
UNIT

�

E DE RECHERCHE

INRIA-ROCQUENCOURT

Institut National

de Recherche

en Informatique

et en Automatique

Domaine de Voluceau

Rocquencourt

B.P. 105

78153 Le Chesnay Cedex

France

T�el.:(1)39 63 55 11

Rapports de Recherche

N

�

1739

Programme 2

Calcul symbolique, Programmation

et G�enie logiciel

TYPING RECORD

CONCATENATION FOR FREE

Didier R�emy

Août 1992

Typing Record Concatenation for Free

Didier R�emy

�

�

This work was partly supported by research grant NSF IRI86-10617.

1

Typing Record Concatenation for Free

Abstract

We show that any functional language with record extension possesses record concatena-

tion for free. We exhibit a translation from the latter into the former. We obtain a type

system for a language with record concatenation by composing the translation with type-

checking in a language with record extension. We apply this method to a version of ML

with record extension and obtain an extension of ML with either asymmetric or symmetric

concatenation. The latter extension is simple, exible and has a very e�cient type inference

algorithm in practice. Concatenation together with removal of �elds needs one more con-

struct than extension of records. It can be added to the version of ML with record extension.

However, many typed languages with record cannot type such a construct. The method still

applies to them, producing type systems for record concatenation without removal of �elds.

Object systems also bene�t of the encoding which shows that multiple inheritance does not

actually require the concatenation of records but only their extension.

Le Typage de la Concatenation des Objets Enregistrements Gratuitement

R�esum�e

Nous montrons que tout langage fonctionnel qui poss�ede des enregistrements avec une

op�eration d'extension poss�ede gratuitement une op�eration de concat�enation. Nous exhibons

une traduction de la seconde vers la premi�ere. Un syst�eme de types pour un langage poss�edant

la concat�enation des enregistrements peut être obtenu en composant la traduction avec le

typage dans un langage ayant une op�eration d'extension des enregistrements. La m�ethode

est appliqu�ee �a une version de ML avec une op�eration d'extension des enregistrements et

permet d'obtenir une extension de ML avec une op�eration de concat�enation sym�etrique ou

assym�etrique. Le langage obtenu est simple, souple et poss�ede un algorithme de synth�ese

de type e�cace en pratique. L'op�eration de concat�enation simultan�ement avec le retrait de

champs n�ecessitent une op�eration de plus que l'extension des enregistrements. Celle-ci peut

être ajout�ee �a la version de ML ci-dessus. Cependant, la plupart des langages typ�es avec

des enregistrements ne peuvent pas être facilement �etendus avec une telle construction. La

m�ethode est encore applicable, produisant des syst�emes de typage pour la concat�enation mais

sans le retrait des champs. Les syst�emes objets b�en�e�cient �egalement du codage, puisqu'il

montre que l'h�eritage multiple ne n�ecessite pas la concat�enation des enregistrements et mais

seulement leur extension.

1

Introduction

Dictionaries are an imported data abstraction in functional programming languages. They

are basically partial functions from keys to values. A simple implementation of dictionaries

is the association list, commonly called A-list . A-lists are lists of pairs, the �rst component

being the key to access the value of the second component. The usual cons and append

operations provide facilities for extending the domain of an A-list and merging two A-lists

into one de�ned on the union of the domains of the input lists, respectively. Access to a

given key may fail when the key is not in the domain of the A-list, which cannot be checked

statically. Records are a highly restricted form of A-lists. Keys may no longer be any values,

but belong to a distinguished set of atomic values, called labels. All �elds of a record must

be speci�ed at creation time. These restrictions make it possible to perform static checks on

accesses to record �elds.

Then, an important goal in typechecking records, was to allow a record with many �elds

to be used instead of a records with fewer �elds. This was �rst suggested by Cardelli in the

language Amber [Car86] using inclusion on monomorphic types.

Later, Wand [Wan87] used polymorphism instead of a speci�c inclusion relation on types.

He also re-imported the cons operation of A-lists which became the extension of records with

new �elds. Originally, this construction was free (existing �elds could be rede�ned), but strict

versions (existing �elds could not be rede�ned) have been proposed [OB88, JM88] to avoid

typechecking di�culties. Note that cons on A-lists naturally implements free extension.

Record extension quickly became popular, but many languages still only provide the

strict version [JM88, Oho90, HP90a]. Finally Wand re-imported the append of A-lists, call-

ing it record concatenation. An important motivation for this is the encoding of multiple

inheritance [Wan89] in object oriented languages.

Record concatenation is still considered a challenge, since it is either very restricted

[HP90a] or leads to combinatorial explosion of typechecking [Wan88]. We propose a general

approach to concatenation. In fact we claim that concatenation comes for free once record

extension is provided. We justify this assertion by presenting an encoding of the latter into

the former. The interest of the encoding is to provide a type system for record concatenation

by composing the coding with a type system for record extension.

We introduce the translation in an untyped framework in section 1. In section 2, we apply

it to an extension of ML for record extension. In the last section we briey illustrate the

encoding on a few other languages.

