L;

we need another construct,
{M but a from N},

called combining. From two records M and NN, it defines one that behaves exactly as M on all fields
but a, and as N on the a field. This primitive is stronger than (- \ @) which could be defined as
{_ but a from {}}.

Now, the translation of (M \ a) can be defined by

(M \ a)t = X\u. {M" v but a from u}
Its tagged version is:

(M \ a)f = Tag (\. {Untag (M) but a from u})

We call Lt the language L extended with the combining construct. This construct has never been
introduced in the literature before. If the language L is typed, it may be the case that the combining
primitive cannot be assigned a correct and decent type in the type system of L and L™ might not
be a trivial extension of L or even not exist.

The combining construct is not in Lll and there is no easy way to provide it in an extension
of LIl. Therefore L but not LT is a sub-language of LlI.

4.2 Application to a natural extension of ML

In this section we apply the translation where L is a version of ML with record extension, and we
get a language with record concatenation. We first review the language II taken from [100, 106]
for record extension. Then we describe in detail two versions of the typed language Il obtained
by pulling back the typing rules of II. Last, we discuss the system 11l on its own, and compare it
with other existing systems with concatenation.

4.2.1 An extension of ML for records

The language, called II, is taken from [100, 106]. It is an extension of ML, where the language of
types has been enriched with record types in such a way that record operations can be introduced
as primitive functions rather than built in constructs. The main properties are described in [106]
and proved in [100, 104, 102]. The following summary should be sufficient for understanding the
next sections. The reader is referred to [106] for a more thorough presentation.

Let £ be a finite set of labels. We write a, b and ¢ for labels and L for finite subsets of labels.
The language of types is informally described by the following grammar (a formal description using
sorts can be found in [106]):

T:2:O[|T—>T|H(p0) types
plu=xLabst |a: g ; ptied a¢ L rows defining all labels but those in L

@ ==0|abs | pre(7) fields

4.2. APPLICATION TO A NATURAL EXTENSION OF ML 87

where «, (3, v and § are type variables, x, m and £ are row variables and 6 and ¢ are field variables.

Intuitively, a row with superscript L describes all fields but those in L, and tells for each of
them whether it is present with a value of type 7 (positive information pre (7)) or absent (negative
information abs). A template row is either abs or a row variable. It always describes an infinite
set of fields. The superscripts in row expressions L are finite sets of labels. Their main role is to
prevent fields from being defined twice: the type

H(a:ﬁ;(a:e;xL)>

cannot be written for any L. Similarly, all occurrences of the same row variable should be preceded
by the same set of labels (possibly in a different order). The type

H(a:@ ; XL> —)H(XL).

cannot be written either, since the row variable x cannot be both in the syntactic class of rows not
defining label a and the syntactic class of rows defining all labels. The superscripts are part of the
syntax, but we shall omit them whenever they are obvious from context. We writea: a ; b: 3 ; 7y
fora:a; (b: ;7).

Example 5 The following is a well-formed type:

a — I (a:pre(a) ; b: pre(num) ; abs)
Types are equal modulo the following equations:

e left commutativity, to reorder fields:

(@:0;b:e;5x)=(b:e;a:0; x)

e distributivity, to access absent fields:

abs = (a : abs ; abs)

Example 6 The record types Il (a : pre(«) ; abs) and II(b: abs ; a: pre(«) ; abs) are equal.

Any field defined by a template can be extracted from it using substitution if the template is a
variable or distributivity if it is abs.

Example 7 In II(a: pre(«) ; abs), the template is abs; its superscript is {a}. To read the b
field, we replace abs by (b : abs ; abs). The original type becomes II (a : pre (a) ; b: abs ; abs),
and the new template has superscript {a, b}.

In II(a: pre(«) ; x), the x variable can be substituted by b: € ; 7. The type becomes

II(a:pre(a); b:e;m)

and 7 is the new template.

88 CHAPTER 4. LA CONCATENATION DES ENREGISTREMENTS

The language of expressions is the core ML language.
M:=z|c| e. M| MM |letz=Min M
where the constants ¢ include the following primitives operating on records, with their types:

{} : I (abs)
—a:II(a:pre(a); x) -«
{_witha=_}:1I(a:abs ; x) - a—1II(a:pre(a) ; x)
Na:II(a:60; x) = (a:abs ; x)

Primitives for Record Extension (II)

The extension on a field {_ with @ = _} is strict: a field can only be added to a record r that does
not already possess this field. But the restriction of a field _\ a is free: it can be applied to a
record which does not have field a. Free extension with a field b is achieved by restriction of field
b followed by strict extension with field b. That is, it is the composition:

((\a)o({-witha="_}):II(a:0; x) > a—I(a:pre(a) ; x)

that we abbreviate {_ with !la = _}. In the simplest language, the restriction of fields would not be
provided, and the extension would be given whether strict or free.

Typing rules are the same as those of ML but where type equality is taken modulo the equations.
As in ML, any typeable expression possesses a principal type. We show a few examples extracted
from [106] and run on a CAML prototype.

Records are built all at once as in

#let car = {name = "Toyota”; age = "old"; registration = 7866};;
car : Pi (name : pre (string); registration : pre (num); age : pre (string); abs)

or from previous records by removing or adding fields:
#let truck = {car \ age with name = "Blazer”; registration = 6587867567};;
truck : Pi (name : pre (string); registration : pre (num); age : abs; abs)
Fields are accessed as usual with the “dot” operation.
#let registration x = x.registration;;
registration : Pi (registration : pre (a); x) = «

Here, the field registration must be defined with a value of type «, so the field registration has type
pre (a), and other fields may or may not be defined; they are grouped in the template variable
x- The return value has type «. The function eq below takes two records possessing at least a
registration field of the same type?:

#let eq x y = equal (registration x) (registration y);;
eq : Pi (registration : pre («); x) — Pi (registration : pre (a);) — bool
#eq car truck;;

it : bool

The identifier “it” is bound to the last toplevel phrase (the prototype types the expressions but it
does not evaluate them). The two records car and truck do not have the same set of fields, but both
can still be passed to the function registration.

2For simplicity of examples we assume the existence a polymorphic equality equal.

4.2. APPLICATION TO A NATURAL EXTENSION OF ML 89

4.2.2 An extension of ML with record concatenation

The language II described in section 4.2.1 can easily be extended with a combining primitive
{_butafrom _}:II(a:0; x) = (a:e;m) =1I(a:e; x)

The extended language is referred to as II™. We apply the transformation { with IT as L. We first
consider the strict version of IIT, then we show a few examples and we treat the free version of II™
at the end.

Symmetric concatenation

We encode the language IIll with symmetric concatenation into the version of It with strict ex-
tension. We introduce a new type symbol {_=- _} of arity two, and we assume given the two

constants: Tag : (I (x) = I (n)) = {x = 7},

Untag : {x => 7} — (I (x) = II(n)).
They are private to the translation.
A program is typable in III if and only if its translation is typable in II 128 Untag (IT extended

with Tag and Untag). However, composing the translation with typechecking in 11128 Untag g
the same as typechecking in Il with the following types for primitives:

{}:{x=x}

—a:{a:abs ; x =>a:pre(a); 1} >«
{a=_}:a—{a:abs ; x = a:pre(a); x}

\a:{a:0;x=a:e;n}t—=>{a:0;x=>a:0;n}

| {x=r}=>{r=¢ > {x=¢}

Primitives for symmetric concatenation (II/l)

Thus the translation can be avoided.
When typing directly in Il with the rules above, all record types are written with {_ = _} and
the type symbol II can be removed; the grammar for types becomes

ro=al|T =7 {" =P}

The type {x = 7} should be read “I am a record which given any input row of fields x returns the
output row 7.” The types for the primitives above can be read with the following intuition:

e The empty record returns the input row unchanged.

e As remarked above (section 4.1), we encoded the extraction of field a in M as the extraction
of field a in the application of M to any record that does not contain the a field. Otherwise
we would have got the weaker type:

—a:{abs = a:pre(a) ; x} -«

Thus, the extraction of the a field of r takes a record r which, given any row where a is
absent, produces a row where a is defined with some value v. The result r.a is this value v.

e A one-field record extends the input row, defining one more field (that should not be previously
defined).

90 CHAPTER 4. LA CONCATENATION DES ENREGISTREMENTS

e The removal of field a from a record M returns a record that acts as M except on the field
a where it acts as the empty record.

e Finally, concatenation composes its arguments.

It is easy to see that any program in II is also a program in 11l First, define the extension primitive
by:
{M witha=N}=M || {a =N}

It has type:
{x=a:abs ;1} 2a— {x=a:pre(a); 7}

Check that all the following typing assertions are correct in IIll:

{} : {abs = abs }
—a:{abs = a:pre(a); 1} =«
{-witha=_}:{abs = a:abs ; 7} - o — {abs = a:pre(a) ; 7}
\a:{abs =a:e; n} - {abs = a:abs ; 7}

Last, abbreviate (abs = p) as (p) to conclude that IIl possesses all the primitives of II with all
types that IT can assign to them. The rest of the language II is core ML and is also in II/l.

Examples

We show a few examples processed by a prototype written in CAML [33, 122]. The type inference
engine is exactly the one of II; only the primitives have changed. The syntax is similar to CAML
syntax.

The type of a one-field record says that the record cannot be merged with another record that
also defines this field:

#let a = {a = 1};;
a:{a:abs; x = a: pre (num); x}

Two records r and s can be merged if they do not define common fields. For instance, r can be
merged on the left with {a = 1} if its output row on a is absent.

H#let left r = r || {a = 1};;
left : {x = a :abs; 7} — {x = a : pre (num); 7}

The resulting record modifies its input row as r but on field a which is added. Similarly, s can be
merged on the right with a if the input field a is present (with the adequate type).

#let right s = {a = 1} || s;;
right : {a : pre (num); x = 7} — {a : abs; x = 7}

In particular, s cannot define an a field, otherwise its input field a would be absent.

Non overwriting of fields is guaranteed on the left by negative information (absent field) at
a positive row occurrence, and on the right by positive information (present field) at a positive
row occurrence. Some symmetry is preserved! However writing r || s instead of s || r in a program
sometime matters: one might typecheck while the other does not, though none of the programs
would overwrite fields. If both typecheck, the type of the result will be the same (provided all fields
are symmetric).

Here are a few more examples:

4.2. APPLICATION TO A NATURAL EXTENSION OF ML 91

#let foo = fun r s — (r || s).a;;
o:{a:abs; x = 7} = {m = a:pre(a) € - a

This shows the functionality of concatenation on both sides. The result shall have an a field, but
what argument will provide it is not specified yet.
#Iet gee = foo {b = 1};;
: {b : pre (num); a : abs; x = a : pre (@); T} = «
Now r must define the a field.

#gee a;;
it : num

Asymmetric concatenation

The system II may also provide free extension, with the following primitive:
{_withla=_}:1l(a:0; x) > a—1I(a:pre(a) ; x)
This will make concatenation asymmetric:
{la=_}:a—={a:0; x=a:pre(a); x}

For instance, the following example is typeable:

#let ab = (fun r — {la = 1} || r) {la = true; b = 1};;
ab: {a:x;b:m &= a: pre (bool); b : pre (num); &}

This shows that asymmetric fields can be redefined with values of possibly incompatible types.

The choice between strict and free extension is encoded in the extension primitive, but the choice
between asymmetric and symmetric concatenation is not encoded in the concatenation primitive
which is always the composition. It is not concatenation which is symmetric or not, but record
fields themselves! We can have symmetric and asymmetric fields coexisting peacefully.

#{la = 1; b = true};;
it:{b:abs;a:x; ™= a: pre (num); b : pre (bool); 7}

Primitives to modify these properties of fields can easily be provided

symmetric® : {a : 6 ; x = a:pre(a) ; x} = {a:abs ; x = a:pre(a) ; x}
asymmetric® : {a: 0 ; x = a:pre(a) ; x} > {a:e; x=a:pre(a) ; x}

But it is not possible to make all fields of a record symmetric, or asymmetric; this has to be done
field by field.

We can now better understand why symmetric concatenation is not so symmetric. Both left
and right functions accept any argument, and one should not expect them to behave the same on a
record of which some of the fields are asymmetric.

With asymmetric fields, the following examples reach the limit of ML polymorphism. For
instance, the function

#fun rs — sb, r || s;;
t:{x =b:abs;m} = {b:abs;m = b:pre(a)} - a*{x =>b:pre (a);}

92 CHAPTER 4. LA CONCATENATION DES ENREGISTREMENTS

does not accept a record r which has a b field, though the program would still run correctly if
the b field of s is asymmetric. This is due to ML polymorphism weakness: the second argument is
A-bound and thus it is not polymorphic. The field b of s is observed by setting its input to abs,
which has to be the output field b of rin r || s.

Since s has definitely a b field, the concatenation r || s is equal to the concatenation r\b || s. We
can rewrite the previous program as

#fun r s — s.b, (r\b || s);;
it:{b:x;m=b:& s} = {b:abs;'s=b:pre () 't)] =
a * {b:abs; m = b : pre (a); 't}

which can now be applied to any record r.

The restriction _\b of field b only changes the type of its arguments but does not modify it; it
is called a retyping function. Many weaknesses of Il originating in the restricted polymorphism
provided by the ML type system can be solved by adding retyping functions. They insert type
information in the program helping the type inference engine. We will describe other ways of
solving these examples by strengthening the type inference engine in section 4.2.3.

4.2.3 Strength and weakness of II!

We compare our language with Wand’s proposal [121], and Harper and Pierce’s system and mention
possible extensions.

Comparison with other systems

There are only a few other systems that implement concatenation. Wand’s proposal [121] is still
more powerful than our system IIl. For instance

Ar.ra+ ({a=1} || r).a

is typable in Wand’s system but not in ours. Wand’s system polymorphism is carried by the
concatenation operator, at the cost of bringing in the type system a restricted form of conjunctive
types and having disjunction of principal types instead of unique principal types. In contrast, in
our system, polymorphism is carried by records themselves. As mentioned above, we can regenerate
polymorphism of records by inserting retyping functions. If the same restricted form of conjunctive
types was brought in our system, then retyping functions would be powerful enough to regenerate
all fields of a record without having to mention them explicitly. This would give back all the power
of Wand’s system.

This shows that the additional power of Wand’s system comes from conjunctive types. Con-
versely, our system succeeds with only generic polymorphism on examples that needed conjunctive
types in Wand’s system. We are going to explain how this happens.

Wand’s system can be reformulated in system II. A simple idea is to type the concatenation
operator by introducing an infix type operator || of arity two. Then concatenation has type:

I+ 10(x) — () — T (x || =)

But we have to eliminate || operators that might hide type collisions. In the system II, we entice
distributing concatenation on fields with the equations:

(@:0;5x) [(a:e;5m) =(a:0]e; x|

4.2. APPLICATION TO A NATURAL EXTENSION OF ML 93

The operator || on fields can be defined by enumerating the triples (6,¢,6 || €). They are all triples
of the form

(0,abs,0) or (0,pre(B),pre(H)).

This disjunction in the relation || breaks the principal type property of type inference. Worse,
disjunctions on different fields combine and make the resulting type (conjunction of types) explode
in size.

Our system emphasizes that 6 || e is uniform on #: once we know e, we can eliminate the
conjunction in 6 || €. A field a, instead of carrying its type ¢, carries the function §# = 6 || . For
instance, if M has type 7, the record {a = M} would have type Il (a : pre (7) ; abs) in II. On field
a, since ¢ is now pre (7), the merging @ || € is equal to pre (7). In the template, 7 is abs, and thus
x || 7 is x. We deduce the type of {a = M} in I

{a:(@=pre(r)) ; (x=x)} ie. {(a:0; x)=(a:pre(7) ; x)}

Another system with type inference was proposed by Ohori and Buneman in [86]. Their con-
catenation on records is recursive concatenation, which we do not provide. Note that they have
a very restricted form of recursive concatenation since types in record fields must not contain any
function type.

In explicitly typed languages, the only system with concatenation is the one of Harper and
Pierce [50]; it implements symmetric concatenation. Since their system is explicitly (higher order)
typed, we say that typing a IIll program M succeeds in HP90 if we can find a HP90 program whose
erasure (the program obtained by erasing all type information) is M. Their system has not free
restriction of fields, but we shall ignore this difference.

The following ITl program cannot be typed in HP90:

#let either r s = (r || s).a in

if true then either {a = 1} {b = 2} else either {b = 2} {a = 1};;

it : num
In the expression (r || s).a, one has to choose whether r or s is defining field a, and thus the function
either cannot be used with the two alternatives. This breaks the symmetry of concatenation.

Conversely, there are programs that can be typed in HP90 but not in IIll as a result of ML
polymorphism restrictions. For instance the function

#let reverse r s = if true then r || s else s || r;;
reverse : {x = x} =& {x = x} = {x = x}
cannot be applied to {a = 1} and {b = 2} in I/l In HP90 it would have type

Vx -Vr#x-x == (x| 7)

and could be applied to any two compatible records. It is difficult, though, to tell whether the failure
comes from a limitation of polymorphism in general, or the inability to quantify with constraints,
since the two are strongly related. The typability of the previous example in IIl is somehow
equivalent to the typability, in core ML, of the function:

#let reverse r s = if true then r 0 s else s o r;;
reverse : (@ = a) =& (@ - a) > a = «

This is too weak a type! Whether a higher order language would give it a much better type is not
so obvious. Next section provides a better basis for comparison between the two systems.

94 CHAPTER 4. LA CONCATENATION DES ENREGISTREMENTS

Limitations and extensions

Since the type inference engine of 11l is the same as the one of II (only types of primitives have
changed), both systems enjoy the same properties. Record polymorphism is provided by ML gener-
icity introduced in let bindings. If this is too restrictive, then one should introduce type inclusion.
One could also have a restricted conjunctive engine as in [121]; however this would decrease con-
siderably the efficiency of type inference, and the readability of types. Allowing recursion on types
would also require an extension of the results (though in practice the mechanism is already present).
In 11, as in II, present fields cannot be implicitly forgotten, but have to be explicitly removed,
unless the structure of fields is enriched with flags. All these improvements are discussed in detail
in [106].

4.3 Other applications

The transformation can also be applied to other languages, which we illustrate in this section.

4.3.1 Application to Harper and Pierce’s calculus.

The higher order typed language of Harper and Pierce [49] already possesses concatenation, but
records are not abstractions. It can still benefit from the encoding. Instead of presenting spe-
cial constructs for operations on records, we could assume given the following primitives in their

{}:11()
_a:Va-Vx#a-(a:a) || x) = o

{a=_}:VYa-a—=1Il(a:a)
\a:Va-Vx#a- (I(a:a) | x) = x
| :Vx-Vagx-x =7 = (x| 7)

Primitives for HP90

language:

But the type system is not enough sophisticated to type the primitive {_ but a from _}. Thus we
apply the translation dropping the removal of fields. Using the encoding, the primitive operations
on records in the language HP90!l have the following types:

{:¥x-(x=x

_a:Va-Vx#Ha-Vr#a - (x =>1(a:a) || 7) = «
{a=_}:Ya-a—=Vx#a - (x=U(a:a) || x)

| :Vx - Vo V& (x=m) = (r=¢§) = (x=9)

Primitives for HP90!

We can define a function either:
Aa. Ax. Ar#a. Ar:(II() = x). As: (x =1 (a:a) || m).
(~a o] MO =] (I TTOT D] [(a:a) [« r s))

and apply it to records {a = 1} and {b = 2} in any order. For instance,
either [num]| [II (¢ : num) | [II(b: num)| ({e =1} [II()]) ({b =2} [II(a : num)|)

This example is not typable in HP90.
Conversely, the program:

4.3. OTHER APPLICATIONS 95

let reverse r s = if true then r || s else s || r in reverse {} {a = 1}, reverse {} {a = 1};;

can be typed in HP90, but we conjecture that it cannot be typed in HP90!l. In fact its typability
in HP90!l is equivalent to the following term being the erasure of a term of F:

(funr = K (r I K) (r K 1))
(fun f g — (fun x = f (g x)) or (fun x — g (f x)))

where | is fun x — x and K is fun x y — x, and or is a constant assumed of type Aa. a - a — «
in F.

To summarize, none of the language HP90 or HP90! would be more powerful than the other.
Remark that type applications and type abstractions are located at completely different places,
thus a partial translation of explicitly typed terms from HP90! to HPY0 can only be global.

A previous language proposed by Harper and Pierce in [49] had no concatenation, but shared
the same spirit as HP90. The transformation applies to it as well, and results in a language with
concatenation very closed to HP90!.

4.3.2 Application to Cardelli and Mitchell’s calculus.

Unlike HP90, the language of Cardelli and Mitchell [27] does not already provide concatenation of
records, but only strict extension. The application of our encoding to CM89 is not harder than to
HP90. The language cannot be easily extended with the combining construct, therefore we skip the
removal of fields. Using CM89 types, primitives for record operations in CM89!l have the following
types:

{}:vx-(x=x)

ca:Va-Vy<{D\a-Vr<{(D\a-(x={(rla:a)) -«

fa=}:Va-a=Vx<{(h\a (x= (x| a:a))
[:Vx-Vr-VE-(x=m) = (r=¢) = (x=¢)

Primitives for CM89!l

We can again define the function either:

Aa. Ax. Ar < () \a Ar:(() = x)- As: (x= (7 [| a:).
(~a [a [N =] (I [N D] [| @))] rs))

and apply it to the records {a = 1} and {b = 2}:

either [num] [({a : num)] [(6: num)] ({a =1} [(D]) ({b= 2} [(a:num)])

4.3.3 Multiple inheritance without record concatenation

Multiple inheritance has been encoded with record concatenation [121]. We have encoded record
concatenation with record extension. By composition, multiple inheritance can be encoded with
record extension.

Given the strengthening of the type inference engine to recursive types, the system Il would
support multiple inheritance as presented in [121]. But multiple inheritance makes very little use of
concatenation. It is only necessary for building new methods, but objects do not need it. Thus it
may be worth revisiting the typechecking of multiple inheritance of [121] and eliminating the need
for concatenation by abstracting methods as we abstracted records.

The following encoding of multiple inheritance was used by Wand in [121]. The definition of a
class

class (Z) inherits (Q)methods @ =M end

96 CHAPTER 4. LA CONCATENATION DES ENREGISTREMENTS

was encoded as

AZ. X self. P(Q ||{ M}

The creation of objects of that class
instance C(N)

was the recursive expression

Y(C(NV))

Sending a method a to an object x was the same as reading the field « of a. The problem with this
encoding is that it requires record concatenation. We can easily get read of it, using our trick. We
encode a class definition as

AmAuAselquP) || {a =M}

ie.
_
AZ. Au. Aself. {P(Q) ou with a = M\}

which only requires record extension. Then creating an object of that class becomes

Y(C(M){})

and sending a method is unchanged.

Remarks

Since removing of fields is not needed here, this section applies to all typed calculi with record
extension.

This section uses Wand’s conception of inheritance. Objects are carrying their dictionaries. Other
views of objects do not encode with record operations. This section does not apply to them.

Conclusion

We have described how a functional language with records and record extension automatically
provides record concatenation. Though records are data, they should be typed as if there were
abstractions over an input row of fields that they modify. Their behavior can be observed at any
time by giving them the empty row as input. Concatenation is then composition.

We have applied the method to a record extension of ML. We have obtained a language im-
plementing all operations on records except the recursive merge, allowing type inference in a very
efficient way in practice.

The kind of type system that we have obtained seems complementary to Harper and Pierce’s
one. Taking the best of the two systems would be interesting investigation.

The encoding also helps understanding concatenation. However, the relationship between the
semantics of a program in the language with concatenation and the semantics of its translation
need to be investigated closely before claiming that concatenation itself comes for free.

Acknowledgments

I am grateful for interesting discussions with Luca Cardelli, Georges Gonthier, Jean-Jacques Lévy,
Benjamin Pierce and Mitchell Wand, and particularly thankful to Xavier Leroy whose comments
on the presentation of this article were very helpful.

Chapter 5

Programmer les Objets dans ML-ART
Une extension de ML avec des types
abtraits et des types enregistrements

Ce chapitre a été publié dans [108].

Programmer les objets dans ML-ART

Dans une approche avec classes, les objets peuvent étre programmés directement et efficacement
dans une extension simple de ML. Leur représentation, qui s’appuie sur des types enregistrements et
des types abstraits, permet toutes les opérations usuelles telles que ’héritage multiple, la possibilité
pour une méthode de retourner ’objet lui-méme ou de lui envoyer un message, y compris un message
sa classe parente. Toutefois, la coercion du type d’un objet vers son type correspondant dans une
classe parente reste explicite. Nous donnons aussi une représentation plus simple ou les objets ne
sont plus des valeurs récursives. Le langage sous-jacent est une extension de ML avec des types
récursifs, des types existentiels et universels et des enregistrements extensibles mutables. Le langage
ML-ART est équipé d’une sémantique en appel par valeur pour laquelle la correction du typage est
prouvée.

Programming objects in ML-ART

Class-based objects can be programmed directly and efficiently in a simple extension to ML. The
representation of objects, based on abstract and record types, allows all usual operations such as
multiple inheritance, object returning capability and message transmission to themselves as well as
to their super classes. There is, however, no implicit coercion from objects to other objects of their
super-classes. A simpler representation of objects without recursion on values is also described.
The underlying language extends ML with recursive types, existential and universal types, and
mutable extensible records. The language ML-ART is given with a call by value semantics for
which type soundness is proved.

97

98 CHAPTER 5. PROGRAMMER LES OBJECTS

Introduction

An important motivator for type-checking extensible records is the records’ application to object
encoding. Initiated by Cardelli in 1984 [20], continued by Wand [119], and then many others, type-
checking records has produced several satisfactory solutions for higher order languages [27, 49]
and for ML [86, 84, 106]. Object encoding, based on record calculi, reveals severe difficulties,
mainly due to overreliance on recursive values. Thus, the tendency has been to design languages
with objects as primitive operations [15, 3, 51, 82], rather than encodings, to achieve important
simplification of type-theoretical models.

Pierce et al. produces convincing evidence that object oriented programming could be treated
as a matter of programming style, at least from a theoretical point of view [93]. However, the use of
F¢ as the basis language supports the idea that encodings involve complex type theories, and the
demonstration does not always apply to the ML programmer. The need to write many coercions,
due to the use of explicit types and the absence of record extension, makes it obvious that large-
scale object-oriented applications cannot be programmed directly in Fg Finally, the encoding is
created in a call-by-name language, which results in a duplication of too many structures. A recent
version of the encoding in a call-by-value language [92] still contains inherent inefficiencies. At least
a large amount of syntactic sugar must be provided to program objects in F¢.

We concur with the claim that object-oriented programming is essentially a matter of style.
Consequently, it is not addressed in this paper. Our main goal is to demonstrate that objects can
be programmed in a small extension to ML. Therefore, we repeat Pierce’s method using, instead,
a basic language derived from ML. This results in a quite elegant and still flexible class-based
object-oriented programming style, almost as concise as if objects were primitive. No syntactic
sugar is required. This approach allows for programming capabilities such as multiple inheritance,
object returning ability and message transmission to themselves as well as to their super classes.
However, implicit coercion of objects to their counterparts in super classes is not implemented.

As in [93], we consider objects as abstract data structures, but our encoding differs in two
essential ways. First, we can take advantage of record extension to implement inheritance in a
simpler way that avoids successive coercions and treats classes as “first class citizens”. Ignoring
implicit class coercions enables to move the recursion on “self” from method vector creation to
method application, converting objects to non recursive values.

Another interest of this paper is the language ML-ART utilized for programming objects; it
extends core ML with several orthogonal features. None of these is really new but itself, however,
the combination is original. We give a complete definition of ML-ART, omit type inference, but
verify type soundness.

The most important feature of ML-ART is extensible records. We choose those described
in [106], althoug other choices are permissible, provided they implement polymorphic access and
polymorphic extension. Polymorphic access refers the ability to define a function that reads the
same field of many records, with different domains. This is the key operation to messages passing.
Record extension is the operation that creates new records from older ones by addition of new
fields. It is said to be polymorphic if it can operate on records with different domains. Record
extension is used to program single inheritance [119] or even multiple inheritance reusing the trick
that provides record concatenation with only record extension [107]. Polymorphic record extension
also allows polymorphic duplication of records, which is used to copy the state without knowing its
representation.

The language is also enriched with recursive types. Record types and recursive types are
sufficient to program objects with value abstraction, modulo serious inefficiencies and difficulties

5.1. FAILURE TO PROGRAM OBJECTS WITH VALUE ABSTRACTION 99

with the compilation of recursive values. Thus, we choose to extend the language with existential
types, as suggested by Laiifer and Odersky [64], and use type abstraction to conceal the internal
state of objects. This necessitates replacement of record types with more expressive projective
types [103]. Finally, existential types introduce scope borders that can only be crossed using
universal types in a dual way.

The paper is organized as follows. In section 5.1, we briefly describe encoding of records using
value-abstraction and illustrate various problems that could find only ad hoc solutions. In section 5.2
we informally introduce the language ML-ART. We motivate and describe the different features
one by one. A formal presentation is supplied in the appendices. In section 5.3, we describe two
object programming styles based on a number of variations of points. In the final section, we
discuss and conclude the experience.

5.1 Failure to program objects with value abstraction

In this section we attempt to program objects with value abstraction until we meet serious difficul-
ties.

All examples are run in a sub-language of ML-ART composed of ML plus extensible records
and recursive types'. The key features that are used in this section are just polymorphic access and
polymorphic extension. Any language that provides those two operations could be used instead.
The paper is organized such that all language features are described in the next section; although
the constructions used here are very simple and can be mostly understood intuitively, it is possible
to read the three first parts of the next section before considering the following examples.

The language ML-ART is strongly typed and provides type inference. However, objects have
anonymous, long, and often recursive types that describe all methods that the object can receive.
Thus, we usually do not show the inferred types of programs in order to emphasize object and
inheritance encodings rather than typechecking details. This is quite in the spirit of ML where
type information is optional and is mainly used for documentation or in module interfaces. Except
when trying top-level examples, or debugging, the user does not often wish to see the inferred types
of his programs in a batch compiler. When printed, the output of compilation is indicated with a
marginal " sign.

As in [93], we consider objects as pairs (R,M) of an internal state R and a method vector M.
The state is the data stored in the object; it is usually different for each object and mutes when
the object receives appropriate messages, which drives the behavior of objects on messages.

let pointR v = {Ix = v};;

The method vector is a record of methods; when the object receives a message, the corresponding
method is extracted from the record and is applied to the state of the object. Each method is thus
a function whose first argument is always the state (even if the method does not uses the state, for
uniformity reasons).

let pointM = let getx R = R.x and setx R x = Rx < x in {getx; setx};;
Point objects are created as follows:
let new_point v = (pointR v, pointM);;

As described above, sending the method getx to a point is realized by the function:

! An implementation of this sub-language as an extension of the Caml-Light language, should be released soon.
The full ML-ART language is built on top of this extension and is still experimental.

100 CHAPTER 5. PROGRAMMER LES OBJECTS

let send_getx (R,M) = M.getx R;;
For example,

send_getx (new_point 1);;
I —:int =1

However, point objects expose their representation R to the entire world. This is a failure to
guarantee the abstraction that is usually expected in programming with objects. Moreover it
prevents from having several implementations of similar objects with the same interface (accepting
the same messages) but different representations. For instance, points with polar and carthesian
coordinates could not be mixed since their representations, and thus part of their types, would be
incompatible.

Hiding the representation in the object (R,m) can be accomplished by partially applying each
method m to the internal state and representing the object by m(R).

let pointM R = let getx () = Rx and setx () x = Rx < x in {getx; setx};
let new_point v = pointM (pointR v);;

Sending a message accesses the right method and passes the argument () instead of the state to
launch the method. For example,

let send_getx P = P.getx ();;
send_getx (new_point 1);;

There is already an important efficiency problem. Since pointM is abstracted on state R, each
object will be created with a new method vector pointM R. Hiding by value abstraction is realized
by re-arranging the program, fortunately keeping its high-level semantics. However, the operational
behavior of the program or, equivalently, a low-level semantics that would count resources, has been
seriously altered. In practice, the method vector may be quite large, and it is unrealistic —except
maybe for school examples— to have a copy of the method vector in each object of the same class.

Ignoring efficiency issues and pursuing this exercise is still an interesting experiment. Notions
of classes and inheritance could be implemented in a similar way to what is done below for objects
with type abstraction. However, as in section 5.3.1 we would hit the same problem of creating
recursive values in non trivial ways. We did not find any but ad hoc solution to both of these
problems, yet.

Refusing to twist the language, we consider the value-abstraction approach to objects as a
failure. Instead, taking the type-abstraction approach, the goal of this paper can be fulfilled after
a few powerful language extensions. In the view of objects as pairs (R,M) of an internal state R and
a method vector M, the type of R, say 7g must be hidden, but still allow R to be passed to any
field of M. Thus, it is necessary to remember that each method of M has type 7 — 7,,,, whatever
the type 7r is. Methods of the same object will have, of course, independant codomains 7, and
different objects will answer different set of messages. Finding a type for objects means finding a
uniform way of saying This is a pair whose first component has some type Tr and whose second
component is a record of functions of common domain Tr, and exhibiting their codomains.

5.2 The language

The language ML-ART is designed by adding several features to core ML. Each extension is quite
simple and none of them is really new; they have been either described somewhere else or already

5.2. THE LANGUAGE 101

implemented in some version of ML. Their combination provides just enough power to program
objects in a very flexible and elegant way. The two main extensions are polymorphic records
and existential types. Recursive types are also added and record types are enriched to projective
types. Finally, it is convenient to have universal types and mutable fields. First, core ML is briefly
described, then each of the feature is introduced independently before the full language ML-ART
is presenetd.

5.2.1 The core language

The core language is ML, with a call by value semantics. Programs are given by the following
grammar:

ax=z|funx —a|aax|letz=a; inay

and are taken modulo renaming of bound variables. The conditionals and pairs may be provided
as syntactic sugar. For convenience, we also use simultaneous let bindings with the construction:

let z1 =aj; and ... z, = a, in qg

They can be expanded into cascades of lets after renaming of bound variables. Multiple-case data-
types could easily be added together with pattern matching, but we will not need them in the
examples. We do not include reference cells in the initial language either since they are subsumed
by mutable record fields. For similar reason, we have no construction for recursion.

Types expressions are given by the grammar:

Ti=a|T T types
ou=71|Va-1 type schemes
Au=0]Az:0 contexts
We abbreviate sequences of quantifiers Vo -...Vay, -0 by Yaq, ... a, -7 and often write @ for tuples

of variables. We write [7/a] the substitution that replaces free occurrences of « by 7.
The Damas-Milner typing relation A F a : o is defined in the appendix by the inference rules
of figure 5.7.

5.2.2 Extensible records

Monomorphic records, as in Sml [48] or Caml-Light [71], are not sufficient to program objects.
The basic operation on objects is message passing that is usually implemented as an access to the
appropriate message in a vector of methods carried by the object itself. The same message often
need to be passed to different classes of objects that can receive different sets of messages. Thus
access to the method vector must be polymorphic.

Record extension is not absolutely required for simulating objects. For instance, in [93], classes
are defined at top-level so that when a class inherits another all methods of the super class are known
and can be explicitly copied into the new method vector. However, writing all coercion functions
quickly becomes a burden and some syntactic sugar is required to automatically generate them.
Non polymorphic record extension can be useful to avoid syntactic sugar, but classes cannot yet be
first class citizens ([52]). Polymorphic extension make it possible to program multiple inheritance
and to treat classes as first citizens.

102 CHAPTER 5. PROGRAMMER LES OBJECTS

The extensible records are those? presented in [106]. We assume given a denumerable collection
of labels L. Instead of introducing nex syntac or records, we extend the set of constants with the
empty record {} and two families of primitives (_.¢/) and (- || {¢ = _}) for all labels ¢, implementing
respectively the access to field £ and extension on field /. For convenience, we also write (a ||
{1 =a1;...4, =apn}) as a short hand for (... (a || {¢{1 =a1})...|[{fn = an}) and, as in Sml, the
abusive but very convenient convention that (a || {z}) stands for (a || {¢; = x}), where £, is the
label that has the same name as variable x.

The type system is enriched with record types:

Tu= .../ {7} |77 |abs | pre| (L:T;7) LEL

The formation of types is restricted by sorts. Type symbols abs and pre may only appear on the
left hand sides of dots; they tell whether the corresponding field is accessible or not. See [106] or
the appendice for a detailed treatment of sorts.

There is no special typing rules for records; the primitives simply come with the following
principal types:

{} : Va - {abs.a}
(1) 1 Yag,aq - {l: pre.ay ; an} — oy
| {£="2}) : Vg, 1,0 - {l: g ; a1} — g — {l: pre.as ; a1 }

Here is an example combining most of the constructs:

let get x = xainletra={a =1} inlet rb =ra || {a = 2; b = true} in
get ra + get rb;;
I —:int =3

5.2.3 Mutable data structures

ML reference cells could be added to the language, but the mutable data structures that have been
introduced in Caml and re-used in Caml-Light [71] are more flexible and in fact more powerful. In
those languages record data structures are dual of variant data structures, and need to be declared
in the same way with all their labels. Labels carry implicit type information according to the last
record definition in which they appear. Fields whose labels have been declared mutable can then
be updated. For instance, it is possible to write the following program in Caml-Light:

type person = {name : int; lage : int};;
let birthday person = person.age < person.age + 1;;

With declared records, mutable fields save space but do not increase power, since they could always
be replaced by non mutable fields that contain references to the dynamic values.
Polymorphic extension may also be used to dupplicate records. For instance, the function copy

let copy r = r || {known = r.known};

dupplicates all records having at least a known field. It is then natural to allow multiple extension
of no fields and interpret it as copying its argument:

let copy r = r || {};;

2In fact, in [106] we presented two variants of record types, both described in section 3.3. Here, we use the second
one, but with the weaker type assumptions of the first one.

5.2. THE LANGUAGE 103

Polymorphic duplication of records becomes an interesting feature when fields are mutable; it is
used below to create new objects by copying, and then modifying, the state of an older object.
Polymorphic duplication could not be written if fields were coded as references.

Mutability information is carried by labels, and must be mentioned explicitly at the construc-
tion. We replace record extension by two primitives: (- || {¢:_}) and (_ || {!¢/:_}) for non mutable
and mutable field extensions. We also add a new primitive (_.£ < _) for field mutation.

In order to carry mutability information in types, the pre type symbol becomes of arity 1, and
we add two constant symbols mut and static. Sorts guarantee that only the type symbols mut
and static may appear under pre. The grammar of types is updated to:

Tu=...|{r} | 7.7 | abs | Tpre | mut | static| (£: 7;7) tel

Record primitives are given below

{} : Va - {abs.a}
(_.l) :Vag,aq, a0 - {l:ppre.a;s ; as} — o
(il +) : Vg, a1, a9 - {€:mut pre.ay ; ag} — @1 — unit
(-1 {€="_}):Vag,an, a0 - {l: g ; 1} = a9 — {{: staticpre.as; a1}
1 {¥ ="_}) :Vag,ar,a9 - {l:ap ; a1} = ag — {{:mut pre.ay ; a1}

In particular the access is polymorphic in mutability as well, which enables (_.£ <— _) to be applied
to records with either mutable or static field . As an example, references are definable:

let newref x = {lval = x}

and assign r x = r.val < x

and deref r = r.val;
| newref : 3 — {val : mut pre.3; abs.y} = (fun)
| assign : {val : mut pre.3; v} — B — unit = (fun)
| deref : {val : B pre.y; §} — v = (fun)

In order to guarantee the type-safety in the presence of mutable objects, we choose the “poly-
morphism on values” approach [124]. In fact, we refine this approach in order to get polymorphic
record extension, although record extension is not a value. We define a set of generalizable terms
ranged over by letter b that do not contain any application except applications of safe constants
and applications under abstractions. The only dangerous constant is record extenmsion on a mu-
table field. The grammar of generalizable terms is given (for semantics that do not evaluate under
abstractions) in table 5.1 of the appendix. Restricting the expression of GEN rule (figure 5.7) to
be generalizable guarantees that the evaluation of generalizable terms never create any mutable
data that is used polymorphically. For instance, let bound expression that are not generalizable
expressions can only be assigned monomorphic types.

5.2.4 Recursive types

The notion of “self” allows an object to send messages to itself or, worse, to return itself (or a
copy of itself) when it receives some appropriate message. This makes it possible to implement fix
points without ML recursive definitions. Thus, recursive types are required. Since we wish not to
declare the types of objects (although we will allow to do so for documentation), we need to infer
recursive types.

Recursive types are only provided through data type declarations in ML. Allowing implicit
recursive types would be quite easy [105] since type inference reduces to first order unification for

104 CHAPTER 5. PROGRAMMER LES OBJECTS

which there are well known algorithms in the presence of recursive types [77, 54]. This does not
mean that implicit recursive types would make recursive type declarations obsolete. For instance,
in ML-ART, there is no record type equivalent to the Caml Light type definition below, since such
a type cannot be represented by a regular tree (but it can be regularly generated).

type a foo = {foo : (o *) foo};;

Other interesting applications of implicit recursive types in ML can be read in [68].
To model recursive types we extend types with the syntactic construct

Tu= ...|reca.T

Equality for recursive types is defined in appendix 5.4.3.
The following fix-point combinator is definable with recursive types,

let Y F = (funf — ff) (fun fx — F (f f) x);;
[Y: (B =)= 8= 08— = fun)

Recursive definition of functions let rec f = a; in ao is allowed as syntactic sugar for let f =
Y (fun f — a1) in ag. Recursively let-bound variables become lambda-bound in the expanded
form, which provides the correct monomorphic typing rules for recursion.

The type of Y forces a; to have a functional type and does not allow the construction of recursive
values. It is possible to have a primitive construct for recursion that permits some definitions of
recursive values, but it is difficult to automatically filter admissible definitions of non-functional
recursive values as soon as application is tolerated. In core ML-ART we forbid recursion on non-
functional values. Still, fix point of non-functional values are used in some of the examples, but the
reader will always be warned.

5.2.5 Projective types

We ended previous section claiming that a good type system for programming objects must provide
a way of referring to records of functions with all the same domains, and defining their codomains.
Simple record types do not allow to write any information in template types. Presently, a template
of a record type can either be a field variable ¢, as in the type of the access primitive, or the
expression abs.q, as in the type of the empty record.

It would be easy to allow type-like expressions inside templates, for instance ay.c; — g, would
force any field to be an arrow type. But variables oy and «y are template variables and can just
serve as filters to types of fields. In order to constraint all fields to have the same domain «y, type
variable oy must be coerced to a template term. This is exactly what projective types allow. The
grammar of types is extended with a new symbol row _:

Tu=...|TowT

Sorts allow row _ to coerce an ordinary type expression to a template expression; sorts are re-
laxed such that all ordinary type symbols but {_} may occur inside templates. For instance,
{ag.row 7 — a1} is the type of all records whose defined fields are functions of the same domain 7.

Projective types are described in more details in the appendix 5.4.2 and are fully formalized
in [104] and also more intuitively described in [103]. They enjoy all the interesting properties of
record types. Although projective types are richer that record types, ML-ART does not have new
language constructs; the additional power is mainly used to write more expressive existential types.

5.2. THE LANGUAGE 105

5.2.6 Existential types

Existential types are the basic tool for defining objects with type abstraction. An extension of ML
with existential types has been proposed by K. Laufer and M. Odersky in [64]. We slightly simplify
the presentation of their proposal by separating existential types from variant types.

We first extend type schemes with existential type schemes:

o =7 |Exist(@)T — 12| Va- o

Of course, we consider Exist(_) _ as a binder, when computing free variables and applying substi-
tutions. As for concrete data types in ML, new existential types could be defined to the typing
environment by types declarations:

type D;(7]) = K; of Exist (&;) 7;;;

where @ and 7' are linear types (that is, no variable occurs twice) and the union of their free
variables contain the free variables of 7. For simplification, we simply assume that the corresponding
assertions

K;: VO—ZJ . EXiSt(O—Zi) T, — Dl(Tz’)

are in the initial typing environment where «;’s are the free variables of 7 and 7’ but the «;’s
The syntax of the language is extended with existential introduction and elimination constructs

ax=...|Ka|let Kr=a; inay

When opening an existential value a; as K z, parts of the type of variable x are abtract in a2 and
cannot be exported outside of the let expression. We assume given a denumerable collection of
type symbols €2 that are used to represent abstract parts of types. Typing judgements are modified
both to include initial existential type assertions and to introduce €2 type constructors so that their
scope can be delimited.

