
UNIT

�

E DE RECHERCHE

INRIA-ROCQUENCOURT

Institut National

de Recherche

en Informatique

et en Automatique

Domaine de Voluceau

Rocquencourt

B.P. 105

78153 Le Chesnay Cedex

France

T�el.:(1)39 63 55 11

Rapports de Recherche

N

�

1766

Programme 2

Calcul symbolique, Programmation

et G�enie logiciel

EXTENSION OF ML TYPE

SYSTEM

WITH A SORTED EQUATIONAL

THEORY ON TYPES

Didier R�emy

Octobre 92

Extension of ML type system

with a sorted equational theory on types

Didier R�emy

INRIA-Rocquencourt

�

�

Author's address: INRIA, B.P. 105, F-78153 Le Chesnay Cedex. Email: Didier.Remy@inria.fr

1

Extension of ML type system

with a sorted equational theory on types

Abstract

We extend the ML language by allowing a sorted regular equational theory on types for which

uni�cation is decidable and unitary. We prove that the extension keeps principal typings and

subject reduction. A new set of typing rules is proposed so that type generalization is simpler

and more e�cient. We consider typing problems as general uni�cation problems, which we

solve with a formalism of uni�cands. Uni�cands naturally deal with sharing between types

and lead to a more e�cient type inference algorithm. The use of uni�cands also simpli�es

the proof of correctness of the algorithm by splitting it into more elementary steps.

Extension du syst�eme de type de ML

par une th�eorie �equationnelle avec sortes sur les types

R�esum�e

Le typage du langage ML est �etendu en consid�erant les types modulo une th�eorie �equationnelle

r�eguli�ere avec sortes pour laquelle l'uni�cation est d�ecidable. Cette extension conserve la

propri�et�e d'avoir un type principal ainsi que la conservation de la propri�et�e d'être bien typ�e

par �-r�eduction des programmes. Un nouvel ensemble de r�egles de typage est propos�e de telle

sorte que la g�en�eralisation de type est �a la fois plus simple et plus e�cace. Les probl�emes de

typage sont consid�er�es comme des probl�emes g�en�eraux d'uni�cation que nous r�esolvons en

utilisant le formalisme des uni�candes. Les uni�candes expriment naturellement le partage

entre les types et conduit �a un algorithme d'inf�erence de types plus e�cace. L'utilisation des

uni�candes simpli�e �egalement les preuves de correction des algorithmes en les s�eparant des

�etapes �el�ementaires.

1

Introduction

The ML language introduced by R. Milner in 1978 has become very poplular, which is partly

due to the possibility of inferring principal types for programs [DM82, Dam85]. This is

a consequence of the restriction of arbitrary quanti�cation as in the polymorphic lambda

calculus to prenex-quanti�cation in ML. However, viewing ML as a restriction of the poly-

morphic lambda calculus is sometimes misleading: ML terms are untyped terms (Church's

view) while terms of the polymorphic lambda calculus are usually considered as typed terms

(Curry's view). A consequence of the Church view of ML is that the order in which quanti-

�ers appear in types is insigni�cant, and useless quanti�cations over non free variables can

be removed, which leads to a simpler formulation of the typing rules, where type schemes are

simply pairs of a set of bound variables and a simple type.

Some presentations of the ML typing rules, called \syntax directed", are such that all

typing derivations of the same program have the same structure. They are usually used as

the basis for �nding type inference algorithms. Typechecking in ML can also be de�ned as

typechecking with simple types after reduction of all Let redexes. This approach, which is

closer to the conjunctive-type discipline than to the polymorphic lambda-calculus, simpli�es

the typing rules, but unfortunately, it leads to ine�cient algorithms. All these variants of the

typing rules have been used in the literature, but their equivalence with the Damas-Milner's

formulation has not always been shown. Moreover, some of them have been taken as the basis

for extensions of ML for which complete proofs of the main properties are often omitted.

The main goal of this article is to study one of these extensions: Types of ML are taken

modulo an equational theory. The main result is theorem 4 that claims principal typings in

such an extension. The proof is constructive and comes with the accompanying algorithm 3

for type inference. This extension nicely formalizes type abbreviations in ML. More impor-

tantly, there is a type system for extensible records in ML that uses an equational theory on

types [R�em91].

The typing rules are those of the Damas Milner type system, and the most common

variations from the original presentation are shown equivalent. Indeed this includes the core

ML language as an instance. All classical results of the core ML language also hold for this

extension.

Type inference is closely related to uni�cation by considering typing problems as uni�-

cands. In this presentation, proofs of soundness and correctness of the type inference algo-

rithm are simpler. The algorithm itself is described as a set of transformations on uni�cands.

This approach is more general and control is
exible. The standard algorithm is obtained

when priority is given to uni�cation problems and typing problems are reduced in a leftmost

outermost order. With fewer control, transformation rules can be easily interpreted as a logic

program, similarly to the one given for Mini-ML [CDDK86]. But the bene�t of treating typ-

ing problems as uni�cands is essentially the e�ciency obtained by sharing as much as possible

between types, and in all phases of type inference. This results from the possibility of viewing

canonical system of multi-equations as terms, substitutions or graphs, interchangeably.