1 Encoding of concatenation

In this section we describe how concatenation can be encoded with extension. The lan-

guage with record extension, L, is an extension of the untyped � calculus plus distinguished

constructs for record expressions:

M ::= x variable

j � x: M abstraction

jM M application

j fg empty record

j fM with a = Mg record extension

jM:a record access

The semantics of records is the usual one. Informally, they are partial functions from labels

to values. The empty record is de�ned nowhere. Accessing a �eld of a record is applying

the record to that �eld. It produces an error if the accessed �eld is not de�ned. The free

2 1 ENCODING OF CONCATENATION

extension of a record with a new �eld de�nes or rede�nes that �eld with the new value. The

strict extension does the same if the �eld was unde�ned, but produces an error otherwise. In

an untyped language the free extension is preferred since the more well typed programs, the

better.

The concatenation (or merge) operator k takes two records and returns a new record

composed of all �elds de�ned in any of its arguments. There are di�erent semantics given to

the merge, when both records de�ne the same �eld: symmetric concatenation rejects this case

[HP90b] while asymmetric concatenation takes the value from the last record [Wan89]. We

will not consider recursive concatenation that would compute the concatenation of common

�elds by recursively concatenating their values.

The language with record concatenation, L

k

is

M ::= x

�

�

�
� x: M

�

�

�
M M

�

�

�
fg

�

�

�
fa = Mg

�

�

�
M kM

�

�

�
M:a

The language is an extension of L with a construct for concatenation, but record extension has

been replaced by one-�eld records that are more primitive in the presence of concatenation,

since

1

:

fM with a = Ng � M k fa = Ng

Reading this equality from right to left is also interesting: it means that one-�eld concatena-

tion can be written with record extension only. It gives the expected semantics of asymmetric

concatenation when the extension is free and the semantics of symmetric concatenation when

the extension is strict. We are going to generalize this to a translation from the language L

k

to the language L.

1.1 The untyped translation

The following translation works for both asymmetric and symmetric concatenation. We

arbitrarily choose asymmetric concatenation.

The extension of �elds provides the one-�eld concatenation operation:

� r: (r k fa = Mg) = � r: fr with a = Mg;

which we write fa = Mg

y

. In fact, we can compute r k s whenever we know exactly the �elds

of s, since

r k fa

1

= M

1

; : : : a

n

= M

n

g � f: : :fr with a

1

= M

1

g : : : with a

n

= M

n

g:

This equivalence could also have been deduced from the decomposition of s into one-�eld

concatenations

(: : :(r k fa

1

= M

1

g) : : : k fa

n

= M

n

g);

which is also the composition

(fa

n

= M

n

g

y

� : : :fa

1

= M

1

g

y

) r:

We write

fa

1

= M

1

; : : : a

n

= M

n

g

y

1

This is similar to the correspondence between append and cons on A-lists, in this particular case, the

equality is

[M] append r =M cons r.

1.2 The tagged translation 3

for the abstraction of the previous expression over r. More generally we de�ne the transfor-

mation y on record expressions, called record abstraction, by:

fg

y

� � u: u

fa = Mg

y

� � u: fu with a = M

y

g

(M k N)

y

� N

y

�M

y

Since any record expression can be decomposed into a combination of the three previous

forms, the transformation is de�ned for all records. It satis�es the property

r

y

= � u: (u k r):

Thus r is equal to r

y

fg. If we transform all record expressions in a program, then we have

to replace the access r:a by (r

y

fg):a. Actually, it is enough to apply r to a record r

0

that

does not contain the a �eld and read the a �eld from the result (r r

0

):a. In a typed language

this solution will leave more exibility for the type of r. Other constructs of the languages

simply propagate the translation. Thus the translation is completed by

(M:a)

y

� (M

y

fg):a

(� x: M)

y

� � x: M

y

(M N)

y

� M

y

N

y

x

y

� x

The translation works quite well in an untyped framework. However, the encoding is not

injective, for instance it identi�es the empty record with the identity function. In the next

section we adapt the translation to a typed framework.

1.2 The tagged translation

In this section we improve the translation so that the encoding becomes injective. The main

motivation is to prepare the use of the encoding to get a typed version of L

k

by pulling

back the typing rules of a typed version of L. The well typed programs of L

k

will be the

reverse image of the well typed programs of L. The translation should be injective on well

typed programs. A solution is to tag the encoding of records, so that they become tagged

abstractions, distinct from other abstractions.

In fact we replace L by L

Tag ;Untag

, that is L plus two constants Tag and Untag used

to tag and untag values. The only reduction involving Tag or Untag is that Untag (Tag M)

reduces to M . Tag and Untag can be thought as the unique constructor and the unique

destructor of an abstract data type, respectively. In SML [HMT91] they could be de�ned as:

abstype (�, �) tagged = Tagged of � ! � with

val Tag = fn x) Tagged x

val Untag = fn Tagged x) x

end;

Their role is to certify that some functional values are in fact record abstractions, Tag stamps

them and Untag reads and removes the stamps. Obviously, these constants are not accessible

in L

k

, i.e. they are introduced during the translation only.

Syntactically the existence of Tag and Untag is not a question, but semantically a model

of a calculus with record extension might not possess such constants. On the opposite,

�nding a particular model in which the constants Tag and Untag exists might be as di�cult

as �nding a direct model for concatenation. Anyhow, we limit our use of the encoding to

syntactic issues.