Av=0|Az:0|AK:0|AQ

A typing judgement A - a : o is well-formed if all {2’s appearing in type expressions (in o as well as
in A) are introduced in A on the left of the occurrence where they appear (see the appendix 5.4.4).
Inference rules are only valid for well-formed typing judgements. We add a constructor introduction

rule similar to the VAR rule:
K:c€e A

AFK:o
Rule INST also applies to K although K is not an expression a. The existential introduction rule

is:
AFa:m AF K :Exist(d)1g > 71

AFKa:n

The elimination rule is
AlFay:Va;-n AtF K :Va; - Exist(d@;) 10 = 71
A, Qi[z :Vay - 19[Qi(11) /4]l Fag T
AbFlet Kx=a;inag: ™

where (3 is a vector of all distinct new constants that do not appear in A. The Q symbols replace
hidden sub-terms of 79 that may depend on variables in 7;. Instead of finding all free variables of
71 we simply make all £2;’s depend on 7.

106 CHAPTER 5. PROGRAMMER LES OBJECTS

5.2.7 Universal types

Opening an abstract type introduces €2 type symbols with a restricted scope. These type symbols
quickly propagate by unification outside of their scope. For instance, the following example is not
typable since the argument ¢ is monomorphic and captures the {2 in the type of its argument.

type a k = K of Exist () (¢ — @) * (¢ *)i
let fx = K (succ, (0, 1));;

let apply g fp = let (K (f,p)) = fp in f (g p) in apply fst fx;;
) Toplevel input:

let apply g fp = let (K (f,p)) = fp in f (g p) in apply fst fx;;

I > AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Expre55|on of type 3 with escaping type (escaped)
in type (escaped) * (escaped) of variable p

A solution is to pass fst polymorphically and take an instance inside the scope of the de-structuring
let expression.
Universal types are dual of existential types. Type scheme are extended to:

o =7 |Exist(@d)m = n | AlL(@) T = o |Va-o
The initial environment may now also contain assertions of the form:
K;: va! - All(O—ZZ') T; —> Dl(TlI)

such that & and 7' are linear types (no variables may be repeated) and the union of their free
variables contains the free variables of 7.
The universal introduction rule is:

AFa:Va-n AF K :All(@) 19 > 7y
AFKa:mn

If a is not a generalizable expression, & will necessarily be empty. This guarantees that mutable
data structures are not used polymorphically; the rule applies to universal bindings as well as to
let bindings. The elimination rule is
Abar:m AR K :All(@) 19 > 71 Ax:Va-rpFas:m
AFlet Kz =ayinas: 7

5.2.8 Mixing the extensions

All extensions informally introduced in previous sections are orthogonal and can be easily mixed
together in the language ML-ART. The language is formally described in the appendices.

Type inference had to be omitted by lack of space. Principal type property, and decidability of
type inference has been proved for the main extensions of the language taken separately. See [102,
104] for projective types, [30] for recursive record types, [64] for existential types. Other extensions
are much simpler, and have obvious type inference algorithms. The combination of recursion
with projective types is the one that has to be considered more carefully. Projective types are
formalized as terms of an equational algebra. In general, equations do not commute with limits
and most equational algebras cannot be extended with recursive types in a trivial way. However
the theory of record terms is simple enough to be extended with recursive types [30]. We conjecture

5.3. OBJECTS AND INHERITANCE 107

that projective types equality also commutes with limits, and thus can be extended with recursive
types.

The language ML-ART is described in the appendix. We give the semantics of the language,
and a type-soundness result, but proofs have to be reduced to the main lemmas and a few hints.

5.3 Objects and Inheritance

With the rich type system of ML-ART we can now attempt to define the type of objects. In this
section we show how to program objects and inheritance with type abstraction. A first intuitive
approach will require unsafe fix points. We then present another solution that avoids any recursion
on values.

5.3.1 An intuitive approach to objects and inheritance

The type of an object with exposed representation is of the form 7p * 737, for some representation
type Tr and a method vector type 7p; where 73; depends on 7. In order to abstract 7z in 737,
we need to show this dependence explicitly, at least explicitly enough such that methods can be
applied to the representation. We rule that all methods should receive the internal representation
as first argument. Thus the type of the method vector is at least a record whose defined fields
are abstractions that can be applied to a state of type 7. That is, each of the method has type
TR — Ty, for some type 7, that may be different on each field. The method vector is always an
instance of {a.row 7 — ay;,} for some representation 7. Thus, we define:

type ({'attendances.’'methods}) object =
Object of Exist ('R) 'R * {'attendances. ['R] — 'methods};

An object point could be defined as follows. We first define its representation, then its method
vector, last we combine the two:

let pointR v = {Ix = v};;

let pointM =
let getx R = R.x in
let setx R x = Rx < x in
let move R x = setx R (x + getx R) in
let print R = print.int (getx R) in
{getx; setx; move; print};;

let point v = Object (pointR v, pointM);;

The move method explicitly uses the getx and setx methods that have been defined simultaneously.
If the getx method is later redefined, for instance in:

let better_pointM =
let getx R x = —R.x in let setx R x = Rx ¢~ —x in
pointM || {getx; setx};;

then the move method of “better” points still uses the old getx and setx methods. The right definition
of move must take getx and setx dynamically from the object method vector. The well-known solution
is to use the so-called “self” methods:

let pointM self =

108 CHAPTER 5. PROGRAMMER LES OBJECTS

let getx R = R.x

and setx R x = R.x < x

and move R x = self.setx R (x + self.getx R)
and print R = print.int (self.getx R) in

{getx; setx; move; print};;

The creation of points has to build the recursive method vector as follows:
let point v = let rec self = pointM self in Object (pointR v, self);;

This kind of recursive definition is not in the core language. The example is safe, but the general
case is not. It must checked that the expression pointM self does not access fields of self before they
are filled. This is obvious here because pointM does not send any message, but it requires some
non trivial analysis in general. In the implementation of ML-ART there is a secret entrance to the
unsafe recursion that relies on the programmer to verify the above property by hand. Safer but
heavier solutions to this problem are proposed at the end of the paper; another approach to objects
that avoids recursion on values is also described further. In the rest of this part unsafe recursion is
used without any warning.

The above implementation of better_pointM by re-using methods from pointM produces the ex-
pected behavior.

let better_pointM self =
let getx R x = —R.x and setx R x = Rx ¢~ —x in
pointM self || {getx; setx};;

Inheritance is basically sharing of methods, and we have also realized some of it when reusing pointM
methods in the definition of better_pointM methods. Extending points with color points requires the
extension of the state as well. Hiding the implementation of points, we can define colorR as follows:

type color = Blue | Red;;
let colorR superR (c) = superR || {c};;

The method vector of color points should add a new method getc to the methods of points. The
method print had better be redefined to print the color as well. For instance, it can first print the
point as before reusing the print method of points, then print the color. However, it is better to
abstract on the method vector of points, called the super class, so that better_points can be extended
with color as well.

let colorM self super =
let getc R = R.c
and print R =
print_string (match self.getc R with Blue — "blue” | Red — "red"); super.print R in
super || {getc; print};;
Then we create:

let color_pointM self = colorM self (pointM self);;
let color_better_pointM self = colorM self (better_pointM self);;

Points might themselves have been created from abstract points. In abstract points, only the move
method and a default print method are defined. Polar or carthesian points may later implement
getx and setx with different representations and still be subclasses of abstract points.

let abstract_pointM self =

5.3. OBJECTS AND INHERITANCE 109

let move R x = self.setx R (x + self.getx R)
and print R = () in
{move; print};;

Therefore points should also have been defined by abstracting the method vector of their super class.
For sake of uniformity, we rewrite all definitions of method vectors by abstracting the super-class
method vector. Similarly all representations should abstract the super representation.

let pointR superR v = superR || {Ix = v};;
let pointM self super =
super || {getx; setx; move; print};;

Real representations and real methods can be recovered anytime by applying the representation
function or the method function to empty records.

type null = Null;;
let emptyM = ({}: {abs.« — null}) and emptyR = ({}: {abs.null});;
let point v =

let rec self = pointM self emptyM in Object (pointR emptyR v, self);;

Inheritance is essentially methods sharing, but in a very structured way! Classes are just a way of
structuring inheritance.

type « class = Class of «;;
We group in a same object both components of points. For instance, the empty class is defined as:

let nullR superR () = superR;;
let nullM _ super = super;;
let nullC = Class (nullR, nullM);;

A natural attempt to write a function new that creates instances of a given class does not work:
let new (Class (R,M)) v = let rec self = M self emptyM in Object (R emptyR v, self);;

The recursive call is unsafe (though it could be proved correct by hand) but, worse, it cannot easily
be compiled correctly. The compiler need to know the size of the recursive value that it is going to
create. The difficulty may be avoided by putting the method vector into a fix size top structure,
thus using usafe but correctly compiled recursion:

type a methods = Methods of «;;
type ({'att.’'meths}) object = Object of Exist ('R) 'R * {’att. [R] — 'meths} methods;;

let new (Class (R,M)) v =
let rec self = Methods (M self emptyM) in Object (R emptyR v, self);;

let null = new nullC;;

Access to self inside the definition of method vectors must be re-written with one more indirection.
The simplest way to send objects messages is to define a send function for each message:

let send_getx P = let (Object (R, Methods M)) = P in M.getx R;;
Another option is to view messages as field extractors, and define a unique send function:
let getx = fun z — z.getx;;

Unfortunately the following function fails to type, because of abstraction scope violation:

110 CHAPTER 5. PROGRAMMER LES OBJECTS

let send extractor object =

let (Object (R, Methods M)) = object in extractor M R;;
Toplevel input:

let (Object (R, Methods M)) = object in extractor M R;;

AAA

~ ~ ~ ~—

|) Expression of type o with escaping type (escaped)

|) in type {B.[(escaped)] — v} of variable M

The solution is to make extractors polymorphic on the representation, so that the abstract repre-
sentation is not exported within the extractor.

type ({’att.’'meths}, a) extractor = Extractor of All ('R) {’att. [R] — 'meths} — 'R — «;;

let getx = Extractor (fun z — z.getx);;
let print = Extractor (fun z — z.print);;

let send extractor P =
let (Object (R, Methods M)) = P in let (Extractor x) = extractor in x M R;;

The final version of pointM is:

let pointM self super =
let getx R = R.x
and setx R x = R.xx < x
and move R x = send setx (Object (R,self)) (x + send getx (Object (R,self)))
and print R = print_int (send getx (Object (R,self))) in
super || {getx; setx; move; print};;

let pointC = Class (pointR, pointM);;
let p1 = new pointC 1 in send move pl 2; send print pl;;
Simple inheritance can be done in a systematic way by defining:

let inherits (Class (R1, M1)) (Class (R2, M2)) =
let R superR (v1,v2) = R2 (R1 superR v1) v2 in
let M self super = M2 self (M1 self super) in
Class (R, M);;

A method can of course return the object that lauches it, or other objects of the same type. For
instance, we may define a copy method that returns a new isomorphic object composed of a copy
of the state and the same method vector.

let copyM self super =
let copy R = Object (R || {}, self)
super || {copy}:;
let copyC = Class (nullR, copyM);;
Then, providing the copying method to points is quite easy:
let copy_pointC() = inherits pointC copyC;;

Since classes are polymorphic, we need to delay their assemblage until they are used monomorphi-
cally to create objects. The is one example of limitation of polymorphism on values as proposed
in [124]. This is quite odd but admissible here since the assemblage may still be done only once
before the creation of all objects of the same class.

5.3. OBJECTS AND INHERITANCE 111

Our classes are called wrappers in [52]. There are similar to functions that given any class would
return a class by adding their own methods. The inherits function simply composes them. while
the new function applies them to the empty class before building new objects. Lifting classes to
wrappers is basically the same as lifting records to functional records as done in [107]; it provides
multiple inheritance for free. A name wrapper can be defined as the color one:

let nameR superR (n) = superR || {n};;

let nameM self super =

let getn R = R.n

and print R = print_string (send getn (Object (R, self))); print_char * ‘; super.print R in
super || {getn; print};;

let nameC = Class (pointR, pointM);;

Named color points can be defined by wrapping points with either color, then name or name then
color.

let name_color_point() = inherits pointC (inherits colorC nameC);;
let color_-name_point() = inherits pointC (inherits nameC colorC);;

Both ways are not equivalent; for instance, the last one will print the color before the name, which
usually looks very odd. Wrappers have replaced multiple inheritance by single inheritance. It is a
more significant example to assume that named-point class and color-point class are defined first,
then attempt to implement their combination but ignoring how they were created. The composition

let name_color_pointC() = inherits (name_pointC()) (color_pointC());;

is not quite correct since the print method is taken from the last class and thus does not print
the color. It is usual when doing multiple inheritance that multiply-defined methods need to be
redefined. One possibility is to wrap a new print method around the bad definition. Another
solution is to do less meta-programming and more programming, that is to define name-color-point
methods directly:

let color_pointM self super = colorM self (pointM self super)
and name_pointM self super = nameM self (pointM self super);;

let name_color_pointM self super =
let superl = color_pointM self super in
let super2 = name_pointM self superl in
let print R = print_string (send getn (Object (R, self))); print_char ‘'="; superl.print R in
let print_no_name = superl.print in

super2 || {print; print_no_name};

let name_color_pointR superR (x,c,n) = superR || {!x = x; ¢; n};;

let name_color_pointC = Class (name_color_pointR, name_color_pointM);;

let p1 = new name_color_pointC (1, Red, "p"
| p=red1— : unit = ()

) in send print pl;;

This is all the flexibility of programmable objects.

112 CHAPTER 5. PROGRAMMER LES OBJECTS

5.3.2 Safe fix-points of non-functional values

As shown in the language definition, it is possible to define a fix-point operator on abstractions.
Fix point of non-functional values raises difficulties. Their compilation usually requires to know
the exact size of the top structure of recursive values; a dummy value of that size is allocated
before the evaluation of the recursive definition, whose result is used to patch the dummy value.
Thus, at least the top structure of the recursive value must be statically known. The evaluation of
non-functional values also assumes that the dummy value is only passed to other functions, stored
inside closures, but never accessed before it is patched. This kind of analysis is similar to checking
that the evaluation of some expression does not create any reference cell. This problem has been
widely addressed recently but has not found any satisfactory solution yet. It can be thought that
any good solution for detecting the creation of references can be applied to the detection of unsafe
recursions as well.

Simpler solutions could require annotations of the source code to help the static analyzer. There
are easy solutions that would automatically guarantee safety of the above examples. All of them
are still more or less ad hoc, therefore none of them has been included into the language ML-ART.

Another approach is to remark that call-by-name fix points are always safe and not restricted to
functions, and that call-by-name can be simulated with call-by-value. That is, recursive values can
be replaced by recursive abstractions on values, which can be defined safely. This solution has been
proposed in [92]. However, extra abstractions stop evaluation and method vectors are recreated
any time a message resends another message to itself, which is too much inefficient. Moreover
call-by-value runtime errors (unsafe examples) have been changed into call-by-name “safe” loops.
Is this more satisfactory?

5.3.3 Objects without recursive values

There is a very simple way of avoiding recursive objects, which required fix-points of non-recursive
values. Going from objects with value abstraction to objects with type abstraction, we moved the
abstraction on state from outside the method vector into each method. Similarly, we can move
abstraction on self into methods. For instance, the method move can be defined as:

let move (R,M) = send setx (Object (R,M)) (x + send getx (Object (R,M)))
The function send would correspondingly be changed to
let send extractor P = let (Object (R,M)) = P in let (Extractor x) = extractor in x M (R,M);;

Since x M is a component of M, the expression x M (R,M) contains an application of a part of M to
a structure containing itself; thus, it must have a recursive type. Unsurprisingly, the object type
must be redefined to:

type ({’att.’'meths}) object = Object of Exist ('R) rec 'RM in 'R * {'att. [RM] — ’'meths};;
The extractor type must also be changed to:

type ({'att.’'meths}, a) extractor = Extractor of
All ('R'M) {'att. ([R] * 'M) — 'meths} — ('R * {'att. ([R] * ‘M) — 'meths}) — «;

Of course, all extractors must be re-evaluated. Sending a message becomes:
let send extractor P = let (Object (R,M)) = P in let (Extractor x) = extractor in x M (R,M);;

Method vectors are defined by abstracting the super class.

5.3. OBJECTS AND INHERITANCE 113

let pointM super =
let getx (R,M) = R.x
and setx (RM) x = Rx + x
and move P x = send setx (Object P) (x + send getx (Object P))
and print P = print_int (send getx (Object P)) in
(super || {getx; setx; move; print});;
let pointC = Class (pointR, pointM);;

Since the object constructor is only a type coercion, that is Object P and P are the same value, this
approach is more efficient than the previous one; it does not sucessively disassemble and re-assemble
the state and the method vector.

Creating a new class does not involve recursion any more:

let new (Class (R,M)) v = Object (R emptyR v, M emptyM);;
For instance,

let p1 = new pointC 1 in send print pl;;
| 1— @ unit = ()

All examples of the previous section can be re-programmed in the new style, keeping entirely within
core ML-ART.

5.3.4 Extensions

We have shown how to program most object constructions. It is lacking the ability to implicitly
forget methods and coerce objects to their counterparts in super classes. The same message print
can be sent to both points and color points. But points and color points have two incompatible
types and can never be stored in the same list. Some languages with sub-typing allow this and
would take the common interface of all objects that are mixed in the list as the interface of any
object of the list.

In order to be able to forget fields in ML-ART, it would be necessary to give a more general
type to the extension primitive:

[{e=1}):{lap; a1} = as — {f:static.e.as ; aq}

Here, fields of record types should be tripples m, f, 7 where m is !, static, or a variable and f is
abs, pre, or a variable.

Such typing would be sound. However, to get the benefit of the richer structure, ML should
be extended with polymorphic recursion. so that the recursion involved in object construction
or message passing can be typed with polymorphic flags. Currentlty, the vector of methods in
recursive objects is built as a fix point and can only be assigned a monomorphic type.

In order to allow implicit coercions of objects to their super classes some other kind of polymor-
phism must be used. Adding sub-typing could be one. Type-checking with non structural sub-types
may find a solution along the lines of [4]. Objects with type inference but top-level class definitions
have also been studied in [30]. Another interesting investigation, and probably the most promising
are type isomorphisms of Di Cosmo [36]. It can be expected that they would allow to turn some
pre flags into flag variables after the recursive objects have been created.

114 CHAPTER 5. PROGRAMMER LES OBJECTS

Conclusion

Programming objects with ML-ART is an interesting experiment, that primarily helps to under-
stand objects in several ways. The unavoidable feature in object-oriented programming is message
passing. Polymorphic access is required and it suffices to model very simple objects. The next step
involves concealing the internal state of objects, either by value abstraction or type abstraction.
Hiding by type abstraction has proved to be both easier and simpler. The concept of inheritance is
essentially method sharing in a structured way. Polymorphic record extension is sufficient for simple
and multiple inheritance. Slightly less important, classes are just a way of structuring inheritance.

As opposed to the encoding in F¥ that requires a lot of systematic, but still necessary, type
information, all our example could be written in a natural ML style. This allows us to assert that
no syntactic construct is needed for programming objects in ML-ART. Programmable objects are
easier to understand than primitive objects; there is no need to learn a new language, instead
object-oriented programming can be discovered progressively.

We have presented two programming styles for objects but other interesting ones can certainly
be found. Some of them could be offered in libraries to allow the user to choose the complexity
of his objects that is consistent with the level of his problem. A beginner would probably adopt a
style from the library while the expert would define his own one.

The language ML-ART is a powerful extension to ML. Record types make declarations of record
data structures optional. Recursive types may be quite useful in a few other circumstances, however
quantified types, through type declarations, seem to possess the degree of higher order needed in
practice; type information, carried by constructors, keeps the language very close to ML and make
it as easy to use.

The main limitation of our objects is their inability to coerce objects of their super classes.
Improvements of the type system should be made to address this problem, this being contingent,
however, on finding a satisfactory solution to the second problem of non-functional recursive values.
Both of these problems are interesting and worth further investigation.

Last, but not least, polymorphic records used in ML-ART can be compiled very efficiently. The
language itself has been implemented as an extension of Caml-Light.

Acknowledgments

I am indebted to Benjamin Pierce for convincing me that abstract types were the correct approach
to objects, and for generating many fruitful discussions. This work evolved as a result of my spring
visit to Bell Labs, through seminar discussions on objects. An earliest version of objects was also
written during this visit.

Appendix

5.4 Definition of the language ML-ART

Notation For brievity, we will write (7) for shared templates in this section while we wrote row 7
in the examples. We also write pa.7 instead of rec a.7.

We formalize an extended language with locations (store adresses) and record values. We assume
given a denumerable set of locations. Letter | ranges over locations. Record values are finite maps

5.4. DEFINITION OF THE LANGUAGE ML-ART 115

from locations to terms. When defined by enumeration, priority is given to the right, that is, in
{1 =ay,...4, =ap,t=a}

¢ may be one of the ¢;, but field ¢ is always mapped to a.
The syntax of language expressions, types and typing judgements are defined in figure 5.1.

ax=z|c|funz —alaa Expressions
| K a|let Kz =aj inay | strip K of a | {{ = W} |
cu=cq | e Constants
co = (|| {¥="_}) Dangerous constants
o= {l=}) 1) | (-l<+_)]|copy |... Safe constants
bu=xz|cyb|ce|funz — a|let Kz =binb Non expansive terms
K b| {7 = 0}
vi=c|funz —al|{{=7}| Ko Values
wa=wv|l

Figure 5.1: Expressions.

5.4.1 Expressions

The syntax of expressions is given in figure 5.1. Expressions are untyped. Values as a subset of
expressions. Non expansive expressions are a subset expressions whose evaluation is guaranteed
not to produce any side effect. The type of a non-expansive expression can be generalized.

The following type declarations are not expressions of the language:

type k(79) = K of Exist (@) 7 or type k(m9) = K of All (@) T

Instead, they are replaced by type assignment, that for sake of simplicity will be assumed in the
initial environment.

K :Vay - Exist(d) T — k(1) or K :Vay - A11(@) T — k(79) (1)

We say that value constructor K and type symbol k are paired in type assignment (1). The
expression Exist(@) 7 — 79 and A11(&) T — 79 are well-formed if

e (is linear, i.e. no variable occurs twice,
e variables @ are not in 7,
e all variables of 7 occur in either @ or 7.

Type scheme Va - o is well-formed if o is. We abbreviate sequences of quantifiers Vay - ---Vay, - o
by Vayp, - ay - 7.

The expression strip K of a is used for universal elimination: it strips of the constructor of a
value of universal type; the type of the result is an instance of of the universal type associated to K.

116 CHAPTER 5. PROGRAMMER LES OBJECTS

Thus, when K is the constructor of a universal data-type, we should now see let K z = a; in as
(used in section 5.2.6) as syntactic sugar for let z = strip K of a; in ay. The later form is
simpler to formalize. The same simplification cannot be used for existential elimination because
the above transformation would break the scope of the type anonymous type symbols introduced
by strip K of a. Thus, when K is the constriuctor of an existential data-type, the expression
let ¢ = Ka; in as both unpacks the existential and generalizes its type within the scope of
the let expression. Generalization must happen simultaneously to unpacking, hence we used a
“Let” construct. Since the expression let & = a1 in as can now be seen as syntactic sugar for
let Ky z = Ky a1 in ay where K : Vo - Exist() @ — koo is in Ag, we removed the original let
form from the core language.

5.4.2 Sorts and types

Ti=al|T— 7| par|{r}|C(T) Types

| 7.7 | ({:7;7) | abs | T pre | mut | static | ()
C:u=k|D|Q Type constants
k ::=Usual | Field | Flag | Mutability Kind sorts
7 := Type | Row (L) Power sorts
L:=0|¢L t¢ L

Figure 5.2: Sorts and types.

Symbols Kinds Powers

C (Usual,Usual) = Usual (m,m) =

(=) (Usual,Usual) = Usual (m,7) =

{-} Field = Usual Row() = Type
. (Flag,Usual) = Field (m,7) =

€:5.) (k,k) = K (Type, Row (£. L)) = Row()
abs Flag s

_pre Mutability = Flag ™= T

mut Mutability us
static Mutability U

- Usual = Usual Type = Row (L)

Figure 5.3: Kinds and powers

The syntax of types is described in figure 5.2. Their formation is further restricted twice by
kind sorts and power sorts. Kind (respectively power) signatures are non empty sequences of
kind (respectively power) sorts, written K; = k or just x when &; is empty. Each primitive type
symbol comes with both a kind signature and a power signature given in figure 5.2. Recursive
type expressions (pa.7) requires o and 7 to both be of the kind sort Usual and the power sort

5.4. DEFINITION OF THE LANGUAGE ML-ART 117

Type. Type symbols C' are universal and existential type symbols &, anonymous type symbols €,
or regular type symbols D (e.g. type list, int, etc.)

Sort metavariables in signatures mean that all forms ranged over by this meta-variable are
possible. Thus, symbols may have several signatures. However, for any term and any sort, there
is at most one possible assignment of signatures to symbol occurrences that makes the term well-
sorted. There is an algorithm that checks whether such assignment exists and, if so, computes the
assignment. Thus it would be possible to work with decorated types, instead, which form a many
sorted algebra in the usual meaning.

The most significant sorts are called “kinds”: they avoid using flag or mutablility expressions
instead of usual types. The other sorts are called “power”: expressions of power Row (L) are
templates in record types and L enumerates all labels that the template must not defined; this is
used to avoid redefinition of fields in record types. All types appearing in typing rules and typing
environments have the kind Usual and the power Type.

The above sorts allow such type expressions as {{;:abs.ay ; (2: ag.abs).(a3 — a4)} but types
that the user may see only uses the weaker kind signature (Field,Field) = Field for (£ : _;.)
symbols, which forbids such types as above.

5.4.3 Type equality

We write [7/«] the substitution that replaces free occurrences of « by 7. We use letter C' to range
other all type symbol, and letter f, and g to range other any type symbol other than (¢:), (_),
and {_}.

Type equality is the smallest congruence that satisfies the equations of the projective algebra
and those for recursive types. The rules for congruence are

TI =Ty TL = T2 Ty = T3

(REFLEXIVITY) (SYMMETRY)

(TRANSITIVITY)
T =T1 T2 = T1 T1 — T3

™ =T TR =T,

C(r1,y...m) =C(7,...7))

(CONGRUENCE)

For sake of simplicity, we will include equivalence rules (RELEXIVITY, SYMMETRY, and
TRANSITIVITY) in the notation, and omit them in derivations.

Type equations of the projective algebra are, for any type symbol C other that (¢ : ;_), (1),
and {}, for any labels ¢, £9, and ¢,

(01 : ag;ly : ag;ap) = (Ut ags byt ag;ap) (LEFT-COMMUTATIVITY)
f (6 : oq;a2> = (£: f(d1); f(d2)) (DISTRIBUTIVITY)

(fla)=f (@) (ROW-DISTRIBUTIVITY) () = (£: a;{a)) (IDEMPOTENCE)

The equational theory of projective types is regular and collapse free, but non linear. It is studied
and proved syntactic in [104] in the absence of recursive types. We show below that this result
extends to recursive types.

The recursive type expression (ua.7) is well formed only if both @ and 7 have the power sort
and if 7 is neither a type variable, nor another (u_._). This guarantees that 7 is contractive in «
and that pa.7 is well-defined. In practice, when we write types, we may require that « also be
of power sort Type; this would not be a true restriction since there cannot be cycles along a path

118 CHAPTER 5. PROGRAMMER LES OBJECTS

composed only of row symbols. However, we do not impose such a restriction in the formalization.
The symbol p_._ acts as a binder, and in examples, we always assume that bound variables have
been renamed properly in order to avoid capture.
Equality for recursive types is taken from [5] (all types are assumed to be well-sorted) and
defined by the set of inference rules (u):
T — T2

———— (#-CONGRUENCE) po.T = T[pa.t/a]l (FOLD-UNFOLD)
HA.T1 = UQ.TY

If 7 #6(1) and 7 # pB.7" (2), n = rinjol A = Tin/al (CONTRACT)

TL = T2

The condidtions (1) and (2) of CONTRACT implies that 7 is contractive in «. If 7 is neither a
variable (1) nor another term of the form po’.7’ (2). These conditions can always be enforced when
T is contractive. In fact, we will furthermore restrict use of rule CONTRACT to cases where o € T,
since otherwise the rule degenerates into a transitive rule.

Note that rule u-Congruence is derivable from other rules.

Proof: Prove first that the system without this rule is stable by substitution (Same proof as below,
but without case y-Congruence). Assuming 71 =,g 72, the equality 7i[pa.mo/a] = m[pa.m/a]
follows by substitution, and we conclude with the following derivation:

pamy = TolponTy/Ql
Ti[poery /o] =g T2lponTs/q (TRANSITIVITY)

poet = Ti[pa.t /af porry = mfpans/e] (contract)
Ro.Ty =pp HOLTY

Therefore, in proofs, we always asume that rule y-CONGRUENCE does not appear in derivations.

5.4.4 Typing rules

o =7 |Exist(@) T — 2| A1L(&) T = 2 |Va -0 Type schemes
Az=0Az:0]A,f Typing environments
zu=zx|c| K|l

Au=Ata:0|AFK:o Judgements

Figure 5.4: Type schemes and typing judgments

Well-formed typing environments are recursively defined as follows. The empty environment is
well-formed. The environment A, <) is well-formed if A is well-formed and does not introduce €.
The environment A, z : o is well-formed if A is and if all symbols of o are predefined or introduced
in A. Moreover, if z is a location, then o must be a simple type 7. Last, type assignment formula
At _: o is well-formed if the environment A, _: o is. We also asume that all typing contexts are
well-sorted, but we omit sorts in the formalization. (In particular, must be used with consistent
sorts.)

5.4. DEFINITION OF THE LANGUAGE ML-ART 119

We assume that the initial environment Ay assign the types schemes described in figure 5.5
to record constants. We also assume that Ay contain paired bindings for type constructors of
existential or universal types. The conditions that type constructors K; are paired with a unique
type symbol k; is essential to ensure type soundness. This makes the constructor unique for the
corresponding type.

) : Vag, a1, a0 - {L: g pre.a; ; as} — o
) : Vo, a1, a9 - {€:mut pre.ay ; as} — @3 — unit
(-1 {€="_}):Vag,a1, a0 - {l: g ; 1} = a9 — {{: staticpre.as; a1}
) : Vag, a1, a0 - {l:ap ; a1} — ag — {{:mut pre.ay ; oy}
copy :Va-{a} — {a}

K; : Vay - Exist(d) 7 — ki(7p)
Kj :Vay - A1L(a@) T — kj(70)

Figure 5.5: Type schemes of record primitives

o =71 |Exist(a@)m — 7o | ALL(@) T — T Type schemes
|Va - o

Az=0Al:17|Az:0]|Ac:o Type environments
| A,K 10| A,Q

Aw=Ata:0|AFK:0|AlFo Judgements

Figure 5.6: Type assignment formulas

We write F'V(A) for free variables of A. Type schemes and type assignment formulas are given
in figure 5.6. Typing rules are given in figure 5.7. Variable z ranges over identifiers x, ¢, and K.
Rules EXI1ST and ALL should be seen as existential and universal introduction rules.

In a derivation of a typing judgement, GEN rules can only be used as the last ones or before the
left hand sides of LET and FORALL rules, since these are the only premises that allow type schemes.
We write GEN* for a possibly empty sequence of GEN rules. Moreover, we can always assume that
it is used as much as possible on the left hand sides of LET rules. We call such derivations canonical.

In the equational theory that is considered, the arrow type symbol is decomposable, that is:

TN T =T=—=T=T3 >4 \NTI =T3ANTo =14

As a result, it is always posssible to move rule EQUAL* around all other typing rules so that it only

occurs above left-side premises of APP rules and as the last rule of the derivation. For simplicity

of presententation, however, we will omit rule EQUAL* and instead consider types modulo the

equational theory. We will only emphasize places where the presence of rule EQUAL* is essential.
The following properties of typings will be used.

Proposition 5 (Stability by substitution) If At a: 7 then u(A) F a : u(r) for any substitu-
tion u such that the formula is well-formed.

120 CHAPTER 5. PROGRAMMER LES OBJECTS

z:Vaj-T€A (GET) AFa:m L= 70 (EQUAL¥)
AF z:7[T/dj] Ata:m
AFb:o ag FVg(A) (GEN) Az:mha:n (Fun)
AFb:Va-o AFfunz —wa:179— 7

Al—al:Tl—)To Al—CLQ:Tl (APP)
Al ajas:m

AbFwv:m Al v, T,

(RECORD)
AF{ly =vy,... 4y =vp}: {1: pre.Ty ;... 0y pre.7, ; abs.a}

Ata:1 AF K :Exist(T) 70 = 71
AFKa:n

(ExisT)

At a:Va-m AFK:Al1(@) 19 — 71 (ALL)
AFKa:n

Alar:m AF K :AL1(T) 19 > 7y

(STRIP)
AF strip K of a1 : 19

AFK: V&l,&j . EXiSt(C_fj)TO — T1
Al—CLl:VC_fl-Tl A,Qj,ﬂ)tvo_fl-To[ﬁj(Tl)/O_fj]|—CI,2:T2 (

LET)
AbFlet Kx=a;inag: ™

Figure 5.7: Typing rules.

Proposition 6 (Extension of environment) If the type-assignement A and B are identical ev-
erywhere except maybe on variables that are not free in a, then A& a : o is derivable if and only if
BFa:o s

These properties are proved in [102] for core ML when types are taken modulo a regular equa-
tional theory. A regular theory is one such that two equal terms always have the same free variables.
All equations for the projective algebra and for recursive types are regular. The proofs of [102]
easily extend to the language ML-ART.

In [102] we also show that the language has principal typings if the equational theory has
principal unifiers, and that type inference then reduces to unification. Although not stated explicitly
for recursive types, the results and proof of [102] extend to the case of recursive types. The proofs
also extend to the new constructs of ML-ART. Thus, the algorithm for type inference without
recursive types is sound and complete in the presence of recursive types.

5.5 Syntactiness of recursive projective types and type inference

The aim of this section is to show the syntacticness of the equational theory presented in the
previous section. We show that the axioms of the theory E form a syntactic presentation for pu-
equality. This means that the obvious mutation rules derived from the axioms (given in figure 5.9)

5.5. SYNTACTINESS OF RECURSIVE PROJECTIVE TYPES AND TYPE INFERENCE 121

preserve sets of unifiers (i.e. they are sound and complete) for uE-equality. This was proved in E
in [103], but only for E-equality (no recursive types). The proof used results from [104]; it does not
easily extend to pE-equality (recursive types). Here, we provide a direct proof of syntacticness,
reusing the idea of canonical forms introduced in [100].

C(Ti)iel,p - C(Til)iEI,p e

T DECOMPOSE
a)i€P A Af(og) €P = e
a; =T, =1, i€[l,p]
flm)i€P = fl(rh)IEhe = ¢
COLLISION(f, f") it f #f'

L

Figure 5.8: Rules for unification in the empty theory.

In this part we write 7; for a tuple of types. The indice i range over a set I, usually left implicit
from the context. By default, we choose those indices distinct from integers, so that, when i is
implicit, 71 and 7; are independant types, i.e. 71 is not 7; for some 7. We write =, for pE-equality
in the equational theory (or simply = when there is no ambiguity) and = for textual equality.

As usual, substitutions are sort-respecting mappings from variable to types that are the identity
almost everywhere. Substitutions are extended to mappings from types to types by congruence.
Therefore (ua.7)[10/] is by definition equal to pa.(7[79/p]) (by naming convention « and «aq are
dinstinct).

Lemma 7 The relation =, is stable by substitution.

Proof: We show the lemma for a substitution [79/ag]. It follows for more genral substitutions by
composition into smaller substitutions. By induction on the size of the derivation. We assume
given a derivation of 71 =, 7 and that any substitution of provably equal term with a strictly
smaller derivation are equal. We show 71[19/] =, T2[70/ 0.

Case Congruence: trivial.
Case Axioms: immediate, since the axioms are closed by substitutions.

Case FOLD-UNFOLD: 7 is pov.7 and 72 is 7[71 /o] and are equal. We asume that o does not appear
in 79. Terms 71 [79/ap] and T2[19/ap] are respectively pa.(7[r9/ap]) and (7]70/v])[7[70/ 0]/], and
therefore are equal by rule FOLD-UNFOLD axiom.

Case CONTRACT: 71 and 72 are 7[71/a] and 7[ma/a]. Then, assuming that ap and « are dis-
tinct and that « is not free in 79, 7i[r9/v] is T[10/ap][T1[T0/w]/a] and similarly m[my/ap] is
T[10/aw][T2[T0/ 0]/], therefore, by rule CONTRACT, 71[70/] and 72[19/ap] are equal. If o and oy
are equal or « appears in 79, we may replace a by o' and 7 by 7[o/ /] in both premisses. [|

Two substitutions are pF-equal if they have the same domain and the same variables are
mapped to pF-equal terms. This property of the definition extends to substitutions of terms:

122 CHAPTER 5. PROGRAMMER LES OBJECTS

al i =bl i =e

MUTATE(a, b)

bl asa = e
oA T =L ;"

! - "
o =d’.L:7;a

a7 = (o) =e

w0 T MUTATE(a, Row)

(a) =eANT=aANT =«

fR.ow (L) (Ti)i€1,l7 Zql: a; o =e

!/ -
aL:a;a =e

o - nype (ai)iel,p

o = fRow (a.L) (a;)iel,p
/
[

MUTATE(f, a)

Jo, aIELP A
TiiaL:ai;a i€ [l,p]

fRow(L) (Ti)iel,p - <Oé>L e

MUTATE(f, Row)

(@) = e
)€ AL = fIVPe (q)PELP
7 = ()" i€[l,p]

Figure 5.9: Mutation rules in the generic algebra of record terms

Lemma 8 Two pE-equal substitutions map the same term to two equal terms

Proof: By induction on the size of the term 7, using congruence. [

We define the top symbol Topr of a type 7 to be C if 7 is C(1q, ... 7,) or Top(ry) if 7 is pe.7y. It
is undefined for variables. We define the projection 7/; as 7; if 7is C(71,... 7, ... 7,) and (71/;)[71/]
if 7 is pa.7y. It is undefined if 7 is a variable or 7 is higher than the arity of Top(7).

Lemma 9 Two pE-equal non variables terms of the power Type have the same top symbols and
the same projections.

Proof: By induction on the size of the equality derivation and case analysis on the last rule applied.
All cases are easy, in particular since no axiom has power Type. [|

On row terms, we define the projection 7/, on label a, the restriction 7\, on label a, the main
symbol Main(7), and the extended projection 7//;, inductively on the size of the term and by cases

5.5. SYNTACTINESS OF RECURSIVE PROJECTIVE TYPES AND TYPE INFERENCE 123

on its top structure:

T T/a T\a Main(7) un

(a:71;72) Ty T Top(71)(1) | (a: Tl/i;Tg//i) (1)

(b:m3m2) || T2 | (b:T157200) || Top(m1)(1) | (b 71y557m2/) (1)
f(7) f(riga) | f(Tina) f Ti

(1) 1 (1) Top(71) ((11/3))

(1) We restrict the definition of Main(7) and 7/, in the two first lines to cases where Main(7) and
Main(T/a) are equal. The projection on a and restriction on a are always defined (for well-typed
row terms).

The definition is well-founded, since recursive definitions are always called on immediate sub-
terms of the original term, and there is no infinite path composed of only symbols of the power
sort Row. Therefore, a result answer or the undefined answer will be reached in a finite number of
iterations.

Lemma 10 The above operations are compatible with pE-equality, i.e. given pE-equal row terms
their projections (respectively restrictions and extended projection) are either both undefined or
wE-equal, and their main symbols are either both undefined or identical.

Proof: By induction on the size of the proof of equality, then by cases on the last rule applied. We
write 7' and 7" for the two pE-equal terms. We write #(7) any of the operations 7/4, 7\q, Or 75,
but used consistently in the context.

We first notice that whenever #7 is defined, then #(6(7)) is 0(#7) (substituvity of the defini-
tion).

Case Congruence: By congruence, the top symbols of 7/ and 7" are the same, and the direct
subterms of 7/ and 7" are puFE-equal (which a smaller derivation). By induction, their #-projections
are also pFE-equal. By congruence, we can rebuild two versions composed of the corresponding
subterms that are pF-equal. This shows that #7" and #7” for any #-projection.

Case Fold-Unfold: This is immediate since the definition of each operators is defined by unfold-
ing: #(pa.7) is defined as #(7[pc.7/a]). Similarly for Main.

Case Axioms of E/: All cases are easy, since the definitions have been written exactly to commute
with E-equality.

Case Contract: Assume that 7 =, 7[7¢/a] when € is ' or . Assume that « does appear in 7.

Since « has power sort Type, the operation # is defined on 7¢ whenever it is defined on 7. Then it is
also defined on 7”. The terms 7¢ and 7[7¢/«| are pE-equal. By induction hypothesis, they remain
pE-equal by any #-projection. Therefore #7¢ and (#7)[7¢/a] are pE-equal. Since by hypothesis,
7" and 7" are puFE-equal, the two substitutions [7'/a] and [7”/a] are also pE-equal; hence, so are
#7" and #7".

Othercases: all operations are undefined.

Corollary 11 It immediately follows that

124 CHAPTER 5. PROGRAMMER LES OBJECTS

(E1) If (a : T1;72) =pk (@ : 73;72) then 71 =, T3 and 7o =,k T4

(E2) If f(1i) =up [(7]) then 7y =yup 7.

The properties (E1), (E2) ensures that standard decomposition rules remain complete for pFE-
equality.

Lemma 12 A row term 7 for which both the projection on label a and the restriction on label a
are defined is pE-equal to (a : 7/q5T\a)-

Proof: By induction on the size of 7 and cases on the top symbol of 7

Case (a: 11;72): By definition 77 and 75 are T/q and 7\,

Case (b : m;72): By definition (a : 7/,;7\,) is equal to (a : T9/4; (b @ T1572\4)), Which by left
commutativity is pE-equal to (b: 715 (a : T2/4; T2\4))- By induction hypothesis the right subterm is
equal 79 and by congruence the whole term is pF-equal to 7.

Case (71): By definition, (a : 7/4;7\,) is equal to (a : 71;(71)), which by the idempotence axiom
7 is pFE-equal to (1).

Case f(r;): By definition (a : 7/4;7\,) is equal to (a : f(7i/e); f(7i\e), which by distributivity is

pE-equal to f(a : 7yq; Ti\o)- By induction hypothesis, each subterm (a : 7j/4; 7i\q) is pE-equal to

7;, thus by f-congruence, it is pE-equal to 7. [|

Corollary 13

(E3) If (a : T1;572) =ur (b : 73;74) then there exists a term 75 such that 0 =, (b : T1;75) and
T4 = (a:712;75).

(E4) If (a : T1;72) is equal to (1), then T\ =, T and 7o =, (7).

This ensures the completeness of the first two mutation rules.

Lemma 14 A row term 7 with extended top symbol f is pE-equal to f(7; el

Proof: By induction on the size of 7 and case analysis on the top symbol of 7.

Case (a: 71;72): Then f is the top symbol of 71 and the extended top symbol of 75. Therefore, by
induction hypothesis 73 is equal to f(72/; ‘€l Since by definition, 7; is pFE-equal to GV €y the
term 7 is pE-equal to (a : f(71/3); f(79/:)). By distributivity it is pE-equal to f((a : 71/5; 72//:) el
which is by definition f (7).

Qas(e §T1>: Then Top(71) is f and f(((11))/ €l ig F(ry3)) €Iy This is E-equal to ((f (115 i€lyyy,
l1.e. (T)1.

Case ¢g(7;): Then g must be f and there is nothing to prove.

Corollary 15

(E5) If (a : 71;572) =ur f(7i), then there exists 7], 7', and T3 such that 7, =, (a : 7/;7]") and
11 =ur [(1]) and 2 = f(1]).

(E6) If f(mi) =uE (T), then Top(t) is f and 7, =, (1/;)-

This ensures the completeness of the last two mutation rules.

Proof:

5.6. SEMANTICS 125

Case E5: The term (a : 71;72) has main symbol f, thus it is pE-equal to f(a : 71/ 72//;) (1). By
distributivity, it is pE-equal to (a : f(71;); f(72/1)) (2)-

From (1), we get by property (E2) that 7; =, (a : 71/4; 72/;). Form (2), we get by property (E1)
that Tl =uE f(Tl/l) and T2 =uE f(TQ//Z)

Case E6: The term (7) has main extended top symbol f, thus it is p-equal to f((7/;)). By
property (E2), we get that 7; is equal to (7).
|

In summary, we have shown that decomposition and mutation rules are complete. They are
sound by constructions. Thus, each of them preserves pFE-equality. Hence the axioms E form a
syntactic presentation of the theory of recursive projective types. Rules of figure 5.9 together with
the rules for unification in the empty theory 5.8 provide an algotithm for pFE-unification when the
input problem does not have recursive types. To allow recusive types as input, we simply add the
rule

BT =€ (, DECOMPOSE)

Jaa=1=c¢
(since p and 3 are bindindes, this implicitly assume that « is not free in e.) The rule p-Decompose
is sound and complete. For soundness, assume that S is a solution of the conclusion. Let S’ be the
restriction of S outside of . We can derive:

S(r) = S'D)IS(@)/a] _ pau8'(r) =up S'(7) peeS' (1) o]
S(7) =iz pet.S'(7)

Since pe.S'(7) is S(pa.7), by transitivity with S(7) =, S(e), S is a solution of the premise. For
completeness, asume that S is a solution of the premisse. We can always assume that S does not
affect «. Since pa.7 is pFE-equal to T[ua.7 /], the stability of puFE-equality by substitution implies
that S(pa.7) is pE-equal to S(r[pa.7/a]) (1). Let S" be S + [S(pua.7/a). The equality (1) can be
rewritten into S(«) =, S(7), hence the conclusion.