Another contribution of this work is to avoid a source of ine�ciency that is present in

the classical syntax-directed typing rules: Generalizable variables are de�ned as those that

do not appear in the typing context. The cost of generalization may increase with the size of

the context, and especially with the size of types bound in the context. By assigning ranks

to variables as a measure of their freshness we obtain a new syntax-directed system where

generalization only applies to freshest variables. Ranks can be computed incrementally by

extending uni�cation to ranked uni�cation.

In the �rst section, we present our extension of ML and the typing rules with di�erent

formulations that are shown equivalent. In section 2, a more e�cient syntax-directed system is

2 1 THE ORIGINAL DAMAS-MILNER'S SYSTEM AND ITS MANY VARIANTS

presented and proved equivalent to the previous formulations. Uni�cation as transformations

of uni�cands is recalled in section 3 and extended to ranked uni�cation. In section 4, we

study type inference as the simpli�cation of typing problems; we give a set of transformation

rules that reduce all typing problems to uni�cation problems. A few extensions to the core

language, and some instances with practical equational theories are described in the last

section. A real implementation of the algorithm based on uni�cands and ranked uni�cation

is described in the appendix A.

De�nitions are not delimited by theorem like structures, but are indicated by emphasizing

the de�ning occurrences of mathematical words.

1 The original Damas-Milner's system and its many variants

In this section, we present the original Damas-Milner's, and some of its many variants. We

prove the equivalence of all presentations.

The language of expressions of ML is de�ned by the following BNF grammar:

M ::= Terms M;N

x Variable x; y Var

j � x: M Abstraction Fun

jM M Application App

j let x = M inM Let binding Let

The expressions of ML are considered modulo �-conversion. The substitution of x by N in

M is noted [N=x]M . If necessary, it renames bound variables of M in order to avoid capture.

When adding axioms to types it is sometime useful to restrict types by sorts: they may

restrict the equality on terms by leaving fewer instances of the axioms. An example is given

in section 5. Thus we consider sorted types.

Let K be a set of atoms called sorts, containing at least one element �. Letter � ranges

over sorts. Signatures are non empty sequences of sorts. We write � for an atomic signature,

and �

1

 : : :�

p

) �

0

for a longer sequence. We are also given a set of symbols C with a

mapping � from C to signatures, also called the signature of C. The arity of a symbol is the

predecessor of the length of its signature. Letters f , g and h range over symbols. We assume

that C contains at least a distinguished in�x arrow symbol ! of signature �
 �) �. Let

V be an enumerable set of variables with in�nitely many variables of every sort V

�

�2K

. We

write W the set of subsets of V . Types of ML are terms of the free sorted algebra T (�;V).

We abbreviate T (�;V) as T , and write for T (W) the set of terms whose variables are in W ,

and T

�

the set of terms of sort �. Letters � , � and � range over arbitrary types. We write

V(�) the set of (free) variables of � and V

�

(�) those of sort �.

The non sorted case is obviously an instance of the restricted sorted case where K is

reduced to the sort �, and signatures are reduced to arities. The signature of the arrow

symbol and the restriction on the signature of typing judgements below make it possible to

think in term of arities, identifying the sets T

�

and T . Places were the sorted case has to be

considered more carefully are emphasized everywhere.

Substitutions are sort preserving mappings from a �nite set of variables to terms. There are

extended to mappings from terms to terms by compatibility with the structure of algebra.

Letters �, � and � range over substitutions of T ; D(�) and I(�) are the domain and the

codomain of �, respectively. We also write � : X ! Y for a substitution of domain X that

ranges in Y . The one element substitution that sends � to � is simply written � 7! � . If

W is a set of variables, � j

�

W is the restriction of � to W and � nW is the restriction of �

outside of W , i.e. � j

�

(V nW).

3

We extend types of ML by taking them modulo an equational theory. A regular equational

theory E is one such that two equal terms always have the same set of variables. We assume

that a regular equational theory E on the algebra T is provided. We write T =E for the terms

taken modulo the equations. We often consider the terms of T and manipulate their equality

explicitly.

Since di�erent type systems will use slightly di�erent de�nition of type schemes, we pa-

rameterize the de�nitions by a set of type schemes Q. Type schemes are sorted just like types

of T . A Q-context with respect to a set Q is a partial function from the set of term variables

to Q. If A is a Q-context, x is a variable and q is an element of Q, we write A[x : q] the

function that is equal to A everywhere except on x to which it associates q. A one-element

context [x : q] is called an assertion. We write C(Q) for the set of Q-contexts.