4 1 ENCODING OF CONCATENATION

The tagged translation is:

fg

y

� Tag (� u: u)

fa = Mg

y

� Tag (� u: fu with a = M

y

g)

(M k N)

y

� Tag (� u: Untag N

y

(UntagM

y

u)))

(M:a)

y

� ((Untag M) fg):a

It does not modify other constructs:

(� x: M)

y

� � x: M

y

(M N)

y

� M

y

N

y

x

y

� x

We would like to show a property such as: starting with a calculus of record extension, we can

translate any program of a calculus with record concatenation into the �rst calculus enriched

with constants Tag and Untag using the translation above, and thereby get | in some sense

| an equivalent program.

L

k

y

! L

fTag ;Untagg

M

k

! M

eval

#

#

#

#

eval

v

k

� �� � �

?

� ��� ����� � v

Without any such result, the translation y is no more than a good intuition to understanding

record concatenation. In the next section it helps �nding a type system for a language with

concatenation L

k

from a typed language with extension L, by translating L

k

programs and

then typing them in L.

1.3 Concatenation with removal of �elds

We omitted one construction in the language L: the restriction of �elds. We extend both

languages L and L

k

with record restriction:

M ::= : : : jM n a

Record restriction takes a record and removes the corresponding �eld from its domain. As

for extension of �elds, restriction of �elds can be free or strict. We consider free restriction

here. The question is obviously the extension of the transformation y to restriction of �elds.

The guide line is to keep the equality

(M n a)

y

= � u: u k (M n a)

true, since it was true before the introduction of restriction of �elds. Actually this equality

is needed since it is the basis of the translation of the extraction of �elds.

Unfortunately, the attempt

(M n a)

y

= � u: (M

y

u) n a

does not work: the record u k (M na) is not equal to (M

y

u)na, since if the record u provides

an a �eld, this �eld is de�ned in the left expression but it is unde�ned in the right expression.

5

In fact u k (M n a) is equal to M

y

u on all �elds but a. On the a �eld it is unde�ned if u is,

or de�ned with the value of the a �eld of u otherwise. This operation cannot be written in

the language L; we need another construct,

fM but a from Ng;

called combining. From two records M and N , it de�nes one that behaves exactly as M on

all �elds but a, and as N on the a �eld. This primitive is stronger than (n a) which could

be de�ned as f but a from fgg.

Now, the translation of (M n a) can be de�ned by

(M n a)

y

� � u: fM

y

u but a from ug

Its tagged version is:

(M n a)

y

� Tag (� : fUntag (M

y

u) but a from ug)

We call L

+

the language L extended with the combining construct. This construct has never

been introduced in the literature before. If the language L is typed, it may be the case that

the combining primitive cannot be assigned a correct and decent type in the type system of L

and L

+

might not be a trivial extension of L or even not exist.

The combining construct is not in L

k

and there is no easy way to provide it in an extension

of L

k

. Therefore L but not L

+

is a sub-language of L

k

.

2 Application to a natural extension of ML

In this section we apply the translation where L is a version of ML with record extension,

and we get a language with record concatenation. We �rst review the language � taken from

[R�em90, R�em92c] for record extension. Then we describe in detail two versions of the typed

language �

k

obtained by pulling back the typing rules of �. Last, we discuss the system �

k

on its own, and compare it with other existing systems with concatenation.

2.1 An extension of ML for records

The language, called �, is taken from [R�em90, R�em92c]. It is an extension of ML, where the

language of types has been enriched with record types in such a way that record operations

can be introduced as primitive functions rather than built in constructs. The main properties

are described in [R�em92c] and proved in [R�em90, R�em92b, R�em92a]. The following summary

should be su�cient for understanding the next sections. The reader is referred to [R�em92c]

for a more thorough presentation.

Let L be a �nite set of labels. We write a, b and c for labels and L for �nite subsets of

labels. The language of types is informally described by the following grammar (a formal

description using sorts can be found in [R�em92c]):

� ::= � j � ! � j ��

;

types

�

L

::= �

L

j abs

L

j a : ' ; �

L[fag

a =2 L rows de�ning all labels but those in L

' ::= � j abs j pre (�) �elds

where �, �, and � are type variables, �, � and � are row variables and � and " are �eld

variables.

6 2 APPLICATION TO A NATURAL EXTENSION OF ML

Intuitively, a row with superscript L describes all �elds but those in L, and tells for

each of them whether it is present with a value of type � (positive information pre (�)) or

absent (negative information abs). A template row is either abs or a row variable. It always

describes an in�nite set of �elds. The superscripts in row expressions L are �nite sets of

labels. Their main role is to prevent �elds from being de�ned twice: the type

�

a : � ; (a : " ; �

L

)

�

cannot be written for any L. Similarly, all occurrences of the same row variable should be

preceded by the same set of labels (possibly in a di�erent order). The type

�

a : � ; �

L

�

!

�

�

L

�

:

cannot be written either, since the row variable � cannot be both in the syntactic class of

rows not de�ning label a and the syntactic class of rows de�ning all labels. The superscripts

are part of the syntax, but we shall omit them whenever they are obvious from context. We

write a : � ; b : � ; for a : � ; (b : � ;).