Since rule p-Decompose strictly decreases the number of p symbols, it can always be applied
first to transform a system of multi-equations with recursive types into an pE-equivalent system
of multi-equations without recursive types. The application of other rules in any order terminates,
since they are the same set of rules that for F-unification (see [104, 103]) but the occur check has
been removed. In fact, since no rules actually introduces recursive types, rule y-Decompose does
not need to be applied first, and can be freely combined with other rules. Since no rule introduces
a disjunction, we deduce as a corollary that unification for recursive projective types has principal
unifiers. (A principal unifier can straighforwardly be read from a system of multi-equations in
canonical form.)

CONTRACT)

5.6 Semantics

We give a call-by-value store reduction semantics to ML-ART, using the formalism of [47]. Evalua-
tion of programs is defined on pairs a/s of an expression a and a store s. The evaluation is defined
by redex rules and an congruence rule allowing reduction in any evaluation context. Stores and
evaluations contexts are defined in the figure 5.10. The small-step reduction relation — is defined
in in figure 5.11.

We say that store s agrees with typing A, and we write I s : A if both s and A have the same
location domains, and for any location [of their domain A F s(I) : A(l). We call a store extension
of A any extension of A with location typing assertions (I : 7). We write a;/s; C aa/sy if

126 CHAPTER 5. PROGRAMMER LES OBJECTS

su=[ly = vy,...lo — v9] Stores

E:=][]]|Ea|vE|let Kx=Fina|K E|strip K of E Evaluation contexts

Figure 5.10: Values, stores and evaluation contexts

(fun z — a) v/s—¢ alv/z]/s Fun

let Kz = K vina/s—.alb/z]/s LET
strip K of Kv/s—cv/s STRIP

{6 = Wi} || {1 = v}/s—c copy {{; = W, L =1}/s,l v ifl¢s ¢l EXTEND-M

{l; =w;} || {€ =v}/s—¢ copy {¥; = W, £ =v}/s if ¢ ¢ EXTEND-S
{t=w,b; =@} || {{€ =v}/s—rccopy {{; =W, £ =1}/s,l »v ifl¢s OVERRIDE-M
{{ =w,l; =w;} || {£ =v}/s—¢ copy {¢; = W;, L =v}/s OVERRIDE-S
{...;0=v}L]s—.v/s ifles Dort-S
{i.,0=1}L]s—¢s(l)/s ifles Dor-M

{.. =1}l v/s—cv/s,l v ifles MUTE

copy {7 = 01,0 = v} fs—r AT =10 =) /s = s(@}) 6T ¢ o Cory
E[al]/31—> E[CLQ]/SQ if a1/31 —¢ CI,Q/SQ CONTEXT

Figure 5.11: Reduction-rules

e for any environment A, any type 7 such that Ay a1 : 7 and IF s1 : Ay, there exists a store
extension A of Ay such that As Fag: 7 and I+ s9 1 Ag,

e a9 is non expansive whenever g is and then As may be chosen equal to A;.
The soundness of the semantics is formalized by the two following theorems:

Theorem 11 (Subject Reduction) If ay/sy — a/s then ag/so C a/s.

Theorem 12 (Normal forms) Let A be a store extension of the initial environment Ay. If A+
a:7 andt s: A and a/s is in —s-normal form, then a is a value.

The second theorem asserts that well typed terms that cannot be reduced are values, thus the
evaluation is never stuck. It is proved by structural induction on the normal term, and by case
analysis on the top structure of the type. Their is no difficulty but, at the difference of ML, types
have to be taken modulo the axioms.

Subject reduction is a straightforward combination of redex contration and context replacement
lemmas given below.

Lemma 16 (Context replacement) For any one-hole context E, if ay/s1 C ag/s2 then
Ela1]/s1 C Elas]/s2.

5.6. SEMANTICS 127

By construction, the relation C is reflexive, transitive; context replacement says that it is also
increasing. The lemma is proved independently for each one-nod context, then the general case
follows by induction on the size of the context.

Proof: Let E be a one-nod context. Let A; be a type environment and 7 a type such that A
Elay] : 7 (1) and IF oy : A;. It follows from the definition of generalizable terms, that if Efa;] is
generalizable term then so are, successively, a1, ag, and E[az]. We show that there exists a store
extension Ay of A; such that As Fag : 7 (2) and I+ oy : Ag.

Case F is let K z =[] ina: A canonical derivation of (1) ends as:
(3) AilFar:m (GEN*) AIFK: V&I,C_fj . EXiSt(C_fj) To — T1

All—a,l:VC_fl'Tl Al,ﬁj,l‘:V&l-To[Qj(Tl)/&j]|—CI,:7' (
AiFlet Kz=[a]ina: 7

LET)

By the induction hypothesis applied to (3), we know that there exists a store extension Ay of Ay
such that As F ag : 7. If a1 is non expansive then so is ay and A may be chosen equal to A;.
Otherwise, the sequence of GEN rules is empty and the sequence of y is also empty. In both cases,
we can prove As F ay : V@i - 79. In the right premises, we may extend the context replacing A; by
As. We conclude by applying rule LET.

Case E is K [|: A canonical derivation of (1) may end as:

Al bar:m Al F K :Exist(Th) 1 — T

(ExisT)
AiFKar:T

By induction hypothesis applied to the premisse there exists and extension As of A; such that
Ao Fao : 7. We can extend the context of the right premisse and conclude with an EXIST rule.
Otherwise, a canonical derivation of (1) ends as:

(7) A1 F a1 T1 (GEN*)
All—al:Vd'l-Tl All_KiAll(C_fl)Tl—)T (ALL)
AFKa:T1

We reason as for the LET case and to show that there exists an extension A, of A; such that
Ao Fao : V@ - 1. We can extend the context of the right premisse and conclude with a ALL rule.
In both cases, A2 may be taken equal to A; if a is generalizable.

Case F is strip K of a;: A canonical derivation of (1) of the form:

All—alzﬁ All_K:All(d'g)Tg—)Tl

(STRIP)
A FstripKofay: 7

where 7 is of the form 7o[7;/c;]. The induction hypothesis applied the left premisse shows that
there exists an extension A; of A; such that As b as : 7. We can extend the context of the
right premisse and conclude with a STRIP rule. The context Ao may be taken equal to A; if a is
generalizable.

Case F is F a or v E: They are similar to the previous case.

128 CHAPTER 5. PROGRAMMER LES OBJECTS

Othercases: The expression E[a] is typed as the application of a primitive; these are sub-cases
of v E.
|

Lemma 17 (Redex contraction) If ai/s; — az/ss then ai/s1 C az/ss.

The proof can be done independently for each redex. All cases are easy once we have proven the
right lemmas.

Lemma 18 (Term replacement) If the formulas At v :Vag -1y (1) and A,z :Vag-1oFa: 1 (2)
are provable and if bound variables of a are not free in b, then At alb/x]: 7 (3) is provable.

Proof: The proof is by induction on the structure of a. We write Ag for A, x : V&g - 79.

Case a is z: The terms a[v/z] and b are equal. From (2), we know that 7 is 79 where all variables
dp have been substituted. Stability by substitution applied to (1) proves (3).

Case a is y: The term alv/z] and a are equal.

Case a is let Ky = a; inag: A canonical derivation of (2) ends as:

(3) Agtbar:m (GEN*) Ay K : V&'l,&j . EXiSt(&j) To — T1

AO F a1 :Va1 T (4) A(),Qj,y : V&l . TQ[Q]'(TI)/&J'] F as . T
ApFlet Ky=aj inas: 7

(LET)

By induction hypothesis applied to (3), we get A - ai[v/z] : 71, which can be followed by the same
GEN rules.

Since y is not free in v, we have A, Qj, y:Vaq -1 Fb:Vag- 1 (5) by extension of environment
lemma. The induction hypothesis applied to (5) and (4) (in which the order of assignment may be
exchanged) proves

A, Qj,y :Vay - Tg[ﬁj(ﬁ)/d'j] Faglv/x]: T

We conclude by a LET rule.

Case a is K a; and K: A canonical derivation of (2) may end as:

(6) AgFai:m Ao F K :Exist(Ta) 1 — 7

(ExisT)
Ay Kaq:T

Applying the induction hypothesis to (6), we get Ay F a1[v/z] : 71, from which the conclusion easily
follows.
Otherwise, a canonical derivation of (2) ends as:

(7) A() F al - T1 (GEN*)
Aol—al:Vd'l-Tl AOI—K:All(O_Zl)Tl—)T (ALL)
AFKay: T

By induction hypothesis applied to (7) we get A F aj[v/z] : ™. Since ai[v/z] is at least as
generalizable as a1 we may applied the same GEN rules, and easily conclude.

5.6. SEMANTICS 129

Case a is strip K of a;: There is a canonical derivation of (2) of the form:

(8) Aol—alzﬁ Ao"K:All(&g)Tg—)Tl
ApbFstripKof ay: 7

(STRIP)

where 7 is of the form 7o[7;/c;]. We conclude by applying the induction hypothesis to (8) and a
STRIP rule.

Case a is a; a2 and fun x — a;: Those cases are similar to case STRIP.

Case a is {_}: Then a is a value, and variable z is free in a. The conclusion (3) follows from (2)
by context extension lemma.
|

Lemma 19 (Existential elimination) If A,Q;,z : Vayg- Tl[ﬁj(m))/&j] Fa:7, and 7 are terms
whose variables are also variables of 19 then the formula Alx : Vay - m[1j/oj]] F a @ 7 is valid
whenever it is well-formed.

Proof: Let A be a type assignement, {}; type symbols that do not appear in A, 7 and 7 be types
whose variables are also variables of .

We write (1) the term 7 where all occurrences of subterms €2;(7,) are sucessivelly replaced
(bottom up order always terminates) by p(7;) where p is the smallest substitution such that (7o)
is 71; ¢(7) is undefined if one of the u’s is.

If A,Q,BtF a: 71 and ¢(B) and o(7) are defined, then Ap(B) F a : ¢(r). Remark that ¢
is well-sorted, compatible with the structure of terms except for {; symbols. Free variables of ¢
never introduce new variables. The lemma is proved for any context B by structural induction on
a.

Case a is z: A canonical derivation ends with a GET rule. Thus 7 is an instance of B(z) by a
substitution p. The type ¢(7) equal to p(u(B(z)), i.e. (@ou)(7), which is equal to (pou)(p(B(x))),
thus ¢(7) is an instance of ¢(B(z)). The declaration of Q; can be removed from the context since
no {2; occurs in the conclusion.

Case a is let K x = a; inag: A canonical derivation of (1) ends as:

(3) 4, QjaB Fap:n (GEN*) A, Qj,B F K :Vay,dy - Exist(dg) 2 — 11 (4)

A, Qj,B H al :Va1 Tl A, Qj,B,y . V&l . TQ[Qk(Tl)/&k] F as @ T (5)
A,Qi,Bl—let Kr=ayinay: 71

By induction hypothesis applied to (3), we get A, p(B) F a1 : p(71). We can apply the same GEN
rules since F'V (p(B)) is included in F'V (B). More applications of GEN might still be possible since
the inclusion is strict in general. We can prove A, p(B) F K : Va,,&; - Exist(dy) ¢(m2) — ¢(71)
from (4) reasoning as above in the case where a is . We apply the indcution hypothesis to (5) and
conlcude with a rule LET.

Othercases: They are all similar. The induction hypothesis is applied to one of the premisse of
the last rule in a canonical derivation of (1) using compatibility of ¢ with the structure of terms.
Then, the conclusion follows by the same typing rule. [|

130 CHAPTER 5. PROGRAMMER LES OBJECTS

Proof: (of redex contraction) It is immediate to check on the reduction rules for each redex that
ag is generalizable whenever a; is generalizable. Let A; be a type environment and 7 a type such
that A; Fay :7 (1) and - s1 : A;. We show that there exists a store extension Ay of A; such that
As F aot (2) and I+ so : Ay by cases on the redex a;. Moreover, whenever ay is generalizable, we
shall have Ay equal to A;. Each case is shown independently.

Case a is (funz — a) v: A canonical derivation of (1) ends as:

(3) Av,z:mFa:T (FuN)
AiFa:m =71 (EQUAL¥)
Aiba:T =1 (4) AiFov:T (App)
A Fay: 7

Rule EQUAL here is essential. However the only possibility for 7 — 7 to be equal to 77 — 7' is
that 7 is equal to 7{ and 7 is equal to 7/. Thus we can omit the equaliyt rule and the primes. Note
that this would not be the case if we had an axiom such as (int — int) = (int — unit).

The previous lemma applied to (4) and (3) shows the conclusion with A; for As.

Case a; is let K z = K vina: A canonical derivation of (1) is

(4) AjFov:m

AP KCExAst(T) T 21y

AiFKv:n (GEN*) Al_l'— K V&'l,&j -?xist(&j) TO — T1
A1 FKov :Vc_fl Tl (5) Al,Qj,Q} : V&l . To[Qj(Tl)/&j] Fa:7

AiFlet Kz=Kwvina:T

By existential elimination lemma applied to (5), we deduce
Al,.’L' : Vd’l . T()[i’}'/d'j] Fa:T.

Necessarily, 7o must be 79[7;/&;], i.e. we have Aj,z :Vd; -1 Fa:7 (6). From (3), we may deduce
Ay FvEVYd; -T2 (7) by rule GEN. We conclude by applying term substitution to (6) and (7) with
A1 for Ag.

Case a; is strip K of Ku:

(8) Ay Fwv:Va-m
A1 "K:V&-All(&)Tg—)Tl (ALL)
All—KU:Tl All—K:All(Fg)T—)Tl
AjbFstripKofuv:T

(STRIP)

Necessarily, 7 must be 79[@/dl2], thus the conclusion follows by substitution lemma applied to (8)
with A; for As.

Case Extend-S: ay is {{; = @;} || {¢ = v} where £ is not in £;. A canonical derivation of (1)
ends as:

_Abd:T (RECORD)
Ay F{{ =d}: {{: F;pre.T ; abs} ArFwv:T (1) (APP)

A1 Fay: {¢:staticpre.7y ;; 7;: pre.7; ; abs}

5.6. SEMANTICS 131

where ¢; is static if w is a value and mut if w is a store location and the sub-derivation (1) is

AECN{e=3) ... (GET)
AL F (L] {£=)): {¢:abs ; (0;: i pre.7; abs)} — 79 — {{: staticpre.7; ; (£ 3; pre.7 ; abs)}

The equality is also important here (as in all other redexes coming from the application of a
primitive). For instance, it would be wrong if for instance pre(r;,) could be changed into abs
We can derive:

A1 = 17; : t_; A1 Fo: T0 (RECORD)
A+ {57; = w;,{ = w} : {{: staticpre.7y ; E—;cﬁl pre.7; ; abs} (2) (APP)

—

A1 Fag: {l:staticpre.7y ; {;: §; pre.7; ; abs}

where (2) is an instance of the type of the primitive copy . This proves the conclusion with A; as
As.

Case Override-S: The case were label £ is redefined is similar.
Case Extend-M: The case were label £ is mutable starts as above, and then ends with

Ay @it Asbl:img (RECORD)
Ag F{l; = W;, ¢ = w} : {{:mut pre.7q ; {;: §; pre.T; ; abs} (2) (Copy)

—

Ag Fay : {{:mut pre.7y ; ¢;: g; pre.T; ; abs}
where (2) is an instance of the type of the primitive copy and Ay is Aj,l — 79. We easily check
that Ay F s,l — v, hence the conclusion.
Case Override-M: The case were label £ is redefined is similar.
Case Copy: This case is obvious, just taking taking Al,l—;- > Al(fj) for A,.

Case Dot-S: a is {l; = ; £ = v}.L. A canonical derivation of (1) ends as:

—

Al w7 AFwv:T (1) At (0) : {¢:staticpre.T ; ({;: @, pre.7; ; abs)} — 7T (APP)
Atay: T

Form (1), the conclusion holds for A4; as As.

Case Dot-M: As above, but v is [in (1) and staticis replaced by mut in the right premise. Hence
[is in the domain of s and A; - s() : 7, thus the conclusion holds for A; as As.

Case Mute: As above, one easily shows that [is in the domain of A; and s and that both
Ay Fwv:7and Ay F s(l) : 7 holds. Hence A F 5,1+ v and the conclusion holds for A4; as As.
|

The second theorem asserts that well-typed terms that cannot be reduced are values, thus the
evaluation is never “stuck.” It is proved by structural induction on the value using the following
lemma, which is itself a consequence of syntacticness of the theory 5.5.

Lemma 20 Let A be a store extension of Ag such that A v : .

e if T is a functional type then v is a function or a constant.

132 CHAPTER 5. PROGRAMMER LES OBJECTS

e if 7 is a record type then v is a record; moreover, if T is of the shape
{l:staticpre.m ; staticmy}, field £ is defined and v(¢) is a value. if T is of the shape
{¢:mut pre.7| ; staticry}, field £ is defined and v(£) is a location.

e if T is k(11) then v is a value Kvy where K and k are paired in A.

Proof: We show separately:
e If v is a function or a constant then 7 is a functional type.

e If v is a record then 7 is a record type.

Moreover, if v(¢) is defined and is a value, then then 7 is of the shape {/: staticpre.a; ; as};
Moreover, if v(¢) is defined and is a location, then then 7 is of the shape {/:mut pre.a; ; as};

e If g is a value Kvy then 7 is a k(71) where K and k are paired.

It is immediate to show that 7 has the right shape modulo type equality. The type-consistency
property shows that equality cannot change the top structure of types, thus the set of types are
disjoint. Since all cases of values have been considered, this proves the lemma. [|

Proof: (of normal forms) The proof is by structural induction on a. Let A be a store extension of
the initial environment such that A Fa : 7 (1) for some type 7 and |- s : A for some store s. We
assume that a is a value or a/s can be reduced.

Case a is : Since A only assign types to constants and locations must be a constant, therefore
it is a value.

Case a is a; as: A canonical derivation of (1) shows that there exists a type 71 such that
AFa; :m — 7and AF as : 9. The induction hypothesis shows that either a; or as can be
reduced, or both are values. In the former case, a can be reduced. In the later case, since a has
a functional type, either it is a function fun £ — a¢ and @ can be reduced by rule FUN or it is a
primitive ¢. Then, reasoning by case on the primitive ¢, we can easily show in each case that the
shape of the value as is such that one reduction rule always applies.

Case a is let KKz =binag: A canonical derivation of (1) ends as:

(2) AFb:n (GEN*)
AFb:Va -7 AF K :Vay,d;-Exist(d;) 0 — 7

(LET)
AbFlet Kz =binay: ™

The induction hypothesis applied to (2) shows that b is a value. Since it has a K type, it must be
a value Kv. Then a could be further reduced.

Case a is strip K of a;: Easy.
Case a is K a;: Easy.

Othercases: If ais ¢, funz — a, or {Z: w}, then it is a value.

Chapter 6

Objective ML:
Une extension de ML avec des objets
primitifs

Ce chapitre, publié dans [113], est le résultat d’un travail en collaboration avec Jérome
Vousllon.

Objective ML :
Une extension de ML avec des objets primitifs

Objective ML est une petite extension de ML avec des objets primitifs et des classes au niveau
supérieur du langage. Elle est complétement compatible avec ML ; son systeme de type s’appuie sur
le polymorphisme de ML, les types enregistrements et un meilleur traitement des abréviations de
type. Objective ML offre la plupart des fonctionnalités des langages & objets, ce qui inclue I’héritage
multiple, la possibilité pour une méthode de retourner I’objet lui-méme, les méthodes binaires, ainsi
que les classes paramétriques. Cela montre que les objets peuvent étre ajoutés aux langages typés
avec inférence des types fondés sur le polymorphisme de ML.

Objective ML: an extension of ML with primitive objects

Objective ML is a small practical extension to ML with objects and toplevel classes. It is fully
compatible with ML; its type system is based on ML polymorphism, record types with polymorphic
access, and a better treatment of type abbreviations. Objective ML allows for most features
of object-oriented languages including multiple inheritance, methods returning self and binary
methods as well as parametric classes. This demonstrates that objects can be added to strongly
typed languages based on ML polymorphism.

133

134 CHAPTER 6. OBJECTIVE ML

Introduction

We propose a simple extension to ML with class-based objects. Objective ML is a fully conservative
extension to ML. A beginner may ignore the object extension. Moreover, he would not notice any
difference, even in the types inferred. This is possible since the type inference algorithm of Objective
ML, as in ML, is based on first-order unification and let-binding polymorphism. Types are extended
with object types that are similar to record types for polymorphic access. Both the status and the
treatment of type abbreviations have been improved in order to keep types readable.

When using object-oriented features, the user is never required to write interfaces of classes,
although he might have to include a few type annotations when defining parametric classes or
coercing objects to their counterparts in super classes.

Objective ML is a class-based system. Objects are records of methods. Our language copes with
most features of object-oriented programming, including methods returning self, binary methods,
virtual classes and multiple inheritance. Coercion from objects to their counterparts in super classes
is also possible.

The ingredients used, except automatic abbreviations, are not new. However, their incorpora-
tion into a practical language, combining power, simplicity and compatibility with ML, is new.

Objective ML is formally defined, and its dynamic semantics is proven correct with respect to
the static semantics. The language has not been designed to be a minimal calculus of objects,
but rather the core of a real programming language. In particular, the semantics of classes is
compatible with programming in imperative style as well as in functional style and it allows for
efficient memory management (methods can be shared between all the instances of a class).

This paper is organized as follows: the first section is an overview of Objective ML. Objects
and classes are introduced in sections 6.2 and 6.3. Coercions are dealt with in section 6.4. The
semantics of the language is described in section 6.5. Type inference is discussed in section 6.6.
The abbreviation mechanism is explained in sections 6.7 and 6.8. Extensions to the core language
are presented in sections 6.9 and 6.10. In section 6.11, we compare our proposal with other works.

6.1 An overview of Objective ML

Objective ML has been implemented on top of the Caml Special Light system [70]. We have used
this implementation, now called Objective Caml', to process all examples shown below. When
useful, we display the output of the typechecker in a slanted font. Toplevel definitions are implicit
let .. in ... For each phrase, the typechecker outputs the binding that will be generalized and
added to the global environment before starting to typecheck the next phrase.

The language Objective ML is class-based. That is, objects are usually created from classes,
even though it is also possible to create them directly (this is described in the next section). Here
is a straightforward example of a class point.

class point x0 = struct

field x = ref x0

method move d = (x := !x + d; !'x)
end;;

class point : int — sig
field x : int ref

method move : int — int

!The syntax has been slightly modified here in order to keep the concrete syntax and the abstract syntax closer.

6.1. AN OVERVIEW OF OBJECTIVE ML 135

end

Class types are automatically inferred. Objects are usually created as instances of classes. All
objects of the same class have the same type structure, reflecting the structure of the class. It
is important to name object types to avoid repeating the whole nested, often recursive, structure
of objects at each occurrence of an object type. Thus, the above declaration also automatically
defines the abbreviation:

type point = (move :int — int>

which is the type of objects with a method move of type int — int. In practice, this is essential
in order to report readable types to the user. The following example shows that these object
abbreviations are introduced when the operator new is applied to a class.

new point;;

— ! int — point = (fun>
let p = new point 3;;
value p : point = (obj)

Classes can also be derived from other classes by adding fields and methods. The following example
shows how an object sends messages to itself; for instance, if the scale formula is overridden in
a subclass, the move method will use the new scale. Here, methods of the parent class are bound
to the super-class variable parent and are used in the redefinition of the move method (the binary
operator # denotes method invocation in Objective ML).

class scaled point sO = struct
inherit point 0 as parent
field s = s0
method scale = s
method move d =
parent#move (d * selffscale)
end;;
class scaled_point : int — sig
field s : int
field x : int ref
method move : int — int
method scale : int

end

Scaled points have a richer interface than points. It is still possible to consider scaled points
as points. This might be useful if one wants to mix different kinds of points with incompatible
attributes, ignoring anything but the interface of points:

let points = [(new scaled point 2 : scaled point (: point); new point 1];;

value points : point list = [(obj); (obj)]

A few other examples are given in the paper, and an example using binary methods can be found
in the appendix 6.2.

136 CHAPTER 6. OBJECTIVE ML

Notation

A binding is a pair (k,t) of a key k and an element ¢. It is written & = ¢ when ¢ is a term or k : ¢
when ¢ is a type. Bindings may also be tagged. For instance, if foo is a tag, we write foo u = a
or foo u : a. Tags are always redundant in bindings and are only used to remind what kind of
identifier is bound.

Term sequences may contain several bindings of the same key. We write @ for the concatenation
of sequences (i.e. their juxtaposition). On the contrary, linear sequences cannot bind the same key
several times. We write + for the overriding extension of a sequence with another one, and @ to
enforce that the two sequences must be compatible (i.e. they must agree on the intersection of
their domains). We write () for the empty sequence.

A sequence can be used as a function. More precisely, the domain of a sequence S is the union,
written dom (S), of the first projection of the elements of the sequence. An element of the domain k
is mapped to the value ¢ so that z : ¢ is the rightmost element of the sequence whose first projection
is z, ignoring the tags. The sequence S\ foo is composed of all elements of S but those tagged
with foo. Finally, we write foo (S) for {k : ¢ | foo k : t € S}, that is, for the subsequence of the
elements of S tagged with foo but stripped of the tag foo.

We write # for a tuple of elements (¢;"*!) when indexes are implicit from the context.

6.2 Objects

We assume that a set of variables x € X and two sets of names u € U and m € M are given.
Variable z is used to abstract other expressions; z is bound in fun (z) a and let z = a1 in as.
Programs are considered equal modulo renaming of bound variables. Conversely, names are always
free and not subject to a-conversion: u and m are used to name field and method components of
objects, respectively. The syntax of expressions is provided below.

az=z|fun(r)a|aa|letz=aina
| self |u | {{u=ga;...u=a)} | aFm
| (fieldu=a;...field u = a ;method m = a;...method m = a)

Operations on references could be included as constants k (the ellipsis in syntax definitions means
that we are extending the previous definition; “_” marks the positions of arguments around prefix
or infix constants):

azx=...|k and kEo=ref _|(L:=_)| (1)

For the sake of simplicity, we omit them in the formalization, although they are used in the examples.
An object is composed of a sequence of field bindings—the hidden internal state—, and of a sequence
of method bindings for accessing and modifying these fields. Fields are also called instance variables.
The type of an object is thus the type of the record of its methods. In an object, a method may
return the object itself or expect to be applied to another object of the same kind. Types might
thus be recursive. We assume given two countable collections of type variables and row variables,

6.2. OBJECTS 137

written o and p, and a collection of type constructors written .

To=a|T—=7|(1,...7) K| rec a. | (T) Types
Tu=(m:m;7) | p|0 Object types
ox=Va.r Type schemes

Object types ending with a row variable are named open object types, while others are named
closed object types. In the examples, closed object types are simply written (m; : 7;°<1), i.e. the
() symbol is omitted. The row variables of open object types are also left implicit in an ellipsis
(m; : 7;,/€;..) (abbreviations explained in section 6.8 can even be used to share ellipsis). In the
formal presentation, we keep both () and row variables explicit. A label can only appear once in
an object type. This is easily ensured by sorting type expressions [104]. The distinction between 7
and 7 can also be guaranteed by sorts. Thus, we omit the distinction and simply write 7 below.
Type equality is defined by the following family of left-commutativity axioms:

(my : Ti3mg oy T) = (Mg To;my : T1;T)

plus standard rules for recursive types [6]:

(Rec) (FoLD-UNFOLD)

T =T
L rec a.7 = T[rec a.7/a]

rec a.7] = rec a.m

(CONTRACT)
T =T[n/a) Ao = T[12 /0] rec a.7 well-formed

TL = T2

Recursive types rec a.7 are only well-formed if 7 is neither a variable nor of the form rec o’.7’
(this is not too restrictive since rec a.(rec «/.7') can always be rewritten rec a.7’[a/']). This
guarantees that 7 is contractive in «, and ensures that rec a.7 effectively defines a regular tree.
Types, sorts, and type equality are a simplification of those used in [108], which we refer to for
details. Typing contexts are sequences of bindings:

Av=0|A+z:0|A+fieldu:7|A+self: 7

Typing judgments are of the form A - a : 7. The typing rules for ML are recalled in appendix 6.1.

Typing rules for objects are given in figure 6.1. A simple object is just a set of methods.
Methods can send messages to the object itself, which will be bound to the special variable self.
A simple object could be typed as follows:

A+ self: (m;: Tjje‘]> Faj: Tjje‘]

A (method m; = a;7€7) : (m; : 7,7€7)

However, an object can also have instance variables. Instance variables may only be used inside
methods defined in the same object. The typechecking of instance variables (field u; = a;)*€! of
an object produces a typing environment (field u; : 7;)*€! in which the methods are typed (rules
OBJECT and FIELD).

Instance variables also provide the ability to clone an object possibly overriding some of its
instance variables (rule OVERRIDE). In this rule, types 7, and 7; do not seem to be connected.

138 CHAPTER 6. OBJECTIVE ML

(FigLD) (OVERRIDE) '
fieldu:7€ A (fieldu;:m, € A Aba;:7)c! self : 7, € A
AFwu:t AF {{u; : a;'0)} i 7y,
(OBIECT)
A* Foa; € A* 4 self : (my : TijJ) + field w; : 7;*€! aj: Tjje‘]

At (field u; = a;'! ;method m; = ;7)) : (m; : 7;7<)
(This rule will be overridden by the more general rule of same name in figure 6.3.)

(SEND)
AFa:(m:7;7")
AbFa#m: T

Figure 6.1: Typing rules for objects

They are however, thanks to typing rule OBJECT which requires the type 7, of self and the types
7; of instance variables to be related to the same object. This is also ensured by typing the premises
in the context A* equal to A\ {field,self}. As a result, the expression (field u = a ; method
m = (method m = u)) becomes ill-typed. This is not a real restriction however, since one can still
write the less ambiguous expression (field v = a ;method m = let z = u in (method m = z)).

The rule SEND for method invocation is similar to the rule for polymorphic access in records:
when sending a message m to an object a, the type of @ must be an object type with method m of
type 7; the object may have other methods that are captured in the row expression 7'. The type
returned by the invocation of the method is 7. The type of method invocation may also be seen
below:

let sendm a = a#m;;
value send.m : (m: Q; ..) — a = (fun)

The ellipsis stands for an anonymous row variable p, which means that any other method than m
may also be defined in the object a. Row variables provide parametric polymorphism for method
invocation. Instead of using row variables, many other languages use subtyping polymorphism.
Since subtyping polymorphism must be explicitly declared in Objective ML (see section 6.4), row
variables are essential here to keep type inference. Row variables also allow to express some kind
of matching [16] without F-bounded or higher-order quantification [93, 2, 3]. Here is an example:

let min x y = if x#leq y then x else y;;
value min :

((leg: @ — bool; ..) as o) —

a — o= (fun>

The binder “as” makes it possible to deal with open object types occurring several times in a type
(this will be detailed in section 6.8). An expanded version of this type is:

rec a.(leq : @ — bool; p) — rec a.(leq : &« — bool; p) — rec a.(leq : o — bool; p)

The function min can be used for any object of type 7 with a method leq : 7 — bool, since the row
variable p can always be instantiated to the remaining methods of type 7.

6.3. CLASSES 139

a:= ...|(b) | class z =cina | newc| s#m Expressions
¢ =z | fun (z) ¢ | struct b end Class expressions
bu=0]d;b Class bodies
d ::= inherit cas s | field u = a | method m = a

Figure 6.2: Core class syntax

6.3 Classes

The syntax for classes, introduced in section 6.1, is formally given in figure 6.2. The body of a class
is a sequence b of small definitions d. We assume as given a collection of class identifiers z € Z,
and a collection of super-class identifiers written s.

We have also enriched the syntax of objects so that it reflects the syntax of classes. That is,
objects can also be built using inheritance, and fields need not precede methods.

In practice, classes will only appear at the toplevel. However, it is simpler to leave more freedom,
and let them appear anywhere except under abstraction. Technically, it would be possible to make
them first-order, that is to allow abstraction of classes; however, class types should be provided
explicitly in abstractions. The little gain in practice is probably not worth the complication (a class
can be already parameterized by other classes using modules).

The type of a class structure, sig (7,) ¢ end, is composed of the type 7, of self (i.e. the type
an object of this class would have), and the type ¢ of its field bindings and method bindings. Class
types are written . Type schemes are extended with class types.

In the concrete syntax, 7, and ¢ are combined: methods that appear in 7, but not is ¢ are
flagged wvirtual (as they are not defined); other methods appear both in 7, and ¢, with the same
type. When necessary, a type variable can also be bound to 7,. For instance, the concrete syntax

sig (a) virtual copy : « method x : int end

expands to

sig (rec a.(copy : a;getx : int; p))
method getx : int
end.

v u=sig (1) pend | T — 7y

pu=0]|p;fieldu: 7| p;methodm: 7
| v ; super s: @

ou=...|Va.vy

Typing contexts are extended with class variable bindings and superclass bindings:
A= ... |A+z:0|A+supers: ¢

We add new typing judgments A - b : ¢ and A F d : ¢ that are used to type class bodies. We
also redefine A* to be A where all field, method, super, and self bindings have been removed.

140 CHAPTER 6. OBJECTIVE ML

(FIELD) (METHOD)
A a:T AFself: (m:T;7") AtFa:r
Al fieldu=a: (fieldu: 7) A method m = a : (method m : 7)
(INHERIT)
A*Fc:sig(1y) ¢ end AF self: 1, (Basic)
Al inherit cas s: ¢ + (super s : @) AED:0
(THEN) (CLass-Bopy)
AFd: ¢ A+ (¢1 \ method) F b : @9 A*+self:1yl-b:o
Al d;b: (¢ \ super) ® po AF struct bend: sig (7,) ¢ end
(NEW) (SUPER)
AFc:sig(1y) pend 7, = (method (p)) super s: p € A methodm : 7 € ¢
AbFnewc:Ty Al s#Fm: T
(OBIECT) (CrAss-INsT) (CrAss-FuN)
A*+self:ryFb:gp Ty = (method (¢)) z:Va.ye A A+z:7Fc:y
AbE(b): Ty At z:v[T/a] AFfun (z)c:7— 7y
(CLAss-ApP) (CLass-LET)
Ata:17 =~ AbFd 1 AlFc:vy A+z:Gen(y,A)Fa:T
Atad :vy AbFclassz=cina: T

Figure 6.3: Typing rules for classes

6.3. CLASSES 141

Typing rules are given in figure 6.3. Generalization of class types Gen(vy, A) is, as for regular types,
V &y where & are all variables of y that are not free in A.

Class bodies are typed by adding each component (inheritance clause, field, or method) one
after the other. Fields are typed in A*, so that they cannot depend on other fields (rule FIELD). On
the contrary, methods may depend on all fields and super-classes that were previously defined (rule
METHOD). The INHERIT rule ensures that self is assigned the same type in both the superclass
and the subclass; all bindings of the superclass are discharged in the subclass, and the superclass
variable is given the type of the superclass. Superclass variables are only visible while typechecking
the body of the class but are not exported in the type of the class itself, as shown by rule THEN.
The rule OBJECT is more general than (and overrides) the one of figure 6.1; it corresponds to the
combination of rule CLASS-BODY and rule NEW.

When a value or method component is redefined, its type cannot be changed, since previously
defined methods might have assumed the old type?. This is enforced by using in rule THEN the &
operator which requires that the two argument sequences be compatible on the intersection of their
domains. At first, this looks fairly restrictive. But it still leaves enough freedom in practice. Indeed,
the class type can also be specialized by instantiating some type variables. Methods returning
objects of the same type as self are thus correctly typed.

class duplicable () = struct
method copy = {(>}

end;;

class duplicable : unit — sig («)
method copy : «

end

In this class type, « is bound to the type of self. Thus, objects of any subclass of this class have
types that match rec a.(copy : «; ..). Class duplicable can then be inherited, and method copy
still have the expected type (that is, the type of self).

class duplicable_point x = struct
inherit duplicable () inherit point x
end;;
class duplicable_point : int — sig (a)
field x : int ref
method copy . «
method move . int — int

end

Note that ancestors are ordered, which disambiguates possible method redefinitions: the final
method body is the one inherited from the ancestor appearing last.

Rule CLASS-LET, CLASS-INST, CLASS-FUN and CLASS-APP are similar to the rules LET, INST,
FuN and App for core ML (described in appendix 6.1). The two rules CLASS-LET and CLASS-INST
are essential since polymorphism of class types enables method specialization during inheritance,
as explained above.

2One may imagine to relax this constraint, and allow the type of the redefined method to be a subtype of the
original method. One would, however, lose a property we believe important: rule INHERIT shows that the type a class
gives to self is a common instance of the different types of self in its ancestors; as a consequence, the type of self in a
class unifies with the type of any object of a subclass of this class.

142 CHAPTER 6. OBJECTIVE ML

6.4 Coercion

Polymorphism on row variables enables to write a parametric function that sends a message m to
any object that has a method m. Thus, subtyping polymorphism is not required here. This is
important since subtyping is not inferred in Objective ML.

There is still a notion of explicit subtyping, that allows explicit coercion of an expression of
type 71 to an expression of type 79 whenever 7 is a subtype of 75. As shown in the last example of
section 6.1, this enables to see all kinds of points just as simple points, and put them in the same
data-structure.

The language of expressions is extended with the following construct:

az=...|(a:7<:7T)

The corresponding typing rule is:

(COERCE)
<7 At a:0(r)

0 substituti
A"(CL:T<:T’):0(T’) substitution

The premise 7 < 7/ means that 7 is a subtype of 7/. As long as typechecking is concerned, we could
have equivalently introduced coercions as a family of constants (_: 7 <: 7’) of respective principal
types Va.7 — 7' where @& are free variables of 7 and 7’ indexed by all pairs of types (7,7') such
that 7 < 7.

The subtyping relation < is standard [6]. We choose the simpler (and algorithmically more
efficient) presentation of [63]. The constraint 7 < 7' is defined on regular trees as the smallest
transitive relation that obeys the following rules:

Closure rules

o1 <n o1 =—=T1<1AT<T,
(ry<(thY =<7
(m:m;m)<(m:7m;7) =71 <1 AT <T)

Consistency rules

7 <7 — 179 = 7 is of the shape 71 — 7}
7 < (19) = 7 is of the shape (73)
7 < (m:7;72) = 7 is of the shape (m : 7;79)
T<0)=71=10
T<a=—=7T=aq,

Our subtyping relation does not enhance subtyping assumptions on variables, and it is thus weaker
than the subtyping relation used in [41], except on ground types.

For instance, the expression fun (z) z has type Vo, | @ < o/.a — &' in [41], while we can
only type the equivalent expression fun (z) (z : 7 <: 7') for particular instances (7,7') of (o, ')
such that 7 < 7/,

6.4. COERCION 143

Values
viu=...|fun (z)a| (w)
ve = fun (z) ¢ | struct w end
wa=0]wg;w field preceed method, no overriding
wq =method m =a | fieldu =v

Evaluation contexts

E:=]|letz=FEind|Ea|vE|E#m|(F)|new E|classz=FE,ind
E.:=]|E.a|v. E|struct F end
Fo=[]Fg;blwg; F

F; ::= inherit E; as s | fieldu=F

From classes to objects
new (struct w end) — (w)
Reduction of objects
inherit (struct w end) as s;b — w @ (b [w(m)/s#m]medom (w)
fieldu=v;w — w if u € dom (w)
methodm =a;w — w if m € dom (w)
method m = a; (field u = v;w) — field u = v ; (method m = a ; w)
Reduction of method invocation (U = dom (w))
(w)#m — w(m)[(w)/selt][w(u)/u]"<"
(w @ (field u = a, ")) /{(u = a, "V)} VY
Reduction of coercions
(a:7<:7")—a
Reduction of other expressions
let x = v ina — afv/z]class z =v ina — alv/z]
(fun (z) a) v — afv/z] (fun (z) c) v — c[v/z]
Context reduction
Ela] — E[d'] if a — o' E[b] — E[V] it b — V'
E[c] — E[d]ifc— ¢

—

Figure 6.4: Semantics of Objective ML

144 CHAPTER 6. OBJECTIVE ML

6.5 Semantics

We give a small step reduction semantics to our language. Values are of two kinds: regular expres-
sion values are either functions or object values. Class values are either class functions or reduced
class structures. Object values and reduced class structures are composed of methods and fields
which are themselves values; fields must precede methods and neither can be overridden in values.
Values, evaluation contexts, and reduction rules are given in figure 6.4.

The first reduction rule shows that objects are just a restricted view of classes where instance
variables have been hidden.

We have chosen to reduce inheritance in objects rather than classes. It would also be possible
to reduce inheritance inside classes, and reorder methods and fields as well. Our choice is simpler
and more general, since classes can also be inherited in objects.

The reduction of object expressions to values is performed in two steps, described by the four
rules for objects: inheritance and evaluation of value components are reduced top-down (first rule,
we remind that the meta-notation @ stands for the concatenation of sequences); the components
are then re-ordered (last rule) and redundant components removed bottom-up (two middle rules).

The invocation of a method (w)#m evaluates the corresponding expression w(m) after replacing
self, instance variables, and overriding by their current values. That is, the following substitutions
are successively applied:

1. [(w)/self] replaces self by (w),

2. [w(u)/ u]“Edom () yeplaces each outer instance variable u by its actual value. Inner instances
of u, i.e. those appearing inside an object (w'}), are not replaced since they are related to the
inner object. Note that w(u) is a value and does not contain free fields.

3. (w@(field u = a,""))/{{u = a,"€")}]V <Y replaces each outer occurrence of an overriding
{{u = a,"<")} by a new object built from w by overriding fields v € V by (field u = a,)*<".
Inner occurrences, i.e. those appearing inside an object (w'), are not replaced since they are
related to the inner object. Note that a, is non necessarily a value, and may contain other
outer overriding of fields, that should be replaced simultaneously, or equivalently in a bottom-
up fashion (deeper occurrences being replaced first).

Coercion behaves as the identity function: the coercion of a value reduces to the value itself.
Subject reduction can then only be proved by extending the type system with an implicit subtyping

rule: .
Ara:T T<T (SuB)

Ala:7

This means that a well-typed expression that has been reduced may not always be typable without
rule SUB. This is not surprising since explicit subtyping may disappear during reduction. Thus,
implicit subtyping may be required after reduction. It is possible however to keep explicit subtyping
information during reduction, and avoid the need for rule SUB. This would be obtained by replacing
the rule

(a:7<:7")—a

by the following rules

(v : (m; : 7'€T) < (my : 7€)

6.6. TYPE INFERENCE 145

(FUsE) (DECOMI"OSE) (1) ' (GENERALIZE) (2)
a=e A\ a=¢ flag") =f (o))=e e[r/a] ad¢T
a=e=¢ flai'h)=e A (;=al)c! da.e Na=T

(MUTATE)

(mq @ ag;ad)=(me : ag;al)=e

/. (mg : ag;ab)=e A aj=(mq : ag;) A ab=(my : ay;)

(1) In Rule DECOMPOSE, f is any type symbol, including (m : _;_) as well.
(2) To ensure termination, rule GENERALIZE must be restricted to the case where 7 is not a
variable and « appears in e but not as a term variable of e.

Figure 6.5: Unification as solving multi-sets of multi-equations

— (m; = (vftmy; 7 < 7])IE7)
(fun () a: 1 — T2 <: 7] — T)
— fun (z) (af(z : 7 <:11)/2]: T2 <0 7Y)

The counterpart is that types, although not actively participating, would be kept during reduction.
The formulation we have chosen has a simpler semantics and makes it clearer that the reduction is
actually untyped.

The soundness of the language is stated by the two following theorems.

Theorem 13 (Subject Reduction) Reduction preserves typings (i.e. for any A, if A*Fa : 7
and a — a' then A*Fad':7.)

Theorem 14 (Normal forms) Well-typed irreducible normal forms are values (ie. if Q- a: 7
and a cannot be reduced, then a is a value.)

See the appendix 6.3 for proofs of these theorems.
These results easily extend to cope with constants, as in core ML, provided d-rules for constants
are consistent with their principal types.