Contexts need not have �nite domains. For type inference though, there must exist an

algorithm that given a term variable returns the type to which it is bound in the context, or

fails if the variable is not bound in the the context, and a semi-algorithm that enumerates

type variables that are not in the free variables ofa the context. A typing relation (` :)

is a subset of C(Q

�

)�ML� Q

�

.

Typing relations are only de�ned for contexts and type-objects of the sort �. An inference

rule is an implication R, parameterized by a relation ` in C(Q

�

) �ML � Q

�

, written

A

B

(R)

where A and B are typing relations. The notation ` stands for an arbitrary relation: it does

not make sense to ask whether a rule that depends on ` is true or false until the parameter

` is �lled with a de�ned relation `

R

. A typing relation `

R

is de�ned as the smallest relation

that satis�es a set of inference rules R. In typing rules, we use concrete syntax for ML terms.

However the typing relation must be stable with respect to �-conversion of programs. This

will be the case for all typing relations that will be de�ned here. In fact, terms could be

represented using De Bruijn indices; contexts would then be just sequences of type schemes.

A derivation of a judgement A `

R

M : q is a constructive proof of this judgement where

each step is an instance of an inference rules. Any valid judgement has at least one derivation.

A proof of a judgement by structural induction is a proof by induction on the number of steps

then by cases on the last rule used in a derivation of the judgement.

The set of Damas-Milner type schemes is the smallest set S that contains T and that is

closed by

s 2 S; � 2 V =) 8� � s 2 S

The free variable function V is extended to type schemes by

V(8� � s) = V(s) n f�g

Substitutions are also extended to type schemes by

�(8� � s) = 8� � (� n f�g)(s)

and to contexts as pointwise substitution. The sort of a type scheme is the one of the type

obtained by stripping all quanti�ers.

The original Damas-Milner typing relation for ML is de�ned on C(S

�

)�ML� S

�

by the

set of the inference rules of �gure 1.

Originally, type schemes are not equal modulo the re-ordering of quanti�ers and renaming

of bound variables. We de�ne 8-equality on type schemes as the smallest congruence that

contains all pairs

8� � 8 � � s =

8

8 � � 8� � s

8 � � s =

8

s and 8� � s =

8

8 � � (� 7! �)(s)if � 62 V(s)

We naturally extend 8-equality to contexts.

4 1 THE ORIGINAL DAMAS-MILNER'S SYSTEM AND ITS MANY VARIANTS

x : s 2 A

(Var)

A `

DM

x : s

A `

DM

x : 8� � s

(Inst)

A `

DM

x : (� 7! �)(s)

A[x : �] `

DM

M : � � 2 T

(Fun)

A `

DM

� x: M : � ! �

A `

DM

M : � ! � A `

DM

N : �

(App)

A `

DM

M N : �

A `

DM

x : s � =2 V(A)

(Gen)

A `

DM

x : 8� � s

A `

DM

M : s A[x : s] `

DM

N : �

(Let)

A `

DM

let x = M in N : �

A `

DM

M : � � =

E

�

(Equal)

A `

DM

M : �

Figure 1: Damas-Milner's Typing rules (DM)

It is immediate to prove

A `

DM

M : s s =

8

s

0

A `

DM

M : s

0

(8-Equal)

Moreover, the property extends to contexts:

A `

DM

M : s A =

8

B

B `

DM

M : s

(8-Context)

The proof is an easy structural induction on the derivation of A `

DM

M : s. Therefore, type

schemes can be taken modulo 8-equality. We now consider substitutions modulo 8-equality.

We write 8 f�g [W � � for 8� � 8W � � or also 8�;W � � when W does not contain �.

Consistently, with 8-equality, we take 8W � � to be 8 (V(�)\W) � � when W is in�nite. We

write 8W � T the set of type schemes modulo 8-equality.

We call DM

0

the set of rules DM modulo 8-equality. It is de�ned on C(8W � T

�

)�ML�

8W � T

�

by the set of inference rules of �gure 2. Using lemmas 8-Equal and 8-Context,

x : 8W � �

(Var)

A `

DM

0

x : 8W � �

A `

DM

0

x : 8�;W � �

(Inst)

A `

DM

0

x : 8W � (� 7! �)(�)

A[x : �] `

DM

0

M : � � 2 T

(Fun)

A `

DM

0

� x: M : � ! �

A `

DM

0

M : � ! � A `

DM

0

N : �

(App)

A `

DM

0

M N : �

A `

DM

0

x : 8W � � � 2 V(�) nW n V(A)

(Gen)

A `

DM

0

x : 8�;W � s

A `

DM

0

M : s A[x : s] `

DM

0

N : �

(Let)

A `

DM

0

let x = M in N : �

A `

DM

0

M : � � =

E

�

(Equal)

A `

DM

0

M : �

Figure 2: Variant of Damas Milner's typing rules (DM)

the relations `

DM

and `

0

DM

are easily proved equal modulo 8-equality. The systemDM

0

has

still unnecessary freedom on places where generalization and instantiation may occur.