Example 1 The following is a well-formed record type:

� ! (a : pre (�) ; b : pre (num) ; abs)

Types are equal modulo the following equations:

� left commutativity, to reorder �elds:

(a : � ; b : " ; �) = (b : " ; a : � ; �)

� distributivity, to access absent �elds:

abs = (a : abs ; abs)

Example 2 The record types (a : pre (�) ; abs) and (b : abs ; a : pre (�) ; abs) are equal.

Any �eld de�ned by a template can be extracted from it using substitution if the template

is a variable or distributivity if it is abs .

Example 3 In (a : pre (�) ; abs) , the template is abs ; its superscript is fag. To read the b

�eld, we replace abs by b : abs ; abs . The original type becomes (a : pre (�) ; b : abs ; abs) ,

and the new template has superscript fa; bg.

In (a : pre (�) ; �) , the � variable can be substituted by b : " ; �. The type becomes

(a : pre (�) ; b : " ; �)

and � is the new template.

The language of expressions is the core ML language.

M ::= x j c j � x: M jM M j let x = M in M

where the constants c include the following primitives operating on records, with their types:

fg : (abs)

:a : (a : pre (�) ; �) ! �

f with a = g : (a : abs ; �) ! �! (a : pre (�) ; �)

n a : (a : � ; �) ! (a : abs ; �)

Primitives for Record Extension (�)

2.2 An extension of ML with record concatenation 7

The extension on a �eld f with a = g is strict: a �eld can only be added to a record r that

does not already possess this �eld. But the restriction of a �eld na is free: it can be applied

to a record which does not have �eld a. Free extension with a �eld b is achieved by restriction

of �eld b followed by strict extension with �eld b. That is, it is the composition:

(n a) � (f with a = g) : (a : � ; �) ! � ! (a : pre (�) ; �)

that we abbreviate f with !a = g. In the simplest language, the restriction of �elds would

not be provided, and the extension would be given whether strict or free.

Typing rules are the same as those of ML but where type equality is taken modulo the

equations. As in ML, any typeable expression possesses a principal type. We show a few

examples extracted from [R�em92c] and run on a CAML prototype.

Records are built all at once as in

#let car = fname = "Toyota"; age = "old"; registration = 7866g;;

car :� (name :pre (string); registration :pre (num); age :pre (string); abs)

or from previous records by removing or adding �elds:

#let truck = fcar n age with name = "Blazer"; registration = 6587867567g;;

truck :� (name :pre (string); registration :pre (num); age :abs; abs)

Fields are accessed as usual with the \dot" operation.

#let registration x = x.registration;;

registration :� (registration :pre (�); �) ! �

Here, the �eld registration must be de�ned with a value of type �, so the �eld registration has

type pre (�), and other �elds may or may not be de�ned; they are grouped in the template

variable �. The return value has type �. The function eq below takes two records possessing

at least a registration �eld of the same type

2

:

#let eq x y = equal (registration x) (registration y);;

eq :� (registration :pre (�); �) ! � (registration :pre (�); �) ! bool

#eq car truck;;

it :bool

The identi�er \it" is bound to the last toplevel phrase (the prototype types the expressions

but it does not evaluate them). The two records car and truck do not have the same set of

�elds, but both can still be passed to the function registration.

2.2 An extension of ML with record concatenation

The language � described in section 2.1 can easily be extended with a combining primitive

f but a from g : (a : � ; �) ! (a : " ; �) ! (a : " ; �)

The extended language is referred to as �

+

. We apply the transformation y with � as L.

We �rst consider the strict version of �

+

, then we show a few examples and we treat the free

version of �

+

at the end.

2

For simplicity of examples we assume the existence a polymorphic equality equal.

8 2 APPLICATION TO A NATURAL EXTENSION OF ML

Symmetric concatenation

We encode the language �

k

with symmetric concatenation into the version of �

+

with strict

extension. We introduce a new type symbol f) g of arity two, and we assume given the

two constants:

Tag : ((�) ! (�))! f�) � g;

Untag : f�) � g ! ((�) ! (�)):

They are private to the translation.

A program is typable in �

k

if and only if its translation is typable in �

Tag ;Untag

(�

extended with Tag and Untag). However, composing the translation with typechecking in

�

Tag ;Untag

is the same as typechecking in �

k

with the following types for primitives:

fg : f�) � g

:a : f a : abs ;�) a : pre (�);� g ! �

fa = g : � ! f a : abs ;�) a : pre (�);� g

na : f a : �;�) a : ";� g ! f a : �

0

;�) a : �

0

; � g

k : f�) � g ! f �) � g ! f�) � g

Primitives for symmetric concatenation (�

k

)

Thus the translation can be avoided.

When typing directly in �

k

with the rules above, all record types are written with f) g

and the type symbol � can be removed; the grammar for types becomes

� ::= � j � ! � j f�

;

) �

;

g

The type f�) � g should be read \I am a record which given any input row of �elds �

returns the output row �." The types for the primitives above can be read with the following

intuition:

� The empty record returns the input row unchanged.