6.6 Type inference

Types of Objective ML are a restriction of record types. First-order unification for record types
is decidable, and solvable unification problems admit principal solutions, even in the presence of
recursion [108].

The unification algorithm is a simplification of the one used in ML-ART [108]. It is described in
figure 6.5 as a rewriting process over unification problems. This formalism was introduced in [57]
and has already been used for record types in [104]. A unification problem also called a unificand,
is a multi-set of multi-equations preceded by a list of existentially quantified variables. It is written
Jay,...qp.e1 A...eq. A multi-equation e is a multi-set of types written 7=...7,. The algorithm
assumes that recursive types pa.7 have been encoded using equations 3 a. a=r7.

146 CHAPTER 6. OBJECTIVE ML

A substitution is a solution of a multi-equation if it makes all its types equal. A solution of a
unificand is the restriction of a common solution to all its multi-equations outside of the existentially
quantified variables.

Unificands can be simplified by applying the rewriting rules given in figure 6.5. Structural
rules have been omitted: they include associativity and commutativity of both A and = and
the extrusion and renaming of existential variables. Rules FUSE, DECOMPOSE and GENERALIZE
are standard. Rule FUSE merges two multi-equations that have a variable in common. Rule
DECOMPOSE decomposes terms of a multi-equations into smaller ones. Rule GENERALIZE splits
terms into smaller terms. Thus, unificands can always be rewritten so that terms are of depth
at most one. This permits maximal sharing during unification. It also ensures termination of
rewriting in the presence of recursive types. The only difference with unification in a free algebra is
the mutation rule MUTE for left-commutativity. It identifies two terms (m; : 71;77) and (mg : T2;745)
with different top symbols (mq : _;_) and (mq : _;) provided their equality can be established by
the application of an axiom at the root.

The algorithm proceeds by rewriting multi-sets of multi-equations according to the above rules.
Each step preserves the set of solutions. Moreover, the process always terminates, reducing any
unificand to a canonical form.

A unificand is in a solved form if all of its multi-equations are merged and each one is fully
decomposed (i.e. it contains at most one non-variable term). Principal unifiers can be read directly
from solved forms. A canonical unificand that is not in a solved formed contains a clash (two
incompatible types that should be identified) and is not solvable.

The framework and the meta-theory of unificands are standard. The equational theory of object
types is a sub-case of the more general algebra of records types; for details and proofs, the reader
is referred to [104].

Objective ML does not allow classes as first-class values. Indeed, in the expression fun (z) a,
variable z cannot be bound to a class (or a value containing a class). Thus, class types never
need to be guessed. Polymorphism is only introduced at LET bindings of classes or values. This
ensures that type inference reduces to first-order unification, as it is the case in ML. Consequently,
Objective ML has the principal type property. Type inference for classes is straightforward. The
links between first-order unification, type inference and principal types are described in a more
general setting in [102].

Theorem 15 (Principal types) For any typing context A and any program a that is typable in
the context A, there exists a type T such that A+ a : 7 and for any other type 7’ such that A+ a: 7'
there exists a substitution 8 whose domain does not intersect the free variables of A and such that

" =0(7).

6.7 Abbreviation enhancements

Object types tend to be very large. Indeed, the type of an object lists all its methods with their
types, which can themselves contain other object types. This quickly becomes unmanageable [108,
40]. Introducing abbreviations is thus of crucial importance. This section presents the general
abbreviation mechanism of Objective ML and the next section focuses on abbreviating object
types. The simple type abbreviation mechanism of ML is not sufficiently powerful: abbreviations
are expanded and lost during unification and they do not interact well with recursive types. Several
improvements have thus been made to the abbreviation mechanism. First, abbreviations are kept
during unification and propagated as much as possible. Second, a larger class of abbreviations are

6.7. ABBREVIATION ENHANCEMENTS 147

accepted: abbreviations can be recursive and their arguments can be constrained to be instances
of some given types.

In our implementation, types are considered as graphs. In particular, when two types are
unified, they become identical rather than two separate, equal types. A construct has been added
to the syntax to express type graphs: the construct (7 as «) is used to bind « to 7, similarly
to the notation rec «.7. However, a main difference is that with aliases « is also bound outside
of 7. As an example, the two types ((m : a) as /) — o and (m : @) — (m : a) are different
graphs, that represent the same regular tree. There are two reasons for considering types as graphs.
First, unification rolls types. For instance, unifying types 7 = a and 7/ = (m : a) results in type
7 =7 = ((m : @) as «), rather than instantiating o to (m : ') as ¢ in both types (in the
later case, 7" would become (m : (m : o/) as)). Second, unification propagates abbreviations.
Abbreviations can be considered as names for nodes. Unifying an abbreviated type with another
type makes both types being abbreviated. For instance, unifying the argument of a functional type
to an abbreviated type may propagate the abbreviation to the result type. This is demonstrated
in the following example.

let bump x = x#move 1; x;;

value bump :
((move : int — [; ..) as a) = a =
(fun)

Nodes are shared between the argument type and the result type. The ellipsis stands for an anony-
mous row variable. When typing the expression bump p below, type ((move : int — (3; ..) as)
and type point are identified. The type of bump p is thus also abbreviated to point.

let p = new point 7;;
value p : point = (obj)
bump p;;

— ! point = (obj>

Not all the sharing is exposed to the user : sharing reveals too much of useless information.
So, only aliasing of open object types (thus row variables can be printed as ellipses) and aliasing
defining recursive types are printed. It would be possible to remove some aliasing during type
generalization, so that printed types would exactly reflect their internal representations. However,
this would complicate the implementation needlessly.

Abbreviations can be recursive. That is, in the definition of the abbreviation type (@) k = T,
the type constructor x may occur in the body 7, as long as all occurrences have the same parameters
a. This restriction is extended to mutually recursive abbreviations. It ensures that abbreviations
expand to regular trees. In the implementation, any type constructor standing for an abbreviation
caches the expansions of abbreviations it appears in. Thus, when an abbreviation is expanded
several times during the traversal of a type, it expands each time to the same type.

Type abbreviations are generalized to allow constraints on the type parameters of the abbre-
viations. This is an extension to the abbreviations of LCS [7], that were also used in [108]. In an
abbreviation definition, parameters are types rather than type variables: type (7) k = 7. All free
variables of 7 must be bound in 7. Actual arguments of an abbreviation must always be instances
0(7) (for some substitution #) of the parameters 7. Then, the abbreviation can expand to type 6(7).
For instance, if the type constructor « is defined as type (a * ') kK = @ — ¢/, then (int % bool) x
will expand to int — bool. To expand an abbreviation, the arguments are usually substituted

148 CHAPTER 6. OBJECTIVE ML

for the parameters. Instead, we choose to unify the arguments with the corresponding parameters.
The constraints need only to be enforced when parsing a type given by the user. Then, expansion
is guaranteed to succeed. Indeed, a substitution # can always be applied to an abbreviation (7) .
The expansion of 8((7) k) is equal to the result of applying the substitution € to the expansion of
(7) k. In particular, constraints are preserved by substitution.

6.8 Abbreviating object types

We will now describe how the abbreviation mechanism presented in the previous section is used
to generate abbreviations for objects. This mechanism is used to automatically abbreviate object
constructors: the expression new z will have type m — ... = 7, — (7/) Kk, where k, is the
abbreviation associated with class z.

General type abbreviations, introduced in the previous section, can be used to simplify object
types. Rather than sorting types to ensure that object types are well-formed, we require the
stronger condition that any two object types that share the same row variable must be equal. This
eliminates incorrect types such as (p) — (m : 7;p). Types such as (m : ;) — (m : 79;p), at
the basis of record extension, are also rejected. However, no primitive operation on objects can
exhibit such a type. These types can thus be ruled out without seriously restricting the language.
Moreover, all programs keep the same principal types. This restriction was implemented to avoid
explaining sorts to the user. It also makes the syntax for types somewhat clearer, as row variables
can then always be replaced by ellipsis. Furthermore, sharing can still be described with aliasing.
For instance, (m : 7;p) — (m : 7;p) is written ((m : 7;..) as a) = a.

A class definition class z = ¢ in ... automatically generates an abbreviation for the type of
its instances. For specifying it, one actually needs to add type parameters to the class definitions,
corresponding to the one of the abbreviation. That is, we should write

class (@) z=cin... (1)

where the parameters & must appear in c.

In fact, abbreviations are generated from class types. It follows from type inference that the
class definition ¢ has a principal class type 7, — ... — 7,, — sig (7,) ¢ end. Here, 7, is the type
matched by objects in all subclasses. It is always of the form (m; : 7;°</;7) where method (¢) is a
subsequence of m; : 7;'S! and 7 is either () (this is a pathological case, where the class cannot be
extended with new methods) or a row variable p. If method () is exactly m; : 7;, then it is possible
to create objects of that class; they will have type 7,[0/p]. Otherwise, the class is virtual and can
only be inherited in other class definitions. If all free type variables of 7, except p are listed in @,

we automatically define two abbreviations:

type (@, p) #r. = 7y type (@) k. = (&, 0) #r.

The former matches all objects of subclasses of ¢. The latter is a special case of the former, and
abbreviates any objects of class c.

Let us consider an example. Class point has type int — sig ((move : int — int;p)) ¢ end
for some ¢ whose only method is move : int — int. Thus, class point is not virtual. The two
following abbreviations are generated for this class:

type p #point = (move : int — int;p) type point = (move : int — int)

6.8. ABBREVIATING OBJECT TYPES 149

One can check that the type point is indeed an abbreviation for the type of objects of the class
point, and that the type of an object of any subclass of the class point is an instance of the type
p #point.

In the concrete syntax, the row variable p is treated anonymously (as an ellipsis) and is omitted.
The former abbreviation ##r, is given a lower priority than the regular ones in case of a clash. It
also vanishes as soon as the row variable is instantiated, so as to reveal the value taken by the row
variable.

In fact, we allow k, and #k, to occur in the definition of . The previous definitions can be
rewritten to handle the general case correctly.

Constrained abbreviations are natural for abbreviating objects, as, for instance, a sorted list
of comparable objects should be parameterized by the type of its elements, which in turn is not a
type variable. Moreover this extension makes it possible to avoid row variables as type parameters
(as the whole object type can appear as a parameter).

Constrained type abbreviations are also convenient since, in a class definition class (@) z =
¢ in ..., class type parameters & may have been instantiated to some types 7, while inferring the
class type) — ... = 7}, = sig (7y) ¢ end. The two abbreviations generated by the class definition
are thus:

type (Ta, p) #k. =7y type (@) k. = (&, 0) #5.

The latter is unchanged except that the constraints of the first ones are implicit in the second one.
Class types are shown to the user stripped of their type parameters. The parameters that
constraint the type abbreviations are described by constraint clauses:

class « circle (p : @) = struct
field point = p
method center = point
method move m =
if m = O then O else
point#move (1 + Random.int m)
end;;
class o circle : @ — sig
constraint o = (move . int — int; .. >
field point : «
method center : «
method move : int — int
end

This class defines the abbreviation
type ((move : int — int;p) as «) circle = (center : ;move : int — int)

As a result of the abbreviation mechanisms, type inference may reject some class definitions
whose principal types have free variables. For instance, the following variant of class point is
rejected, since the method getx is polymorphic and therefore the class should be parametric.

class point x0 = struct
field x = x0
method getx = x

end;;

150 CHAPTER 6. OBJECTIVE ML

Of course, one could choose an arbitrary ground class type, for instance:

class point : int — sig
field x : int
method getx : int

end

Any other ground type could be used instead of int. We decide to reject those programs. This pre-
serves the property that any typable program has a principal type —and all other useful properties
of the type system.

This phenomenon is not new. It already appeared in several extensions of ML. Imperative
constructs limit polymorphism. Thus, some variables that are not generalizable may occur in the
type of a toplevel expression. In such a case, most languages would reject the program. For
instance, the extension to ML with dynamics [72] rejects fun x — dynamics x, since the dynamic
type of x in dynamics x is statically unknown.

All the examples above would have principal types as long as type inference is concerned. We
can argue that some programs have been rejected for sake of simplicity and uniformity of the
language, but not because of a failure of type inference: For instance, in Objective ML we could
just omit the corresponding abbreviation whenever some type parameter is missing, and print a
warning message instead of an error message.

6.9 Extensions

This section lists other useful features of Objective ML that have been added to the implementation.
Imperative features have been ignored in the formal presentation since their addition is theoretically
well-understood and independent of the presence of objects and classes. Other features are less
important in theory, but still very useful in practice: private instance variables, coercion primitives.

Before we explore these extensions, let us consider an interesting restriction of the language. If
recursive types are only allowed when the recursion traverses an object type, Objective ML becomes
a conservative extension of ML, which we claimed in the introduction. Of course, all ML programs
can be defined, and behave similarly. Moreover, programs that are syntactically ML programs
are now well-typed ML programs if and only if they are well-typed in Objective ML. However, in
the implementation Objective Caml, the presence of modules requires the use of recursive abstract
types as well. This is because recursive object types may be abstracted. Thus, Objective Caml
is not strictly speaking a conservative extension of ML. Still, it is a conservative extension of ML
with recursive types.

6.9.1 Imperative features

We have intentionally used references in the very first example. We did not formalize references in
the presentation of Objective ML, since we preferred to keep the presentation simple and put em-
phasis on objects and classes. The addition of imperative features to Objective ML is theoretically
as simple and as useful practically as their addition to ML. Both the semantics and the properties
of reduction with respect to typing extend to operations on the store without any problem. The
formalization copies the one for core ML.

In fact, the implementation Objective Caml also allows fields to be mutable in a similar way
mutable record fields are treated in Caml [73]. For instance, we could have written:

class point x0 = struct

6.9. EXTENSIONS 151

field mutable x = x0
method move d = (x < x + d; x)
end;;

class point : int — sig
field mutable x : int
method move : int — int

end

Objective Caml only allows generalization of values (actually, a slightly more general class of non
expansive expressions). The creation of an object from a class c is not considered as a value (as it
is the application of function new c to some arguments). Mutable fields in classes are typed as any
other fields, except that mutability properties are also checked during typechecking.

6.9.2 Local bindings

As shown by the evaluation rules for objects, both value and method components are bound to
their rightmost definitions. All value components must still be evaluated even though they are to
be discarded.

Object-oriented languages often offer more security through private instance variables. The
scope of a field can be restricted so that the field is no more visible in subclasses.

This section presents local bindings, that are only visible in the body of the class they appear
in. This is weaker than what one usually expects from private fields, as a class cannot, for instance,
inherit a field and hide it from its subclasses (see section 6.10.1).

The syntax is extended as follows:

d:=...|localz =ainb
Fy:=...|localz =FEinb

with the corresponding typing rule:

A*Fa: T A—I—:v:Tl—b:cp(

LocAL)
AFlocalz=ainb:p

Local bindings are reduced top-down, like inheritance:
local z = v in b;b' — b[v/x] + b’

In practice, however, local bindings would rather be compiled as anonymous fields. This would
make methods independent of local bindings.

Initialization parameters could also be seen as local bindings in the whole class body, and could
also be compiled as anonymous instance variables. For instance, the definition

class point y = struct method x = y end;;
could be automatically transformed into the equivalent program:

class point y = struct
local y = y in method x = y
end;;

That way, the method x becomes independent of the initialization parameter y. Then, classes can
be reduced to class values: inheritance is reduced to local bindings, local bindings are flattened,
and method overriding is resolved.

152 CHAPTER 6. OBJECTIVE ML

6.9.3 Coercion primitives

Explicit coercions require both the domain and co-domain to be specified. This eliminates the need
for subtype inference. In practice, however, it is often sufficient to indicate the co-domain of the
coercion only, the domain of the coercion being a function S of its co-domain.

For convenience, we introduce a collection of coercion primitives:

(L<im):Va.S(r) =7
where @& are free variables of S(7) and 7, and S(7) is defined as follows:

e We call positive the occurrences of a term that can be reached without traversing an arrow
from the left hand side. (This is more restrictive than the usual definition, where the arrow
is treated contravariantly).

e For non recursive terms, we define Sy(7) to be 7 where every closed object type that occurs
positively is opened by adding a fresh row variable.

e Terms with aliases are viewed as graphs, or equivalently as pairs of a term 7y and a list of
constraints «; = ;.

Let 0 be a renaming of variables «; into fresh variables.
Let 7/ be 7; in which every positive occurrence of each «; is replaced by 6(«;).

We return (So(74), {0(ci) = So(7),i € I} U{e; = 73,0 € I}) for S(7).
For example,

S((mq : (mg : int) — (mg : bool))) = (my : (mg : int) — (mg3 : bool; p3); p1)
S({m:a)asa)=(m:d;p)asd

Sim:a—a)asa)=(m: ((m:a— a)asa) = d;p)asd
The operator S has the two following properties:
(1) S(r) <7 (2) 30 (O(S(r)) =7A0(T)=7)

The former gives the correctness of the reduction step (¢ <: 7) — (a : S(7) <: 7). The later
shows that if @ has type 7 then (a <: 7) also has type 7.

There is no principal solution for an operator S satisfying (1). Consider 7 to be (m : int) — int.
There are only two solutions, (m : int) — int and () — int and none is an instance of the
other. This counter-example shows the weakness of the simulation of subtyping with row variables,
especially on negative occurrences. There are other examples of failure on positive occurrences, but
only using recursive types. For instance, if 7 is (z : @) as «, then both (z : 7;p) and (z : 5;p') as
are solutions for S(7), but no solution is more general than both of these. Our choice of S (and
correspondingly, our choice of coercion primitives) is somehow arbitrary, but works well in practice.
This justifies the exclusion of semi-explicit coercions from the core language, but leave them as a
collection of primitives. In fact, most coercions are of the form (a : S(7) <: 7). Thus, the domain
of a coercion rarely needs to be given.

6.10. FUTURE WORK 153

6.10 Future work

This short section describes three possible extensions of importance to Objective ML. Each ex-
tension requires further theoretical and design investigation before it can be integrated within the
language Objective Caml.

6.10.1 Restriction of class interfaces

In section 6.9.2 we have shown that field components can be declared local to a class. However, this
does not enable class components to be hidden a posteriori. Assume, for instance, that a library
provides an implementation of a class z with two fields z and z’' and two methods m and m/. A
module may define a class 2" that inherits from an imported class 2’ whose interface is a restriction
of the one of the class z to the field z and the method m only. Can class z be used as an import to
the module? This problem corresponds to a common situation of interface restriction when reusing
code. However, interface restriction is not currently possible.

Private fields would actually not be difficult to hide. However, hiding methods in subclasses
conflicts with late binding and a flat method name space. For instance, assume, method m' is
implicitly hidden when inherited in class 2z, and that class z” defines a method m’, possibly with
another type!

Clearly, when a method m is hidden in a class z, self-invocations of m in all other methods of 2z
should be replaced by calls to a function representing the method m. This is a complex operation
that is difficult to compile.

Another problem is that method m' appears in the type of self. Hiding the method thus
requires to modify a posteriori the type of self. This would not be correct if, for instance, this
type is the type of a method argument.

A partial solution is to give each method a different view of self inside classes. This is usually
the case when classes are treated as a collection of pre-methods. Another choice, weaker but still
useful, is to split the input and output view of self. The former lists the methods that are required
while the later enumerates methods that are provided. However, in the presence of type inference,
such solutions tend to increase the size of a class to a point that may become unreadable [108].
The gain in expressiveness is also weakened by a later detection of errors. Clearly, it is an error if a
method has incompatible required and provided types. However, this would only be detected when
the object is created. In the design of Objective ML, we have deliberately limited the expressiveness
of class types to keep them readable. Many variations are theoretically possible, but very few of
them seem to improve expressiveness significantly without sacrificing simplicity.

Another possibility is to introduce private methods. They would not appear in the type of
self, consequently, they should be invoked differently. Private methods could have the same scope
as fields. In particular, they could be hidden a posteriori as well.

The addition of final classes could also resolve the problem. These classes could not be inherited.
Then, a class could be soundly matched against a final class interface that omits some of its methods.

6.10.2 Polymorphic methods

In a classical programming style, functions and data are clearly separated. Functions are often
polymorphic and thus can be applied uniformly to different kinds of data. Data may be structured.
It very rarely carries functions, and is usually monomorphic. In objects, data and methods are
jointly defined and stored or passed as arguments together — at least from a theoretical point of
view.

154 CHAPTER 6. OBJECTIVE ML

Let-bound toplevel functions often become methods of A-bound first-class objects. Unfortu-
nately, polymorphism is lost during this transformation. For instance, a class implementing sets,
would naturally provide a fold method. The inferred class type would be of the form:

class ¢ set = struct
method fold : (¢ — B — B) — B = 0
end

However, this is rejected, since variable is unbound in « set. An attempt to fix the problem
would be to parameterize the class set over # as well, that is, to replace « set in the definition
above by («,) set. However, this is not very intuitive, since the object stays parametric in 3
even when all its fields have a ground type. Moreover, the method fold becomes monomorphic and
thus can only be applied to functions of the same type, whenever the object is A-bound.

The intuition is of course that the method fold should be polymorphic. That is, the class set
should have the following class type:

class @ set = struct ...
method fold : A11 B. (¢ = B =) — 6 = 0
end

The addition of polymorphic methods could also be used to reduce the number of explicit
coercions. In a class definition methods may have types more polymorphic than expected. For
instance, assume that class point has type:

class point (int) = struct
field x : int method getx : int

end;;
Then, the following subclass of point will not typecheck:

class eq_point x = struct
inherit point x
method eq p = pHgetx = selffgetx

end;;

The parameter p of the method eq does not need to be a point but an object with method getx of
type int. Thus, its type (getx : int; ..) — bool has a free row variable. As for the case of set,
the row variable in the type of p can be bound in in a constraint type parameter as follows:

class « eq_point x = struct
inherit point x
method eq (p:ax) = pFgetx = self#getx
end;;
class o eq_point : int — sig
constraint o = (getx : int; ..)
field x . int
method getx . int
method eq : & — bool

end

Again, this is not very intuitive and one might prefer to add a stronger type constraint. One choice
is to require p to be of the same type as self. However, this unnecessarily makes eq a binary

6.10. FUTURE WORK 155

method and so restricts its further use with arguments of type eq_point only. Constraining p to be
a point in the definition of the method eq is another possibility:

class eq_point x = struct
inherit point x
method eq (p:point) = p#getx = self#getx
end;;
class eq_point : int — sig
field x . int
method getx . int
method eq : point — bool
end

This solution is more general, although it usually requires explicit coercion when invoking the
method eq:

let p = eq.point 1 in p#eq (p (: point);;
Polymorphic methods would allow a more natural class type for the eq_point (first definition):

class eq_point : int — sig
field x : int
method getx : int
method eq p :
A1l ({getx : int; ..) as @). @ — bool

end;;

Moreover, thanks to the polymorphic (anonymous) row variable, messages could then be sent to
the method eq with an argument of type either point or eq point.

We consider that the lack of polymorphic methods is a weakness of Objective ML. We believe
that polymorphic methods would make most explicit coercions unnecessary.

Some solutions to extend ML with first class-polymorphism already exist in the literature.
Simple but rudimentary proposals can be found in [108, 83] and better integration of first-class
polymorphism inside Objective ML has recently been studied in [46].

6.10.3 Integrating classes and modules

Objects and classes of Objective ML are orthogonal to the other extensions of ML. In particular,
the module system of ML extends directly to classes and objects [69]. Indeed, the implementation
of Objective ML, called Objective Caml [70], offers a rich language of both modules and classes.
Classes and modules share a lot of properties: they offer some form of abstraction; they also
help structuring large applications; and they facilitate reusability of code. In fact, they are quite
different. Modules are a very general and powerful abstraction. However, it is difficult to allow
recursion between several modules or to give a meaning to self inside modules. On the other
hand, classes are a much more specialized paradigm that has proved extremely convenient for some
applications. Objects find their limitation with multiple dispatch. Hiding components also remains
a difficult task.

For historical reasons, libraries of Objective Caml are implemented as modules. In practice,
many of these libraries could be rewritten as classes. Choosing one style or another is not insignif-
icant, since it is a global commitment to the architecture of the application. The class version
and the module version of the same libraries are very similar, but their code cannot currently be

156 CHAPTER 6. OBJECTIVE ML

shared. This is, of course, unsatisfactory. We hope that more work will allow a better integration
of modules and classes.

6.11 Comparison to other works

The work closest to Objective ML is ML-ART [108]. Here, object types are also based on record
types and have similar expressiveness. State abstraction is based on explicit existential types in
ML-ART; in Objective ML, it is obtained by scope hiding, but it could also be explained with
a simple form of type abstraction. No coercion at all is permitted in ML-ART between objects
with different interfaces. Unfortunately, ML-ART has no type-abbreviation mechanism. This was
a major drawback, which motivated the design of Objective ML. On the other hand, classes are
first class values in ML-ART. We, however, do not think this is a major advantage. The restriction
is a deliberate choice in the design of Objective ML, to keep the language simpler. In theory, most
features of ML-ART could have been kept in Objective ML. In practice, however, it would have
changed the language significantly.

Another simplification in Objective ML is that in classes all methods view self with the same
type. This is not required by the semantics, and could technically be relaxed by making method
types more detailed in classes (see [108]). We found that this extra flexibility is not worth the
complication of class types.

Our object types are a simplification of those used in [106]. The simplification is possible since
object types are similar to record types for polymorphic access, and do not require the counterpart of
record extension. Moreover, as discussed above, our implementation assumes the stronger condition
that two object types sharing the same row variable are always identical. With this restriction,
object types seem to be equivalent to kinded record types introduced in [84]. Ohori also proposed
an efficient compilation of polymorphic records (which does not scale up to extensible records)
in [85]. However, his approach, based on the correspondence between types and domains of records
cannot be applied to the compilation of objects with code-free coercions.

Objects have been widely studied in languages with higher-order types [19, 82, 16, 2, 93, 14].
These proposals significantly differ from Objective ML. Types are not inferred but explicitly given
by the user. Type abbreviations are also the user’s responsibility. On the contrary, all these
proposals allow for implicit subtyping.

Our calculus differs significantly from Abadi’s and Cardelli’s primitive calculus of objects mostly
as a result of design choices. We have chosen primitive classes because inferred types of sets of
pre-methods would be complex to be readable (see [108] for instance). We have emphasized the
role of row variables because we have chosen not to infer subtyping, therefore avoiding the more
complicated framework of constraint types. On the other hand we have included other features
such as instance variables, to avoid their encoding as methods not involving self, and to keep with
the more simple state-abstraction mechanism by scope hiding. Technically a major difference,
Objective ML does not allow method overriding.

Open record types are connected to the notion of matching introduced by Kim Bruce [16, 18].
Matching seems to be at least as important as subtyping in object-oriented languages. Row variables
in object types express matching in a very natural way. While explicit matching may require too
much type information, type inference makes object matching very practical.

Palsberg has proposed type inference [87] for a first-order version of Abadi and Cardelli’s calculus
of primitive objects [1]. However, that language is missing important features from the higher-order
version [2]. Type inference is based on subtyping constraints and the technique is similar to the one
used in [40]. This later proposal [40, 41] is closer to a real programming language, and more suited

6.11. COMPARISON TO OTHER WORKS 157

for comparison. Here, the authors use a subtyping relation that is more expressive than ours, as
they can prove subtyping under some assumptions. They can also infer coercions. However, the
types they infer tend to be too large. Indeed, they do not have an abbreviation mechanism. Their
inheritance is weaker than ours since they must explicitly list all inherited methods in subclasses.
We think the two proposals are complementary and could benefit from one another. In particular,
it would be interesting to adapt automatic type abbreviations to constraint types. The problem is
still non-trivial since inferred type-constraints are hard to read even in the absence of objects.

The remainder of this section is dedicated to the comparison with three other proposals for
adding objects to ML. They all use implicit subtyping, which is, however, restricted to atomic
structural subtyping [79, 44]. As a result, they all have the same difficulty with parameterized
classes, making it impossible to relate objects created from classes with a different number of
parameters, even when the objects have the same interface. For instance, objects of a class string
are of incompatible type with objects of a parameterized class vector when the parameter type is
character.

In [14], Bourdoncle and Metz propose a language based on some restricted form of type con-
straints [41]. However, they do not provide type inference.

The two following proposals include type inference; however, fully polymorphic method invoca-
tion cannot be typed. Two different solutions are proposed; they both amount to providing some
explicit type information at method invocation.

More precisely, in Duggan’s proposal [38], methods must be predeclared with a particular type
scheme. Thus methods carry type information alike data-type constructors in ML. For instance,
move would be assigned type scheme V . oy — int. Type schemes that are assigned to methods are
polymorphic in a: they are arrow types whose domain is always a variable o, standing for the type
of self. Object types only list the methods that objects of that type must accept. For instance, point
would be given type (move). The user must provide more type information that in Objective ML.
The same method name cannot be used in two different objects with unrelated types. Objects of
parameterized classes are treated especially, using constructor kinds. As mentioned above, objects
of a parameterized class reveal forever that they are parameterized. For instance, let us consider
a class of vectors parameterized over the type a. All methods of that class must be given a type
scheme of the form: Vo, T9P¢>TY%¢ VY . ¢ v, — 7, where variable a, range over type constructors.
That is, instead of the type 7, of self, only the type constructor x of the type 7, is hidden.
This reveals the dependence of 7, on its parameters, and the parameters themselves. Methods of
parameterized classes are incompatible with methods of non-parameterized classes. Objects of a
vector class of characters cannot be related to objects of a string class even though they might
have the same interface. In Objective ML, two such objects could be mixed. However, Objective
ML does not allow polymorphic methods while Duggan’s proposal does. A polymorphic method
map could be declared with type scheme: Va, %21 Va.Var.a a, — (o = o)) = a1 o.
Intuitively, map carries implicit universal intros and elims, like data constructors carry arguments
of existentially or universally quantified types in [64, 108, 83]. Recursive kinds actually allow some
form of polymorphism that is different from polymorphic methods discussed in section 6.10.

In Object ML [115], Reppy and Riecke treat objects as a generalized form of concrete data-
types. Types are also inferred in Object ML, but the authors do not claim a principal type
property. Also, method invocation must always mention the class of the object to which the
method belongs. Each object is actually tagged with a constructor that carries the class the object
originated from. Therefore, objects can be tested for membership to some arbitrary class in some
inheritance relationship. Only single inheritance is allowed. The subtyping relationship between
objects is declared and corresponds to the inheritance forest. Classes are generative, that is, objects

158 CHAPTER 6. OBJECTIVE ML

of different classes have different types. Although these types can be related by subtyping, they
are never in an instance relationship. Some object coercions, but apparently not all, are implicit.
On the contrary in Objective ML, classes are transparent, that is, objects types are structural and
only describe the interface of objects: two objects with exactly the same interface have equal types.
Two objects of classes in a subclass relationship are not necessarily related, but when they are, one
type is simply an instance of the other. Object ML does not provide any inheritance mechanism,
except by means of encodings [114]. Typing of binary methods is also a problem, which is solved
via runtime class-type tests.

Conclusion

Objective ML has been designed to be the core of a real programming language. Indeed, the
constructs presented here have been implemented in the language Objective Caml. We chose class-
based objects since this approach is now well understood in a type framework and it does not
require higher-order types.

The original part of the design is automatic abbreviation of object types. Although this is not
difficult, it is essential for making the language practical. It has been demonstrated before that
fully inferred object types are unreadable [108, 40]. On the contrary, types of Objective ML are
clear and still require extremely little type information from the user. To our knowledge, all other
existing approaches require more type declarations.

Objective ML is also interesting theoretically for the use of row variables [119, 106]. Row
variables are very close to matching and seem more helpful than subtyping for the most common
operations on objects. Message passing and inheritance are entirely based on row variables, which
relegates subtyping to a lower level.

Another interesting aspect of our proposal is its simplicity. This is certainly due to the fact that
Objective ML is very close to ML. Specifically, most features rely only on ML polymorphism. This
leads to very simple typing rules for objects and inheritance. Coercions, based on subtyping, can
be explained later. Data abstraction is guaranteed by scope hiding rather than by type abstraction;
this is a less powerful but simpler concept.

The main drawback of Objective ML is the need for explicit coercions. Coercions are necessary.
However, we think they occur in few places. Thus, explicit coercions should not be a burden.
Furthermore, coercions could in theory be made implicit using constraint-based type inference.

In our implementation of Objective ML, classes and modules are fully compatible, but orthogo-
nal. That should be particularly interesting to compare these two styles of large-scale programming,
and help us to better integrate them. This is an important direction for future work.

Acknowledgment

We thank Rowan Davies who collaborated in the implementation and the design of a precursor
prototype of Objective ML.

6.1. TYPING RULES FOR CORE ML 159
Appendix

6.1 Typing rules for core ML

(INsT) (Fun) (Arp)
z:Va.T€eA A+z:7Fa:7 Ara:7 > 7 Atdad 7
Atz :7[T/Q] AbFfun(z)a:7— 171 Atlad 7

(LET)

Arad: 71 A+z:Gen(7,A)Fa:T

AFletx=d ina: 71

Generalization Gen(7, A) is V@. 7 where @ are all variables of 7 that are not free in A.

6.2 Binary methods

In Objective ML, it is possible to define binary methods, that is, methods that receive as a parameter
an object of the same type as self. Furthermore, a class that has binary methods can be freely
extended by inheritance. Of course, binary methods remains binary in a subclass.

The virtual class comparable is a template for classes with a binary method leq. The component
virtual leq is a type constraint on the type of self. This method must be applied to an object of
the same type as self.

class comparable () = struct virtual («)
virtual leq : @ — bool

end;;

class comparable : unit — sig virtual («)
virtual leq : @ — bool

end

Class int_comparable inherits from class comparable. It implements method leq and adds a method
getx.

class int_comparable (x : int) = struct
inherit comparable ()
field x = ref x
method getx = I!x
method leq o = !x < o#getx
end;;
class int_comparable : int — sig (o)
field x : int ref
method leq : & — bool
method getx : int

end

Method 1leq still expects to be applied to an object of the same type as self. So, type
int_comparable = rec «.(leq : @ — bool;getx : int) is not a subtype of type comparable =
rec a.{leq : @ — bool): inheritance is not subtyping. Indeed, a method leq of an object of the

160 CHAPTER 6. OBJECTIVE ML

former type expects to be applied to an object that has a method getx; this is not ensured by
the later type. However, int_comparable is an instance of p #comparable, which is by definition
rec a.(leq : @ — bool; p). Binary methods are correctly handled since the type of self is kept open
while typing classes: adding the method getx to class comparable simply amounts to instantiating
the row variable in the type of self, to (getx : int; ..). Thus, the type of self in the subclass has
a method getx and is still open.

As a test, the function min will return the minimum of any two objects whose type is an instance
of type #comparable.

let min (x : #comparable) y =
if x#leq y then x else y;;

value min : (#comparable as a) — @ — a =
(fun)

This function can thus be applied to objects of type int_comparable.

let p = min (new int_comparable 7)
(new int_comparable 11)

in (p, p#getx);;
— ! int_comparable * int = (obj>, 7

6.3 Proofs of type soundness theorems

Subject reduction is a straightforward combination of redex contraction (lemma 30) and context
replacement (lemma 25).

Since we have multiple syntactic categories for expressions, contexts, and types, it is convenient
to introduce the following meta-notations:

aux=al|blc|d E:=FE|F|E.|Fy; 7=

S

v

These meta-letters are used consistently. For instance, when writing A - a : 7, (G,7) means (a,7),
(b,), etc, but not (b, 7).
The following propositions are used several times in the proof.

Proposition 21 (Stability by substitution) If A& a: 7, then for any substitution 0, 0(A) +
a: (7).

Proposition 22 (Extension of environment) If type environments A and B are identical on
free variables of expression a and AF G : 7, then B - a : 7. If type environment B extends type
environment A (that is B | dom(A) is A) and AFa: 7, then BFa: 7.

We say that o is an instance of ¢’ if any instance of o is an instance of o’. We say that type
environment A is an instance of type environment A’ if both type environments have the same
domain and for any element h of their domain A(h) is an instance of A’(h).

Proposition 23 (Strengthening of context) If type environment A is an instance of type en-
vironment B and Av-a: T, then B+ a:T.

The following lemma somewhat simplifies the proofs.

6.3. PROOFS OF TYPE SOUNDNESS THEOREMS 161

Lemma 24 (Derivation simplification) When proving that for all 7, Ay & ag : 7 implies A+ a :
T (for some Ay, ag, A and a), one can restrict oneself to the case where a derivation of Ay Fag : 7
does not end with rule SUB. The general case follows.

Proof: This is done by induction on the size of derivations. Let us assume that a derivation of

Ap Fag: 7 ends as
Aot ag: 7 < (SuB)
AgkFag: 7

By induction hypothesis, A+ a : 7/. Hence

AFa: 71 T'ST(SUB)
AtFa:T

We write a; C ag if for any environment A such that A* = A and any type 7 such that
AFay:71, AF a9 : 7. Likewise, we write by C be (resp. ¢; C ¢p) if for any environments A and
any class body type ¢ such that A F by : ¢ (resp. any class type 7 such that A - ¢y : «), then
AF by : g (resp. AF ¢y : 7). Subject reduction theorem can be restated as follows: if a; — a9,
then a1 C as.

Lemma 25 (Context replacement) For any context E, if a1 C ag then Elai] C Elas).

Proof: The property can be proved independently for each arbitrary one-node context E. Then,
the lemma follows by a trivial induction on the size of the context.

Let E be a one-node context. Let A be a type environment and 7 a type such that A - E[a] :
7 (6.1). We show that A - E[ag] : 7. Using lemma 24, one can assume that a derivation of (6.1)
does not end with rule SUB.

All cases are simple and similar. We show one case for example:

Cas E is let z =[] ina: A derivation of (6.1) ends as:

Atay: 7 A—I—:v:Gen(T’,A)l-a:T(

LET)
AbFletz=a; ina: T

By induction hypothesis applied to the first premise, At as : 7. Hence A+ let x =as ina: 7
| |

The following lemmas (26 thru 29) are used to simplify the proof of redex contraction.

Lemma 26 (Append) Let A be a typing environment containing no super bindings. If At by :
w1, A+ (p1 \ method) F by : @9, and w1 and @y are compatible (that is, p1 @ @y is correct), then
A b1 Qby: 1 @ o.

Proof: We actually prove a more general property. Let ¢y be a sequence of super bindings. If
A+ o b1, A+ (p1 \ method) - by : 2, and ¢ and 9 are compatible (that is, @1 @ ¢3 is
correct), then A+ o F by @by : 1 & o.

This is easily proved by induction on b;. [|

162 CHAPTER 6. OBJECTIVE ML

Lemma 27 (Term replacement (variables)) Let A be a type environment, a and o' be term
expressions, T and 7' be type expressions. If A+ a' i7" (6.2) and A+ x : Gen(r',A) Fa: T (6.3)
and bound variables of a are not free in a', then A& ala’/x] : 7 is provable (6.4).

Proof: The proof is by induction on the structure of @ (i.e. a, ¢, b and d). Using lemma 24, we can
assume that a derivation of (6.3) does not end with rule SUB.

In each case, we consider a derivation of (6.3). By using a renaming substitution on (6.2) if
necessary (proposition 21), we can assume that free variables of 7/ that are not in A* do not appear
free in this derivation (6.5). We write A, for A + z : Gen(7', A*).

We only show the more complicated cases. Other cases are either similar or simple.

Cas a is let 2/ = aj inag: A derivation of (6.3) ends as:

(6.6) Ay Fap:m Ay + 21 : Gen(7,Agy) Fag: 7 (6.7) (

LET)
Ay Fletz; =aj;inay: 7

By induction hypothesis applied to (6.6), we get A - a1[a’/x]: 71 (6.8).

If 24 = z, (6.7) becomes A + z : Gen(r,Ay) F as : 7. By strengthening of environment
(proposition 23), we have A 4 z : Gen(7y, A) F ag : 7 since A is a subsequence of A,. We conclude
by rule LET.

Otherwise, let A; be A+ z; : Gen(7;, A). Re-ordering hypotheses in (6.7), we have A + z; :
Gen(71, Ay) + x : Gen(7', A) F ag : 7. By strengthening of environment, we can replace A, by A.
Since free type variables of A; are the same as free type variables of A, we can replace A by A;
in Gen(7', A). Thus, we have A; + z : Gen(7', A1) F ag : 7. On the other hand, since z1 is not
bound in @/, and AT extends A*, we deduce A} - a' : 7' from (6.2) by extension of environment
(proposition 22). Thus, we can apply the induction hypothesis with A; for A. We get A;
as[a’/x] : 7. Combining with (6.8) in a LET rule, we finally have A F (let z1 = a1 in ag)[a’/z] : 7.

Cas a is fun (z1) az: A derivation of (6.3) ends as:

Ay +x1:mMFas:m (FuN)
Ay Ffun (z1) ag 11 — 7

Let Ay be A+ z1 : 71. Re-ordering type environment of the premise, we have A +x1 : 74 + T :
Gen(7', A) Fag : 9. By (6.5), the generalization Gen(7’, A) is equal to Gen(7', A + 1 : 71), that is,
Gen(7', Ay). So, we have Ay + z : Gen(7', A1) - ay : 2. Since z; is not bound in o’ and A} extends
A* | we deduce A} F o' : 7' from (6.2). Thus, we can apply the induction hypothesis with A; for
A. We get Ay F agla’/z] : 5. We conclude with rule FuN

Cas a is (b): A derivation of (6.3) ends as:

Ax +self iy b b:op 7y = (method (¢)) (

OBJECT)
Ay E(b) = 7y

Let Ay, be A*+self : 7,. Re-ordering type environment of the premise, we have A*+self : 7y +x :
Gen(7',A) F b : ¢. We can replace Gen(7’', A) by Gen(7', A*) by strengthening of environment.
By (6.5), the generalization Gen(7’, A*) is equal to Gen(7’, A* 4+ self : 7,), that is, Gen(7', 4,).
Thus, we have A, + z : Gen(7', A,) F b : ¢. Since A} is just A*, we have Ay -a’: 7' (6.3). Thus,
we can apply the induction hypothesis with A, for A. We get A, F b[a’/z] : ¢. We conclude with
rule OBJECT.

|

6.3. PROOFS OF TYPE SOUNDNESS THEOREMS 163

Lemma 28 (Term replacement (instance variables and self)) Let A be an environment
and & be either an expression a or a class expression c. Let w be an object body and ¢ be an object
body type. We defines U as the restriction of dom (w) to fields. We write 1, for (method (¢)). We
assume that A* is A, bound variables of a are not be free in (w) and w(u), and the following three
judgments hold:

A+self i1y Fw: o, (AF w(u) : 7)"Y, A+ self : 7y + (p \method) Fa: 7 (6.9).
Then, A+ a[(w)/self][w(u)/u]*Y[(w @ (field u = a,*<V))/{{u = a,*V)} VY : 7.
Proof: The proof is by induction on the structure of @. For any expression a, we write a™* for

a[{w)/self][w(u)/u]"""[(w @ (field u = a,""))/{(u = a,""")} "

Class expression ¢' is defined likewise. We write A, for A + self : 7, + (¢ \ method). Using
lemma 24, we can assume that a derivation of (6.9) does not end with rule SUB.
We only show the more complicated cases. Other cases are easy.

Cas a is self: Hypothesis (6.9) is A+ self : 7, + (¢ \ method) - self : 7. So, 7 and 7, are
equal. On the other hand, a™ is equal to (w). We conclude by rule OBJECT:
A+self:7hw: g 7 = (method (p)) (
AF(w):T
Cas a is {(u = a,"<")}: A derivation of (6.9) ends as:
((6.10) fieldu:71, € A, (6.11) Ay ay: 7)Y (
Ay F {(u:a, SV)} T,
So, from (6.10), ¢ @ field u : 7,"€Y = ¢. By induction hypothesis applied to (6.11), we get
AF af : 7, (6.12). Hence A - (field u = a})*Y : (field u : 7,)"“<". Then, the append

lemma 26 applied to the hypothesis A + self : 7, = w : ¢ and the last judgment yields A + self :
Ty Fw@ (field u = a;)"V : . Hence the following derivation :

OBJECT)

OVERRIDE)

A+self:7, Fwa@ (fieldu=a;)* " : ¢ 7y = (method (¢)) (

OBJECT)
AF (w@ (fieldu = a;)*) : 7,

Lemma 29 (Term replacement (super)) If AF by : @1, A+ super: ¢ F be : w2 and bound
variables of by are not free in by, then A F bl : oy where by is [a/s#Fm]"ethedm=a€bL 1§ o b, where all
invocations of methods to super s#£m have been replaced by the body a of the corresponding method
m in by.

Proof: The proof is similar to the one of lemma 27. It is in fact simpler, as super is not substituted
across class and object boundaries, nor across instance variable definitions. [|

Lemma 30 (Redex contraction) We write —, for a one-step reduction in an empty context.
If 41 —¢ a9 then ay C as.

Proof: The proof is done independently for each redex. All cases are easy now that we have proven
the right lemmas.