5

We now consider typing relations in C(8W � T

�

) �ML � T

�

, where type schemes may

appear only in contexts. The system S, composed of the rules Fun, App and Equal of

�gure 2 plus the rules of �gure 3, is such that at most one rule other than the equality rule

can apply for each syntactic construct of the language; it is said syntax-directed.

x : 8W � � 2 A � :W ! T

A `

S

x : �(�)

(Var-Inst)

A `

S

M : � A[x : 8W � �] `

S

N : � W \ V(A) = ;

A `

S

let x = M in N : �

(Gen-Let)

Figure 3: Syntax-directed rules for system (S)

Lemma 1 (Substitution lemma in S) The relation `

S

is stable by substitution.

A `

S

M : �

�(A) `

S

M : �(�)

(Sub)

A weaker instance of the lemma is often used:

A `

S

M : � D(�) \ V(A) = ;

A `

S

M : �(�)

(Sub')

Proof: See section 2.1.

Lemma 2 If W is disjoint from V(A), the judgements A `

DM

0

M : 8W � � and A `

S

M : �

are equivalent.

Proof: The rule Var-Inst can be proved for `

DM

0

, using the rules Var and Inst. The

rule Gen-Let can be proved for `

DM

0

using the rules Gen and Let. This shows that `

S

is a subrelation of `

DM

0

. Conversely, we reason by structural induction on the judgement

A `

DM

0

M : 8W � � .

Case Var, Fun, App, Equal: The judgement A `

S

M : � follows from the induction

hypothesis applied to all premises of the last rule in the derivation of A `

DM

0

M : � , and the

corresponding rule in S.

Case Gen: The judgement A `

S

M : � follows directly from the induction hypothesis

applied to the premise.

Case Inst: After renaming, the derivation in DM

0

ends with

A `

DM

0

M : 8�;W � �

A `

DM

0

M : 8W � (� 7! �)(�)

where W and � are disjoint from V(A). By the induction hypothesis, we know that A `

S

M : � holds. We conclude by applying the Sub' rule with the substitution � 7! �

Case Let: The derivation inDM

0

is of the form

A `

DM

0

M : 8W � � A[x : 8W � �] `

DM

0

N : �

A `

DM

0

let x = M in N : �

(Let)

After renaming, we assume that W is disjoint from A. Applying the induction hypothesis to

both premises produces:

A `

S

M : � and A[x : 8W � �] `

S

N : �

Since W is disjoint from A, the conclusion follows by applying the Gen-Let rule.

6 2 A SIMPLE AND EFFICIENT PRESENTATION OF ML TYPE SYSTEM

2 A simple and e�cient presentation of ML type system

The inference rules of system S are syntax directed, that is, there is only one rule other than

the equality rule that can end the derivation of all typings of one construct of the language.

There is an obvious type inference algorithm W obtained by reading the rules from bottom

to top as rewriting rules. Directed by the syntax of the program, the algorithm �nds the

unique non equality rule that can be used last, instantiate it appropriately, and recursively

calls the algorithm with smaller typing inference problems or uni�cation problems.

Typing the program let x = M in N in an environment A �rst requires typing M in A,

which returns some type � and a substitution �, then typing N in �(A)[x : 8 V(�) nV(A) � �].

This requires the computation of the set of variables V(�) n V(A) that can be quanti�ed in

� , which can be excessively expensive, since it does not only depend on the expression M

but also on the size and the structure of the context A. The term M may contain a free

variable x that is assigned a large monomorphic type �. The part of � that comes from �

only contains variables that are also in A and thus are inspected unnecessarily.

There is another, even simpler, presentation of the ML type system that leads to an

algorithm where typing M in a context A only depends on the polymorphic parts of types

assigned to the free variables of M .

Let � be a mapping, called rank, of V into IN such that there are in�nitely many variables

of every rank. We write V

n

the set of variables of rank exactly n and V

n

the set of variables

of rank at most n. We extend rank to terms: the rank of a term is the maximum rank of its

variables. We write T

n

the set of terms of rank at most n, that is T (V

n

). Substitutions are

restricted to rank decreasing ones, which are stable by composition.

Type schemes 8W � T

n

are taken modulo �-conversion in T , without taking ranks of

bound variables into account. We recall that 8 V

n+1

� � is 8 (V

n+1

(�)) � � by de�nition. It is

in T

n

provided � is in T

n+1

. A type scheme of 8W � T

n

can always be written inde�erently

8 V

n+1

� � with � in T

n+1

, or 8W � � with W and � in V

n

.

We recursively de�ne the typing relations `

n

in C(8W � T

�

n

) �ML � T

�

n

by the rules of

�gure 4:

x : 8W � � 2 A � :W ! T

n

(Var-Inst)

A `

n

x : �(�)

A[x : �] `

n

M : �

(Fun)

A `

n

� x: M : � ! �

A `

n

M : � ! � A `

n

N : �

(App)

A `

n

M N : �

A `

n+1

M : � A[x : 8 V

n+1

� �] `

n

N : �

(Gen-Let)

A `

n

let x =M in N : �

A `

n

M : � � =

E

�

(Equal)

A `

n

M : �

Figure 4: Hierachical typing rules

Lemma 3 (Substitution lemma) The relations `

n

are stable under substitution. That is

the rule

A `

n

M : �

�(A) `

n

M : �(�)

(Sub)

is provable.