� As remarked above (section 1), we encoded the extraction of �eld a in M as the extrac-

tion of �eld a in the application of M to any record that does not contain the a �eld.

Otherwise we would have got the weaker type:

:a : f abs) a : pre (�);� g ! �

Thus, the extraction of the a �eld of r takes a record r which, given any row where a

is absent, produces a row where a is de�ned with some value v. The result r:a is this

value v.

� A one-�eld record extends the input row, de�ning one more �eld (that should not be

previously de�ned).

� The removal of �eld a from a record M returns a record that acts as M except on the

�eld a where it acts as the empty record.

� Finally, concatenation composes its arguments.

It is easy to see that any program in � is also a program in �

k

. First, de�ne the extension

primitive by:

fM with a = Ng � M k fa = Ng

It has type:

f�) a : abs ;� g ! � ! f�) a : pre (�); � g

2.2 An extension of ML with record concatenation 9

Check that all the following typing assertions are correct in �

k

:

fg : f abs) � g

:a : f abs) a : pre (�);� g ! �

f with a = g : f abs) a : abs ;� g ! �! f abs) a : pre (�);� g

n a : f abs) a : ";� g ! f abs) a : abs ;� g

Last, abbreviate f abs :� g as (�) to conclude that �

k

possesses all the primitives of � with

all types that � can assign to them. The rest of the language � is core ML and is also in �

k

.

Examples

We show a few examples processed by a prototype written in CAML [CH89, Wei89]. The

type inference engine is exactly the one of �; only the primitives have changed. The syntax

is similar to CAML syntax.

The type of a one-�eld record says that the record cannot be merged with another record

that also de�nes this �eld:

#let a = fa = 1g;;

a :fa :abs; �) a :pre (num); �g

Two records r and s can be merged if they do not de�ne common �elds. For instance, r can

be merged on the left with fa = 1g if its output row on a is absent.

#let left r = r jj fa = 1g;;

left :f�) a :abs; �g ! f�) a :pre (num); �g

The resulting record modi�es its input row as r but on �eld a which is added. Similarly, s

can be merged on the right with a if the input �eld a is present (with the adequate type).

#let right s = fa = 1g jj s;;

right :fa :pre (num); �) �g ! fa :abs; �) �g

In particular, s cannot de�ne an a �eld, otherwise its input �eld a would be absent.

Non overwriting of �elds is guaranteed on the left by negative information (absent �eld)

at a positive row occurrence, and on the right by positive information (present �eld) at a

positive row occurrence. Some symmetry is preserved! However writing r jj s instead of s jj r

in a program sometime matters: one might typecheck while the other does not, though none

of the programs would overwrite �elds. If both typecheck, the type of the result will be the

same (provided all �elds are symmetric).

Here are a few more examples:

#let foo = fun r s ! (r jj s).a;;

foo :fa :abs; �) �g ! f�) a :pre (�); �g ! �

This shows the functionality of concatenation on both sides. The result shall have an a �eld,

but what argument will provide it is not speci�ed yet.

#let gee = foo fb = 1g;;

gee :fb :pre (num); a :abs; �) a :pre (�); �g ! �

Now r must de�ne the a �eld.

#gee a;;

it :num

10 2 APPLICATION TO A NATURAL EXTENSION OF ML

Asymmetric concatenation

The system � may also provide free extension, with the following primitive:

f with !a = g : (a : � ; �) ! � ! (a : pre (�) ; �)

This will make concatenation asymmetric:

f!a = g : � ! f a : �;�) a : pre (�);� g

For instance, the following example is typeable:

#let ab = (fun r ! f!a = 1g jj r) f!a = true; !b = 1g;;

ab :fa :�; b :�; �) a :pre (bool); b :pre (num); �g

This shows that asymmetric �elds can be rede�ned with values of possibly incompatible types.

The choice between strict and free extension is encoded in the extension primitive, but the

choice between asymmetric and symmetric concatenation is not encoded in the concatenation

primitive which is always the composition. It is not concatenation which is symmetric or

not, but record �elds themselves! We can have symmetric and asymmetric �elds coexisting

peacefully.

#f!a = 1; b = trueg;;

it :fb :abs; a :�; �) a :pre (num); b :pre (bool); �g

Primitives to modify these properties of �elds can easily be provided

symmetric

a

: f a : �;�) a : pre (�);� g ! f a : abs ;�) a : pre (�);� g

asymmetric

a

: f a : �;�) a : pre (�);� g ! f a : ";�) a : pre (�);� g

But it is not possible to make all �elds of a record symmetric, or asymmetric; this has to be

done �eld by �eld.

We can now better understand why symmetric concatenation is not so symmetric. Both

left and right functions accept any argument, and one should not expect them to behave the

same on a record of which some of the �elds are asymmetric.

With asymmetric �elds, the following examples reach the limit of ML polymorphism. For

instance, the function

#fun r s ! s.b, r jj s;;

it :f�) b :abs; �g ! fb :abs; �) b :pre (�); �g ! � * f�) b :pre (�); �g

does not accept a record r which has a b �eld, though the program would still run correctly

if the b �eld of s is asymmetric. This is due to ML polymorphism weakness: the second

argument is �-bound and thus it is not polymorphic. The �eld b of s is observed by setting

its input to abs , which has to be the output �eld b of r in r jj s.