Let us assume A F ap : 7 (6.13) and A equals A* (resp. A F by : ¢ (6.14) for any A). We
show that A F ag : 7 (6.15) (resp. A F by : @) by cases on the redex a; (resp. b;). Each case is
shown independently. Using lemma 24, we can assume that a derivation of (6.13) does not end
with rule SuB.

164 CHAPTER 6. OBJECTIVE ML

Cas a; is (fun (z) a) v: A derivation of (6.13) ends either as:

A+z:7"Fa:m (FUN)
At fun(z)a:7 — 79 TI—)T0§T6—>T(SUB)

AFfun(z)a:7) =7 AFwv:T) (App)
AF (fun (z) a)v: 7

or as:

(6.16) A+z:7'Fa:T (FuN)
AFfun(z)a:7 =7 (6.17) AFwv:7 (APP)
AF (fun (z) a)v: 7

The end of the first derivation can be rewritten as:

A+z:7'Fa:m TOST(SUB)
(6.16) A+z:7T'Fa:T (Fun) Abv:ir <7 (SuB)
AFfun(z)a:7 =71 (6.17) AFwv:7 (ApP)
AF (fun (z) a)v: T

In both cases, the term replacement lemma 27 applied to (6.17) and (6.16) shows the conclusion.
Cas ¢ is (fun (z) ¢) v: Similar to previous case.
Cas a; is let x =v ina: A derivation of (6.13) ends as

(6.18) AFwv:7 (6.19) A+z:Gen(r",A)Fa:T (

LET)
ArFletz=vina: T

The term replacement lemma 27 applied to (6.18) and (6.19) shows the conclusion.
Cas a; is class z =wv ina: Similar to previous case.

Cas a; is new (struct w end): A derivation of (6.13) ends as

A+ self iy Fw: o (CLASs-BoDy)
A struct wend : sig (1) ¢ end 7y, = (method (p)) (NEW)

(6.20) A F new (struct w end) : 7,

Hence,
A +self iyl w: o 7y = (method (¢)) (

AF (w): 7y

Cas a; is (w)#m: We must remember that A* is A. A derivation of (6.13) ends either as

OBJECT)

(OBJECT) A+self:mylw:p 7y = (method (¢))
(Sus) AR (w) 7y Ty <1y
el 0L = s s
AF (w)y#m: 7,
or as
(OBJECT) (6.21) A4self:myFw: (6.22) 7y, = (method (¢))

Al (w) 7y (6.23) 7y = (m : 74 7)
AE (w)#m : 7

(SEND)

6.3. PROOFS OF TYPE SOUNDNESS THEOREMS 165

The end of the first derivation can be rewritten
A+self :ybFw:o 7y = (method (¢))

(OBJECT)
AF (w): Ty Ty = (M : T3 T)
(SUBﬁl F (w)y#m : 7, T < T},
AF (w)y#m: T,

(SEND)

It has been seen at the beginning of the proof that rule SUB at the end of a derivation could be
ignored. Thus, only the second case need to be considered.

The result is then proved using the term replacement lemma 28.

We first show that the hypotheses of lemma 28 are satisfied. As the fields of an object are
typed in the same environment as the object, for field u : 7, € ¢, A F v, : 7, (6.24) where
field u = v, € w. From (6.22) and (6.23), method m : 7, € ¢. Then, from (6.21), an easy
induction on w using rules THEN, FIELD, and METHOD yields:

A+ self : 7y, + ¢ Fw(m) : 7 for some 1 C (¢ \ method)
As A contains no field bindings, the environment can be extended to include ¢ \ method:
(6.25) A+ self : 7y + (¢ \ method) - w(m) : 7
Finally, the term replacement lemma 28 applied to (6.21), (6.24), (6.25) yields
At w(m)[(w)/self][w(u)/u]* Y [(w @ (field u = a,""))/{{u = a,*)}V Y : 7

Cas by is inherit (struct w end) as s;b: A derivation of (6.14) ends as

At inherit (struct w end) as s: 90. (6.26) A+ (¢ \method) Fb: ¢y (

THEN)
Al inherit (struct w end) as s;b: p1 D po

where ¢ = 1 + (super s : 1), continued by

(6.28) A* +self:7ylw: (CLASS-Bopy)
(6.27) Ak self: 7, AF struct w end: sig (7,) ¢1 end (INHERIT)

Al inherit (struct w end) as s : @1 + (super s : 1)

According to (6.27), self : 7, € A. Judgment (6.28) can thus be rewritten A+ w : ¢; (6.29).

Applying the term replacement lemma 29 on A + (¢; \ method) - w : ¢; (the environment has
been extended) and (6.26) yields A+ (¢; \method) - b[a/s#m]rethedm=acw .) Then, the append
lemma applied on (6.29) and this last judgment gives the result:

AF w@ b[a/s#m]methodm:aEw L1 oy 09
Cas by is fieldu =v;b: A derivation of (6.14) ends as

A*Fuo: T (FIELD)
At fieldu=v: (fieldu: 7) (6.30) A+ (fieldu:7)Fw: g (

AFfieldu=v;w:p® (fieldu:7)

THEN)

From (6.30), since u € dom (w) and fields appear before methods in w, an easy induction
shows that A - w : p. Indeed, fields are typed in environment A*, and methods are typed in an
environment in which (field u : 7) has been added anyway after the typing of the field u appearing
in w.

166 CHAPTER 6. OBJECTIVE ML

Cas by is method m = a;b: A derivation of (6.14) ends as

AtF self:(m:7;7") AtFa:T (METHOD)
A+ method m = a : (method m : 7) (6.31) AFw: o (

THEN)
At methodm =a;w: (methodm:7) ® ¢

Since m € dom (w), m € dom(y), then ¢ and (method m : 7) @ ¢ are equal. Therefore, judg-
ment (6.31) can be rewritten A - w : (method m : 7) @ .

Cas q; is (v:7 <:7'): A derivation of (6.13) ends as

AFwv:0(r) <7

(COERCE)
AF(w:ir<:7"):0(1)

Hence,

The normal-form theorem is proved by structural induction on values, using the following
lemma.

Lemma 31 Let v be a value. We assume O - v: 7 (6.32).
o If 7 is a functional type, then v is a function.
e If 7 is an object type, then v is an object.

Let v, be a value. We assume O+ v : 7.
e If~ is a functional type, then v is a function.

e Otherwise, v is an object.

Proof: We prove that if v is a function, then 7 is a functional type and that if v is an object, then
7 is an object type. Then, since a value is either a function or an object and functional types and
object types are incompatible, this proves the lemma.

We can ignore rule SUB at the end of a derivation, as it does not change the shape of a type.

Cas a is fun (z) a;: A derivation of (6.32) ends as

A+z:miba:m (Fun)
AFfun (z) a1 :1 — 7

So, 7 is 11 — To.

6.3. PROOFS OF TYPE SOUNDNESS THEOREMS 167

Cas a is (w): A derivation of (6.32) ends as

A +self iy w: o Ty = (method (¢)) (

OBJECT)
AF (w): 7y

So, 7 is (method (y)).
The proof is similar for class values.
|

Theorem 2 (Normal forms) Well-typed irreducible normal forms are values (ie. if 0 - a : 7
and a cannot be reduced, then a is a value.)

Proof: The proof is by structural induction simultaneously on expressions a and class bodies b. Let
us assume) Fa: 7 (6.33) (resp. O c:y (6.34), A-b:p (6.35) or A d: ¢, where A contains
only field and method bindings), and that a (resp. ¢, b or d) cannot be reduced.

Cas a is z: This expression cannot be typed in the empty environment.

Cas a is a1 ag: It is not possible. A derivation of (6.33) shows that there exists a type 73 such
that () - ay : 74 — 7. The induction hypothesis applied to expression a; shows that it is a value.
Since it has a functional type, it must be a function fun (z) ag. But then expression a could be
reduced.

Cas a is let £ = a1 in as: It is not possible. The induction hypothesis applied to expression ay
shows that it is a value. But then expression a could be reduced.

Cas a is a1#m or class z =cinaq: Similar to previous cases.

Cas q is fun (z) a;: By definition, expression a is a value.

Cas a is s#m: It is not possible : expression s#m is not typable in the empty environment.
Cas a is self or u or {(u =a,"c")}: Same as previous case.

Cas a is (a1 : 7 <: 7'): It is not possible: a can be reduced.

Cas a is (b): The induction hypothesis shows that object body b is a value. Then, expression a
is also a value.

Cas a is new c: It is not possible. A derivation of (6.33) shows that 0§ - ¢ : sig (7,) ¢ end. The
induction hypothesis applied to ¢ shows that it is a value. According to its type, it is a structure.
But then a can be reduced

Cas c is z: This expression is not typable in the empty environment.

Cas cis ¢ a: It is not possible. A derivation of (6.34) shows that there exists a type 7 such that
) ¢y : 7 — 7. The induction hypothesis applied to expression c¢; shows that it is a class value.
Since it has a functional type, it must be a function fun (z) ¢y. But then expression ¢ could be
reduced.

Cas c is fun (z) ¢c;: By definition, expression c is a value.

Cas c is struct b end: The induction hypothesis shows that class body b is a value. Then,
expression c is also a value.

168 CHAPTER 6. OBJECTIVE ML

Cas b is d;b;: The induction hypothesis shows that object component d and object body b; are
in normal forms. d is thus a field or method definition, and it is not overridden by b; (otherwise, b
could be reduced.)

Cas b is (): By definition, object body b is a value.

Cas d is inherit cas s: It is not possible. A derivation of (6.35) ends as:

Al self: T, (6.36) AFc:sig(7y) 1 end (

INHERIT)
Al inherit cas s: ¢ + (super s: ¢1)

The induction hypothesis applied to ¢ shows that it is a class value. According to its type, it is of
the form struct w end. But then, the inheritance clause could be reduced.

Cas d is method m = a: By definition, expression d is in normal form.

Cas dis fieldu=a: IfAFd:fieldu:7,then()F a: 7, as A contains only field and method
bindings. By induction hypothesis, expression « is in normal form. Then, so is object component

d.
[]

Chapter 7

Poly ML: une extension de ML avec
du polymorphisme d’ordre supérieur.

Ce chapitre, publié dans [46], est le résultat d’un travail en collaboration avec Jacques Gar-
Tigue.

Extension de ML avec du polymorphisme d’ordre supérieur semi-implicite

Nous proposons une extension modeste et conservatrice de ML qui autorise ’utilisation du poly-
morphisme d’ordre supérieur de fagon semi-implicite. L’introduction des types polymorphes reste
entierement explicite, c’est-a-dire que leur introduction et leur valeur exacte doivent simultanément
étre indiquées. En revanche, leur élimination est semi-explicite : il suffit d’indiquer leur élimination
et le type polymorphe est lui-méme synthétisé. Cette extension est particulierement utile dans le
langage Objective ML qui utilise le polymorphisme de facon essentielle et souvent a la place du
sous-typage.

Extending ML with Semi-Explicit Higher-Order Polymorphism

We propose a modest conservative extension to ML that allows semi-explicit first-class polymor-
phism while preserving the essential properties of type inference. In our proposal, the introduction
of polymorphic types is fully explicit, that is, both introduction points and exact polymorphic
types are to be specified. However, the elimination of polymorphic types is semi-implicit: only
elimination points are to be specified as polymorphic types themselves are inferred. This extension
is particularly useful in Objective ML where polymorphism replaces subtyping. Objective ML that
sustains polymorphism and neglects subtyping.

169

170 CHAPTER 7. POLY ML

Introduction

The success of the ML language is due to its combination of several attractive features. Undoubt-
edly, the polymorphism of ML [35] —or polymorphism & la ML— with the type inference it allows,
is a major advantage. The ML type system stays in close correspondence with the rules of logic,
following the Curry-Howard isomorphism between types and formulas, which provides a simple
intuition, and a strong type discipline. Simultaneously, type inference relieves the user from the
burden of writing types: an algorithm automatically checks whether the program is well-typed and,
if true, returns a principal type.

Many extensions that are based on this simple system have been proposed: polymorphic records,
first-class continuations, first-class abstract datatypes, type-classes, overloading, objects, etc. In
all these extensions, type inference remains straightforward first-order unification with toplevel
polymorphism. This shows the robustness of ML-style type inference.

There are of course cases where one would like to have first-class polymorphism, as in system F'.
ML allows for polymorphic definitions, but abstractions can only be monomorphic. Traditionally,
ML polymorphism is used for definitions of first-class functions such as folding or iteration over
a parameterized datatype. Some higher-order functionals require polymorphic functions as argu-
ments. These situations mostly appear in encodings, and occurrences in real programs can usually
be solved by using functors of the module language.

This simple picture, which relies on a clear separation between data and functions operating
on data, has recently been invalidated by several extensions. For instance, data and methods are
packed together inside objects. This decreases the need for polymorphism, since methods can be
specialized to the piece of data they are embedded with. However, data transformers such as folding
functions remain parametric in the type of the output. For instance, a function fold with the ML
type Vf,a. § list — (8 - a — a) — a — « should become a method for container objects, of
type Va. (T — a = a) — a — «a where 7 is the type of the elements of the container. The extension
of ML with first-class abstract types [65, 108] also requires first-class polymorphic functions: for
instance, an expression such as A\f.open x as y in f y can only be typed if the argument f is
polymorphic in its argument, so that the abstract representation of y is not revealed outside the
scope of the open construct. First-class polymorphism seems to be also useful in Haskell to enable
the composition of monads.

First-class polymorphic values have been proposed in [108, 83] based on ideas developed in [65].
After de-sugaring, all these proposals reduce to the same idea of using explicit, mutually inverse
introduction and elimination functions to coerce higher-order types into basic, parameterized type
symbols and back. Therefore, they all face the same problem: types must be written explicitly,
both at the introduction and elimination of polymorphism.

Recent results on the undecidability of type inference for system F' [123, 59, 90] do not leave
many hopes for finding a good subset of system F' that significantly extends ML, moreover with
decidable type inference and principal types. Previous attempts to accomplish this task were
unsuccessful.

This is not the path we choose here. We do not infer higher-order types and thus avoid higher-
order unification, undecidable in general. Furthermore, we maintain the simplicity of the ML type
system, following the premise that an extension of ML should not modify the ML polymorphism
in its essence, even if it is an extension that actually increases the level of polymorphism.

The original insight of our work is that, although ML polymorphism allows type inference,
actual ML programs do already contain a lot of type information. All constants, all constructors,

7.1. INFORMAL APPROACH 171

and all previously defined functions already have known types. This information is only waiting to
be used appropriately.

In comparison to previous works, we remove the requirement for type annotations at the elim-
ination of polymorphism by using type inference to propagate explicit type information between
different points of the program. In our proposal, tagging values of polymorphic types with type
symbols becomes superfluous. A type annotation at the introduction of a polymorphic value is
sufficient and can be propagated to the elimination site (following the data-flow view of programs).
This makes the handling of such values considerably easier, and reasonably practical for use in a
programming language.

In a first section, we present our solution informally, and explain how it simplifies the use
of higher-order types in ML. Then, we develop this approach formally, proving all fundamental
properties. In a third section, encodings are provided, both for previous formulations of first-class
polymorphism, and for system F' itself. Section 7.4 shows how our system can be used to provide
polymorphic methods for Objective ML, in an almost transparent way. In section 7.5 we discuss
how the value-only restriction to polymorphism can be applied here. Lastly, we compare with
related works, and conclude. Proofs of main theorems are given in appendix.

7.1 Informal approach

In this section we present our solution informally. We first introduce a naive straightforward
proposal. We show that this solution needs to be restricted to avoid higher-order unification. Last,
we describe a simple solution that allows for complete type inference.

7.1.1 A naive solution

Naively, ML types can be easily extended with polymorphic types. A typical program that cannot
be typed in ML and could be typed in system F'is Af. ff. This expression is not very interesting
for itself. However, a few variations are sufficient to illustrate most aspects of type inference in the
presence of higher-order types. Useful examples can be found in section 7.4 in addition to those
suggested in the introduction.

Although Af. ff is not typable in ML, the expression let f = Az.z in f f is. One can
see let-definitions as a special syntax, combined with a special typing rule, for the application
(Af.ff) (Ax.z). Let us exercise by replacing the LET polymorphic binding by first-class poly-
morphism. The identity Az.z of type @ — « has also type scheme Va.ao — «. We shall write
[Az.z : Ya.ao — a] for the creation (or introduction) of the polymorphic value A\z.z with type
scheme Ya.a — a. In order to avoid confusion with ML types, we explicitly coerce Va.ao — « to
a regular ML type [Va.ao — «], adding the type constructor [_]. We call Ya.ao — « a polymorphic
type or a type scheme and [Va.ao — af a polytype.

Let f be the expression [Az.z : Ya.ao — @], which has type [Va.a — «]. As any first-class value,
f can be passed to other functions, be stored in data-structures, etc. For instance (f,1) is a pair
of type ([Va.ao — a] x int). A polymorphic function (i.e. a polymorphic value that is a function)
cannot be applied directly, since it is typed with a polytype, which is incompatible with an arrow
type. We must previously open (or eliminate) the polytype. We introduce a new construct (_) for
that purpose. Hence, (f) is a function of type an instance of the polymorphic type Ya.ao — «a, i.e.
7 — 7 for some type 7. Its principal type is @ — «.

The raw expression Af. ff is not well typed. It should be passed a polymorphic value as
argument, for instance, of type [Va.a — «]. Here, we shall introduce polymorphism by a type

172 CHAPTER 7. POLY ML

constraint on the argument: Af:[Va.ao — «]. (f) f. The first occurrence of f in the body is opened
to eliminate polymorphism before it is applied. The following definition of g is well-typed

g del A:[Va.a = a]. (f) f: [Va.a = o] = [Va.a —
So are the two following variants:

h &L A [Va.a = a). (f) (f) : [Va.a = a] = o = o
| 2L A:[Va.a = o] [(f) (f) : Voo = a] : Va.ao = o] = Va.a — o]

In h, the occurrence of f in the argument position is also opened, so the result type is no longer a
polytype. In k, polymorphism is lost as in h, then it is recovered explicitly. Finally, we can apply

g to f:
(Af: Voo = a]. (f)) [Ar.z : Va.a = o : [Va.a — a]
More interestingly, the following expression is also well-typed
(Au.u [Az.z : Va.a — a]) (Af: Va.a — a]. (f)) : Va.a — o]

There is no term typable in ML that has the same erasure (untyped A-term) as this one. Note that
no type annotation is needed on wu since although u has a polytype as result, it is never opened.

7.1.2 An obvious problem

The examples above mixed type-inference and type-checking (using type-annotations). The obvious
problem of type inference in the presence of higher-order types remains to be solved: what happens
when expressions of unknown type are opened. Should the program Af. (f) f or simpler Az. (z) be
typed?

The answer is clearly negative, since this would amount to inferring higher-order types, which
we choose to avoid here. We should keep all user-provided polymorphism, but never guess poly-
morphism.

The attempt to forbid lambda abstraction of unspecified type to be a polytype does not work. It
would violate the assumption that polytypes are regular ML types. Thus, if Az. x has type o — «,
it should also have type [0] — [o] for any polymorphic type o. Actually, it is important that \z. z
possesses all these types. For instance, both (Az.z) f and Az. f x should be typable and have the
same type as f.

When typing Af.(f) f, variable f is first given an unknown type 7. Guessing [Va.a — ¢
for 7 would be correct, but not principal, since [Va.a — « — a] would also be a possible type
for 7. More subtle, the expression Af.(f) (¢ f) may only be typed with [Va.a — o] = [Va.a — «f
and has a principal derivation. However, we should also reject this program. Informally, type
inference would imply backtracking: f is first assumed of unknown type 7; we cannot type (f) so
we backtrack; typing the application g f forces f to be of type [Va.ao —], then (f) can be typed,
and so on. This causes two problems. Firstly, backtracking may lead to a combinatorial explosion
of the search space, and we would rather fail in every case where some inference order would fail.
Worse, typing constraints may disappear during reduction. Traditionally, this is not a problem
since it only allows to infer better types. However, in our case, the removal of polytype constraints
will leave some polytypes unspecified and lead to failure. Consequently, we would loose the subject
reduction property. For instance, Af. (f) (g f) reduces to Af.(f) f but the latter is not typable.

7.2. FORMAL APPROACH 173

7.1.3 A simple solution

The essence of our proposal is a simple mechanism based on unification that distinguishes polytypes
that have been user-provided from those that have just been guessed. Each occurrence of a polytype
[o] is labeled with a label e. That is, we write [0]¢ rather than [o]. Actually, we keep [o] as an
abbreviation for [0]¢ where € is an anonymous label, i.e. one that does not appear anywhere else.
Intuitively, labels indicate sharing of polytype nodes.

The elimination of polymorphism (a) is possible whenever a can be typed with [0]¢ where €
does not appear anywhere else. Informally, we could just say when a has polytype [o] (since € is
anonymous). The intuition is that an anonymous label € ensures that the corresponding polytype
does not appear anywhere else and a fortiori does not appear as an hypothesis (i.e. in a negative
occurrence, such as the context or the left hand-side of an arrow); thus, it must have been user-
provided.

For instance, in the expression Af.(f) f, the A-bound variable f can be given the polytype
Va.a — af, with a monomorphic label €; since all instances of f share the same label ¢, the label
cannot be anonymous as required when typing (f). Indeed, the type of the variable f in (f) is
a polytype only under the assumption that the binding occurrence of f is typed with exactly the
same polytype.

On the contrary, when a polytype is explicitly given, it can be propagated top-down. We use
polymorphism to generate new anonymous labels from older ones. We allow quantification on
anonymous labels, and later instantiation of quantified labels to new anonymous labels.

When typing the expression Af:[Va.ao — «]. (f) f, the type assumption f : Ve.[Va.ao —] is
added to the context in which (f) f is typed. Thus, variable f has type [Va.ao — «]! with a
different, anonymous, label €, and therefore (f) is well-typed. For technical reasons we chose not
to allow type annotation of abstracted variables in our system, but instead Az:7.a can be seen as
Az.let x = (z : 7) in a. Type annotation (_: 7) renames all €’s free in 7 into fresh ones.

7.2 Formal approach
We formalize our approach as a small extension to core ML.

7.2.1 The core language

Types We assume given two collections of type variables « € V, and labels € € £. The syntax of
types is:

Tu=a|T—=7][0] Monotypes
ou=1|Va.o Type schemes

¢ u=o0|Veg Generic schemes
Eu=ale Variables

The construct [o]¢ is used to coerce a type scheme o to a monotype. We call [0]¢ a weak polytype.
The label € is used to keep track of sharing between weak polytypes, or allow them to be usable
polytypes, when it is quantified as Ve.[o]¢. We do not quantify labels in o, since this would not add
any power to the system (it would be redundant with explicit type annotations).

Free type variables and free labels of a generic scheme, type scheme, or monotype ¢ are written
FV(s) and FL(s), and are defined as usual. In a type scheme V{.q, V acts as a quantifier, and the
variable or label ¢ is bound (i.e. not free) in V&.c. We consider type schemes equal by renaming

174 CHAPTER 7. POLY ML

(VAR) (Fun) (App)
rz:cEA A®z:9bta: T AFa;:m—> 7 Al ay:m
AbFz:g AFXz.a:19—> 71 AFaias: 1
(GEN-V) (GEN-E) (INST-V) (INST-E)
AlFa:o a ¢ FV(A) AlFa:g e ¢ FL(A) AF a:Va.o AFa:Vec
AFa:Vao At a:Veg AFa:o{r/a} At a:c{c/e}
(LET) (AnN)
AlFar:g A®z:ckas: T Ata:m (11:7 :79)
AFletz=ajinas: 7 AF(a:7):7m
(INTRO) (ELim)
AlFa:o (01:0:09) AFa:Velol
AtFa:o]:[og) Ak {a):0o

Figure 7.1: Typing rules

and reordering of bound variables and labels, and removal of useless quantifiers (i.e. V&7 = 7
whenever variable £ is not free in 7). As usual, substitutions leave bound variables and bound
labels unchanged. For example (o« — [V3.0 = o]){7/a} is 7 — [VB.8 — 7] provided [is not free
in 7. An instance of a type scheme Ve, a.1g is 7{€', 7/€, a}.

Expressions

a:=z|Ar.a|laa|letz=aina

[[a:0]|({a) | (a:7)

The first line corresponds exactly to core ML. We then introduce three new constructs: introduction
and elimination of first-class polymorphism and type annotation.

Typing rules are given in figure 7.1. All typing rules but the last three ones are standard. Rules
ANN and INTRO use an auxiliary relation (_: _:_). Given a type scheme o, we write (o1 : 0 : 09)
if there exists a substitution 6 from type variables to types and two substitutions p; and po from
labels to labels, such that oy = 0(p;(0)) and o9 = 0(p2(0)). The intuition is that if 6 is the identity,
then o and o9 are both equal to o except maybe in their labels. Indeed, (p1(0) : o : pa2(0)) for
any label renamings p; and py. If o does not contain any label, then (o1 : 0 : 02) is equivalent to
o1 and o9 being the same generic instance of 0. An important property of the relation (_: 0 :_) is
its stability by substitution. That is, if (0} : 0 : 02), then (6(01) : 0 : 0(02)) for any substitution 6.
Note that o is user-given and is not affected by the substitution.

This relation is used to type explicit annotations. For typechecking purposes, the construct
(-: 7) could have been replaced by a countable collection of primitives Az. (z : 7) indexed by 7 and
given with principal type scheme Vey, €z, FV (7). 7{€1/€é} — 7{€2/€} where € and € are different
renamings of the labels €. That is, to type an expression (a : 7), let 71 and 72 be two copies
of 7 where their labels have been renamed, and 6 be a substitution such that a has type 6(m;);
then (a : 7) has type 6(m2). We kept annotation as a primitive construct because of its dynamics
semantics.

7.2. FORMAL APPROACH 175

Rule INTRO uses the same relation, except that types schemes replace types. To type [a : o],
let o1 and o9 be two copies of o where labels have been renamed; find a substitution 8 such that a
has type 6(o1) (i.e. 6(o1) is a generic instance of the principal type scheme of a); then [a : o] has
type [#(o2)]¢ for any label €.

Last, rule ELIM says that polymorphism can be used only if the label of the polytype does not
occur anywhere else.

As an example, we have the following derivation, where o abbreviates Va.ae — a and A is

ool

(0 =Va.a — «) ELiM)

Al (f:]o]9) :YVa.a =«

(VAR)
Ab f:o]9 ([o]* 2 [o]° : [0]?) (ANN)
AF(f:[o]):[o]® (GEN-E)
Al (f :[o]) : Vea.[o] (
(

(0 [o]) INST-V)
- Ar (o o s el

. _ (Var)

A l_ f . [U]el (APP)

AT T (puy)
SN T Tl — o)

7.2.2 Dynamic semantics

We give a call-by-value semantics for the core language. Values and evaluation contexts are:

vi=w|[v:o]
wu=Az.a| (w: T — 1)
E:={}|Ea|vE|letx=FEina|[E:0]|(E:7)]|(E)

One step is either a reduction of the form:

(Az.a) v Funy a{v/z}
letz=vina —% a{v/z}
([v:VYa.T]) Eling (v:T)
(1)1 :7’2—)7’1) V2 Tﬂ? (1)1 (1)2 :7’2) :7’1)
([v: V1] : [0]°) Ting (v:T):0]
(v:a) vy
or an inner reduction obtained by induction:
al —r) a9

E{al} _r) E{ag}

Note that «, in rule TVAR, is really a variable and not a meta-variable. It is a major difference
with ML that type annotations are not just a means to restrict principal types to instances. On
the opposite, they allow better typings. Thus, reduction must preserve type annotations as long as
they provide useful typing information. Indeed, while terms are only reduced by rules FuN, LET,
and ELIM, we need the rules TFUN and TINT to maintain this type information. Rule TVAR erases
empty type information. Although types are preserved during reduction, they do not actually

176 CHAPTER 7. POLY ML

participate in the reduction. In particular, it would be immediate to define an untyped reduction
u . u

— and a type-erasure er, and to show that if a; — a9, then er(a;) — er(az) or er(a;) and

er(ag) are equal.

7.2.3 Type soundness

We could easily show that evaluation cannot go wrong by means of translation into system F. We
prefer to prove it in a more direct way. Subject reduction is an intermediate result of the direct
proof that is neither required nor implied by type soundness. However, it is quite important for
itself, since it shows that each reduction step preserves typings, and thus that the static semantics
is tightly related to the dynamic semantics.

Subject reduction is not obviously preserved by extension to polytypes: the new constructions
allow more programs to be typed, but simultaneously, their reduced forms need more programs to
be typable. In particular, subject reduction would not hold if we threw away type constraints too
early during reduction.

Both subject reduction and type inference are simplified by restricting ourselves to canonical
derivations. A similar result existed for the original Damas-Milner presentation of ML, but ML is
now often presented in its syntax directed form.

Canonical derivations are those where occurrences of rules GEN and INST are restricted as
follows:

e rule GEN only occurs as the last rule of the derivation or right above rule INTRO, ELIM, the
left premise of rule LET, or another rule GEN.

e rule INST may only occur right after rule VAR, rule ELiM, or another rule INST.

Lemma 32 (Canonical derivations) A wvalid typing judgment A+ a : 7 has a canonical deriva-
tion.

Another classical result is the stability of typing judgments by substitution:
Lemma 33 (Stability) If A+ a: 7, then for any substitution 0, 0(A) Fa: 0(7).

It is important to notice that the substitution is not applied to the expression a, in particular type
constraints inside a are left unchanged: their free variables must be understood as if they were
closed by existential quantification.
We define a relation a1 C as between programs stating that all typings of a; are also typings of
az, i.e.
ai Cagg(VA,g, AtFap:¢= Al ay:g)

Theorem 3 (Subject reduction) Reduction preserves typings, i.e. if a; — ag, then ay C as.

Subject reduction is not sufficient to prove type soundness, since the full relation (every program
has every type in any context) satisfies subject reduction but does not prevent from type errors. It
must be complemented by the following result:

Theorem 4 (Canonical forms) Irreducible programs that are well-typed in the empty environ-
ment are values.

Type soundness is a straightforward combination of the two previous theorems.

7.2. FORMAL APPROACH 177

7.2.4 Type inference

First-order unification on simple types must be extended to handle polytypes. During unification,
a polytype is treated as a rigid skeleton corresponding to the polymorphic part, on which hang
simple types. We present both unification and type inference as solving unification constraints,
following [57]. The formalism used is that of conditional rewriting, where we distinguish between
assumed conditions, which can always be satisfied, written let ... in , and conditions that may fail,
providing dynamic control during the inference process, written if ... then.

Unification for simple types First, we remind unification for simple types. In this part only,
we exclude polytypes from types 7. A unification problem is a formula U defined by the following
grammar.

Uu=L|T|UAU |Ja.Ule Unification problems
ex=T|T=¢ Multi-equations

The symbols T and L are respectively the trivial and unsatisfiable unification problems. We treat
them as a unit and a zero for A. That is U AT and U A L are equal to U and L, respectively. We
also identify T with singleton multi-equations. That is, we can always consider that a unification
problem U contains at least one multi-equation v = e for each variable of U. A complex formula is
the conjunction of other formulas or the existential quantification of another formula. The symbol
A is commutative and associative.

The symbol 3 will be needed later for polytypes. It acts as a binder, i.e. free variables of da. U
are free variables of U except . Bound variables can freely be renamed. We identify ;. 3. U
and das. dap. U and simply write 3 a, ae. U. The symbol = is associative and commutative. This
makes multi-equations behave as multi-sets of terms.

The substitution of terms is extended to unificands in a straightforward way. For existentials,
the application of a substitution 6 to a unificand 3. U is the unificand 3/ 0(U{c'/a}) where o
is chosen outside of both the domain and the codomain of 8 and outside free variables of U.

A substitution 6 is a solution of a multi-equation if it sends all terms of the multi-equation
to the same codomain. The substitution @ satisfies a conjunction of subproblems if it satisfies all
subproblems; 6 is a solution of Ja. U if it can be extended on ' into a solution of U{«//a} where
o/ is chosen outside of both the domain and the codomain of € and outside free variables of U.

Two unification problems are equivalent if they have the same set of solutions. One can check
that all previous structural equalities are indeed equivalences. We write U; = Us when the unifi-
cation problems U; and Us are equivalent. We also write Uy = U, to mean that the unification
problem U; can be rewritten into the equivalent unification problem Us.

Given a unification problem U, we define the containment ordering <y as the transitive closure
of the immediate precedence ordering containing all pairs a < ' such that there exists a multi-
equation @ = 7 = e in U where 7 is a non-variable term that contains /. A unification problem is
strict if <y is strict. Remark that strictness is syntactic and is not preserved by equivalence. The
detection of cycles by a non strict containment ordering is always sound; it is also complete, but
only for fully merged and decomposed unification problems.

A problem is in solved form if it is either L or T, or if it is strict, merged, decomposed, and
of the form 3&. A;c; , ;. In particular, multi-equations e; contain at most one non-variable term,
and if ¢ # j then e; and e; contain no variable term in common. An explicit principal solution 6 can
be read straightforwardly from a problem in solved form. We also write U = 3¢.6 if 6 is a principal
solution of U and variables ¢ are not free in U, or by abuse of notation, if U is unsatisfiable and

178 CHAPTER 7. POLY ML

Occur-CHECK
if <y is not strict then
U= 1
MERGE
a=ehNa=c =>a=e=¢
ABSORB
a=a=e>a=c¢e
DECOMPOSE
if size(ty — ™) < size(r] — 75) then
TS T=T 29 T=e>T 5T=eATI =TI AT2 =T

Figure 7.2: First-order unification for simple types

@ is L. This is consistent with the previous notation since € could be seen as A
whenever its domain and codomain are disjoint.

The unification algorithm is given as a set of rewriting rules that preserve equivalence in fig-
ure 7.2. There are implicit context rules that allow to rewrite complex formulas by rewriting any
sub-formula. We write size(o) the size of term o counted as the number of occurrences of symbols
(- — -) or [] in 0. These rules are all standard. It is well-known that given an arbitrary unification
problem, applying these rules always terminate with a unification problem in solved-formed. The
rule OCCUR-CHECK rejects solutions with recursive types. If it were omitted the algorithm would
infer recursive types.

acdom ()% = 0(c)

Unification for simple-types with polytypes We now allow polytypes [¢]¢. In order to allow
a natural decomposition of polytypes, we extend typing problems with equations between type
schemes.

U= ...|lo=0

These are not multi-equations. In particular, a variable cannot be equated to a polymorphic type
scheme, and as a result, equations involving type schemes are never merged.

A substitution € is a solution of a polytype equation Ya.r = V&'.7' (1) if (Va.T) = 0(Va'.7'),
where equality is the usual equality for type schemes in ML, i.e. it is taken modulo reordering and
renaming of universal quantifiers, and removal of useless universal variables. This is equivalent to
the existence of two injective substitutions p and p’ of respective domain @ and @ and of codomain
ad’, a renaming 7 from @@’ outside of free variables of 6, 7, 7', and @@’ such that 6 o is a solution
of p(1) = p'(7"). We could solve such unification problems by first unifying p(7) and p'(7") and then
checking the constraints. However, this would force some unnecessary dependence. Intuitively, the
renaming 7 can be dealt with by existential quantification of unificands. In particular, nn can be
the identity when 6 is disjoint from ada’.

Without loss of generality, we can restrict ourselves to the case where ana’, FV(r) Na’, and
FV (") N @ are all empty sets (1). Let 6’ be (n+n~1)o@ono (p+ p'). The substitution 6 also
decomposes as (no 0\ a@') + (p + p'). Clearly, it satisfies the three following properties:

L. 0'(r)=06'(1),

2. 0't @ and @' | & are injective in @@, and

7.2. FORMAL APPROACH 179

DECOMPOSE-POLY
if size(o) < size(o') then
o] =[] =e=>[o]" =eNe=€ Ao =0

CLASH
of=1—>7 =€ => 1
POLYTYPES

letana =PandanNFV(r')=0and &' N FV(r) =0 in
Var =Va'.r'=3ad . 1= Na+ d

RENAMING-TRUE
let @ = (ai)iel..n-i-p and ~ (a;)iel..n-i-q in
Jad. (a; =)t "Aa o a =T

RENAMING-FALSE
iffecaandT¢d’ U{B}thenf=7=cAha+ad => 1
iffeanFV(r)and T # ftheny=71=c¢Aa+a = L

Figure 7.3: First-order unification for simple types with polytypes

3. no variable of @@’ appears in im (0" \ ad’).

Conversely, a substitution 6’ satisfying these three conditions is a solution of Va.r = Vo/.7'.

Indeed, the condition 1 above is a unification problem. We introduce a new kind of unificands
@ <> @ whose solutions are substitutions satisfying the conditions 2 and 3. We consider & and &’
as multi-sets (i.e. the comma is associative and commutative). In order to avoid special cases, we
also require that no variable is listed twice in the sequence @@ (in particular @ @' is empty). The
symbols = (in polytype equations) and <> are commutative. Then 6 is a solution of Va.7 = Va&'.7’
under the assumption (1), if and only if it is a solution 3ad’. (1 = 7' A @ + @'). Remark that
unificands are no longer stable by arbitrary substitutions as long as they contain free variables
appearing in renaming unificands (otherwise, renaming unificands could even become ill-formed.)
Still, unificands remain stable by renamings. Indeed this is necessary to give meaning to existentially
quantified unificands.

Rules for unification with polytypes are those of figure 7.2 plus those of figure 7.3. Rule CLASH
handles type incompatibilities. Rule POLYTYPES transforms polytype equations as described above.
Rule RENAMING-TRUE allows to remove a satisfiable renaming constraint that became garbage,
i.e. independent of all other multi-equations. On the opposite, rule RENAMING-FALSE detects
unsolvable renaming constraints. In the first case, a solution 6 of @ +» @ would identify a variable
B of & with another variable of @ (thus 6 would not be injective) or with a term outside of @ U &'.
In the second case, the image of a variable v would contain properly a variable 8 of &, making it
leak into a wider environment (thus, violating condition 3).

It can be easily checked that if U is merged and decomposed, then for every renaming constraint
that remains either rule RENAMING-TRUE or -FALSE applies. Therefore, renaming constraints can
always be eliminated.

Theorem 5 Given a unification problem U, there exists a most general unifier @ which is computed
by the set of rules in figures 7.2 and 7.3, or there is no unifier and the rules reduce to L.

180 CHAPTER 7. POLY ML

VAR
let Vé.r' = A(z) and ENFV(7) =0 in
Avzg:r=>36r=7
Fun
let aj,a0 ¢ FV(A) U FV(7) in
A Az.a: 7= Ja,a0. (ADr:a1ba:a) AT =01 = ao
App
leta ¢ FV(A)UFV(r)in
Avaray:7=Ja.(Avar:a—=7)AN(AD>ay:)
LET
let @ ¢ FV(A) in
if Ava;:a= 3.0 then
Avletz=a;inay: 7= 36 ONADz: Gen (0(a),0(A) > as: T
else Avrletz=ay;inay: 7= L
ANN
let €g = F'L(7y) and €; and €, be disjoint copies of € outside of A and 7
and ay = F'V(7p) and @; be a copy of & outside of A and 7
and 1, = 7'0{071/070} in
A (a : T()) 7= dé,60,01. A>a 7’1{51/50} AT = 7'1{52/50}
INTRO
let c =Va.rpand anN FV(A) =0
and ¢y = F'L(0) and €; and €, be disjoint copies of € outside of A and 7
and oy = F'V (o) and a; be a copy of ag outside of A, 7 and &
and 7 = T(){O_él/o_(o} in
if Ava:7{e/6} = I 0and an (dom(0) UFV(im(0))) =0 then
Avla:o]:7= 3 &,6,a1,e0 AT =[Van{e/e)
else Avfa:0]:7=> 1
ELmM
let @ ¢ FV(A) in
if Ava:a= 3£.0then
if 9(a) = [V&/.7'|°and e ¢ FL(O(A)) then A (a) : 7= I, a0, . ONT =7
else if f(a) =o' and o/ ¢ FV(0(A)) then A {(a) : 7= 3¢, .0
else Av(a):7=> 1
else Av(a):7=> 1

Figure 7.4: Type inference algorithm

Type inference For type inference, we extend atomic formulas with typing problems. A typing
problem is a triple, written A > @ : 7, of an environment A, a term a, and a type 7. A solution
of a typing problem A > a : 7 is a substitution 6 such that #(A) - a : 6(7). By lemma 33, the
set of solutions of a typing problem is stable under substitutions. Thus, typing problems can be
treated as unification problems, following [102]. The rules for solving typing problems are given in
figure 7.4. The generalization Gen (o, A) is, as usual, V.0 where ¢ are all free variables and free
labels of o that do not occur in A. To lighten the presentation we leave it implicit that whenever
we write 3 &. 6, variables ¢ are asumed to be distinct from all other variables appearing in the rule.

7.3. ENCODINGS 181

Theorem 6 Given a typing problem (A > a : T) there exists a principal solution, which is computed
by the set of rules described in figures 7.2, 7.3 and 7.4, or there is no solution and the rules reduce
to L.

7.2.5 Printing labels as sharing constraints

We propose here an alternative interface to the system, potentially enhancing readability of types
shown to the user. It is robust, and could also have been used in the presentation of our type
system. We preferred the other, more traditional approach for sake of readability.

Labels are used to trace the sharing of polytypes. Types can be restricted so that two polytypes
with the same label are necessarily equal. This property is not required in the present type system,
but it is stable: if satisfied by all initial type assumptions in A and type annotations in a, then it
remains valid in all types appearing in a principal derivation of A - a : 7. The grammar of types
can be extended with a sharing construct!:

Tu= ...| (7 vhere a =)

Using sharing, any type can always be written such that every label occurs at most once,
and thus can be omitted. In fact, in our presentation, sharing of types is preserved during type
inference. Sharing was just ignored when reading principal solutions from unificands in solved form.
The where construct allows to read and print all sharing present in the solved form. Actually, only
the sharing involving polytypes needs to be printed; the other sharing can be ignored.

For instance, the expression Az.(z : [o]) has type [0] — [o], since the two polytypes have
different labels, but the expression A\z.let y = (z : [0]) in z has type (o — « where a = [0]).

Both notations (sharing constraints and label variables) actually coincide when all polytypes
are anonymous (i.e. no label variable occur twice) and polytypes are simply written [o] for instance
Az. (z : o) has type [0] — [o]. This is an important case, since the only types the user actually
needs to write are of this form. Indeed, types written by the user are only type annotations,
which become more general by removing sharing constraints. More precisely, if ¢’ is a type scheme
obtained from o by a label substitution p, then for any expression a, we have (a : o) C (a : 0’) and
[a: 0] Cla:o']. This is an easy consequence of o being more general than o’.

Thus, the user never needs to write labels or sharing constraints, but he must read them in
both inferred types and type-error messages.

7.3 Encodings

In this section, we give encodings in our language for both system F' and explicit polymorphism
with datatypes. This last encoding is direct, and makes our language an alternative to system F'.

Type annotation on arguments

It is convenient to allow Az:7.a in expressions. We see such expressions as syntactic sugar for
Az.let x = (z : 7) in a. The derived typing rule is:

(PoLy-FuN)
A® (z:VYFL(r2) \ FL(11).12) Fa:7 (11 :7:79)
AF)dz:t.a:1 = 7

! Alternatively, one could use the binding 7 as « as in Objective ML, although the binding scope of as is less clear
and harder to deal with, formally.

182 CHAPTER 7. POLY ML

The derived reduction is (Az:7.a) v Funy a{(v : 7)/z}. Note that 7| is not just the result of
renaming label variables of 7. It may also be an instance of 7. Hence, the set FL(72) \ FL(7)
contains only labels corresponding to copies of those of 7 and do not include any label that would
have been brought by the instance of a free type variables of 7 (since those would also appear in

T1).

Polymorphic datatypes

Previous works have used data types to provide explicit polymorphism [65, 108, 83]. Omitting other
aspects that are irrelevant here, all these works amount to an extension of ML with expressions of
the form:

tuo=a|t—t|Ta Types
M=z |MMI|Xe. M |TM|T ' M Terms
| type T @ =0 in M Type declarations

where T ranges over datatype symbols. In expressions, 7" and T~ ! act as mutually inverse intro-
duction and elimination functions to coerce the higher-order type o into the simple type T a&.

The translation is an inductive definition ((_)),. The environment p is a list of type definitions
type T' @ = 0g and p(T') is the function A@. oy, i.e. given type arguments 7, it returns the type
oo{7/a}, using the right most definition of 7" in p. The translation of these types into types of our
language is straightforward. The translation does not actually use type annotations smartly, and
uses a single label €. It could also make all labels of the translation different, ¢.e. anonymous, but
this is not needed.

(e =« (t1 = t2))p = (t1)p = (20 (T), = [p(T) (ED,I°
We translate programs as follows.