2.1 Equivalences 7

Proof: We prove \for all substitutions �, for all integers n, if A `

n

M : � is derivable by �,

then �(A) `

n

M : �(�) is derivable", �rst by induction on the structure of �, then by cases

on the last rule of �.

Case Equal: Equality is stable by substitution.

Case Var: We know from the hypothesis A `

n

x : � that there exists x : 8W � � is in A

and a substitution � : W ! T

n

that sends � to � . We can choose W be V

n+1

. Let � be

(� � �) j

�

V

n+1

. It sends W into T

n

. Since the domain of � is disjoint from V

n

, the substitution

� � (� j

�

V

n

) is equal to � � �. Thus � sends (� nW)(�) to �(�). Therefore we can derive the

conclusion �(A) `

n

x : �(�).

Case App, Fun: Apply the induction hypothesis to the premises, and conclude with the

same rule.

Case Let: We know from the hypothesis that there exists � in V

n+1

such thatA `

n+1

M : �

and A[x : 8 V

n+1

(�) � �] `

n

N : � are derivable. The conclusion follows by applying the Let-

rule to the substitution of both judgements by � j

�

V

n

.

The assertion x : 8 V

n+1

� � is said to be smaller at rank n than the assertion x : 8 V

n+1

� �

if � can be taken in T

n+1

such that there exists a substitution � with domain V

n+1

that maps

� to �. A context A is said to be smaller at rank n than a context B if it is pointwise smaller

at rank n. We write A �

n

B.

Lemma 4 (Generalization of context) The relation `

n

is stable under generalization of

context.

A `

n

M : � B �

n

A

B `

n

M : �

(C-Gen)

Proof: The proof is by structural induction on the premise.

Case Var: We know from the hypothesis A ` x : � that there is an assertion x : 8W � � in

A and a substitution � with domain W that takes � to � . The set W can always be taken

in V

n+1

. Since B is smaller than A at rank n, there is a substitution � of domain V

n+1

that

takes � to � such that x : 8 V

n+1

� � is in B. The substitution � � � with domain included in

V

n+1

takes � to � , therefore we can conclude B `

n

M : � .

Others cases: They are immediate.

Lemma 5 The relations `

n

are stable under E-equality.

A `

n

M : � A =

E

B

B `

n

M : �

(C-Equal)

Proof: Intuitively, replace every Var-Inst rules in a derivation by a Var-Inst rule followed

by an equality rule. Formally, the proof is by structural induction.

2.1 Equivalences

Lemma 6 For any context A and any type � both of rank at most n, the judgements A `

n

M : � and A `

S

M : � are equivalent.

Proof: The typing relations `

n

are clearly sub-relations of `

S

. Conversely, we reason by

structural induction on the judgement A `

S

M : � .

8 2 A SIMPLE AND EFFICIENT PRESENTATION OF ML TYPE SYSTEM

Case Let: We could derive

A `

S

M : � A[x : 8W � �] `

S

N : �

A `

S

let x = M in N : �

where W is equal to V(�) n V(A). We cannot use the rule Sub in S here, since we want to

use the equivalence that we are presently proving to deduce rule Sub in S from rule Sub in

H . However, the derivations of S are stable by global �-conversion. Therefore the restricted

case of Sub for renamings is obviously true in S, and we can rename variables of W so that

they are of rank n+1. Then, both premises are well-formed and by the induction hypothesis

we derive

A `

n+1

M : � and A[x : 8W � �] `

n

N : �

in ML. Since W is exactly V

n+1

(�), we conclude A `

n

let x = M in N : �.

Case Var, Fun, App, Equal: All cases are easy or similar to the Let case.

Using this equivalence, the lemmas C-Gen and Sub of H can easily be prooved in S.

The substitution lemma for `

S

(lemma 1) is:

A `

S

M : �

�(A) `

S

M : �(�)

(Sub)

Proof: Assume that A `

S

M : � is valid. We can always choose the function rank such that

the free variables of A and � and variables of both the domain and the range � are of rank

0. Applying the substitution lemma in H proves the judgement �(A) `

0

M : �(�) which is

equivalent to the judgement �(A) `

S

M : �(�).

The assertion x : 8W � � is said to be smaller than the assertion of x : 8W

0

� �

0

if there

exists a substitution � with domain W that takes � to �

0

, and W

0

is included in the range of

�. A context A is said to be smaller that B if it is pointwise smaller.

Lemma 7 (Generalization of context) The relation `

S

is stable under generalization of

context.