Since s has de�nitely a b �eld, the concatenation r jj s is equal to the concatenation rnb jj s.

We can rewrite the previous program as

#fun r s ! s.b, (rnb jj s);;

it :fb :�; �) b :�; 'g ! fb :abs; ') b :pre (�); g ! � * fb :abs; �) b :pre (�); g

which can now be applied to any record r.

The restriction nb of �eld b only changes the type of its arguments but does not modify

it; it is called a retyping function. Many weaknesses of �

k

originating in the restricted

polymorphism provided by the ML type system can be solved by adding retyping functions.

They insert type information in the program helping the type inference engine. We will

describe other ways of solving these examples by strengthening the type inference engine in

section 2.3.

2.3 Strength and weakness of �

k

11

2.3 Strength and weakness of �

k

We compare our language with Wand's proposal [Wan89], and Harper and Pierce's system

and mention possible extensions.

Comparison with other systems

There are only a few other systems that implement concatenation. Wand's proposal [Wan89]

is still more powerful that our system �

k

. For instance

� r: r:a+ (f a : 1 g k r):a

is typable in Wand's system but not in ours. Wand's system polymorphism is carried by

the concatenation operator, at the cost of bringing in the type system a restricted form of

conjunctive types and having disjunction of principal types instead of unique principal types.

In contrast, in our system, polymorphism is carried by records themselves. As mentioned

above, we can regenerate polymorphism of records by inserting retyping functions. If the

same restricted form of conjunctive types was brought in our system, then retyping functions

would be powerful enough to regenerate all �elds of a record without having to mention them

explicitly. This would give back all the power of Wand's system.

This shows that the additional power of Wand's system comes from conjunctive types.

Conversely, our system succeeds with only generic polymorphism on examples that needed

conjunctive types in Wand's system. We are going to explain how this happens.

Wand's system can be reformulated in system �. A simple idea is to type the concatena-

tion operator by introducing an in�x type operator k of arity two:

k : (�) ! (�) ! (� k �)

But we have to eliminate k operators that might hide type collisions. In the system �, we

entice distributing concatenation on �elds with the equations:

(a : � ; �) k (a : " ; �) = (a : � k " ; � k �)

The operator k on �elds can be de�ned by enumerating the triples (�; "; � k "). They are all

triples of the form

(�; abs ; �) or (�; pre (�); pre (�)):

This disjunction in the relation k breaks the principal type property of type inference. Worse,

disjunctions on di�erent �elds combine and make the resulting type (conjunction of types)

explode in size.

Our system emphasizes that � k " is uniform on �: once we know ", we can eliminate the

conjunction in � k ". A �eld a, instead of carrying its type ", carries the function �) � k ".

For instance, if M has type � , the record fa = Mg would have type (a : pre (�) ; abs) in �.

On �eld a, since " is now pre (�), the merging � k " is equal to pre (�). In the template, � is

abs , and thus � k � is �. We deduce the type in �

k

:

f (a : �) pre (�)); (�) �) g i.e. f (a : �;�)) (a : pre (�);�) g:

Another system with type inference was proposed by Ohori and Buneman in [OB88].

Their concatenation on records is recursive concatenation, which we do not provide. Note

that they have a very restricted form of recursive concatenation since types in record �elds

must not contain any function type.

In explicitly typed languages, the only system with concatenation is the one of Harper

and Pierce [HP90b]; it implements symmetric concatenation. Since their system is explicitly

12 3 OTHER APPLICATIONS

(higher order) typed, we say that typing a �

k

program M succeeds in HP90 if we can �nd a

HP90 program whose erasure (the program obtained by erasing all type information) is M .

Their system has not free restriction of �elds, but we shall ignore this di�erence.

The following �

k

program cannot be typed in HP90:

#let either r s = (r jj s).a in

if true then either fa = 1g fb = 2g else either fb = 2g fa = 1g;;

it :num

In the expression (r jj s).a, one has to choose whether r or s is de�ning �eld a, and thus

the function either cannot be used with the two alternatives. This breaks the symmetry of

concatenation.

Conversely, there are programs that can be typed in HP90 but not in �

k

as a result of

ML polymorphism restrictions. For instance the function

#let reverse r s = if true then r jj s else s jj r;;

reverse :f�) �g ! f�) �g ! f�) �g

cannot be applied to fa = 1g and fb = 2g in �

k

. In HP90 it would have type

8� � 8 �#� � � ! � ! (� k �)

and could be applied to any two compatible records. It is di�cult, though, to tell whether

the failure comes from a limitation of polymorphism in general, or the inability to quantify

with constraints, since the two are strongly related. The typability of the previous example

in �

k

is somehow equivalent to the typability, in core ML, of the function:

#let reverse r s = if true then r o s else s o r;;

reverse : (� ! �) ! (� ! �) ! � ! �

This is too weak a type! Whether a higher order language would give it a much better type is

not so obvious. Next section provides a better basis for comparison between the two systems.