{zhp == (Az. M), = Az. (M), (My Mz))p = (M), (M2))
(T M), =[(M),: p(T) a] (T~ M), = (M), : [p(T) a])
(type T a=tina), = (M) type T a=t

Indeed, the pattern (- : [0]) amounts to the explicit elimination of polymorphism. Since, in the
translation, the elimination of polymorphism is always explicit, it can easily be shown that the
translation of a well-typed term is always well-typed. (While the program uses only one label, the
type derivation need at least two other labels to locally type the elimination patterns ((A)), :

[o(T) a).)

Encoding system F

Laiifer and Odersky have shown an encoding of system F' into polymorphic datatypes [83]. This
guarantees by composition that system F' can be encoded into semi-explicit polymorphism. We
give here a direct encoding of system F', which is much simpler than the encoding into polymorphic
datatypes.

The types and the terms of system F' are

tuo=a|t—1t|Vat Types
M:=x|MM| e:t. M |Aa. M | M t Terms

7.3. ENCODINGS 183

The translation of types of system F' into types of our language is again straightforward, and may
use a single label e:

(e = a {(tr = t2)) = (t2)) — (t2)) (Va.t) = [Ve. ()]

The translation ((_)) is extended to typing environments in an homomorphic way. The translation
of typing derivations of terms of system F' into terms of our language is given by the following
inference rules:

rz:teA Ao (z:t)FM:t'=a AFM:t' 5t=a AFée:t'=d
Az t=ux AF Xzt Mt =t = Xz ((t).a AFMe :t=ad
AFM:t=a a¢ FV(A) AFM Vot = a
AF Aa. M :Va.t = [a: Va.(t)] AFMt:t'{t/a} = (a)

Since the translation rules copy the typing rules of system F', the translation is defined for all
well-typed terms. There is no ambiguity and the translation is deterministic.

Lemma 34 For any term M of system F, if A= M :t = a, then (A) - a: ({(t)).

Proof: The proof is by structural induction on M. The only difficulty is to ensure that when
typing (a) the polytype [0]¢ of a is always anonymous. This is immediate: since the translation of
all abstractions is annotated with the exact type of the variable, the unique label may always be
quantified in the environment; therefore there are no free labels in the environment, and rule ELIM
will always succeed. [|

If we choose for system F' the semantics where type abstraction does not stop evaluation (i.e.
Aa. E is an evaluation context whenever E is), then the translation preserves the semantics in a
strong sense (reduction steps of a term can be mapped to the reduction of the translated term).
Another semantics would need easy adjustment, either of the translation or of the semantics of our
system.

Let us compare a term M of system F' with its translation a in our language, syntactically.
Our types differ by having an extra type constructor [_] surrounding any polymorphic type. Our
term variables do not carry type information. Lambda abstractions carry exactly the same type
information in both M and a. The type information at elimination of polymorphism is always
omitted in a. The counterpart is that type information at introduction of polymorphism appears
explicitly in [a : Va.{(7))]. In Aa. M, only variable « is mentioned; the type 7 is deduced from the
type information located at application nodes in M.

The difference can be illustrated on the following example:

(Af:tp dazte. (f 7p0) @) = Aoy Aw: 7. (f) [@ 2 72

Type expressions with similar indices correspond to one another. The type 77z is such that the
type 7 7, reduces to an arrow of domain 7,. The difference between the two approaches reduces
to putting the type annotation t;, on the function or the annotation 7, on the argument. It is
difficult to tell which option is more user-friendly. Obviously, examples can be found to make either
side shorter. On the one hand, it could be argued that in many cases 7;x is likely to be a subterm of
7z, which favors system F'. For instance, when polymorphic map is applied to a list of integers, £,
is int and 7, is list@int. On the other hand, our language is also more flexible: type annotations

184 CHAPTER 7. POLY ML

are mandatory in system F', but not in our proposal. In particular, ML programs do not require
any explicit type information at all. That is, in the above example, list int would not need to be
provided since it would be fully inferred. While functions are often polymorphic, their arguments
are frequently monomorphic.

There is another insignificant, but interesting difference betweem the two approaches. Ours
allows for multiple abstractions to be introduced simultaneously, as in [a : Vay, a9.7]. Since type
application is explicit in system F', the expression Aay,as. M would be ambiguous; thus it is not
allowed. This does not give us more concision that system F', but it allows to avoid the common
pattern [[f : Va.7] : Yo/ V7). In most cases, instantiation of all variables will be simultaneous and
we can simply write [f : Vo/ Va.7].

The simplicity of our encoding of system F' compared to its encoding into polymorphic datatypes
is permitted by the introduction of polytypes as first-class types, and does not rely on the inference
of polytypes at their elimination points. As we have shown by using only one label in the translation,
if we made the elimination of polymorphism always explicit, we could keep first-class polytypes and
omit all labels in polytypes. We would obtain a weaker but simpler proposal that would still extend
ML and be as powerful as system F', however more verbose.

7.4 Application to Objective ML

In this section we show how the core language can be used to provide polymorphic methods in
Objective ML? [113]. Polymorphic methods are useful in parameterized classes. Indirectly, they
may also reduce the need for explicit coercions.

While Objective ML has parametric classes, it does not allow methods to be polymorphic. For
instance, the following class definition fails to type.

let « collection = class (1)
val contents = 1
meth mem = A\x. mem x contents
meth fold : (8 - a — B) — B —
= Af.)x. fold_left f x contents

end

The reason is that variable g is free in the type for method fold and it is not bound to a class
parameter. The solution is to have the method fold be polymorphic in 8. With polytypes, we can
write

meth fold = [Af.Ax. fold_ left f x contents
V8. (B —> a— B) - B — []

Still, we have to distinguish between polymorphic and monomorphic methods, in particular when
sending a message to the object. The aim of the remainder of this section is to make invocation
polymorphic and monomorphic methods similar, and more generally, to make the invocation of
polymorphic methods lighter.

The first step is to give polytypes to all methods. This is easily done by wrapping monomorphic
methods into polytypes. For instance, we shall write

meth mem = [Ax. mem x 1 : «]

2The examples of objects and classes given below are rather intuitive, and could be translated in other class-based
object-oriented languages; the reader may refer to [113] for a formal presentation of Objective ML.

7.4. APPLICATION TO OBJECTIVE ML 185

BErim
let « ¢ FV(A) in
if A>a:a= 3£.60then
if 0(a) = [Va'.7']° and € ¢ FL(0(A))
then A> (a): 7= 3¢ a,d . ONT =7
else if f(a) = o' and o ¢ FV(0(A)) then A> (a): 7 = 3¢, .0
elselet ¢ & (FL(A)UFL(T))in Av> (a): 7= 36, a. 0 Aa = [7]°
else A>(a):7=> 1

’

Figure 7.5: Type inference rule for use of monomorphic polytypes

However, we still want to be able to use monomorphic methods without type annotations. There
is a small but very convenient extension to the core language that solves this problem. We add a
new typing rule ELIM-M:

(ELM-M)
AFa:l7]
AF{a):T

As opposed to rule ELIM, this one allows € to appear in A. Inference problems are solved by forcing
the polytype to be monomorphic.

Both rules ELIM and ELIM-M apply when € is anonymous and the polytype is monomorphic,
but they produce the same derivation. If either € is free in A, or the polytype is polymorphic, then
only one of the two rules may be used. As a result, principal types are preserved. The type inference
algorithm can be modified as shown in figure 7.5. The subject reduction property is preserved.

The expression (Az. \y. (z#mem) y) is then typable with principal type (mem : [— f];..) —
a — f. Since all methods are now given polytypes, we shall change our notations (the new notations
are given in term of the old ones): in types, we now write m : o for m : [o]; in expressions, we
now write m : o0 = a for m = [a : o], m = a for m = [a :] and a#m for (a#m). With the new
notations, the collection example is written:

let « collection = class (1)

val contents = 1

meth mem = A\x. mem x contents

meth fold : V3. (8 - a = B) — 0 =

= Af.Ax. fold_left f x contents

end;;
value collection : class « (o list)

meth mem : & — bool

meth fold : V3. (8 - a = B) — 0 =

end
A monomorphic method is used exactly as before.

let collmem c x = c#mem x
collmem : (mem : @« — (; ..) > a —

However, when polymorphic methods are used under abstractions, the type of the object should
be provided as an annotation,

186 CHAPTER 7. POLY ML

let simple_and double (c : & collection) =
let 11 = c#fold (Ax.Ay. xuy) [0 in
let 12 = c#fold (Ax.Ay. (x,x)zy) [1 in
(11, 12);;
simple_and double : « collection — (a list * (a * «) list)

Since the method fold is used with two different types, this example could not be typed without
first-class polymorphism.

Polymorphic methods also appear to be useful to limit the need for explicit coercions. In
Objective ML, coercions are explicit. For instance, assume that objects of class point have the
interface (x : int;y : int), and that we want to define a class circle with a method giving the
distance from the circle to a point.

let circle = class (x,y,r)
meth distance = Ap:point. ...
end;;
value circle : class (int * int * int)
meth distance : point — float
end

Given a point p and a circle ¢, we compute their distance by c#distance p. However, an object
cp of a class color_point where color_point is a subtype of point (e.g. its interface is (x : int;y :
int; color : color)) needs to be explicitly coerced to point before its distance to the circle can be
computed:

c#distance (cp : color_point :> point)
This coercion could be avoided if distance were a toplevel function rather than a method:

let distance c p = c#distance (p :> point);;
value distance : (distance : point = « ;) — #point = «

The type expression #point represents any subtype of point. Actually, it is an abbreviation for
the type (x : int;y : int; p). Here, #point contains a hidden row variable that is polymorphic in
the function distance. This allows different applications to use different instances of the generic
row variable and thus to accept different objects all matching the type of points.

Explicit polymorphism allows to recover the same power inside methods:

meth distance : Va:#point. ¢ — float = Ap. ...

Then, c#distance cp is typable just by instantiation of these row variables, without explicit co-
ercion. Of course, we must know here that c is a circle before using method distance, like would
happen in more classical object-oriented type systems. There is an alternative between using ex-
plicit coercions or providing more type information. The advantage of type information is that
it occurs at more convenient places. That is, it is necessary in method definitions and at the in-
vocation of a method of an object of unknown type. On the opposite, explicit coercions must be
repeated at each invocation of a method even when all types are known.

7.5 Value-only polymorphism

For impure functional programming languages, value-only polymorphism has become the standard
way to handle the ubiquity of side-effects. It preserves type-soundness in the presence of side-
effect, without making the type system overly complex. It is based on a very simple idea —if an

7.5. VALUE-ONLY POLYMORPHISM 187

expression is erpansive, i.e. its evaluation may produce side-effects, then its type should not be
polymorphic [124].

This is usually incorporated by restricting the GEN rule to a class of expressions b, called non-
expansive, composed of variables and functions. Equivalently, this restriction can be put on the
LET rule: both ways give exactly the same canonical derivations in the core language. We actually
prefer the latter, since we also need rule GEN to precede rules ELIM and Intro.

Thus, we replace rules INTRO and LET by the following four rules, each rule being split in its
expansive and non-expansive versions.

(PoLy-V) (PoLy-E) (LET-V)
AFb:oy (01:0:02) Aba:m (7’1:7’:7’2) AFb:c¢ A®z:cta:T
At [b:o]: o9 AFla:T1]:[m) AtFletz=bina: T
(LET-E)

Alay: 7 A@z:T'Fag: T
AFletz=a;inay: T

The class of non-expansive expressions can be refined, provided the evaluation cannot produce
side-effects and preserves non-expansiveness. For instance, in ML, we can consider let-bindings
of non-expansive expressions in non-expansive expressions as non-expansive. In our calculus, type
annotations are also non-expansive. More generally, any expression where every application is
protected (i.e. appears) under an abstraction is non-expansive (creation of mutable data-structure
would be the application of a primitive):

b=z | zr.a|letz=binb|(b:7)|[b:0o]]|(b)

This system works perfectly, and all properties are preserved.

However, it seems too weak in practice. Since we use polymorphism of €’s to denote confirmation
of polytypes, as soon as we let-bind an expansive expression, all its €’s become monomorphic, and
all its polytypes need an explicit type annotation before they can be eliminated. For instance, the
following program is not typable, because labels in the type of the binding occurrence of g cannot
be generalized.

let f =[Az.z:Va.a -+ a]inlet g = (Az.z) fin (g) ¢

When ML polymorphism is restricted to values, the result of an application is monomorphic (here,
the result of applying Az.z to f). Traditionally, the typical situation when a polymorphic result
is restricted to be monomorphic is partial application. There, polymorphism is easily recoverable
by n-expansion. However, the same problem appears when objects are represented as records of
methods, with no possibility of n-expansion. In our core language, the only way to recover at least
explicit polymorphism in such a case is to annotate the use of let-bound variables with their own

types:
let f =[Az.z:Va.a > a]inlet g = (Az.z) fin (g: Va.a = a]) ¢

In practice, with objects, this means recalling explicit polymorphism information at each method
invocation. The strength of our system being its ability to omit such information, its interest would
be significantly reduced by this limitation.

One might think that allowing quantification on € in LET-E, i.e. write Ve.7’ in place of 7/, is
harmless. Indeed, €’s polymorphism does not allow type mismatches like &’s polymorphism would:

188 CHAPTER 7. POLY ML

verifying identity of type schemes is done separately. However, this rule would break principal
types. Cousider, for instance, the following expression:

letz=id[inlety = (hdz) inz

It can be assigned type [o]¢ 1ist for any type scheme o. Since type schemes of polytypes are not
ordered, there is no principal type for this expression.

This problem is pathological, but not anecdotical. It can be solved by restricting to minimal
judgments. That is, we replace LET-V and LET-E by the following restricted rules. A F* a : ¢
means that ¢ is a minimal type scheme for a under assumptions A, i.e. there exists no ¢’ strictly
greater than ¢ in the instantiation order, such that A F a : ¢. (Since we happen to be keeping

principality, ¢ is the principal scheme for a under assumptions A.)

(LET-V*) (LeT-E*)
AF*b:c¢ A®z:cha:T AF*qy:Vea.r' ay b Aoz : (Ver'){7/a}Fag: T
AbFletz=bina:T AFletxz=a;inas: 7

The rule LET-E* may seem strange, since it is not an instance of the original LET rule, but rather
a combination of INST and LET. The original derivation would have been:

AFap: Vea.r'

AFap:Ver" A®z :Ver"Fay: 7

AFletz=a;inay: T

The restriction to principal judgments is not new: it has already been used for the typing of
dynamics in ML [72], for instance. One has to reject the program Az.(dynamic z) because, in
the principal judgment = : « F z : «, some variable of the type of x occurs free in the context.
A non principal judgment obtained by choosing int for « would be correct, but arbitrary. More
recently, it has been used for local type inference in system F< [96]. Type inference is only allowed
locally at application nodes, and upon the condition there is a principal solution to the local
inference problem. Without this condition, choices made at an application node would influence
other nodes, and inference would loose its locality.

We use minimality here in a somewhat different way. In the above two systems, requiring a
principal solution was a way to have the inference fail on some ambiguous cases. Contrary to
dynamics, our types do not need to be ground; they may share variables with the environment.
Contrary to local type inference, all our satisfiable inference problems have principal solutions.
Thus, our minimality condition never makes a type inference problem fail, but only restricts the
set of types that can be assigned to a variable in a let statement. Notice that F* judgments do
not actually require the derivation to be principal, but only minimal; they do not eliminate all
different derivations, but only those that would be obtained by unnecessarily instantiating some
types. We may then prove the existence of principal types by showing that all minimal schemes
are equal modulo renaming of bound variables, and as a result our minimality condition happens
to be a principality condition. This condition is not harmful when reasoning about derivations:
the property of minimality of a derivation is kept by substitution of free type variables, so that the
stability lemma is still valid in the extended system.

Still, we do not consider this solution as fully satisfactory, and we view it as an example of the
difficulties inherent to value-only polymorphism.

7.6. RELATED WORK 189

7.6 Related Work

Full type inference of polymorphic types is undecidable [123]. Several works have studied the
problem of partial type inference in system F'.

Some implementations of languages based on system F' relieve the user from the burden of writ-
ing all types down. In Cardelli’s implementation of the language Fun [23] polymorphic types are
marked either as implicit (actually their variables are marked) and they are automatically instan-
tiated when used, or as explicit and they remain polymorphic until they are explicitly instantiated
This mechanism turns out to be quite effective in inferring type applications. However, types of
abstracted values are never inferred. Thus, the expression A\z.z cannot be typed without provid-
ing a type annotation on the variable x, which shows that this is not an extension to ML. Pierce
and Turner have extended this partial inference mechanism to F¥ in the design of the language
Pict [95]. By default they also assign “unification variables” to parameters of functions with no
type annotations. Their solution requires surprisingly little type information in practice, especially
in the absence of subtyping. Still, as for Cardelli’s solution, it is quite difficult to know exactly the
set of well-typed programs, since the description is only algorithmic.

Conscious of this problem, they more recently proposed to replace this unpredictable approach
by one based on predictable local inference [96, 94]. Their approach is somewhat opposite of ours:
while we provide some inference-free type checking without modifying ML type inference, they add
some type inference to F'< and keep a checking based system. In their approach, the uniqueness
of typing is still valid at every step. As we, they distinguish between the specification and the
algorithm of type inference, but this distinction is only limited to one rule, the one doing local
inference. This rule has two provably equivalent versions: one is a specification of the inferred type
in terms of a universal property; the other one is algorithmic and is presented in a constraint-solving
style. The difference of approach and the fact that they also handle subtyping make it difficult to
compare the respective strength of the two systems.

A different approach is taken by Pfenning [89]. Instead of providing type annotations on
lambda’s, he indicates possible type applications (this corresponds to the notation (_) in our lan-
guage). Then, he shows that partial type inference in system F' corresponds to second-order
unification and is thus undecidable [90]. As ours, his solution is an extension of ML. It is also
more powerful; the price is the loss of principal types and decidability of type inference. However,
a decidable subcase of higher-order unification has also been considered in [37]. Neither solution
handles subtyping yet.

Kfoury and Wells show that type inference could be done for the rank-2 fragment of system
F [59]. However, they do not have a notion of principal types. It is also unclear how partial type
information could be added.

In [83], Laufer and Odersky actually present two different mechanisms. First, as we explained
in the introduction they add higher-order polymorphism with fully explicit introduction and elimi-
nation. As we have seen, our framework subsumes theirs. They also introduce another mechanism
that allows annotations of abstractions by type schemes as in Az: 0. x together with a type contain-
ment relation on type schemes similar to the one of Mitchell [80] but with some serious restriction.
Type schemes may be of the form Va.0; — 03, where g; are type scheme themselves. However,
universal variables such as a can only be substituted by simple types. Thus, the only way to
apply a function of type Va.a — « to a polymorphic value remains to embed the argument inside
an explicitly defined polytype. Actually, one of the reasons for complementing universal-datatype
polymorphism by restricted type-containment is to obtain an encoding of system F'. In our case,
the encoding of system F' is permitted by the use of polytypes.

190 CHAPTER 7. POLY ML

In [39], Duggan proposes an extension to ML with objects and polymorphic methods. His
solution heavily relies on the use of kinds and type annotations. These are carried by method
names that must be declared before being used. In this regard, his solution is similar to having
fully explicit polymorphism both at introduction and elimination, as in [83]. His use of recursive
kinds allows some programs that cannot be typed in our proposal (section 7.4). However, this is
due to a different interpretation of object types rather than a stronger treatment of polymorphism.

Conclusion

We have presented a conservative extension to ML that allows for first-class polytypes and first-class
polymorphic values. In our proposal as in ML, let-polymorphism remains implicit. While first-class
polymorphism must be introduced explicitly, type information is inferred at the elimination point.
This allows for polymorphic methods in Objective ML, which are particularly useful in parametric
classes.

We have also shown that polymorphism can be restricted to values, so as to be sound in the
presence of side-effects. This naive standard restriction weakens the propagation of first-class
polymorphism, and forces unnecessarily some type annotations. Thus, we have also proposed an
extension that covers all useful cases and does not present any known limitations. Even though
the specification of typechecking becomes technically more difficult, since it involves the notion of
minimal judgements, the principal-type property is preserved. Although practically insignificant,
this difficulty exposes a drawback of the value-only restriction of polymorphism.

As future work, two extensions of importance are to be studied. Firstly, we should consider
applying our technique to existential types. The encoding of these into universal types introduces
inner quantifiers, which removes all opportunities for inference. It remains unclear whether primi-
tive existential types could benefit from our work. Secondly, the replacement of the core ML type
system by one with subtyping constraints as in [4, 40], would combine first-order generic polymor-
phism and subtyping polymorphism in an ML-like language. The issues of constraint checking and
type generalization are rather orthogonal. However, some recent and more general presentation
[97, 41] significantly differs from ML. Thus, more investigation is required.

The principle of our approach was to keep type inference first-order. While we believe this to
be sufficient in practice, we would still like to formulate our type system in terms of partial type
inference for second-order lambda-calculus.

Appendix

7.7 Proofs of main theorems

Lemmas 32 (canonical derivations) and 33 (stability by substitution) are tedious but essential in
ML. Their proofs easily cary over with the three new rules, ANN, INTRO, and ELIM.
Proof of type soundness for the core language

Lemma 35 (Term substitution) If A®z:02Fa:01 and A& v: oy hold, then At a{v/z} : 0y
also holds.

Proof: The proof is an easy induction on the structure of v. [|

7.7. PROOFS OF MAIN THEOREMS 191
Theorem 1 (Subject reduction) Reduction preserves typings, i.e. if a1 —> az, then ay C as.

Proof: We show that every rule in the definition of — is satisfied by the relation C. Since — is
the smallest relation verifying those rules, then C must be a super-relation of —. All cases are
independent. In each case but CONTEXT, we assume that A F a; : ¢ (1) and that a; — as, (the
structure of a; depending on the case) and we show that A F as : ¢ (2).

We first assume that the derivation does not end with a rule GEN. If the derivation ends with
a rule GEN, it is of the form:

A
_AFait0 (Gen*)
A |— al : V€.§0

where the derivation A of (1) does not end with a rule GEN. Thus we have A - ag : ¢ and (2)
follows by the same sequence of generalizations.

Case FUN and LET: This is a straightforward application of term-substitution lemma.

Case ELIM: A canonical derivation of (1) ends with

AlFa:op (01 : 09 : 09) (INTRO)
AF[a:oo]: oo (GEN)
At [a: oy] : Ve.[on] (ELIM)

At ([a: og]) : 02

The type schemes o1, 0, and o9 are of the form Va.ry, Va.ry, and Va.79, and such that (7 : 79 : 7).
Choosing variables & that do not occur free in A, we can contract this derivation into the following
derivation of (2):
AbFa:o (INST*)
AFa:m (11: 79 2 T2) (ANN)
AF(a:m): T (GENY)
At (a:7p): 02

Case TFUN: A canonical derivation of A F a1 : o ends with

Al v i1y — 1] (r =119 = 1174 = 717) (3) (ANN)
AbF(vy:img—m) 78 =1 AbFwy: 1y (App)

AF (v :me—m) vy 7]

Since the relation (3) implies both (74 : 79 : 75) and (71 : 71 : 7{'), we can build the derivation:

AbFwy: 1y (19 + 19 TS) (ANN)
AFv 1 — T Al (vg:T1):Th (App)
At (vg:m) 1 (r] i1 : 1) (ANN)

Al (vy (vg:m) 1)1

192 CHAPTER 7. POLY ML

Case TINT: The last derivation of (1) ends with:

Arviof) (0l:01:0) (4) (1yppo
At [v:oq]: [of] ([o7] « [o2] : [03]) (5) (ANN)
AF ([v:oi]:[02]?) : [o5]®

Let Ya.7; be o1. From (4), we know that we can write o] and o} as Va.r{ and Va.7{'. Moreover,
we have (7] : 71 : 7/). From (5), we also get (of : 09 : 03). Thus, we have

G (InsT*)

AFv:m (11 :m 7)) (ANN)
A (wim) (GEN*)
At (v:m):of (o] 109 : 03) (INTRO)

At [(v:m):o9]: 03]
Case TVAR: Annotating with a type variable does nothing.

Case CONTEXT: Here, we need to show that if a; C a2 then for any evaluation context F we also
have E{a1} C E{az}. The proof is by structural induction on E. All cases are immediate since
evaluation contexts do not contain any binding.

|

Theorem 2 (Canonical forms) Irreducible programs that are well-typed in the empty environ-
ment are values.

Proof: We first relate the shape of types and the shape of values. Let v be a value of type 7. By
considering all possible canonical derivations, we see that:

e if v is a poly expression, possibly with a type constraint, then 7 is a polytype;
e otherwise, v is of the form w and 7 is a functional type.

Since polytypes and functional types are incompatible, we can invert the property:
e if 7 is a polytype, then v is a poly expression, possibly with a typed constraint.
e otherwise, 7 is a functional type, and v is of the form w.

Then, the theorem follows: considering a program a that is well-typed in the empty environment
and that cannot be reduced, it can easily be shown by structural induction that a is a value. [|

Proof of the principal type property

Lemma 36 (unification) FEach of the rules given in figures 7.2 and 7.3, is correct and complete.

Proof:

Cases OCCUR-CHECK, MERGE, ABSORB, and DECOMPOSE: those are standard rules for first-
order unification.

7.7. PROOFS OF MAIN THEOREMS 193

Case DECOMPOSE-PoLY and CLASH: immediate.

Case PoLyTYPES: This case amounts to fully formalizing the discussion in section 7.2.4. Assume
that anNa’, an FV ('), and & N FV(7) are all empty (1).

Soundness: Assume that 0 is a solution of 3aa’.T7 = 7/ A @ <» &. Let 1 be a renaming of ad’
into variables outside of free variables of 6, 7, 7/, and @@’. The substitution no# is also a solution of
the same unificand. Since its image has no variable in common with @@, the substitution no6\ a&’
can be extended by a substitution p of domain @@’ such that the substitution 6" equal to o\ aa’
is a solution of 7 = 7/ A@ <> @'. Since 6’ is a solution of 7 <+ 7/, the substitution p is injective on &
and & taken separately. Moreover, its image is in @&'. The subsitution (7 + ') o #' decomposes
as (0 \ ad') + (no p), which is actually equal to 6 o7 o p; it must be a solution of 7 = 7/. Therefore
the subsitution 6 is a solution of Va.7 = Va'.7'.

Completeness: Let 6 be a solution of Va.7 = V&'.7’. Reusing the reasoning and the definitions
of section 7.2.4, the substitution (no 6\ ad@') + p is a solution of 7 = 7/ A @ <> @ where 7 is a
renaming of @@’ into variables taken outside of free variables of 6, 7, 7/, and @@’. Thus, nof is a

solution of 3ad’.7 = 7' A @ + & and so is 6 by composition with 77!,

Case RENAMING-TRUE: The completeness is obvious. For the soundness, let § be any sub-
stitution. Let 7 be a renaming of aa’ outside of @@’ and free variables of 6. The substitution
(no @)\ @@ can be extended with the substitution (c; — «/})*€*". Clearly, this extension satisfies
both (a; =)€™ and & <> @'. Thus 6 is a solution of FJad'. (a; = af)'EH" Ao+ &'.

Case RENAMING-FALSE: The soundness is obvious. For the completeness let us consider the two
following cases:

fe€aand T ¢ a U{B}: Assume that there exists a solution 6 of both =7 = e and a < &'.
Since 6(7) is equal to 0(«), it must be a variable, and so should 7 itself. Since 6 \ @@ should not
have variables in common with a&’, 7 must be in @@’. However, since it is not in @, it must be
another variable vy of « distinct from (3, which contradicts with the fact that 6 f @ must be injective
(condition 1).

g e€anFV(r)and 7 # 3: In particular, 7 must be a proper term. Assume that there exists
a solution 6 of both vy = 7 = e and & <> @. The term 6(v), equal to 6(7), is a proper term; thus,
v cannot be a variable of aa'. However, 6(-y) contains the variable §(/3) that belongs to aa’. This
contradicts condition 3.

|

Theorem 4 Given a typing problem (A > a : T) there exists a principal solution, which is computed
by the set of rules described in figures 7.2, 7.3 and 7.4, or there is no solution and the problem
reduces to L.

Proof: We first show the soundness and completeness of each rewriting rule:
Cases VAR, FUN, APP, and LET: are as in ML.

Case ANN: The case ANN is not special since the construct (- : 7) could be treated as the
application of a primitive.

194 CHAPTER 7. POLY ML

Case INTRO: We assume that all the conditions of the first four lines are satisfied. We write o;
for o{a€;/apeép}.

Soundness: Let us assume that A+ a: 7 {€1/é} = 3£ 0 and andom (0) U FV (im(0)) = 0.
We have 6(A) - a : 0(01) by generalization of & in the judgment 6(A) F a : O(71{€1/€}). Since by
construction (#(oy) : o : 6(02)), we also have §(A) [a : o] : 8([o2]¢). That is, € is a solution of
AF Ja: o] :[o9]°. Thus, a solution of @ A 7 = [02]¢ is a solution of A - [a : o] : 7. Moreover, no
variable of €1, €y, €, a1 appears in A or 7.

Completeness: Let us assume that ' is a solution of A > [a : o] : 7. A canonical derivation
of @(A) F [a : o] : 0'(7) must end with rule INTRO. Thus, there exists some type schemes o}
and o/, and some label € such that 6'(A) F a : o} (1), (0] : 0 : d}) (2), and €'(7) = [0]5 (3). By
definition of the relation (_: o : _) the pair (0}, 0%) must be of the form (6”(01),6"(02)) for some
substitution 6” of domain € é>a@y. A canonical derivation of (1) must end with a succession of rules
GEN. Thus we have 0'(A) + a : 0"(11{€1/€}). On the one hand, the substitution ¢ + 6" is a
solution of A - a : 71{€1/€}, and consequently a solution of #. On the other hand, it is a solution
of 7 = [11{&/&}]¢. Moreover, it extends @' on &y, &, €1, €, and &.

The completeness of the else branch is straightforward; The proof above actually applies if 0 is
L. If € is not L, the right condition may always be satisfied since & is disjoint from free variables
of the typing problem.

Case ELIM: We assume that the condition of the first line is satisfied.

Soundness: If 8(a) = [Va'.7']¢ and € ¢ FL(6(A)) then rule ELIM applies, and an extension of
6 such that () = 6(7') is a solution of A > (a) : 7. If §(a) = & and o/ ¢ FV(6(A)) then from
0(A) F a: o we deduce O(A) - a : [7]€ for some € not in FV (0(A)). By generalization of € and rule
Erim, we get 0(A) F (a) : 0(7). The substitution € is thus a solution of A > (a) : 7.

Completeness: Let us assume that 6 is a solution of A F (a) : 7. The canonical derivation of
0'(A) - (a) : 0'(7) must end with rule ELIM. Thus, we must have 6’(A) > a : [0]¢ for some € that
does not appear in #'(A) and some type scheme o of which #'(7) is an instance. Since 3¢.0 is a
principal solution of A > a : o, ' can be extended on £ into a solution of 8 A 8(cr) = [0]¢ (1).

Therefore §(a) cannot be an arrow type. If it is a variable, then it cannot belong to 6(A),
otherwise ¢ would belong to 6'(A). Hence, together with (1) the completeness of the second and
third cases.

If O(a) = [V&'.7']¢ then e cannot belong to FL(A(A)), otherwise € would belong to FL(6'(A)).
Since ¢’ is a solution of [0]¢ = [V&'.7']%, it is also a solution of o = V&'.7. Since #(7) is an instance
of o, it is an instance of V&'.7. Thus @’ can be extended on & into a solution of 7 = 7/. Together
with (1), 6 is a solution of 6 A7 = 7.

Termination: We now show that applying the rules in any order always terminates, with a
unification problem in solved form.
Each rule of the algorithm decreases of the lexicographic ordering composed of successively

1. the sum of sizes of program components,

2. the sum of monomials X%%#¢(9) for all type and type-scheme components of the system,
3. the number of polymorphic constraints,

4. the number of multi-equations,

5. the sum of the lengths of multi-equations, and

7.7. PROOFS OF MAIN THEOREMS 195

6. the number of renaming problems.

Moreover, unification problems that cannot be reduced are in solved form. Clearly, there cannot
remain any typing problem since for each construction of the language some rule applies. Similarly,
polytypes can always be decomposed. Let us consider a renaming problem & <> @' for which rule
RENAMING-FALSE would not apply. Then variables of @&’ ccould only appear in multi-equations
composed of the variables in @a’. Moreover at most one variable of each set @ and @' could appear
in each of these multi-equations. Therefore rule RENAMING-TRUE would apply. The remaining
rules are standard rules for unification for simple types. [|

196 CHAPTER 7. POLY ML

Chapter 8

Des classes aux objets par la relation
de soustypage

Ce chapitre a été publié dans [111].

Des classes aux objets par la relation de sous-typage

Nous étendons le calcul d’objets primitif d’Abadi et Cardelli avec une opération d’extension sur les
objets. Nous enrichissons les types des objets en leur donnant une structure plus précise, flexible
et uniforme. Cela permet de typer le sous-typage en largeur et en profondeur simultanément. Les
objets peuvent aussi avoir des méthodes virtuelles interdites en lecture et des méthodes co-variantes
interdites en écriture. La relation de sous-typage résultante est plus riche et les types des objets
peuvent étre progressivement affaiblis le long de la relation de sous-typage, passant du niveau des
classes au niveau plus traditionnel des objets.

From Classes to Objects via Subtyping

We extend the Abadi-Cardelli calculus of primitive objects with object extension. We enrich ob-
ject types with a more precise, uniform, and flexible type structure. This enables to type record
extension under both width and depth subtyping. Objects may also have extend-only or virtual
contra-variant methods and read-only co-variant methods. The resulting subtyping relation is
richer, and types of objects can be weaken progressively from a class level to a more traditional
object level along the subtype relationship.

197

198 CHAPTER 8. DES CLASSES AUX OBJETS

8.1 Introduction

Object extension has long been considered unsound when combined with subtyping. The problem
may be explained as follows: in an object built with two methods #; and #5 of types 71 and 79, the
method ¢; may require £5 to be of type 7. Forgetting the method /o by subtyping would result
in the possible redefinition of method ¢, with another, incompatible type 73. Then, the invocation
of /1 may fail.

Indeed, the first strongly-typed object-based languages that have been proposed provided either
subtyping [1] or object extension [82] to circumvent the problem described above. However, each
proposal was missing an important feature supported by the other one.

Both of them were improved later following the same principle: At an earlier stage, object
components were assembled in prototypes [81] or classes [2], relying on some extension mechanism
to provide inheritance. Objects were formed in a second, atomic step, immediately losing their
extension capabilities for ever, to the benefit of subtyping.

In contrast to the previous work, we allow both extension and subtyping at the level of ob-
jects, avoiding stratification. Our solution is based on the enrichment of the structure of object
types. Thus, our type-system rejects the above counter-example while keeping many other useful
programs. In our proposal, an object and its class are unified and can be considered as two differ-
ent perspectives on the same value: the type of an object is a supertype of the type of its class.
Fine grain subtyping allows type information to be lost gradually, both width-wise and depth-wise,
slowly fading classes into objects. As is well-known, when more type information is exposed, more
operations can be performed (class perspective). On the contrary, hiding a sufficient amount of
type information allows for more object interchangeability, but permits fewer operations (object
perspective).

We add object extension to the object calculus of Abadi and Cardelli [3]. We adapt their typing
rules to our enriched object types. In particular, we force methods to be parametric in self, that
is, polymorphic over all possible extensions of the respective object. In this sense, our proposal is
not a strict extension of theirs.

In addition to object extension, the enriched type structure has other benefits. We can allow
virtual methods in objects (i.e. methods that are required by some other method but that have
not been defined yet) since we are able to described them in types. Using co-variant subtyping
forbids further re-definition of the corresponding method, as in [3]. Since classes are objects, such
methods are in fact final methods. Final methods can only be accessed but no more redefined
(except, indirectly, by the invocation of a previously defined method).

Virtual methods are useful because they allow objects to be built progressively, component by
component, rather than all at once. They also improve security, since they sometime avoid the
artificial use of dangerous default methods. While final methods are co-variant, virtual methods,
are naturally contra-variant.

Other annotations are also possible. For instance, we are able to tell that a method is indepen-
dent, that is, no method of the object depends on it. Such a method can be hidden, or redefined
with a method of any type.

The rest of the paper is organized as follows. In the next section, we describe our solution infor-
mally. The following section is dedicated to the formal presentation. In section 8.4, we show some
properties of the type system, in particular the type soundness property. Section 8.5 illustrates the
gain in security and flexibility of our proposal by running a few examples. To a large extend, these
examples can be understood intuitively and may also be read simultaneously with or immediately
after the informal presentation. In section 8.6 we discuss possible extensions and variations of our

8.2. INFORMAL PRESENTATION 199

proposal, as well as further meta-theoretical developments. A brief comparison with other works is
done in section 8.7 before concluding.

8.2 Informal presentation

Technically, our first goal is to provide method extension, while preserving some form of subtyping.
The counter-example given above does not imply that both method extension and width subtyping
are in contradiction. It only shows that combining two existing typing rules would allow to write
unsafe programs. Thus, if ever possible, a type system with both method extension and subtyping
should clearly impose restrictions when combining them. Our solution is to enrich types so that
subtyping becomes traceable, and so that extension can be limited to those fields whose exact type
is known.

We first recall record types with symmetric type information. Using a similar structure for
object types, some safe uses of subtyping and object extension can be typed, while the counter-
example given in the introduction is rejected.

Record types

Record values are partial functions with finite domains that map labels to values. Traditionally,
the types of records are also partial functions with finite domains that map labels to types. They
are represented as records of types, that is, {£; : 7; °*!}. This type says that fields ¢;’s are defined
with values of type 7;’s. However, it does not imply anything about other fields.

Another richer, more symmetric structure has also been used for record types, originally to
allow type inference for records in ML [104, 106]. There, record types are treated as total functions
mapping labels to field types, with the restriction that all but a finite number of labels have
isomorphic images (i.e. are equal modulo renaming). Thus, record types can still be represented
finitely by listing all significant labels with their corresponding field types and then adding an extra
field-type acting as a template for all other labels.

In their simplest form, field types are either P 7 (read present with type 7) or A (read absent). For
instance, a record with two fields ¢; of type 7 and ¢5 of type 79 is given type (¢1:P 71 ; £2:P 75 ; A).
It could also, equivalently, be given type (£1:P 71 ; £2:P 79 ; £: A ; A) where £ is distinct from ¢; and
Lo.

In the absence of subtyping, standard types for records {/; : 7;°!} can indeed be seen as a
special case of record types, where field variables are disallowed; their standard subtyping relation
then corresponds to the one generated by the axiom P 7<:A (and obvious structural rules). The type
{€1 : 11;..4y, : T,} becomes an abbreviation for (¢1:P 71 ; ..0y:P 7, ; A). However, record types are
much more flexible. For instance, they inherently and symmetrically express negative information.
Before we added subtyping, a field £ of type A was known to be absent in the corresponding record.
This is quite different from the absence of information about field ¢. Such precise information
is sometimes essential; a well-known example is record concatenation [50]. Instead of breaking
the symmetry with the subtyping axiom P 7 <: A, we might have introduced a new field U (read
unknown), with two axioms P 7 <:U and A <:U. This would preserve the property that a field of
type A is known to be absent, still allowing present and absent field to be interchanged but at their
common supertype U.

Field variables and row variables also increase the expressiveness of record types. However, for
simplicity, we do not take this direction here. Below, we use meta-variables for rows. This is just
a notational convenience. It does not add any power.

200 CHAPTER 8. DES CLASSES AUX OBJETS

Object types

In their simplest form, objects are just records, thus object types mimic record types. We write
object types with [p] instead of (p) to avoid confusion. An object with type [£1:P 71 ; £2:P 7o ; A]
possesses two methods ¢; and /5 of respective types 71 and 79. Intuitively, an object [¢1 = a; =]
can be given type [¢;:P 7;°! ; A] provided methods a;’s have type 7;’s.

However, objects soon differ from records by their ability to send messages to themselves, or to
return themselves in response to a method call. More generally, objects are of the form [¢; = ¢(z;)a;].
Here, z; is a variable that is bound to the object itself when the method ¢; is invoked. Consistently,
the expression a; must be typed in a context where z; is assumed of the so-called “mytype”,
represented by some type variable x equal to the object type 7. The following typing rule is a
variant of the one used in [3].

TEC(X)[giZPTiiEI;A] Ax=r7,z;: xtFa;:7
AECO6T)G = s(zi)a;) o T

(The type annotation (x,7) in the object expression binds the name of mytype locally and specifies
the type of the object.)

An extendible object v may also be used to build a new object v’ with more methods than v
and thus of a different type, say 7/. The type 7’ of self in v’ is different from the type 7 of self
in v. In order to remain well-typed in v', the methods of v, should have been typed in a context
where the type of self could have been 7/ as well as 7. This applies to any possible extension v’ of
v. In other words, methods of an object of type 7 should be parametric in all possible types of all
possible successive extensions of an object of type 7. This condition can actually be expressed with
subtyping by x <: # 7, where # 7 is called the extension type of T (also called the internal type of
the object). That is, the least upper bound of all exact! types of complete extensions (extensions
in which no virtual method remains) of objects of external type .

A field of type A can be overridden with methods of arbitrary types. Thus, the best type for
that field in the self parameter is U, i.e. we choose #A to be U. Symmetrically, we choose #(P 7)
to be U. This makes methods of type P 7 internally unaccessible. Fields of type P 7 are known
to be present externally, but are not assumed to be so internally. Thus, fields of type P 7 can
be overridden with methods of arbitrary types, such as fields of type A. To recover the ability to
send messages to self, we introduce a new type field R 7 (read required of type 7). A field of type
R 7 is defined with a method of type 7, and is required to remain of at least type 7, internally.
Such a field can only be overridden with a method of type 7. Therefore, self can also view it as a
field that is, and will remain, of type 7. In math, #R 7 is R 7. A field of type P 7, can safely be
considered as a field of type R 7. Thus, we assume P 7 <:R 7. We also assume R 7 to be a subtype
of U. As an example, # ((x)[1:R 71 ; l2:P 72 ; £3:U 5 A] is ((x)[€1:R 71 ; £2:U; £3:U ; U], or shortly
COx)[:R 75 U]

The extension of a field with a method of type 7 requires that field to be either of type A or R 7
in the original record (the field may also be of type P 7, which is a subtype of R 7.) It is possible
to factor the two cases by introducing a new field type M 7 (read maybe of type 7), and the axioms
RT<:M7,A<:M7,and M 7 <:U. Intuitively, M 7 is the union type R 7 U A. This allows, in a
first step, to ignore the presence of a method while retaining its type, and, in a second step, to
forget the type itself. The type of object extension becomes more uniform. Roughly, if the original

!The exact type of an object is the type with which the methods can initially be typed. The external type of an
object may be a supertype of the exact type.

8.2. INFORMAL PRESENTATION 201

object has type [¢1:M 71 ; 2] and the new method ¢; has type 71 then the resulting object has type
[¢1:R Ty 5 To).

A field of type M 7 may later be defined or redefined with some method of type 7, becoming of
type R 7, which is a subtype of M 7. It may also be left unchanged and thus remain of type M 7.
Thus, a field of type M 7 will always remain of a subtype of M 7. That is, #(M 7) is M 7.

Deep subtyping

Subtyping rules described so far allow for width subtyping but not for depth subtyping, since all
constructors have been left invariant. The only constructor that could be made covariant without
breaking type-soundness is P. Making R co-variant would be unsafe. However, we can safely
introduce a new field type Rt 7 to tell that a method is defined and required to be of a subtype of
7, provided that a field of type R* 7 is never overridden. On the other hand, a method #¢; can safely
be invoked on any object of type [¢1:R* 7y ; U], which returns an expression of type 7. Of course,
we also add R 7 <: R™ 7 to just forget the fact that we are revealing the exact type information.

Symmetrically, a field £ of type M 7 cannot be accessed, but it can be redefined with a method of
a subtype of 7. Still, it would be unsound to make M 7 contra-variant. By contradiction, consider an
object p of type ((x)[¢:R 7 ; £': P x ; A] where calling method ¢ overrides ¢ in self with a new method
of type 7. By subtyping py could be given type ((x)[¢:M 7o ; £:P x ; A] where 7 is a subtype of 7.
Then let po of type ((x)[¢:M 19 ; £:P x ; £":Punit ; A] be the extension of p; with a new method
¢" that requires £ of type 7p. Calling method ¢’ of ps restore field £ of ps to some method of type 7
and returns an object p3. However, calling method ¢ of p3 expects a method £ of type 79 but finds
one of type 7.

We can still introduce a contra-variant symbol M~ with the axiom M 7 <: M~ 7. Then, a method
M~ 7 can be redefined, but the method in the resulting object remains of type M~ 7 and is thus
unaccessible. This is still useful in situations where contra-variance is mandatory or to enforce
protection against accidental access (see sections 8.5.6, 8.5.2 and [3].)