A `

S

M : � B � A

B `

S

M : �

(C-Gen)

Proof: Assume that A `

S

M : � and B � A. We can always choose the function rank

such that free variables of A, B and � are of rank 0. Then A `

0

M : � and B �

0

A. By

lemma C-Gen for H , we conclude B `

0

M : � and by the equivalence of H and S, we get

B `

S

M : � .

2.2 Typing and reduction

Lemma 8 (Context restriction) If A and B are equal on free variables of M , the judge-

ments A `

S

M : � and B `

S

M : � are equivalent.

Proof: By symmetry, it is only necessary to show one direction. The proof is an easy struc-

tural induction on the premise.

We de�ne a relation on C(8W � T

�

)�ML�ML as

A `M �M

0

() 8� 2 T

�

; A `

S

M : � =) A `

S

M

0

: �

2.2 Typing and reduction 9

Theorem 1 (Term substitution)

A `

S

[M=x]N : � A `M �M

0

A `

S

[M

0

=x]N : �

Proof: We assume A `M �M

0

and we show

A

0

`

S

[M=x]N : �

A

0

`

S

[M

0

=x]N : �

for contexts A

0

that extend A, by induction on the structure of N . We may always assume

that bound variables of N are not in the domain of A (and consequently distinct from free

avriables of M and M

0

).

Case N is x: The terms [M=x]N and M are equal. Thus there exists a proof of A

0

`

S

M : � , and consequently there is also a derivation of A

0

`

S

M

0

: � , which is a derivation of

A `

S

[M

0

=x]N : � .

Case N is y: The term [M=x]N and [M

0

=x]N are equal.

Case N is let y = [M=x]N

1

in [M=x]N

2

: The �rst non equality rule that ends the derivation

of A

0

`

S

[M=x]N : � is necessarily a Gen-Let rule.

A

0

`

S

[M=x]N

1

: �

1

A

0

[y : 8W � �

1

] `

S

[M=x]N

2

: �

2

A `

S

let y = [M=x]N

1

in [M=x]N

2

: �

2

such that �

2

is E-equal to � . Since y is not free in M or M

0

, we can apply the induction

hypothesis to both premises, then rule Gen-Let, and conclude with an equality rule.

Case N is N

1

N

2

or N is � y: N

1

: These cases are similar to case Let.

Corollary 9 If W is disjoint from A, and x is not free in M , then

A `

S

M : � A[x : 8W � �] `

S

N : �

A `

S

[M=x]N : �

Proof: Since x is not free in M , we have A[x : 8W � �] `

S

M : � by context restriction.

Rule Sub' shows that A[x : 8W � �] `

S

x � M . Applying the term substitution theorem 1

with context A[x : 8W � �], and terms x for M and M for M

0

, we get A[x : 8W � �] `

[M=x]N : � and the conclusion follows from the context-restriction lemma.

Corollary 10 (Subject reduction)

A `

S

(� x: N) M : �

A `

S

[M=x]N : �

and

A `

S

let x = M in N : �

A `

S

[M=x]N : �

Proof: In each case, the premise implies that there exist a type � and a set of variables W

taken outside of A (W is empty in the �rst rule) such that

A `

S

M : � A[x : 8W � �] `

S

N : �

We conclude by previous corollary.

The reverse of subject reduction does not hold, since if x does not occur in N , then M

may not be typable while N is. A slightly weaker property is term expansion.

10 3 UNIFICANDS

Lemma 11 (Term expansion)

A `

S

M : � A `

S

[M=x]N : �

A `

S

let x = M in N : �

holds in S.

Proof: The proof assumes theorem 4 which is shown in section 4 independently of this lemma

(there is also another but longer proof of the lemma that does not use theorem 4). We assume

A `

S

M : �. Theorem 4 ensures that there is a principal typing A `

S

M : �

0

for the typing

problem A .M : �. We write W the set of variables of �

0

that do not appear in A. We show

A

0

`

S

[M=x]N : �

A

0

[x : 8W � �

0

] `

S

N : �

for all context A

0

that extend A, by induction on N . The lemma will follow immediately by

a Let rule. We can always assume that all bound variables of N are outside the domain of

A (consequently, they are disctinct from free variables of M).

Case N is x: Then [M=x]N is M . Thus A

0

`M : � , and by context-restriction, A `M : � .

Since A ` M : �

0

is a principal solution of the typing problem A . M : �, there exists a

substitution � of domain outside of A, that is in W , that maps �

0

to � . The conclusion

follows by applying rule Var-Inst.

Other Cases: In all other cases, [M=x]N and N have the same top structure. We apply

the induction hypothesis to the premises and conclude with the same rule. This includes the

case when N is y.

Let `

X

be the typing relation de�ned in C(8W � T

�

)�ML � T by the rules Var-Inst,

Fun, App and the rule

A `

S

M : � A `

S

[M=x]N : �

A `

S

let x = M in N : �

(Let')

Lemma 12 The typing relation `

S

restricted to C(T

�

)�ML�T

�

and the typing relation `

X

are equivalent.