Limitations and extensions

Since the type inference engine of �

k

is the same as the one of � (only types of primitives

have changed), both systems enjoy the same properties. Record polymorphism is provided by

ML genericity introduced in let bindings. If this is too restrictive, then one should introduce

type inclusion. One could also have a restricted conjunctive engine as in [Wan89]; however

this would decrease considerably the e�ciency of type inference, and the readability of types.

Allowing recursion on types would also require an extension of the results (though in prac-

tice the mechanism is already present). In �

k

, as in �, present �elds cannot be implicitly

forgotten, but have to be explicitly removed, unless the structure of �elds is enriched with

ags. All these improvements are discussed in detail in [R�em92c].

3 Other applications

The transformation can also be applied to other languages, which we illustrate in this section.

3.1 Application to Harper and Pierce's calculus.

The higher order typed language of Harper and Pierce [HP90a] already possesses concate-

nation, but records are not abstractions. It can still bene�t from the encoding. Instead of

3.2 Application to Cardelli and Mitchell's calculus. 13

presenting special constructs for operations on records, we could assume given the following

primitives in their language:

fg : f g

:a : 8� � 8�#a � (f a :� g k �) ! �

fa = g : 8� � � ! f a :� g

na : 8� � 8�#a � (f a :� g k �) ! �

k : 8� � 8 �#� � � ! � ! (� k �)

Primitives for HP90

But the type system is not enough sophisticated to type the primitive f but a from g. Thus

we apply the translation dropping the removal of �elds. Using the encoding, the primitive

operations on records in the language HP90

k

have the following types:

fg : 8� � (�) �)

:a : 8� � 8�#a � 8 �#a � (�) f a :� g k �)! �

fa = g : 8� � � ! 8�#a � (�) f a :� g k �)

k : 8� � 8 � � 8 � � (�) �)! (�) �)! (�) �)

Primitives for HP90

k

We can de�ne a function either:

��: ��: � �#a: � r : (f g) �): � s : (�) f a :� g k �):

(:a [�] [f g] [�] (k [f g] [�] [f a :� g k �] r s))

and apply it to records fa = 1g and fb = 2g in any order. For instance,

either [num] [f a : num g] [f b : num g] (fa = 1g [f g]) (fb = 2g [f a : num g])

Remind that this example is not typable in HP90.

Conversely, the program:

let reverse r s = if true then r jj s else s jj r in reverse fg fa = 1g, reverse fg fa = 1g;;

can be typed in HP90, but we conjecture that it cannot be typed in HP90

k

. In fact its

typability in HP90

k

is equivalent to the following term being the erasure of a term of F :

(fun r ! K (r I K) (r K I))

(fun f g ! (fun x ! f (g x)) or (fun x ! g (f x)))

where I is fun x ! x and K is fun x y ! x, and or is a constant assumed of type ��: � ! � ! �

in F .

To summarize, none of the language HP90 or HP90

k

would be more powerful than the

other. Remark that type applications and type abstractions are located in completely di�erent

places, thus a partial translation of explicitly typed terms from HP90

k

to HP90 can only be

global.

A previous language proposed by Harper and Pierce in [HP90a] had no concatenation,

but shared the same spirit as HP90. The transformation applies to it as well, and results in

a language with concatenation very closed to HP90

k

.

3.2 Application to Cardelli and Mitchell's calculus.

Unlike HP90, the language of Cardelli and Mitchell [CM89] does not already provide con-

catenation of records, but only strict extension. The application of our encoding to CM89

is not harder than to HP90. The language cannot be easily extended with the combining

14 3 OTHER APPLICATIONS

construct, therefore we skip the removal of �elds. Using CM89 types, primitives for records

operations in CM89

k

have the following types:

fg : 8� � (�) �)

:a : 8� � 8� < hhii n a � 8 � < hhii n a � (�) hh� k a :�ii)! �

fa = g : 8� � � ! 8� < hhii n a � (�) hh� k a :�ii)

k : 8� � 8 � � 8 � � (�) �)! (�) �)! (�) �)

Primitives for CM89

k

We can again de�ne the function either:

��: ��: � � < hhii n a: � r : (hhii) �): � s : (�) hh� k a :�ii):

(:a [�] [hhii] [�] (k [hhii] [�] [hh� k a :�ii] r s))

and apply it to the records fa = 1g and fb = 2g:

either [num] [hha : numii] [hhb : numii] (fa = 1g [hhii]) (fb = 2g [hha : numii])

3.3 Multiple inheritance without record concatenation

Multiple inheritance has been encoded with record concatenation [Wan89]. We have encoded

record concatenation with record extension. By composition, multiple inheritance can be

encoded with record extension.

Given the strengthening of the type inference engine to recursive types, the system �

k

would support multiple inheritance as presented in [Wan89]. But multiple inheritance makes

very little use of concatenation. It is only necessary for building new methods, but objects

do not need it. Thus it may be worth revisiting the typechecking of multiple inheritance

of [Wan89] and eliminating the need for concatenation by abstracting methods as we ab-

stracted records.

The following encoding of multiple inheritance was used by Wand in [Wan89]. The de�-

nition of a class

class (~x) inherits

���!

P (

~

Q)methods

����!

a = M end

was encoded as

�~x: � self:

����!