Virtual methods

A method / is virtual with type 7 (which we write V 7) if other methods have assumed £ to be of type
R 7, while the method itself might not have been defined yet. When an object has a virtual method,
no other method of that object can be invoked. Thus, V 7 should not be a subtype of U. A method
of type V 7 can be extended as a method of type R 7. Virtual methods may also be contra-variant.
We use another symbol V- 7 to indicate that deep subtyping has been used. A contra-variant
virtual method can be extended, but it must remain contra-variant after its extension, i.e. of type
M~ 7, and thus inaccessible. This may be surprising at first. The intuition if that #(V~ 7) should be
R~ 7. However, a method of field-type R~ 7 would be inaccessible, since its best type is unknown.
Thus R~ 7 has been identified with M~ 7.

For convenience, we also introduce a new constant F that is a top type for fields. That is, we
assume V~ 7 <: F and U <:F (all other relations hold by transitivity).

The final structure of field types and subtyping axioms are summarized in figure 8.1. Thick
arrows represent the function #. Thick nodes are used instead of reflexive thick arrows, that is,
thick nodes are left invariant by #. Thin arrows represent subtyping. We added a redundant but
useful distinction between continuous and dashed thin arrows. They are respectively covariant and
contra-variant by type-extension: when a continuous arrow connects 7; and 79, then # 71 is also a
subtype of # 7o; the inverse applies to dashed arrows.

202 CHAPTER 8. DES CLASSES AUX OBJETS

Static Dynamic | Allowed
w | #@|Pre|Type|_£ | &
Pr | U |V |<T|T|V
A U <7t | L]V
RT| o |V I|<Tt|T]| 7T
Rf7| o | V| <t | 7| L
M7 | ¢ <t | L] o7
M 7| ¢ vV | L] 7
U ©p A4] L
Vr |RT <t | L] T
V7| M 71 A4 L7

Figure 8.1: Structure of field types

Although it is easy to give intuitions for parts of the hierarchy taken alone (variances, virtual
methods, idempotent field-types), we are not able to propose a good intuition for the whole hier-
archy. The different components are modular technically, but their intuitive, thus approximative
descriptions, cannot be composed here. We think that the field-type hierarchy should be understood
locally, and then considered as such.

The table on the right is a summary of field types and their properties. The entry ¢ in the first
column indicates the static external type. The second column # ¢ is its extension type, ¢.e. the
static internal type. The two following columns tell whether the field is guaranteed to be present
(v/ sign) and its type if present. The reason for having <:7 instead of 7 is the covariance of P. The
symbol ¥V means any possible type. The last two columns describe access and overriding capabilities
(L means disallowed).

8.3 Formal developments

8.3.1 Types

We assume given a denumerable collection of type variables, written «, 3, or x. Type expres-
sions, written with letter 7, are type variables, object types, or the top type T. An object type
C(x)[li: i *€1 ;5] is composed of a finite sequence of fields ¢; : ¢;, without repetition, and a tem-
plate ¢ for fields that are not explicitly mentioned. Variable x is bound in the object type, and
should only appear positively in ¢;’s as in .

Tu=a| C(a)|[lipi 0] | T
@;::A|PT|RT|MT|VT|R+T|M77—|V7T|U|F

8.3. FORMAL DEVELOPMENTS 203

The variance of an occurrence is defined in the usual way: it is the parity of the number of times a
variable crosses a contra-variant position (i.e., the number of symbols V= or M~) on that path from
the root to that occurrence. The set of free variables of 7 is fv(7). We write fv™(7) the subset of
those variables that occurs negatively at least once.

Object types are considered equal modulo reordering of fields. They are also equal modulo
expaunsion, that is, by extracting a field from the template:

COOli i 5 @] = CO) iz i ™ 5 o s) £ Yiel

Rules for the formation of types will be defined jointly with subtyping rules in figure 8.2 and are
described below.

Notation For convenience and brevity of notation, we use meta-variables p for rows of fields,
that is, syntactic expressions of the form (£;: @; ‘<! ; ¢g), where ¢;’s and I are left implicit. We
write p(¢) the value of p in ¢, that is, ¢; if £ is one of the ¢;’s, or ¢y otherwise. We write p \ ¢ for
(0i: i F€LEFE s o). and £ : s p for (L: ¢ ; € p; €HEFE og). If R is a relation, we write p R p' for

Ve, p(€) R p'(£).

This is just a meta-notation that is not part of the language of types. It can always be expanded

unambiguously into the more explicit notation (¢;: @; ‘< ;).

8.3.2 Type extension

We define the extension of field type ¢, written # ¢ by the two first columns of the table 8.1. Type
extension is lifted to object types homomorphically, i.e., # ((x)[p] is ((x)[# p]. The extension is
not defined for type variables, nor for F. Note that the extension is idempotent, that is #(# 7) is
always equal to # 7.

204 CHAPTER 8. DES CLASSES AUX OBJETS
Well-formation of environments
(ENV) (ENV a)
(Exv 0) EbT<T z ¢ dom (E) EtT<:T a ¢ dom (E)
Dk o Ex:17ko Ea<:tko
General subtyping
(SuB VAR) (SUB REF F) (SuB REF T) (SuB TRANS T)
Ea<:1,E'Fo EFp<:F EFT<:T Errmn<nm EFrn<ims
Ea<:t,E'Fa<:T EFp<iop Err<T Etrmn<im
(SuB TRANS F)
EF oy <o EF <y
EF g <3
Field subtyping (assuming E F 7 <: T)
(SuB PA) (SuB PR) (SuB ANM) (SuB UF) (SuB RRT) (SuB RM)
EFPT<:A EFPT<RT Er-A<MT EFU<F EFRT<R'T EFRT<MT
(SuB R*U) (SuB MV) (SuB MM™) (SuB M7U) (SuB VV™)
EFRT7<:U ErMr<VT ErFMr<M T EFMT<U EFvVvr< VT
(SuB V°F)
Er-V 7<F
(Sus PP) (SuB R*RY) (SuB M~M7) (SuB V-V7)
Err<1 Etbtr<: 7 Ebr< 7 Err<1
EFPr<:PT EFRT7<:R*7 E-M-7 <M 7 EFv- 7 <V 7
Object subtyping
(Sus TT) (Sus OBJ OK)
Eto E,x<:Tkp<:F x¢ fv(p)
EFT<:T EFC()p]<:T
(SuB OBs INVARIANT) (7 = C(0)[6], 7 = COOlP')
ErFr<:T Er-r<T Ex<Tkp<p
ErFr< 7

Figure 8.2: Types and Subtypes

8.3.3 Expressions

Expressions are variables, objects, method invocation, and method overriding.
a =z | C(x,7)[lis(zi)ai] | a-l | a.l = ((x, 7)s(z)a

The expression a.f &= ((x,7)s(x)ay is the extension of a on field ¢ with a method ¢(z)as. The
expression (x,7) binds x to the type of self in ay and indicates that the resulting type of the
extension should be 7. This information is important so that types do not have to be inferred but

8.3. FORMAL DEVELOPMENTS 205

only checked. Field update is just a special case of object extension. This is more general, since
the selection between update and extension is resolved dynamically.
8.3.4 Well formation of types and subtyping

Typing environments are sequences of bindings written with letter £. There are free kinds of
judgments (the second and third ones are similar):

E:x=0|a<:t|z:7T Typing environments

Eto Environment E is well-formed
EFr< 7 Regular type 7 is a subtype of 7/ in E
EFp<y¢ Field type ¢ is a subtype of ¢/ in E
Era:r Expression a has type 7 in £

The subtyping judgment E F 7 <: T is used to mean that 7 is a well-formed regular type in F,
while £ F ¢ <: F means that ¢ is a well-formed field-type in £. Thus, T and F also play a
role of kinds. For sake of simplicity, we do not allow field variables a <:F in environments. We
have used different meta-variables 7 and ¢ for regular types and field-types for sake of readability,
although this is redundant with the constraint enforced by the well-formation rules. The formation
of environments is recursively defined with rules for the formation of types and subtyping rules
given in figure 8.2.

The subtyping rules are quite standard. Most of the rules are dedicated to field subtyping; they
formally described the relation that was drawn in figure 8.1. A few facts are worth noticing. First
we cannot derive ¥ = F' <: F. Thus F is only used in £ - ¢ <:F to tell that ¢ is a well-formed
field type. It prevents using F in object types. The typing rule SUB PA is also worth consideration.
By transitivity with other rules, it allows P 7 to be a subtype of M 7/, even if types 7 and 7’ are
incompatible. However, it remains true, and this is essential, that P 7 is a subtype of R 7 if and
only if 7 is a subtype of 7'.

The rule SUB OBJ INVARIANT describes subtyping for object types. As explained above, row
variables are just a meta-notation; thus, the judgment E + p <: p' is just a short hand for E +
p(¢) <: p'(¢) for any label ¢, which only involves a finite number of them. This rule is restrictive
and prevents (positive) occurrences of self to be replaced by # 7 where 7 is the current type of the
object. In particular, object types cannot be unfolded (see section 8.6.2).

8.3.5 Typing rules

Typing rules are given in figure 8.3. The rules for subsumption, variables, and method invocation
are quite standard.

Rule EXPR OBJECT has been discussed earlier. The last premise says that the fields ¢; may
actually be super-types of P 7; in p and other fields may also be super types of A. One cannot
simply require that p be (4 : P 7; °/; A) and later use subsumption, since the assumption made on
the type of x; while typing a; could then be too weak.

Rule EXPR UPDATE is similar to the overriding rule in [3]. This rule is important since it
permits both internal and external updates: the result type of the object is exactly the same as
the one before the update.

On the contrary, rule EXPR EXTEND is intended to add new methods that were not necessarily
defined before, and thus change the type of the object. There are three different sub-cases in rule
ExXPrR EXTEND; the one that applies is uniquely determined by the given type 7. Then the type of
field ¢ in the argument is deduced from the small table.

206 CHAPTER 8. DES CLASSES AUX OBJETS

(EXPR SUBSUMPTION) (EXPR VAR)
Era:t Ebr<7 E,z:1,E'Fo
Eta:7 Ex:7,E'Fx:7

(Expr OBIECT) (7 = C(x)[p])
E,x<#1,zi:xFa:1,1€1 E,x<:#17FP7ehA) <p
EFC(x 7))l = ¢(xi)a; "1 : 7

(EXPR SELECT)
Era:rt EF71<:((x)[¢:R"1; U]

Etal:m{r/x}

(ExpPr UPDATE)
Etra:r EF71<:C(x)[¢:R 75 po E,x<:#1,0:xFap:m
EtFal &= ((x,17)s(x)ap: T

(Expr EXTEND) (7 = ((x)[p])
(0, p(€)) € {(A,P 7¢), (V7,R 7g), (V" 70, M 77)}
EFa:C()leo;p\7 Ex<:#1,x:xkFap:
EtFal &= ((x,17)s(x)ap: T

Figure 8.3: Typing rules

Rules EXPR EXTEND and EXPR UPDATE both apply only when 7 is of the form ((x)[¢:P 7 ; p]
or C(x)[¢:R7¢;p]. Then, the requirements on the type of a are the same (letting the premise
of SUB EXTEND be preceded by a subsumption rule). Thus, different derivations lead to the
same judgment. It would also be possible to syntactically distinguish between object extension and
method update, as well as to separate the extension between three different primitive corresponding
to each of the three typing cases.

8.3.6 Operational semantics

We give a reduction semantics for a call-by-value strategy. Values are reduced to objects. A leftmost
outermost evaluation strategy is enforced by the evaluation contexts C.

v = ((x, 7))l = s(zi)a; ie[] Cu={}|CL|CL=(r,x)s(x)a

The reduction rules are given in figure 8.4. Since programs are explicitly typed, the reduction must
also manipulate types in order to maintain programs both well-formed and well-typed, even though
it is not type-driven. In fact, the reduction uses an auxiliary binary operation on types ¢ &= ¢/, to
recompute the witness type of object values during object extension. It is defined in figure 8.5. The
partial ¢ & ¢ is extended to object types homomorphically, i.e., ((x)[p] = C(x)['] is C(x)[p & ']
Type extension is defined so as it validates lemma 40. When there is some flexibility, we sought for
more uniformnity. Type extension is undefined when the cell is left empty in the figure. Those are

cases that will never meet the hypotheses of lemma 40.

8.4. SOUNDNESS OF THE TYPING RULES 207

Let ¢ and ¢; *¢! be distinct labels, j in I,

and v be of the form ¢(x,7)[¢; = ¢(x;)a; *<].

vlj — ai{T/xHv/r} (SELECT)
vl = C(x, m)s(z)a — ((x, T &= Tl = s(x)a; S, = ¢(z)d] (UPDATE)
v.l = C(x, m)s(zo)ag — C(x, ™ = Tl = ¢(wi)a; "1, 4 = ¢(z)al (EXTEND)
if ay — ag then C{a1} — C{az} (CONTEXT)

Figure 8.4: Reduction rules

= ' #p
Pr,A | U | R, R"7 M7 | M VS VT
Pr, A 4 U
R7, Rt7, U M~ T © ©
© MT Rt © Vr © ©
V7 Rt P RT
V-1 M T P M T
#' U o' R M7

Figure 8.5: Type reduction ¢ & ¢

8.4 Soundness of the typing rules

The soundness of the typing rules results from a combination of subject reduction and canonical
forms. The proof of subject reduction is standard (see [3] for instance). A few classical lemmas
help simplifying the main proof.

Lemma 37 (Bound weakening) If E+-7<:7 and E,a<:7,E' - J, then E,a <:17,E'F J.
Proof: By induction on the size of the proof of the derivation of the second.]
Lemma 38 (Substitution)

1. IfE,a<:1,E'tJ and E & 7' <: 7, then E,E'{7'Ja} - J{7'/a}.

2. If Eyx -7, E'-J and Etxa: 7, then E,E'+ J{a/z}.
Lemma 39 (Structural subtyping)

1. If T =((x)[p] and E &+ 7<:7', then 7' is either T or of the form {(x)[p'] and E, x<:T F p<:p'.

2. If E*x o <:R 1y, then ¢ is either R 7, or P 1y where E'+ 19 <: 7y.

208 CHAPTER 8. DES CLASSES AUX OBJETS

3. If E+ o <:Rt 1y, then ¢ is either P 1y, R 19, or Rt 19 where £+ 19 <: y.

4. If EF @ <:P 1y, then @ is P 19 where E = 19 <: 7p.
Fic.

Proof: By induction on the size of subtyping derivations. Should use the fact that transitivity rules
can be pushed to the leaves. [|

The proof of subject reduction also uses an essential lemma that relates computation on types
to subtyping. Actually, the proof does not depend on the particular definition of #, but only on
the following lemma.

Lemma 40 (Type computation) Let 7 and 7' be two object types ((x)[p] and ((x)[p'].- Assume
that there exists a row p” such that E,x <: Tt p <:p"” and for each label £, the pair (p"(£),p'(£))
is one of the four forms (A,P 1), (V 74,R 70), (V" 714,M™ 74), or (p,p). Let 7 be 7 &= 7' and p be
p&=p'. Then,

Ers<1 EFH#7<#71 EF#7<#7

Moreover, in the three first cases, if E,x <:T F p(£) <:p'(£), then E,x <:T F p(£) <: p(£); otherwise
E, x <:TEP 1 <:p(l).

The proof can be found in the appendix 8.9.
Lemma 41 (Virtual methods) If E+ 7 <:{(x)[U], then E 7 <:#T.

Proof: This is obviously true field by field: the only field that does not satisfy £ + 7 <: # 7 are
virtual fields, which are excluded if E - 7 <:U. The property easily follows for object types.]

Theorem 5 (Subject Reduction) Typings are preserved by reduction. If E&F a: 74 and a — d'
then EFa':1,.

The proof can be found in the appendix 8.4.

Theorem 6 (Canonical Forms) Well-typed expressions that cannot be reduced are values. If
0 Fa: 71 and there exists no a’ such that a — a’, then a is a value.

Proof: If a value v has type ((x)[¢:P 7 ; U], then v must have a field £. The theorem is then a trivial
induction on the size of a, assuming that a cannot be reduced. [

8.5 Examples

For simplicity, we assume that the core calculus has been extended with abstraction and application.
This extension could either be primitive or derived from the encoding given in section 8.5.6. For
brievity, we write a.f & a' instead of a.l & ((x,7)s(z)a’ when a' does not depend on the self
parameter z. In practice, other abbreviations could be made, but we avoid them here to reduce
confusion.

We consider the simple example of points and colored points. These objects can of course
already be written in [3]. The expressiveness of our calculus is not so much its capability to write
new forms of complete objects but to provide new means of defining them. This provides more
flexibility, increases security in several ways (see parts 8.5.2, 8.5.3, and 8.5.6), and removes the
complexity of the encoding of classes into objects.

8.5. EXAMPLES 209

8.5.1 Objects

A point object pg can be defined as follows:
C(x,point)[z = 0 ; mv = ¢(2)Ay.(z.x &= y) ; print = ¢(z)print_int z.z]

where point is ((x)[z:R int ; mv:P int — x ; print:P unit ; A]. As in [3], new points can be cre-
ated using method update as in pg.z & ((x, point)s(z)1l. Moreover, colored points can be defined
inheriting from points:

cpoint = C(x)[z:R int ; c:R bool ; mv:P int — x ; print: P unit ; A]
cp 2 (po-c = ((x, cpoint)¢(z)true).print &= ((x, cpoint)¢(z)if z.c then printint z.z

When two values of different types have a common super-type 7, they can be interchanged in
any context that expects a term of type 7. Here, cpoint is not a subtype of point, since
both types carry too precise type information. However, they admit the common super-type
C(x)[z:R int ; c:U; mu:P int — x ; print:P unit ; A]..

8.5.2 Abstraction via subtyping

Subtyping can also be used to enforce security. For instance, field may be hidden by weakening
its type to U. Similarly, method mv may be protected against further redefinition by weakening its
type to RT 7. That is, by giving pg the type ((x)[mv:R*int — x ; print:R unit ; U]. While method
mwv can no longer be directly redefined, there is still a possibility for indirect redefinition. For
instance, method print could have been written so that it overrides method mwv before printing.
To ensure that a method can never be redefined, directly or indirectly, it must be given type R* 7
at its creation.

8.5.3 Virtual methods

The creation of new points by updating the field of an already existing point is not quite satisfactory
since it requires the use of default methods to represent the undefined state, which are often
arbitrary and may be a source of errors. Indeed, a class of points can be seen as a virtual point
lacking its field components.

POINT 2 C(x)[z:V int ; mv:P int — x ; print:P unit ; A
= C(x,POINT)[mv = ¢(2)A\y.(z.z = y) ; print = ¢(z)print_int z.z]
New points are then created by filling in the missing fields:

new_pointé Ay.(P.x = ((x, point)¢(z)y) D1 2 new_point 0

8.5.4 Traditional class-based perspective

To keep closer to the traditional approach, we may by default choose to hide both fields cor-
responding to instance variables and the extendible capabilities of the remaining methods. For
instance, treating = as an instance variable, and mv and print as “regular” methods, we choose
C(x)[mv:R*int — x ; print:RTunit ; U] for point. Intuitively, the object-type point hides all in-
formation that is not necessary to increase security. Conversely, the class-type POINT remains as

210 CHAPTER 8. DES CLASSES AUX OBJETS

precise as possible, to keep expressiveness. Indeed, a class of points is still an object. However,
as opposed to the previous section, we adopt some uniform, more structured style, treating “real”
objects differently from those representing classes.

In colored points, we may choose to leave field ¢ readable and overridable, as if we defined two
methods set_c and get_c.

A .
cpoint = ((x)[c:R bool ; mv:R*int — x ; print:RTunit ; U]
Single inheritance is obtained by class extension:

CPOINT £ C(x)[z:V int ; ¢: V bool ; mu:P int — x ; print: P unit ; A]
A . . .
CP = (P.print &= ((x,CPOINT)s(z)if z.c then print_int z.x)

new_cpointé Ay w.(CP.x &= ((x, cpoint)¢(z)y).c & ((x, cpoint)s(z)wqy 2 new_cpoint
0 true

While CPOINT is not a subtype of POINT at the class level, we recover the usual relationship that
cpoint is a subtype of point at the object level. Moreover, at the object level, types are invariant
by #. Thus, we also recover the subtyping relation of [3]. In particular, object types can be
unfolded. For example,

cpoint <: ((x)[c:R bool ; mv:R"int — point ; print:Rtunit ; U]

8.5.5 An advanced example

A colorable point p’ is a point prepared to be colored without actually being colored. It can be
obtained by adding to the point py an extra method paint that when called with an argument y
returns the colored point obtained by adding the color field ¢ with value y and by updating the
print method of py.

A .
p' = po.paint & ¢(z, point’) Ay.
((z.c & y).print & ((x, cpoint)s(z)if z.c then print_int z.x)

where point’ is

C(x)[z:R int ; mu:R*int — x ; print:Runit ; paint: P bool — cpoint ; ¢:M bool ; U]

This example may be seen as the installation (method paint) of a new behavior (method print)
that interacts with the existing state z and adds some new state c. The above solution becomes
more interesting if each installation involves many methods, and especially if several installation
are either different fields of the same objects or the same field of different objects. Then, the
installation procedure can be selected dynamically by message invocation instead of manually by
applying an external function to the object.

8.5. EXAMPLES 211

8.5.6 Encoding of the lambda-calculus

This part improves the encoding proposed in [3]. It also illustrates the use of virtual methods and
variances. The untyped encoding of the lambda-calculus into objects in [3] is the following?:

() = r.arg {(Az. M) = l[arg = ¢(z)z.arg ; val = ¢(x).(M))]
(M M) 2 ((M).arg &= <()(M")).val

A function is encoded as an object with a diverging method arg. The encoding of an application
overrides the method arg of the encoding of the function with the encoding of the argument and
invokes the method val of the resulting object. Programs obtained by the translation of functional
programs will never call val before loading the argument. However, if the encoding is used as a
programming style, the type system will not provide as much safety as a type system with primitive
function types would. The method val could also be called, accidently, before the field arg has
been overridden. In general, this will, in turn, call the method arg and diverge. The use of default
diverging methods is a hack that palliates the absence of virtual methods. It can be assimilated to
a “method not understood” type error and one could argue that the encoding of [3] is not strongly
typed.

The encoding can be improved using object extension to treat a function Az.M as an object
[val = ¢(z).(M))] with a virtual method arg (remember that xz.arg may appear in (M))). The
type-system will then prevent the method val to be called before the argument has been loaded.
More precisely, let us consider the simply typed lambda-calculus:

tu=al|t—t M:i=z|Xx:tM| MM

Functional types are encoded as follows:

a (it =) = C(0)[arg: V() 5 val:R*(#) ; U

This naturally induces a subtyping relation between function types that is contra-variant on the
domain and covariant on the co-domain. The typed encoding is given by the following inference
rules:

r:te A Az:tEM:t'=a x¢ dom(A)
Atz :t= r.arg AbEXz :tM:t =t = ((x (t = t'))[val = ¢(z).a]

AFM:t' >t=a AFM :t'=d
AEM M :t= (a.arg &= ((x, #{t — t'))s(z)a’).val

It is easy to see that the translation transforms well-typed judgments @ = M : ¢ into well-typed
judgments) = (M) : ((t)).

As in [3], the translation provides a call-by-name operational semantics for the lambda-calculus.
The encoding of [3] also provides an equational theory for the object calculus and, thefore, for the
lambda calculus, via translation, which we do not.

2If both functions and objects co-exist, one should actually mark variables introduced by the encoding of functions
so as to leave the other variables unchanged.

212 CHAPTER 8. DES CLASSES AUX OBJETS

8.6 Discussion

8.6.1 Variations

Several variations can be made by consistently modifying field-types, their subtyping relationship,
and the typing rule for object extension. The easiest is to drop some subtyping asumption (such
as SUB PP, or SUB PA) or drop the field-type P 7 altogether. This weakens the type system (some
examples are not typable any longer), but it retains the essential features. More significant sim-
plifications can be made at the price of a higher restriction of expressiveness. For instance, virtual
field-types could be removed.

Some extensions or modifications to the type hierarchy are also possible. For instance, one
could introduce fields of type {P 7 that do no depend on any other method. These methods would
be dual of those of type P 7 on which no other method depend; somehow they would behave as
record fields in the sense they could always be called even if the object is virtual. This extends to
field-types TR 7 and {R* 7 similarly.

8.6.2 Better subtyping for object types

The subtyping rule SUB-OBJ-INVARIANT does not allow unfolding of object types. It is thus weaker
than the Abadi-Cardelli:

(Sus OBy DEEP) (T = ((0)[p], 7" = (X))
EbFr<:T EF7r<T Ex<:tkp<:p

EFr<1

This rule would not be correct, since it would not be transitive. Indeed transitivity would require
that AF 7 <: 7' implies A+ # 7 <: # 7' which is not true.

Just replacing the bound T of x in SUB OBJ DEEP by # 7 would actually not behave well with
respect to transitivity. In a preliminary version of this work [112], we added another premise to
recover transitivity. However, this simultaneously weakens the subtyping relationship, and some
useful examples become untypable.

It should be possible to define a subtyping rule that allows unfolding of object types only when
there are no more extension capabilities. It seems however, that the subtyping structure of fields
should either be simplified (eliminating the arrow from M 7 to V 7) or enriched (e.g. avoid M 7 <:V 7
but only once in a certain definite state).

8.6.3 Extensions

Imperative update is an orthogonal issue to the one studied here, and it could be added without
any problem. Object extension should, of course, remain functional.

Equational theory We see no difficulty in adding an equational theory to our calculus, but this
remains to be investigated. Treating object extension as a commutative operator would allow to
reduce object construction to a sequence of object extensions of the empty object (virtual methods
would be crucial here).

Higher-order types As shown above, our objects are sufficiently powerful to represent classes.
As opposed to [3], this does not necessitate higher-order polymorphism because methods are already
required to be parametric in all possible extensions of self.

8.6. DISCUSSION 213

The addition of higher-order polymorphism might still be useful, in particular to enable para-
metric classes. We believe that there is no problem in constraining type abstraction by some
supertype bound, written o <: 7 as in F... However, it would also be useful to introduce #-bounds
of the form o <: # 7. This might require more investigation.

Row variables and binary methods We have used row variables only as a meta-notation for
simplifying the presentation. It would be interesting to really allow row variables in types. This
would probably augment the expressiveness of the language, since it should provide some form of
matching that revealed quite useful, especially for binary methods [18, 16, 113].

Actually, it remains to investigate how the presented calculus could be extended to cope with
binary methods. Row variables might not be sufficient to express matching, and some new form of
matching might have to be found. It is unclear whether the known solutions [17] could be adapted
to our calculus.

In this section, we review extensions and future works.

8.6.4 Imperative calculus

In our proposal objects are functional. This is, of course, the harder case. Adding imperative
operations should not be a problem. The overriding primitive may be given an imperative semantics.
However, the extension should remain functional, since it changes types.

8.6.5 Equational theory

We see no difficulty in adding an equational theory to the calculus, following [3]. The encoding of
the lambda-calculus given in section 8.5.6 should validate the a and § equalities.

The addition of an equational theory would be particularly interesting for our proposal because
objects would then become equal to a sequence of extensions, modulo re-ordering, and thus could
be removed from the calculus (only the empty object need to be kept.)

8.6.6 Higher-order types, row variables, matching, and binary methods

As shown above, our objects are sufficiently powerful to represent classes. As opposed to [3],
this does not necessitate higher-order polymorphism because methods are already required to be
parametric in all possible extensions of self.

The addition of higher-order polymorphism might still be useful, in particular to enable para-
metric classes. We believe that higher-order polymorphism could be easily added. Bounded quan-
tification allows to constrain type variables by some bound 7, written a <: 7 so that they can
only be instantiated by subtypes of the 7. It might also be useful to constrain type variables by
#-bounds written a # <:7 so that they can only be instantiated by types whose type-extension is
a subtype of 7. This is certainly a more difficult task.

Rows have been used as a meta-notation, but field and row variables have been carefully avoided
for simplicity. Having field and row variables in the language of types would turn the meta-notation
into an internal concept. Furthermore, it would increase expressiveness, especially when combined
with polymorphism. Again, variable type-extension bounds might be necessary to obtain the whole
benefit from field and row variables.

To illustrate some of the difficulties, consider the following example. It would be interesting
to give the function new_point a polymorphic type; then, it could be reused in the definition of

214 CHAPTER 8. DES CLASSES AUX OBJETS

new_cpoint. The function new_point could be defined as:

Va <:TVp<:T=F.
AP CO0: Va5 p(x)] Ay = e (P = ((x, CO0)[2: P a5 pla)])s(2)y)

Formally, this requires, however, a lot of machinery: higher-order abstraction, type operators, row
variables, and variable type-extension bounds. Moreover, this is one of the simplest example, since
here, the new method does not uses self.

In fact, type extension allows to express abstraction over all (types of all) objects that extend
an object of the current type; in other words over all (types of) objects of an instance of a subclass
of the class the current object. This is clearly related to the notion of matching [18, 16]. While
matching with simple object types can advantageously be replaced, or simulated, by row variables as
in Objective ML [113], row variables are likely to be insufficient to provide the essence of matching
with the present enriched object types.

Matching and row variables may solve binary methods in some simpler object calculus. It is
not clear yet whether the use of matching, row variables, higher-order subtyping as in [3], or any
of the known solutions [17] could be adapted to our calculus. This is one of the most important
investigations to pursue.

8.6.7 Encoding of objects

It remains future work to find a good encoding of our objects into a typed lambda-calculus with
records. Our approach and many intuitions were in fact motivated by the self-application inter-
pretation of objects as records of functions [3]. This interpretation can model most operations
on object-based approaches, but delegation-based inheritance in an untyped calculus with records.
Unfortunately, in any known type system there is always some operation that cannot be typed.
Richer object types have made it possible to unify objects with classes. Richer record types are
certainly needed to see objects for what they really are—records of functions.

Methods are usually polymorphic in classes but they are specialized at the creation of objects,
whether the objects are primitive [3] or encoded [60]. Our methods are parametric in self inside
objects. This is a major difference that might help find other encodings that those proposed in
[60].

8.7 Comparison with other works

Our proposal is built on the calculus of objects of Abadi and Cardelli [3], which is invoked through-
out this paper. Our use of variance annotations is in principle similar to theirs. By attaching
variance annotations to field-types rather than to fields themselves, we eliminate some useless
types such as MT 7. Indeed, such a field could not be overriden, nor accessed, and thus it could
be just given type U. (Our use of variances also eliminate the ability to specify the type of a field
without specifying its variance, which may cause problem with type inference [88].) An essential
imported tool is the structure of record-types of [104], which was originally designed for type in-
ference in ML [106]. The use of a richer structure of record types has previously been proposed
for type checking records [49, 50, 27, 25]. To our knowledge, the benefits of symmetric information
were first transfered from record types to object types in [109]. There, first-order typing rules
for objects with extension and both deep and width subtyping were roughly drafted without any
formal treatment.

8.7. COMPARISON WITH OTHER WORKS 215

A similar approach has also been independently proposed by Bono, Liquori and others. Their
first related work [11] has later lead to many closely related proposals [13, 12, 9, 75, 74, 76]. Most
of these are extensions of the Fisher-Honsel calculus of objects [81]. The differences between their
approach and the one of [3] (which is also ours) are not always significant but they make a close
comparisson more difficult. Only two of these works [76, 75] are extensions of the Abadi-Cardelli
calculus of objects [3] and are thus more connected to our proposal. The first-order version [76],
is subsumed by both [109] (which also covers deep subtyping) and [75] (which also addresses self
types.) Our proposal extends both [109] and [75].

The most interesting comparison can be made with [75]. The main motivation and the key idea
behind both proposals are similar: they integrate object subtyping and object extension, using a
richer type structure to preserve type soundness. Saturated vs diamond types correspond to our
object-types with a field template U vs A, respectively. Our treatment seems more uniform. We only
have one kind of object types. We distinguish between the “saturation” and “diamond” properties
in fields instead of objects. As a result, we can write an object type that is saturated, except for
a few particular fields. Our proposal also includes several additional features: it addresses deep
subtyping and virtual methods; it also allows methods to extend self. Moreover, in our proposal,
the subtyping relationship is structural for object types. Additionally, subtyping axioms are only
given at the level of fields, each one of them treating a different important subtyping capability. As
a result, object types have a more regular structure, and can easily be adapted to further extensions.
We think this is easier to understand, to modify, and to manipulate.

An alternative to virtual methods has also been studied in [9], using a quite different approach,
which consists in annotating each method with the list of all other methods they depend on. Thus,
each method has a different view of self. Their approach to incomplete objects is, in principle,
more powerful that ours; in particular, they can type programs that even traditional class-based
languages would reject. We found their types of objects too detailed, and thus their proposal less
practical than ours. (Tracing dependencies is closer to some form of program analysis than to
standard type systems.) In fact, we intendedly restricted our type system so that methods have a
uniform view of self. In practice, our solution is sufficient to capture common forms of inheritance.

In [81], pre-objects have pro-types and can be turned into objects with obj-types by subtyping.
Pro-types and obj-types are similar to our object types ¢ (x)[¢i:R 7; *<! ; Al and ¢(x)[¢;:RT 7;°€! ; U].
One difference is that, in our case, subtyping is defined and permitted field by field rather than all at
once. Fisher and Mitchell also studied the relationship between objects and classes in [42]. They use
bounded existential quantification to hide some of the structure of the object in the public interface.
This still allows public methods to be called, while private methods become innaccessible. In our
calculus, the richer structure of objects permits to use subtyping instead of bounded existential
quantification to provide a similar abstraction. This is not suprising, theoretically, since subtyping,
as existential quantification, is a lost of type information. However, this is practically a significant
difference, since subtyping allows more explicit type information but is less expressive. Another
difference is that using the standard record types they had to introduce record sorts to express
negative type information. As pointed out in a more recent paper [10], the design of the language
of kinds becomes important for modularity. In particular, [10] improves over [42] by changing
default kinds from unknown (U in our setting) to absent (A). Instead, our record types express
positive and negative information symmetrically and are viewed as total functions from fields to
types, which avoids the somehow ad hoc language of sorts.

In a recent paper, Riecke and Stone have circumvented the problem of merging extension with
deep and width subtyping by changing the semantics of objects [117]. In fact, their semantics remain
in correspondance with the standard semantics of objects in the general case, but the semantics

216 CHAPTER 8. DES CLASSES AUX OBJETS

of extension is changed so that the counter example becomes sound in the new semantics. They
distinguish between method update and object extension. Then, a field that is already defined is
automatically renamed by extension into an anonymous field that becomes externally inaccessible.

With their semantics, some of our enriched type information would become obsolete for ensur-
ing type soundness, but it might remain useful for compile-time optimizations. Other pieces of
information, e.g. virtual types, would remain quite pertinent.

8.8 Conclusion

We have proposed a uniform and flexible method for enriching type systems of object calculi by
refining the field structure of object types, so that they carry more precise type information.

Applying our approach to the object calculus of Abadi and Cardelli, we have integrated object
extension and depth and width subtyping, with covariant final methods and contra-variant virtual
methods, in a type-safe calculus. When sufficient type information is revealed, objects may rep-
resent classes. Type information may also be hidden progressively, until objects can be used and
interchanged in a traditional fashion.

An important gain is to avoid the encoding of classes as records of pre-methods. Instead,
we provide a more uniform, direct approach. Another benefit of this integration is to allow mixed
formed of classes and objects. The use of richer object types also increases both safety by capturing
more dynamic misbehavior as static type errors and security by allowing more privacy via subtyping.
Moreover, our approach subsumes several other unrelated proposals, and it might provide a unified
framework for studying or comparing new proposals. Some extensions and variations are clearly
possible, provided the operations on objects, their types and the subtyping hierarchy are changed
consistently.

More investigation still remains to be done. Adding an equational theory to the calculus, would
simplify our primitives, since objects could always be built field by field using object extension only.
This might also be a first step towards a better integration of record-based and delegation-based
object calculi. In the future, we would also like to study the potential increase of expressiveness
that field and row variables could provide. Of course, investigating binary methods remains one of
the most important issues.

Classes can be viewed as objects. We hope that an even richer type structure would finally
enable to see objects for what they really are —records of functions— in the (yet untyped) self-
application interpretation.

Appendix

8.9 Type computation

Lemma 4 (Type computation) Let 7 and 7' be two object types C(x)[p] and C(x)[p']. Assume
that there exists a row p” such that E,x <: Tt p <:p" and for each label ¢, the pair (p"(£),p'(£))
is one of the four forms (AP 1), (V 74,R 7¢), (V" 714,M™ 74), or (p,p). Let 7 be 7 &= 7' and p be
p&=p'. Then,

Err<1 EF#1<#71 EF#7<#7

Moreover, in the three first cases, if E,x <:T F p(£) <:p'(¢), then E,x <:T F p(£) <: p(£); otherwise
E, x <:TEP 1 <:p(l).

8.10. SUBJECT REDUCTION 217

Proof: Let E' be E,x <:T. By rule SUB OBJ INVARIANT it sufficies to check

(1) B Fp<ipf (2) B - #p< #p (3) B' - fp<i# s
(4) E'r-p<:p if p" is p/,
dr, B'- 1 <:myANE'FP1;<:7(¢) otherwise.

independently for each cell of the table 8.5 and for any of the fourth possible forms (three first
forms for (4)).

Case (): These cases cannot occur because all hypotheses cannot be met simultaneously.

Case first line: Note that this completely covers the case where (¢, ') is (A,P 74). Properties
(1) and (3) are immediate since @ is ¢' and (2) is obvious since # ¢ is U. Since ¢ is @', E' F p <:
follows from E' - ¢ <: ¢/, and E' F ¢' <: ¢ is always true, hence (4).

Case E'F ¢ <:¢': In particular, this covers the case where (¢”,¢") is (i,).

Subcase ¢ is ¢: Then (1), (2) and (4) are obvious. When # ¢’ is ¢/, it happens that # ¢ is
also ¢, thus (3) is true. There are 6 remaining cases in the last two columns:

e In the last column, we must show that E' - # o <:M~7'. If pis V-7 or M~ 7, then E 7' <: 7,
and since # ¢ is M~ 7, then E' = # ¢ <: V- 7'. Otherwise, ¢ is either R 7 or M 7, invariant by
#and E'F o <:M™ 7.

e In the preceding column, we must show that E' - # ¢ <:R 7' (5). Here and since E' - p <:¢/,
¢ is one of the form R 7 or V 7, types 7 and 7' are equal, and # ¢ is R 7. Hence (5).

Other subcases: given that E' - ¢ <: ¢/, the only remaining subcase is when ¢ is M 7 and ¢' is
V 7'. Then 7 and 7' are equal and thus so are ¢ and ¢'. Hence (1) and (3). Clearly, we also have
E'FRT7<:M7 (2)and E' M T <:V 7T (4).

Case (¢",¢') is (V 74,R 7¢), first line excluded: Then ¢ is either M 7 or V 7 with 7 and 7; equal
and ¢ is R 7. Hence (1) and, since ¢ and ¢’ are here invariant by #, we also have (3). Since both
E'FR7<:M7and E' FR 7 <:V 7, we also have (2). The hypothesis E' I ¢ <:R 74 never holds.
However, E' - P 7; <:R 7 holds since 7 and 7; are equal.

Case (¢",¢') is (V- 74,M™ 74), first line excluded: If ¢ is either M 7 or V 7 with 7 and 7; equal
and we reason as in the previous case. That is 7 and 7; are equal and ¢ is R 7. In particular, (2)
is unchanged. Since E' - R 7, <: M~ 7, we also have (1), (3) and E' F P 7; <: ¢. The hypothesis
E'+ ¢ <:M~ 74 holds when ¢ is M 7, and then (4) holds since ¢ is .

Otherwise, @ is either M~ 7 or V- 7 with ' - 7y <:7 and ¢ is M~ 7. Since E' - M~ 7 <:M~ 7y, i.e.
E'F ¢ <:¢', we have (1). Since M™, i.e. both sides, are invariant by #, we also have (3). Since
both # ¢ is equal to @, which is invariant by #, we also have (2). The inequality E' F ¢ <: ¢’ holds
when ¢ is M~ 7, i.e. ¢, and then E' I ¢ <: ¢ trivially holds. Otherwise, (4) holds taking 7 for 7;.

|

8.10 Subject reduction

Theorem 1 (Subject Reduction) Typings are preserved by reduction. If E&F a : 74 and a — a’
then E+a': 1,.

Proof: By induction on the size of a and cases on the reduction.

218 CHAPTER 8. DES CLASSES AUX OBJETS
Case Red Select: The expression a is of the form v.¢; where v is ((x, 7)[l; = s(z)a; "] and j
is in I. It reduces to a;{7/x}{v/x}. The derivation of £ F a : 7, ends with a subsumption rule
preceded by rule EXPR SELECT. Thus, there exists types 7' and 7} such that

Etrv:7 E 7' <:((x)[¢:R 75 ;U] (8.1) E - 1{r/x} <74 (8.2)

The derivation E + v : 7' itself ends with a subsumption rule preceded by rule EXPR OBJECT.
Thus, 7 is of the form ¢(x)[p] and there exist 7; ‘<! such that

Ex<:#71,z;:xta;:1, Yiel (8.3) Ex<:#7F P n) <:p(8.4)

ErFT<:7 (8.5)

By transitivity between (8.5) and (8.1), we have E = 7 <: ((x)[(;:R* 7/ ; U] (8.6). By structural
subtyping (lemma 39), and transitivity with (8.4), we have, in particular, ', x <:TFP 7; <:R* 7]

By structural subtyping (lemma 39), £, x<:T I~ 7;<:7/. Thus, by subsumption applied to (8.3),
Eox <t#7,xi:xF a7 (8.7). The judgment (8.6) also implies that £ I 7 <: ((x)[U], and by
lemma 41 we have E 7 <: # 7. Therefore, applying substitution (lemma 38) to (8.7), we have
E,zi:7Fai{t/x} : 7/{7/x}. Since E'+ v : 7, by substitution again, we have E I a;{7/x}{v/z} :
7/{7/x} (8.8). Since 7} is covariant, it follows from (8.5) that £ - 7/{7/x} <:7/{7'/x} . By
transitivity with (8.2), B 7/{7/x} <: 7, (8.9). We conclude using subsumption applied to (8.8)
with (8.9).

Case Red Extend: The expression a is of the form v.l & ((x,7")s(xg)ap where v is
C(x, T)[t; = s(w;)a; *<'] and £ is not one of the ¢;’s. It reduces to ¢(x, 7)[£ = s(zo)ao ; £ = s(z;)a; *<!]
where 7 is 7 & 7',

Let 7 and 7" be ((x)[p] and ¢(x)[p'] (this is not restrictive) and p be p & p'. A derivation
of v.l; = ((x,7")s(x)a ends with a subsumption rule preceded by rule ExpR EXTEND. Thus, 7'
verifies:

(¢0,0'(£)) € {(A,P 7¢), (V7¢,R 7¢), (V" 70, M” 7¢)} (8.1) EFwv:C(x)[leo;] (8:2)

E,x<:#7,20:xFao: 1 (8.3) Er 1 <7, (8.4)
A derivation of (8.2) ends with subsumption preceded by rule EXPR OBJECT. Thus, 7 verifies:
E x<:#71,z;:xFa;:7, Viel (8.5) E,x<:#7F P n) <:p(8.6)

EF 1< ()00 (8.7)

From (8.7), by structural subtyping, we have E, x<:T F p<:(£: pg; p'). Thus, E, x<:T I p\l<:p'\~L.
This, together with (8.1) meets the hypotheses of lemma 40. Therefore,

Et7<:7" (8.8) EF#7<:#71(8.9) Er#7<:#7 (8.10)

Moreover for some T, R

E x<:#1Fp\I<: 5\(8.11) E,x<:#r1hkm<:7)(8.12) E,x<:#1FP7<:p{) (8.13)
Combining (8.6), (8.11), and (8.13) we have E,x <:# 7 (£: P 7);¢; : P 7;°*L; A) <: p. By bound
weakening, since (8.9), we get E,x <:# 7 (£ : P 7);¢; : P 7;°S!;A) <: p (8.14). Combining (8.3)
with (8.12), we have E, x <:# 7',z : x F ap : 7 (8.15). By substitution lemma applied to (8.15)
and (8.5), with (8.9) we have

E,x <:#7,xp:xFap: 1 Ex<:#7T,z;:xkFa;:m, Viel

Combining with (8.14), we have E F a' : 7. By subsumption applied with (8.8) and (8.4), we
finally have E +a' : 7,

8.10. SUBJECT REDUCTION 219

Case Red Update: We reuse the same notations. The difference is that ¢ is now one the ¢; for
j in I. The expression a is of the form v.£ & ((x,')s(z)a where v is ((x,7)[li = s(xi)a; 1] It
reduces to ((x,)[4 = s(z)a ; 4; = ¢(zi)a; "],

We distinguish two subcases according to form of the typing derivation for a.