Proof: The rule Let' can be proved for `

S

by the subject reduction lemma. Conversely, the

rule Gen-Let can be proved for `

X

by the term-expansion lemma.

The typing relation `

X

may be used to prove syntactic results of type inference, but

it should not be taken as the basis for a type inference algorithm. The expansion of Let-

expressions during typechecking looses the underlying sharing of the Let-bound expression

which may be typed several times.

3 Uni�cands

A type inference algorithm is obtained in the next section by considering typing problems

as uni�cands. In this section we recall the generalization of term equations as uni�cands.

The results of the �rst two parts are well known but the presentation is new. Uni�cands are

treated more abstractly so that we can also consider typing problems as uni�cands in the

next section. In the last part, we consider a special case of order-sorted uni�cation, for which

we have a simple fast uni�cation algorithm. The results of this section were �rst introduced

3.1 Set of uni�cands 11

in chapter 2 of [R�em90]. The formulation that we present here is much simpler. It uses

existential uni�cands as in [KJ90].

In this section, we are given a term algebra T (S;V) and a regular equational theory on

terms, whose uni�cation is decidable and unitary unifying. Unitary unifying means that any

uni�cation problem that has a solution has a principal solution. In fact, it is not necessary

that uni�cation be unitary but only �nitary unifying, then typing problems will have principal

set of solutions instead of principal solutions. We will emphasize places where the di�erence

matters. We study uni�cation in T =E (read T modulo the E-equality). However we always

work with terms of T and manipulate their E-equality explicitly. The equational theory E

may be empty, of course, which includes free uni�cation.

3.1 Set of uni�cands

The substitutions of T are functions from V to T equal to the identity almost everywhere.

An admissible set of substitutions is a subset of substitutions S such that:

� S is stable by E-equality,

� S is stable by composition,

� S is stable by restrictions,

� For any variable �, there are in�nitely many variables � such that both � 7! � and

� 7! � are in S

The last condition is technical and ensures that there are enough renamings. It follows that

an admissible set of substitutions is stable by sums of substitutions.

Admissible sets of substitutions are more general that order-sorted substitutions. If � is a

variable, S(T) does not necessarily contains all its subterms. In this part that an admissible

set of substitutions is given.

Let Q be a set of objects, given with a function subst on T

V

� Q to Q, a function vars

from Q to W , and a predicate valid on Q (i.e. a subset of Q). We say that Q is a set of

uni�cands if the following �ve properties hold for any uni�cand Q and any substitutions �

and �:

1. D(�) \ vars(Q) = ; =) subst(�;Q) = Q

2. subst(�; subst(�;Q)) = subst(� � �;Q)),

3. vars(subst(�;Q)) = V(�(vars(Q))),

4. subst(�; valid) � valid

5. � =

E

� ^ subst(�;Q) 2 valid =) subst(�;Q) 2 valid

Example 1 Multi-equations are multi-sets of terms, written �

1

_= : : : �

p

. The set of variables

of a multi-equation e, written V(e) is the union of the variables of all its components. The

substitution of a multi-equation is the multi-equation obtained by substituting all its com-

ponents. The set of multi-equations form a set of uni�cands when valid multi-equations are

those that have all their components E-equal.

Uni�cands de�ned on the same algebra can be combined. The conjunction (respectively

the disjunction) of the set of uni�cands (Q

0

; vars

0

; subst

0

; valid

0

) with the set of uni�cands

(Q

00

; vars

00

; subst

00

; valid

00

) is the set of uni�cands (Q; vars; subst; valid), written Q

0

^ Q

00

(re-

spectively Q

0

_Q

00

) de�ned by

12 3 UNIFICANDS

1. Q = Q

0

� Q

00

. Elements of Q are written Q

0

^ Q

00

(respectively Q

0

_ Q

00

),

2. vars(Q

0

^Q

00

) = vars(Q

0

) [vars(Q

00

),

3. subst(�;Q

0

^Q

00

) = subst(�;Q

0

) ^ subst(�;Q

00

),

4. valid(Q

0

^Q

00

) () valid

0

(Q

0

) and valid

00

(Q

00

),

(respectively valid(Q

0

^Q

00

) () valid

0

(Q

0

) or valid

00

(Q

00

).)

The existential quanti�cation of the set of uni�cands (Q

0

; vars

0

; subst

0

; valid

00

) by a variable

�, is the set of uni�cands (Q; vars; subst; valid), written 9� � Q, de�ned by

1. Q = Q

0

2. vars(9� � Q) = vars

0

(Q) n f�g

3. subst(�; 9� � Q) = 9� � subst

0

(� n f�g; Q)

4. valid(9� � Q) () 9�; valid

0

((� 7! �)(Q))

A solution (also called a uni�er) of a uni�cand U is a substitution that maps U to a

uni�cand V such that valid(V). A uni�cand is solvable if it has at least one solution. The

set of solutions of a uni�cand Q is written U(Q). It is stable by substitution. A solution

is principal if all other solutions are instances of it. In the case of �nitary theories, we may

consider sets of principal solutions, such that all other solutions are instances of one solution

of the set. Two uni�cands are equivalent if they have the same set of solutions. This operation

is de�ned even if the two uni�cands are taken in two di�erent sets of uni�cands. We write

? for a uni�cand that is not solvable. The equivalence of uni�cands is indeed an equivalence

relation.