P (

~

Q) k f

����!

a = Mg

The creation of objects of that class

instance C(

~

N)

was the recursive expression

Y (C(

~

N))

Sending a method a to an object x was the same as reading the �eld x of a. The problem

with this encoding is that it requires record concatenation. We can easily get read of it, using

our trick. We encode a class de�nition as

�~x: � u: � self: u k

����!

P (

~

Q) k f

����!

a = Mg

i.e.

�~x: � u: � self: f

�����!

P (

~

Q) � u with

����!

a = Mg

which only requires record extension. Then creating an object of that class becomes

Y (C(

~

N)fg)

and sending a method is unchanged.

REFERENCES 15

Remarks

Since removing of �elds is not needed here, this section applies to all typed calculi with record

extension.

This section uses Wand's conception of inheritance. Objects are carrying their dictionarries.

Other views of objets do not encode with record operations. This section does not apply to

them.

Conclusion

We have described how a functional language with records and record extension automatically

provides record concatenation. Though records are data, they should be typed as if there were

abstractions over an input row of �elds that they modify. Their behavior can be observed at

any time by giving them the empty row as input. Concatenation is then composition.

We have applied the method to a record extension of ML. We have obtained a language

implementing all operations on records except the recursive merge, allowing type inference

in a very e�cient way in practice.

The kind of type system that we have obtained seems complementary to Harper and

Pierce's one. Taking the best of the two systems would be interesting investigation.

The encoding also helps understanding concatenation. However, the relationship between

the semantics of a program in the language with concatenation and the semantics of its

translation need to be investigated closely before claiming that concatenation itself comes for

free.

Acknowledgments

I am grateful for interesting discussions with Luca Cardelli, Georges Gonthier, Jean-Jacques

L�evy, Benjamin Pierce and Mitchell Wand, and particularly thankful to Xavier Leroy whose

comments on the presentation of this article were very helpful.

References

[Car86] Luca Cardelli. Amber. In Combinators and Functional Programming Languages,

volume 242 of Lecture Notes in Computer Science, pages 21{47. Spinger Verlag,

1986. Proceedings of the 13th Summer School of the LITP.

[CH89] Guy Cousineau and G�erard Huet. The CAML Primer. BP 105, F-78 153 Le

Chesnay Cedex, France, 1989.

[CM89] Luca Cardelli and John C. Mitchell. Operations on records. In Fifth International

Conference on Mathematical Foundations of Programming Semantics, 1989.

[HMT91] Robert Harper, Robin Milner, and Mads Tofte. The de�nition of Standard ML.

The MIT Press, 1991.

[HP90a] Robert W. Harper and Benjamin C. Pierce. Extensible records without subsump-

tion. Technical Report CMU-CS-90-102, Carnegie Mellon University, Pittsburg,

Pensylvania, February 1990.

[HP90b] Robert W. Harper and Benjamin C. Pierce. A record calculus based on symmetric

concatenation. Technical Report CMU-CS-90-157, Carnegie Mellon University,

Pittsburg, Pensylvania, February 1990.

16 REFERENCES

[JM88] Lalita A. Jategaonkar and John C. Mitchell. ML with extended pattern matching

and subtypes. In Proceedings of the 1988 Conference on LISP and Functional

Programming, 1988.

[OB88] Atsushi Ohori and Peter Buneman. Type inference in a database langage. In ACM

Conference on LISP and Functional Programming, pages 174{183, 1988.

[Oho90] Atsushi Ohori. Extending ML polymorphism to record structure. Technical report,

University of Glasgow, 1990.

[R�em90] Didier R�emy. Alg�ebres Tou�ues. Application au Typage Polymorphe des Objects

Enregistrements dans les Langages Fonctionnels. Th�ese de doctorat, Universit�e de

Paris 7, 1990.

[R�em91] Didier R�emy. Type inference for records in a natural extension of ML. Technical

Report 1431, Inria-Rocquencourt, May 1991.

[R�em92a] Didier R�emy. Extending ML type system with a sorted equational theory. Tech-

nical report, BP 105, F-78 153 Le Chesnay Cedex, BP 105, F-78 153 Le Chesnay

Cedex, 1992. To appear. Also in [R�em90], chapter 3.

[R�em92b] Didier R�emy. Syntactic theories and the algebra of record terms. Technical report,

BP 105, F-78 153 Le Chesnay Cedex, BP 105, F-78 153 Le Chesnay Cedex, 1992.

To appear. Also in [R�em90], chapter 2.

[R�em92c] Didier R�emy. Type inference for records in a natural extension of ML. In Carl A.

Gunter and John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Pro-

gramming. Types, Semantics and Language Design. MIT Press, 1992. To appear.

Also in [R�em91].

[Wan87] Mitchell Wand. Complete type inference for simple objects. In Second Symposium

on Logic In Computer Science, 1987.

[Wan88] Mitchell Wand. Corrigendum: Complete type inference for simple objects. In

Third Symposium on Logic In Computer Science, 1988.

[Wan89] Mitchell Wand. Type inference for record concatenation and multiple inheritance.

In Fourth Annual Symposium on Logic In Computer Science, pages 92{97, 1989.

[Wei89] Pierre Weis. The CAML Reference Manual. BP 105, F-78 153 Le Chesnay Cedex,

France, 1989.