Subcase Expr Extend: This case is similar to the case for extension. The only differences
in the proof if that here, from (8.6), (8.9) and (8.13), we have E,x <:#7 F+ (£ : P 74;4; : P
7; €177 &) <: p instead of (8.14).

Subcase Expr Update: A derivation of v.£ &= ((x,7")s(z0)ap ends with a subsumption rule
preceded by rule EXPR UPDATE. Thus, 7’ verifies:

Etrwv:7 (8.1) E 7 <:C(x)[l:R 70 ; po] (8.2) E,x<:#7,z0:xtFap: 7 (8.3)
Er7 <7, (8.4)
A derivation of (8.1) ends with subsumption preceded by rule OBJECT. Thus, 7 verifies:
E x<:#71,z;:xFa;:7, Viel (8.5) E,x<:#7F P 8) <:p(8.6)
ErT<:7 (8.7)

From (8.7), by structural subtyping, we have E,x <:T I p<:p’, which enables to apply lemma 40;
we get

Et+7<:7 (8.8) EF#7<:#7(8.9) E 't #7%<:#7'(8.10) Ex<:#17Fp<:p(8.11)

Combining (8.11) with (8.6), we have E,x <: #7 F (¢; : P 7;°€/;A) <: p. By bound weakening,
since (8.9), we have E,x <: #7 F (¢; : P 7;°¢/;A) <: p (8.12). By structural subtyping (lemma
39) applied to (8.2), we have E,x <:T I p/(¢) <:R 74. By bound weakening with (8.10), we have
E,x <:#7F p'(¢f) <:R 14. By transitivity with (8.8) after applying structural subtyping, we get
E x <:#7 F p(f) <:R 75. By structural subtyping, we must have E,x <: #7 F P 7, <: p(¥).
Combining this with (8.12), we have E,x <: # 7 (£: P 74;4; : P 1;°€177; 8) <: p (8.13).

By substitution lemma applied to (8.3) and (8.5), we have

Ex<:#7,z:xFa:7 Ex<:#7T,x;:xtFa;:m, Viel

Combining with (8.13), we have E F o' : 7. By subsumption applied with (8.8) and (8.4), we
finally have E - d' : 7,.

Case Context: Trivial using the induction hypothesis.

220 CHAPTER 8. DES CLASSES AUX OBJETS

Chapitre 9

Conclusions

Nous avons exploré un des chemins possibles des enregistrements aux objets. Le remplacement
des enregistrements déclarés par des enregistrements polymorphes et extensibles, dans le langage
ML, puis 'ajout d’une opération de concaténation nous a permis de voir les objets comme des
enregistrements de fonctions et les classes comme des fonctions sur ces enregistrements. Le retour
a des objets et des classes primitifs a facilité la mise en ceuvre d’un mécanisme d’abréviation
automatique corrigeant les problemes d’interface liés a la structure ouverte des types d’objets. Cela
a abouti au langage Objective ML. C’est le résultat concret le plus important de notre travail.
Les derniers chapitres étudient des améliorations du langage Objective ML. Tout en apportant des
réponses précises, ils soulevent aussi de nouvelles questions. L’ajout du polymorphisme de premiere
classe est-il un premier pas vers I’abandon de la synthese des types en ML et & terme ’abandon
de ML ? Ou, au contraire, est-ce une nouvelle porte qui s’ouvre vers des systémes de types plus
expressifs qui conserveraient 1’essence donc la pérennité du langage ML 7

L’ensemble des travaux présentés s’appuient, autant dans les motivations initiales que dans la
formulation finale sur la correspondance étroite entre objets et enregistrements. Le dernier chapitre
va au dela en identifiant objets et classes. La compréhension de la programmation des langages a
objets ne doit pas se limiter & la compréhension des objets, et la prise en compte de la notion de
classe des le départ est un atout.

Le langage Objective ML, n’est sans doute pas une proposition finale, et il devrait pouvoir
étre simplifié davantage. Pourtant, un peu comme s’il avait atteint un point d’équilibre minimal,
plusieurs tentatives en ce sens ont échoué : elles ont entrainé une perte intolérable d’expressivité,
ou inversement, une complication démesurée de la sémantique statique ou dynamique. Mais nous
restons optimistes quant & l'existence d’une présentation d’Objective ML plus légere et encore plus
expressive! Cela pourrait passer par une meilleure identification des objets et des classes, ou bien
par une généralisation de I'opération d’extension dans I'esprit de [117].

Résultats théoriques et pratiques

Bien que le but de notre étude soit ’extension de ML avec des objets et des classes, notre
parcours est jalonné de résultats auxiliaires.

L’extension de ML avec des enregistrements polymorphes est une étape essentielle sur le plan
théorique. Elle est le point d’articulation et le fondement de tous les travaux présentés ici. C’est
en fait la mise en forme des variables de rangée dont le concept avait été introduit dans [119], et
de ’ensemble des mécanismes qui permettent de les intégrer & ML tout en conservant la synthése
des types. Une idée capitale est I’adjonction des annotations de présence au niveau des types qui

221

222 CHAPITRE 9. CONCLUSIONS

permet de traiter les types enregistrements comme des fonctions totales plutot que des fonctions
partielles sur les étiquettes. Cette décomposition augmente a la fois 'expressivité et 'uniformité
donc également la simplicité des types enregistrements. Mais le principe est général, et nous ’avons
appliqué avec avantage aux types objets dans le chapitre 8 dans un contexte explicitement typé.

Bien que les enregistrements polymorphes extensibles ne soient pas intégrés dans le langage
Objective Caml (parce que les objets les rendent moins nécessaires, voire un peu superflus), cette
extension a plusieurs applications concrétes. Elle a été reprise (dans un cas particulier) pour le
typage des objets. Elle est aussi utilisée, de fagon plus essentielle pour le typage des variantes avec
sous-typage [97].

L’enrichissement des types enregistrements proposé dans le chapitre 3 est utilisé de fagon un
peu cachée mais essentielle dans le chapitre 5 pour définir les types des objets et des messages.
Cette extension permet aussi de typer des enregistrements avec des valeurs par défaut, rapprochant
ainsi les enregistrements de la forme duale des variantes (les variantes ayant naturellement un cas
par défaut).

Le typage de la concaténation des enregistrements est une technique autant qu’une proposition
qui consiste & simuler la composition de fonctions d’extensions associées aux enregistrements. Cette
méthode est utilisée a nouveau dans le chapitre 5 pour modéliser directement I’héritage multiple.
Cela revient & voir les classes comme des mizins et ainsi remplacer ’héritage multiple par la com-
position des mixins. Il manquait au concept des mixins, connu mais trop peu considéré, un lien
plus clair avec ’héritage multiple et la concaténation des enregistrements que nous avons établi et
valorisé dans ML-ART. Dans le langage Objective ML, nous avons préféré revenir & une opération
d’héritage multiple parce qu’elle était plus standard, mais aussi parce qu’elle conduit a des types
plus lisibles, ce qui est trés important dans un contexte de synthése des types. Mais la notion de
mixin reste avantageuse. Elle est de nouveau valorisée dans [43]. Nous pourrions aussi la réintroduire
dans une future version d’Objective ML, maintenant que la synthese des types et leur mécanisme
d’abréviation sont bien compris.

Objective ML est un langage avec des objets primitifs et une synthese complete des types.
Mais il ne doit pas étre confiné & demeurer une extension de ML. C’est aussi une approche du
typage des objets qui repose de fagon essentielle sur le polymorphisme des variables de rangée
qui malgré les contraintes (ou grace a elles) imposées par la volonté de préserver la synthese de
types s’avere extrémement expressive et possede bien des atouts que bien d’autres propositions,
typés explicitement, peuvent lui envier. De nombreuses constructions, réputées difficiles, comme les
opérations réflexives y compris les méthodes binaires s’y expriment simplement.

Ces propriétés résultent de l'usage du polymorphisme des variables de rangée plutot que du
polymorphisme de sous-typage. En ce sens nous partageons ’avis de Kim Bruce que le sous-typage
n’est pas la bonne notion pour la programmation & objets. Dans le langage PolyToil [18] il introduit
comme alternative une notion de filtrage (matching) sur les types. Or, cette nouvelle opération,
traitée de fagon un peu ad hoc, correspond par essence au polymorphisme des variables de rangée.
Objective ML et PolyToil partagent de nombreuses qualités, notamment la facilité a traiter le type
de self et les méthodes binaires.

Toutefois, nous pensons que ’approche par variables de rangée est supérieure au filtrage
parce que le polymorphisme est un concept simple, bien connu, et déja présent dans les langages
considérés. De plus le polymorphisme des variables de rangée est une forme spécialisée d’une no-
tion plus générale de destructeur de type introduite récemment dans [53]. Le polymorphisme des
variables de rangée permet aussi d’exprimer ’extension des enregistrements. Toutefois, il ne semble
pas étre suffisant pour coder I’extension des objets présentée dans le chapitre 8.

Objective ML est donc aussi la démonstration que le polymorphisme des variables de rangée

223

remplace avantageusement le sous-typage mais aussi la quantification filtrée. Sans étre tout a fait
aussi général, il s’arréte 1a ou 'un ou lautre deviennent simultanément plus compliqués et moins
utiles.

L’ajout du polymorphisme de premiere classe répond au besoin réel de méthodes polymorphes
dans les classes paramétriques. C’est aussi I’élimination d’un point faible d’Objective ML, et il a
valeur de symbole. Mais au dela de I'application aux objets c’est aussi une réponse a un besoin
latent de petites doses d’ordre supérieur en ML. Ce probléme avait recu trop peu d’attention et
les solutions de principe proposée n’étaient pas tres satisfaisantes en pratique. Ce résultat est aussi
une ouverture de ML vers un langage mixte avec typage implicite et explicite et synthese partielle
des types.

L’identification des objets et des classes est pour 'instant un travail plutot théorique qui simplifie
plusieurs propositions existantes. Il corrige aussi un défaut de nombreuses études qui tendent a
reléguer les classes au second plan, et souvent les traitent par des codages. Mais son intérét est
surtout dans les prolongements auxquels il invite.

Les prolongements

Objective ML est un accomplissement, mais aussi une étape. Ses qualités ne doivent pas cacher
pour autant les améliorations possibles qui restent a faire. Objective ML est aujourd’hui la seule
version de ML distribuée avec des objets. Au dela des extensions envisageables, il faut continuer &
rechercher d’autres ajouts, directement liés aux objets, ou d’autres alternatives a la programmation
avec objets. Comme nous 'avons rappelé en introduction, la recherche de constructions plus ex-
pressives, plus simples, stres et efficaces est sans fin. Elle ne peut étre abandonnée. Nous décrivons
ci-dessous quelques directions de recherche pour étendre les travaux présentés ici.

Types d’ordre supérieur

L’ajout de types d’ordre supérieur décrit dans le chapitre 7 a été motivé avant tout par le besoin
de méthodes polymorphes dans les objets et cela reste sa plus importante application. Toutefois,
cette approche qui généralise la proposition plus facile faite dans le chapitre 5, doit étre replacée
dans un cadre plus large de la quéte d’un systéme intermédiaire entre ML et le systéeme F. Cette
idée n’est pas nouvelle, mais elle se trouve réactivée aujourd’hui par le besoin plus pressant d’un
systeme de types plus riche comme celui du systeme FZ., et la volonté de préserver la synthese des
types pour continuer & étre, sinon prétendre, de la famille ML.

Notre proposition s’applique parfaitement aux méthodes polymorphes. Si ’on se restreint au
noyau ML, la solution proposée est convenable, mais on ressent le besoin d’aller au dela et de rendre
encore plus implicite ’élimination du polymorphisme. Nous avons déja commencé & explorer cette
direction, mais la solution n’est pas pour l'instant satisfaisante. Il serait aussi intéressant d’étudier
I'interaction de cette proposition avec une forme semi-implicite de sous-typage.

Sous-typage

Nous avons mentionné a plusieurs reprises le sous-typage tout en donnant l'impression de ’avoir
ignoré ou critiqué. Tant ’absence de sous-typage est une faiblesse de ML, tant sa relégation au
second plan est un point fort d’Objective ML. A notre connaissance, Ocaml, PolyToil et ses des-
cendants cités ci-dessus sont parmi les seuls langages & ne pas s’appuyer sur un mécanisme de
sous-typage. Simultanément, ils traitent tous deux facilement les méthodes binaires.

224 CHAPITRE 9. CONCLUSIONS

Nous n’avons pas pour autant négligé le sous-typage. Il permet d’insérer des coercions entre cer-
taines valeurs ayant une méme représentation mais des types différents. Il est présent, explicitement
déclaré dans Objective ML, ol il s’avere tres utile, mais relativement peu souvent.

Le sous-typage avec inférence de types a été étudié pour ML et pour une extension de ML
avec des objets dans [40]. Toutefois les problemes d’interface déja difficiles en ML-ART se trouvent
décuplés par la présence du sous-typage. Bien qu’il ne soit pas prépondérant, I'usage du sous-typage
pourrait étre facilité en Objective ML s’il était synthétisé. Les travaux de Francois Pottier [97]
permettent d’envisager maintenant I’étude d’une version d’Objective ML avec synthese des sous-
types. Cependant, il restera —et c’est le plus difficile— & ajuster les techniques d’abréviation
automatique des types en présence de sous-typage implicite.

Typage des objets et abstraction

Le typage des objets dans Objective ML est tres satisfaisant; toutefois, son expressivité, la
robustesse et la simplicité de sa mise en ceuvre et sa facilité d’utilisation récemment améliorée,
devraient maintenant laisser apparaitre les plus petits défauts.

Le probléme le plus évident aujourd’hui est de ne pas pouvoir cacher les méthodes a posteriori,
ce qui nuit a la modularité : une classe écrite en librairie révélera toutes les fonctionnalités qui
ne compromettent ni la sécurité ni I’abstraction. Un utilisateur qui trouve cette classe en librairie,
mais avec une interface plus restreinte, ne peut parfois pas I'utiliser parce qu’une partie non désirée
de l'interface ne peut étre cachée.

Ce probléme sérieux trouve son origine aux sources des objets dans le mécanisme de liaison tar-
dive. Par défaut, 'oubli de structure est une opération implicite qui ne change pas la représentation
des objets. Le mécanisme de liaison tardive rend certaines de ces opérations dangereuses. Les outils
développés dans le chapitre 8 permettent de tracer les opérations d’oubli, et autorisent les opérations
stres tout en détectant celles qui sont dangereuses. Mais cette approche n’est pas toujours suffi-
sante. Il est des cas ot 'on veut effectivement cacher des méthodes, et redéfinir d’autres méthodes
du méme nom, mais indépendantes. Il faut pour cela un moyen d’interrompre la liaison tardive.
Une proposition récente [117] enrichit le mécanisme de liaison tardive de facon & pouvoir autoriser
I’oubli de méthodes sans restriction. Il serait intéressant de voir comment cette nouvelle construc-
tion peut se combiner avec la solution orthogonale proposée dans 8. Une autre direction est de
reprendre cette proposition dans le cadre d’Objective ML et de mieux comprendre son adaptation
au polymorphisme des variables de rangée et son interaction avec les méthodes binaires.

Il est remarquable que la proposition précédente [117] ou une variante [43] qui étend la
sémantique des objets soit le résultat d’un probleme de typage. Le typage des objets qui jusqu’a
présent se contentait de “rattraper” son retard par rapport aux langages a objets non typés est
maintenant bien mature et propose des constructions nouvelles, utiles également dans un contexte
non typé.

Modules et objets

Le langage ML possede a la fois un mécanisme de modules sophistiqué et un langage d’objets
performant. Victime de sa réussite multiple, se pose maintenant un nouveau probléme que ’'on ne
doit pas sous-estimer. Les notions de modules et d’objets ont été motivées par des besoins similaires
de structuration de la programmation, d’abstraction, de partage et de réutilisation de code. L’une
et 'autre répondent aujourd’hui & ces besoins avec succes, mais aussi de facon tres différente [118].

Alors que modules et objets se rejoignent dans leur accomplissement, ils différent dans leur mise
en ceuvre. Pire, ils induisent chacun des styles de programmation divergents et peu compatibles.

225

Ainsi, pour des raisons historiques les librairies écrites dans un style modulaire incitent peu a
I'utilisation des objets. Inversement, une application écrite en style objet nécessite souvent de
réécrire une partie des librairies dans un style compatible.

Il est essentiel de rapprocher les deux notions et de donner & l'utilisateur une vision uniforme
de la programmation incrémentale et modulaire.

Co-objets

Il existe traditionnellement deux approches de la programmation avec objets. Celle que nous
avons étudiée est dite a enregistrements parce que les objets peuvent étre considérés comme des
enregistrements portant leurs méthodes, méme si une implantation particuliere peut les représenter
différemment. L’autre approche, dite & surcharge, considére que les objets ne portent que leurs
variables d’instance. Les méthodes sont alors des fonctions externes, globales, surchargées. Alors
que le typage des objets dans I'approche & enregistrements est aujourd’hui tres bien compris, le
typage des méthodes comme fonctions surchargées est encore fort peu satisfaisant. Les mécanismes
de surcharge, déja difficiles, ont trouvé quelques solutions [28, 29, 14], mais I’application ultérieure
aux objets passe encore par une analyse ou une transformation globale.

Cette difficulté de typage cache probablement une difficulté sémantique plus profonde. Pour-
tant, 'approche & surcharge est par certains aspects plus intuitive. Il faut aussi reconnaitre que
cette approche a concentré beaucoup moins d’effort. Fort de notre expérience et munis de bons
instruments, il serait intéressant de rechercher un autre chemin menant des sommes aux objets.

Objets distribués

La distribution prend une importance croissante dans tous les systémes donc aussi dans la
plupart des langages de programmation.

Le transfert des techniques de typage développées pour les objets en Objective ML au calcul
joint a été entrepris et ne pose pas de probléme particulier. Cependant, il est intéressant de le mener
a bien, en espérant surtout profiter du contexte distribué pour trouver de nouvelles contraintes et
d’autres exigences. Cela risque de nous amener a nous orienter vers des constructions légerement
différentes, et ne peut a terme qu’enrichir notre compréhension des objets.

Epilogue

S’il fallait retracer demain la route des objets, le point d’arrivée serait sensiblement le méme,
mais la ligne serait droite, sans virage, courte et directe. Il est toujours intrigant de regarder derriere
soi et de s’apercevoir de la faible distance qui sépare le point d’arrivée du point de départ. Mais
le fait que le trajet puisse étre parcouru aujourd’hui en un temps plus court est le signe que notre
compréhension des objets est devenue mature et que les nouvelles constructions ont été rattachées
a des ancrages solides et connus de tous.

Alors que la plupart des recherches sur les objets d’hier s’attachaient a comprendre et formali-
ser rigoureusement les nombreux concepts introduits pour la plupart il y a plus de deux décennies,
les travaux en cours proposent de nouvelles opérations plus puissantes, mais aussi souvent sim-
plificatrices et unificatrices. Tantot les notions d’objets et de classes se décomposent en atomes
plus élémentaires que sont les enregistrements, les fonctions et ’abstraction, tantot elles deviennent
primitives, fusionnent et englobent tous ces aspects a la fois.

226 CHAPITRE 9. CONCLUSIONS

Notre sentiment de bien comprendre les objets ne peut pas pour autant nous empécher de
réver a des objets meilleurs. Comme nous ’avons rappelé au début de ce mémoire, la recherche de
nouvelles structures de programmation est une histoire sans fin. Au fur et & mesure que certains
concepts s’éclaircissent, que des aspérités disparaissent, notre toucher devient plus sensible et de
plus petites rugosités surgissent.

Les concepts d’objets et de modules, apparus simultanément par fission de 'idée de program-
mation structurée et incrémentale et de réutilisabilité, composés avec la méme matiere, sont parfois
aux antipodes I'un de 'autre. Il reste a ouvrir la voie, encore presque vierge qui les reliera en attente
de leur inévitable fusion.

Bibliographie

[1]

2]

=9

[10]

[11]

[12]

Martin Abadi and Luca Cardelli. A theory of primitive objects : Untyped and first-order
systems. In Theoretical Aspects of Computer Software, pages 296-320. Springer-Verlag, April
1994.

Martin Abadi and Luca Cardelli. A theory of primitive objects : Second-order systems.
Science of Computer Programming, 25(2-3) :81-116, December 1995. Preliminary version
appeared in D. Sanella, editor, Proceedings of European Symposium on Programming, pages
1-24. Springer-Verlag, April 1994.

Martin Abadi and Luca Cardelli. A theory of objects. Springer, 1996.

Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and type inference. In
Conference on Functional Programming Languages and Computer Architecture, pages 31-41.
ACM press, 1993.

Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. In Proceedings of the
Eighteenth ACM Symposium on Principles of Programming Languages, pages 104-118, Or-
lando, FL, January 1991. Also available as DEC Systems Research Center Research Report
number 62, August 1990.

Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. Transactions on Pro-
gramming Languages and Systems. ACM, 15(4) :575-631, 1993.

Bernard Berthomieu. Ccs programming in an ml framework : An account of lcs. In F. Nielson,
editor, ML with Concurrency : Design, Analysis, Implementation, and Application, Mono-
graphs in Computer Science, chapter 4. Springer-Verlag, January 1997.

Bernard Berthomieu and Camille le Monies de Sagazan. A calculus of tagged types, with
applications to process languages. In TAPSOFT Workshop on Types for Program Analysis,
Aarhus, Denmark, May 1995. (DAIMI report PB-493, University of Aarhus).

V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping Constraints for
Incomplete Objects. In Proceedings of TAPSOFT-CAAP-97, International Joint Conference
on the Theory and Practice of Software Development, Lecture Notes in Computer Science.
Springer-Verlag, 1997.

V. Bono and K. Fisher. An imperative, first-order calculus with object extension. In Informal
Proceedings of the FOOL 5 workshop on Foundations of Object Oriented Programming, Sans
Diego, CA, January 1998.

V. Bono and L. Liquori. A subtyping for the fisher-honsell-mitchell lambda calculus of object.
In Proc. of CSL-94, International Conference of Computer Science Logic, volume 933 of
Lecture Notes in Computer Science, pages 16-30. Springer-Verlag, 1995.

Viviana Bono and Michele Bugliesi. A lambda calculus of incomplete objects. In Proceedings
of Mathematical Foundations of Computer Science(MFCS), number 1113 in Lecture Notes in
Computer Science, pages 218-229, 1996.

227

228
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

BIBLIOGRAPHIE

Viviana Bono and Michele Bugliesi. Matching constraints for the lambda calculus of objects.
In Proceedings of (MFCS), 1997.

Francois Bourdoncle and Stephan Merz. Type checking higher-order polymorphic multi-
methods. In Proceedings of the 24th ACM Conference on Principles of Programming Lan-
guages, pages 302-315, July 1997.

Kim B. Bruce. Safe type checking in a statically typed object-oriented programming language.
In Proceedings of the Twentieth ACM Symposium on Principles of Programming Languages,
January 1993.

Kim B. Bruce. Typing in object-oriented languages : Achieving expressibility and safety.
Revised version to appear in Computing Surveys, November 1995.

Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, Valery Trifonov) the Hopkins Objects
Group (Jonathan Eifrig, Scott Smith, Gary T. Leavens, and Benjamin Pierce. On binary
methods. Theory and Practice of Object Systems, 1(3) :221-242, 1996.

Kim B. Bruce, Angela Schuett, and Robert van Gent. Polytoil : A type-safe polymorphic
object-oriented language. In ECOOP, number 952 in LNCS, pages 27-51. Springer Verlag,
1995.

Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John Mitchell. F-bounded
quantification for object-oriented programming. In Fourth International Conference on Func-
tional Programming Languages and Computer Architecture, pages 273-280, September 1989.

Luca Cardelli. A semantics of multiple inheritance. In Semantics of Data Types, volume 173 of
Lecture Notes in Computer Science, pages 51-68. Springer Verlag, 1984. Also in Information
and Computation, 1988.

Luca Cardelli. Amber. In Combinators and Functional Programming Languages, volume 242
of Lecture Notes in Computer Science, pages 21-47. Spinger Verlag, 1986. Proceedings of the
13th Summer School of the LITP.

Luca Cardelli. Typefull programming. In IFIP advanced seminar on Formal Methods in
Programming Langage Semantics, Lecture Notes in Computer Science. Springer Verlag, 1989.

Luca Cardelli. An implementation of FSub. Research Report 97, Digital Equipment Corpo-
ration Systems Research Center, 1993.

Luca Cardelli. Extensible records in a pure calculus of subtyping. In Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Programming. Types, Se-
mantics and Language Design. MIT Press, 1994.

Luca Cardelli. Extensible records in a pure calculus of subtyping. In Carl A. Gunter and
John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Programming. Types, Se-
mantics and Language Design, pages 373—425. MIT Press, 1994.

Luca Cardelli and Giuseppe Longo. A semantic basis for Quest. Journal of Functional
Programming, 1(4) :417-458, October 1991. Preliminary version in ACM Conference on Lisp
and Functional Programming, June 1990. Also available as DEC SRC Research Report 55,
Feb. 1990.

Luca Cardelli and John C. Mitchell. Operations on records. In Fifth International Conference
on Mathematical Foundations of Programming Semantics, 1989.

G. Castagna. A meta-language for typed object-oriented languages. Theoretical Computer
Science, 151(2) :297-352, November 1995. Extended abstract in the Proceedings of the 13th

BIBLIOGRAPHIE 229

[29]

[30]

[31]

[32]

[33]
[34]

[35]
[36]

[37]

38]
39]
[40]
41)

[42]

[43]

[44]
[45]

[46]

Conference on the Foundations of Software Technology and Theoretical Computer Science ;
Lecture Notes in Computer Science, number 761, December 1993.

Craig Chambers and Gary Leavens. BeCecil, a core object-oriented Inaguage with block
structure and multimethods : Semantics and typing. Presented at the FOOL’4 workshop,
January 1997.

Lucky Chillan. Une extension de ML avec des aspects orientés objets. These de doctorat,
Université de Paris 7, Place Jussieu, Paris, France, 1993. Forthcoming.

M. Coppo and P. Giannini. A complete type inference algorithm for simple intersection
types. In Proceedings of the seventeenth Colloquium on trees in Algebra and Programming
(CAAP’92), volume 581 of Lecture Notes in Computer Science. Springer Verlag, 1992.

Mario Coppo. An extended polymorphic type system for applicative languages. In MFCS 80,
volume 88 of Lecture Notes in Computer Science, pages 194-204. Springer Verlag, 1980.

Guy Cousineau and Gérard Huet. The CAML Primer. INRIA-Rocquencourt, France, 1989.

Pavel Curtis. Constrained Quantification in Polymorphic Type Analysis. PhD thesis, Cornell,
1987.

Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Nineteenth
Annual Symposium on Principles Of Programming Langages, pages 207-212, 1982.

Roberto Di Cosmo. Type isomorphisms in a type-assignment framework. In 19th Symposium
on Principles of Programming Languages, pages 200-210. ACM Press, 1992.

Gilles Dowek, Thérese Hardin, Claude Kirchner, and Frank Pfenning. Higher-order unification
via explicit substitutions : the case of higher-order patterns. In M. Maher, editor, Joint
international conference and symposium on logic programming, pages 259-273, 1996.

Dominic Duggan. Polymorphic methods with self types for ML-like languages. Technical
report CS-95-03,, University of Waterloo, 1995.

Dominic Duggan. Polymorphic methods with self types for ML-like languages. Technical
report cs-95-03, University of Waterloo, 1995.

J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for objects. In
OOPSLA, 1995.

J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively constrained types and its
application to OOP. In Mathematical Foundations of Programming Semantics, 1995.

K. Fisher and J. C. Mitchell. On the relationship between classes, objects and data abstrac-
tion. Theoretical And Practice of Objects Systems, To appear, 1998. A preliminary version
appeared in the proceedings of the International Summer School on Mathematics of Program
Construction, Marktoberdorf, Germany, Springer LNCS, 1997.

Matthew Flatt, Shiriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In 25th
Symposium on Principles of Programming Languages, pages 171-183, Sans Diego, CA, jan
1998.

You-Chin Fuh and Prateek Mishra. Type inference with subtypes. In ESOP 88, volume 300
of Lecture Notes in Computer Science, pages 94-114. Springer Verlag, 1988.

You-Chin Fuh and Prateek Mishra. Polymorphic subtype inference : Closing the theory-
practice gap. In TAPSOFT’89, 1989.

Jacques Garrigue and Didier Rémy. Extending ML with semi-explicit higher-order polymor-
phism. In International Symposium on Theoretical Aspects of Computer Software, volume
1281 of Lecture Notes in Computer Science, pages 20—-46. Springer, September 1997.

230

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

BIBLIOGRAPHIE

Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and control
in ML. In Proc. ACM Conf. on Functional Programming and Computer Architecture, June
1995.

Robert Harper, Robin Milner, and Mads Tofte. The definition of Standard ML. The MIT
Press, 1991.

Robert W. Harper and Benjamin C. Pierce. Extensible records without subsumption. Tech-
nical Report CMU-CS-90-102, Carnegie Mellon University, Pittsburg, Pensylvania, February
1990.

Robert W. Harper and Benjamin C. Pierce. A record calculus based on symmetric concatena-
tion. In Proceedings of the Eighteenth Annual ACM Symposium on Principles of Programming
Languages, Orlando FL, pages 131-142. ACM, January 1991. Extended version available as
Carnegie Mellon Technical Report CMU-CS-90-157.

Andreas V. Hense. An O’small interpreter based on denotational semantics. Technical Report
A 07/91, Universitiat des Saarlandes, Fachbereich 14, 1991.

Andreas V. Hense. Wrapper semantics of an object oriented programming language with
state. Theoretical Aspects of Computer Science, Lecture notes in Computer Science(526),
September 1991.

Martin Hofmann and Benjamin Pierce. Type destructors. In Informal proceedings of the
FOOL’5 workshop, 1998. Avalaible electronically at http ://pauillac.inria.fr/ remy /fool/.

Gérard Huet. Résolution d’équations dans les langages d’ordre 1,2, ...,w. These de doctorat
d’état, Université Paris 7, 1976.

Lalita A. Jategaonkar. ML with extended pattern matching and subtypes. Master’s thesis,
MIT, 545 Technology Square, Cambridge, MA 02139, August 89.

Lalita A. Jategaonkar and John C. Mitchell. ML with extended pattern matching and sub-
types (preliminary version). In Proceedings of the ACM Conference on Lisp and Functional
Programming, pages 198211, Snowbird, Utah, July 1988.

J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras : a rule-based survey
of unification. In Jean-Louis Lassez and G. Plotkin, editors, Computational Logic. Essays in
honor of Alan Robinson, chapter 8, pages 257-321. MIT-Press, Cambridge (MA, USA), 1991.

A. J. Kennedy. Type inference and equational theories. Technical report LIX/RR/96/09,
Ecole Polytechnique, LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France, September
1996.

A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2 fragment of
the second-order A-calculus. In ACM conference on Lisp and functional programming, pages
196-207, Orlando, Florida, June 1994.

Benjamin C. Pierce Kim B. Bruce, Luca Cardelli. Comparing object encodings. In Interna-
tional Symposium on Theoretical Aspects of Computer Software, Lecture Notes in Computer
Science. Springer, September 1997.

Claude Kirchner. Computing unification algorithms. In Proceeding of the first symposium on
Logic In Computer Science, pages 206-216, Boston (USA), 1986.

Claude Kirchner and Francois Klay. Syntactic theories and unification. CRIN & INRIA-
Loraine, Nancy (France), 1989.

Dexter Kozen, Jens Palsberg, and Michael 1. Schwartzbach. Efficient recursive subtyping. In
Proc. 20th symp. Principles of Programming Languages, pages 419-428. ACM press, 1993.

BIBLIOGRAPHIE 231

[64]

[65]

[66]

[67]
[68]

[69]
[70]

[71]
[72]
[73]
[74]
[75]

[76]

[77]
[78]
[79]

[80]

[81]

[82]

Konstantin Laufer and Martin Odersky. An extension of ML with first-class abstract types.
In Proceedings of the ACM SIGPLAN Workshop on ML and its Applications, 1992.

Konstantin Laufer and Martin Odersky. Polymorphic type inference and abstract data types.
ACM Transactions on Programming Languages and Systems, 16(5) :1411-1430, September
1994.

Camille le Monies de Sagazan. Un systéme de types étiquetés polymorphes pour typer les
calculs de processus a liaisons noms-canaux dynamiques. These de doctorat, Université Paul
Sabatier, Toulouse, November 1995. (Also CNRS/LAAS report 95077).

Xavier Leroy. The ZINC experiment : an economical implementation of the ML language.
Technical Report 117, INRIA-Rocquencourt, BP 105, F-78 153 Le Chesnay Cedex, 1990.

Xavier Leroy. Type declarations, type abbreviations, and recursive types. Transaction on the
newsgroup comp.lang.ml, April 30 1993.

Xavier Leroy. A modular module system. Research report 2866, INRIA, April 1996.

Xavier Leroy. The Objective Caml system. Software and documentation available on the
Web, http ://pauillac.inria.fr/ocaml/, 1996.

Xavier Leroy and Michel Mauny. The Caml Light system, version 0.5 — documentation and
user’s guide. Technical Report L-5, INRIA, 1992.

Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of Functional Programming,
3(4) :431-463, 1993.
Xavier Leroy and Pierre Weis. Manuel de référence du langage Caml. InterEditions, 1993.

L. Liquori and G. Castagna. A Typed Lambda Calculus of Objects. In Proc. of ASIAN-
96, International Asian Computing Science Conference, volume 1212 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

Luigi Liquori. Bounded polymorphism for extensible objects. Technical Report CS-24-96,
Dipartimento di Informatica, Universita’ di Torino, 1997.

Luigi Liquori. An Extended Theory of Primitive Objects : First Order System. In Proceedings
of ECOOP-97, International European Conference on Object Oriented Programming, Lecture
Notes in Computer Science. Springer-Verlag, 1997.

Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4(2) :258-282, 1982.

Robin Milner. A calculus of communicating systems. In Lecture Notes in Computer Science,
volume 230. Springer Verlag, 1980.

John C. Mitchell. Coercion and type inference. In Eleventh Annual Symposium on Principles
Of Programming Languages, 1984.

John C. Mitchell. Polymorphic type inference and containment. In Proc. Int. Symp. on Se-
mantics of Data Types, Sophia-Antipolis (France), pages 257-278, Berlin, June 1984. Springer
LNCS 173. Full version in Information and Computation, vol. 76, no. 2/3, 1988, pp. 211-249.
Reprinted in Logical Foundations of Functional Programming, ed. G. Huet, Addison-Wesley
(1990) 153-194.

John C. Mitchell and Kathleen Fisher. A delegation-based object calculus with subtyping.
In Fundamentals of Computation Theory, number 965 in LNCS, pages 42—61. Springer, 1995.

John C. Mitchell, Furio Honsell, and Kathleen Fisher. A lambda calculus of objects and
method specialization. In IEEE Symposium on Logic in Computer Science, pages 26-38,
June 1993.

232

[83]

[84]
[85]
[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

BIBLIOGRAPHIE

Martin Odersky and Konstantin Laufer. Putting type annotations to work. In Proceedings of
the 23th ACM Conference on Principles of Programming Languages, pages 54—67, January
1996.

Atsushi Ohori. Extending ML polymorphism to record structure. Technical Report CSC
90/R24, University of Glasgow, Department of Computer Science, September 1990.

Atsushi Ohori. A polymorphic record calculus and its compilation. ACM Transactions on
Programming Languages and Systems, 17(6) :844-895, 1996.

Atsushi Ohori and Peter Buneman. Type inference in a database langage. In ACM Conference
on LISP and Functional Programming, pages 174-183, 1988.

Jens Palsberg. Efficient type inference of object types. In Ninth Annual IEEE Symposium on
Logic in Computer Science, pages 186-195, Paris, France, July 1994. IEEE Computer Society
Press. To appear in Information and Computation.

Jens Palsberg and Trevor Jim. Type inference of object types with variances. Private Dis-
cussion, 1996.

Frank Pfenning. Partial polymorphic type inference and higher-order unification. In Pro-
ceedings of the 1988 ACM Conference on Lisp and Functional Programming, pages 153-163,
Snowbird, Utah, July 1988. ACM Press.

Frank Pfenning. On the undecidability of partial polymorphic type reconstruction. Fun-
damenta Informaticae, 19(1,2) :185-199, 1993. Preliminary version available as Technical
Report CMU-CS-92-105, School of Computer Science, Carnegie Mellon University, January
1992.

Benjamin C. Pierce. Programming with intersection types, union types, and polymorphism.
Technical Report CMU-CS-91-106, Carnegie Mellon University, Pittsburg, Pensylvania, Fe-
bruary 1991.

Benjamin C. Pierce. Mutable objects. Unpublished note, June 1993.

Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for object-
oriented programming. Journal of Functional Programming, 4(2) :207-247, April 1994. A
preliminary version appeared in Principles of Programming Languages, 1993, and as Uni-
versity of Edinburgh technical report ECS-LFCS-92-225, under the title “Object-Oriented
Programming Without Recursive Types”.

Benjamin C. Pierce and David N. Turner. Local type argument synthesis with bounded
quantification. Technical Report 495, Computer Science Department, Indiana University,
1997.

Benjamin C. Pierce and David N. Turner. Pict : A programming language based on the
pi-calculus. Technical report, Computer Science Department, Indiana University, 1997.

Benjamin C. Pierce and David N. Turner. Local type inference. In 25th Symposium on
Principles of Programming Languages, pages 252-265, Sans Diego, CA, January 1998. Full
version available as Indiana University CSCI Technical Report 493.

Frangois Pottier. Simplifying subtyping constraints. In Proceedings of the 1996 ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’96), pages 122-133,
January 1996.

Francois Pottier. Synthése de types en présence de sous-typage : de la théorie a la pratique.
PhD thesis, Université Paris VII, July 1998.

BIBLIOGRAPHIE 233

[99]
[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]
[112]

[113]

[114]

[115]

Didier Rémy. Records and variants as a natural extension of ML. In Sizteenth Annual
Symposium on Principles Of Programming Languages, 1989.

Didier Rémy. Algébres Touffues. Application au Typage Polymorphe des Objets Enregistre-
ments dans les Langages Fonctionnels. These de doctorat, Université de Paris 7, 1990.

Didier Rémy. Efficient representation of extensible records. In Proceedings of the 1992 work-
shop on ML and its Applications, page 12, San Francisco, USA, June 1992.

Didier Rémy. Extending ML type system with a sorted equational theory. Research Report
1766, Institut National de Recherche en Informatique et Automatisme, Rocquencourt, BP
105, 78 153 Le Chesnay Cedex, France, 1992.

Didier Rémy. Projective ML. In 1992 ACM Conference on Lisp and Functional Programming,
pages 66—75, New-York, 1992. ACM press.

Didier Rémy. Syntactic theories and the algebra of record terms. Research Report 1869,
Institut National de Recherche en Informatique et Automatisme, Rocquencourt, BP 105, 78
153 Le Chesnay Cedex, France, 1993.

Didier Rémy. Type declarations, type abbreviations, and recursive types. Transaction on the
newsgroup comp.lang.ml, April 27 1993.

Didier Rémy. Type inference for records in a natural extension of ML. In Carl A. Gunter
and John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Programming. Types,
Semantics and Language Design. MIT Press, 1993.

Didier Rémy. Typing record concatenation for free. In Carl A. Gunter and John C. Mit-
chell, editors, Theoretical Aspects Of Object-Oriented Programming. Types, Semantics and
Language Design. MIT Press, 1993.

Didier Rémy. Programming objects with ML-ART : An extension to ML with abstract and
record types. In Masami Hagiya and John C. Mitchell, editors, International Symposium
on Theoretical Aspects of Computer Software, pages 321-346, Sendai, Japan, April 1994.
Springer-Verlag.

Didier Rémy. Better subtypes and row variables for record types. Presented at the workshop

on Advances in types for computer science at the Newton Institute, Cambridge, UK, August
1995.

Didier Rémy. A case study of typechecking with constrained types : Typing record concate-
nation. Presented at the workshop on Advances in types for computer science at the Newton
Institute, Cambridge, UK, August 1995.

Didier Rémy. From classes to objects via subtyping. A preliminary version appeared in LNCS
1381 (ESOP 98), June 1998.

Didier Rémy. From classes to objects via subtyping. In FEuropean Symposium On Program-
ming, volume To appear of Lecture Notes in Computer Science. Springer, March 1998.

Didier Rémy and Jéréme Vouillon. Objective ML : An effective object-oriented extension to
ML. Theoretical And Practice of Objects Systems, To appear, 1998. A preliminary version
appeared in the proceedings of the 24th ACM Conference on Principles of Programming
Languages, 1997.

John H. Reppy and Jon G. Riecke. Classes in Object ML. Presented at the FOOL’3 workshop,
July 1996.

John H. Reppy and Jon G. Riecke. Simple objects for Standard ML. In Programming
Language Design and Implementation 1996. ACM Press, may 1996.

234
[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

BIBLIOGRAPHIE

John C. Reynolds. Preliminary design of the programming language Forsythe. Technical
Report CMU-CS-88-159, Carnegie Mellon University, Pittsburgh, Pennsylvania, June 1988.

Jon G. Riecke and Christopher A. Stone. Privacy via subsumption. In Informal Proceedings
of the FOOL 5 workshop on Foundations of Object Oriented Programming, San Diego, CA,
January 1998.

Jérome Vouillon. Using modules as classes. In Informal proceedings of the FOOL’S workshop,
1998. Avalaible electronically at http ://pauillac.inria.fr/ remy/fool/.

Mitchell Wand. Complete type inference for simple objects. In D. Gries, editor, Second
Symposium on Logic In Computer Science, pages 207-276, Ithaca, New York, June 1987.
IEEE Computer Society Press.

Mitchell Wand. Corrigendum : Complete type inference for simple objects. In Third Sympo-
stum on Logic In Computer Science, 1988.

Mitchell Wand. Type inference for record concatenation and multiple inheritance. In Fourth
Annual IEEE Symposium on Logic in Computer Science, pages 92-97, Pacific Grove, CA,
June 1989.

Pierre Weis. The CAML Reference Manual. INRIA-Rocquencourt, BP 105, F-78 153 Le
Chesnay Cedex, 1989.

J. B. Wells. Typability and type checking in the second order A-calculus are equivalent and
undecidable. In Ninth annual IEEE symposium on Logic in computer science, pages 176185,
Paris, France, July 1994.

Andrew K. Wright. Polymorphism for imperative languages without imperative types. Tech-
nical Report 93-200, Rice University, February 1993.

Jan Zwanenburg. A type system for record concatenation and subtyping. In Electronic
Proceedings of the FOOL 3 workshop on Foundations of Object Oriented Programming, New
Brunswick, NJ, July 1996.

Résumé

Les enregistrements, produits & champ nommés, sont une structure simple et fondamentale en
programmation, et sont présents depuis longtemps dans de nombreux langages. Toutefois, certaines
opérations sur les enregistrements, comme 'ajout de champs, restent délicates dans un langage
fortement typé. Les objets sont, au contraire, un concept tres évolué, expressif, mais les difficultés
a les typer ou & les coder dans un lambda-calcul typé semblent refléter une complexité intrinseque.

Une technique simple et générale permet d’étendre le typage des enregistrements aux opérations
les plus avancées, telles que 'acces polymorphe, ’extension, la possibilité d’avoir des valeurs par
défaut et une forme de concaténation. En ajoutant & ces opérations des types existentiels, objets
et classes deviennent directement programmables, sans sacrifice pour leur expressivité, mais au
détriment de la lisibilité des types synthétisés.

Une extension de ML avec des objets primitifs, Objective ML, & la base de la couche objet du
langage Ocaml, est alors proposée. L’utilisation de constructions primitives permet, en particulier,
I’abréviation automatique des types qui rend 'interface avec 1'utilisateur conviviale. Une extension
harmonieuse du langage avec des méthodes polymorphes est également possible.

Tout en expliquant I'imbrication entre les enregistrements, les objets et classes, ces travaux
montrent surtout que le polymorphisme de ML, un concept simple et fondamental suffit & rendre
compte des opérations les plus complexes sur les objets. La simplicité et la robustesse d’Objective
ML et de son mécanisme de typage, qui ne sacrifient en rien ’expressivité, contribuent & démystifier
la programmation avec objets, et la rendent accessible en toute sécurité a 'utilisateur, méme novice.

Mots clés

Objet, Enregistrement, Typage, Polymorphisme, Synthese de types, Variable de rangée, ML, Ocaml,
Classe, Héritage, Héritage multiple, Sous-typage.
Keywords

Object, Overriding, Record, Typechecking, Polymorphism, Type inference, Row variable, ML,
Ocaml, Class, Inheritance, Multiple Inheritance, Subtyping.