Moreover, equivalences of uni�cands are compatible with the conjunctions, disjunction

and existential quanti�cation of uni�cands, that is, if Q

0

and Q

00

are equivalent, then (we

omit disjunction rules)

Q ^Q � Q ^Q

00

Q

0

^ Q � Q

00

^ Q 9� � Q

0

� 9� � Q

00

With respect to these equivalences, the conjunction of uni�cands (respectively the disjunc-

tion of uni�cands) is commutative and associative. Indeed, the existential quanti�er acts

as a binder for variables in uni�cands: existential uni�cands are equivalent by renaming of

variables bound by 9's, exchange of consecutive 9's, and removal of vacuous 9's:

Q ^ (Q

0

^ Q

00

) � (Q ^Q

0

) ^Q

00

Q ^Q

0

� Q

0

^Q Q ^ ? � ?

9� � 9 � � Q � 9 � � 9� � Q 9� � Q = 9 � � (� 7! �)(Q)

and, if � =2 vars(Q),

9� � Q � Q Q ^ (9� � R) � 9� � Q ^R

The above equivalences are called structural : they do not depend on the structure of uni�-

cands. We will consider uni�cand equality modulo structural equivalences.

Existential uni�cands capture the notion of garbage collection. During uni�cation (or type

inference) some variables may be introduced as auxiliary variables. However, they should be

invisible at the end of the computation. In the literature, they are often called fresh variables,

but rarely formalized. A possible formalization of fresh variables is to carry a �nite set of

variables that contains all variables that have been used and outside of which new variables

3.2 Term uni�cation with systems of multi-equations 13

have to be taken. This is a global treatment. On the opposite, existential variables are

treated locally. For instance in Q ^ R, the uni�cand R may be replaced by a uni�cand R

0

introducing a variable �:

R � 9� � R

0

(�)

Then, we automatically have:

Q ^R � Q ^ 9� � R

0

(�)

The existential quanti�er can be pushed outside of Q if it does not contain �. After renaming

�, we get:

Q ^ R � 9�

0

� (Q ^R

0

(�

0

))

Existential uni�cands permit the de�nition and reasoning on local rules, from which global

rules can trivially be deduced and used in algorithms. \Fresh variable" annotations are

replaced by the usual convention that bound variables are kept distinct from all others.

An arbitrary uni�cand can always be written 9W � U where U does not contain any

existential quanti�cation, and U itself may always be written as a disjunction of conjunctions

of basic uni�cands.

3.2 Term uni�cation with systems of multi-equations

In this part all substitutions are admissible.

Arbitrary conjunctions of multi-equations are called systems of multi-equations. Systems

of multi-equations are a good structure for describing uni�cation on terms since they allow

us to formalize sharing of terms. In case the theory is not unitary, we consider disjunction of

systems of multi-equations.

We write V (e) for the set of variable terms of e, and T (e) the set of non variable terms of

e. If T (e) is a singleton � , we write ê for the substitution that maps V (e) to � . If all terms

are variables, we write ê for a substitution that maps V (e) to an arbitrary element of V . If

T (e) has more than one term, then ê is unde�ned. When it exists ê is a trivial solution of e.

We describe a uni�cation algorithm by rewriting rules

A

-;

B

that transforms uni�cands into

equivalent uni�cands. Uni�cation in the empty theory is mainly implemented by the following

rules:

� = e ^ � = e

0

---;

� = e = e

0

(Fuse)

e = f(�

1

; : : : �

p

) = f(�

1

; : : :�

p

)

--;

9�

1

; : : :�

p

�

�

e = f(�

1

; : : :�

p

) ^

V

i2[1;p]

(�

i

= �

i

= �

i

)

�

(Decompose)

f(�

1

; : : :�

p

) = g(�

1

; : : :�

q

) = e

---;

?

(Collision)if f 6= g,

A multi-equation is completely decomposed if it has at most one variable term per equation.

A system is completely decomposed if it is fused and all multi-equations are completely

decomposed. Applying them in any order the rules Fuse, Decompose and Collision

always terminates (each step �rst decreasing the size of the system, then the number of multi-

equations). In the empty theory, a system to which none of the rules apply is completely

decomposed.

In a non-empty theory, the rule Decompose is only an equivalence for a subset of symbols

called decomposable symbols. A collision pair is a pair of symbols for which the rule Collision

14 3 UNIFICANDS

is an equivalence. The rules Fuse, Decompose and Collision are no longer su�cient to

transform an arbitrary system into a completely decomposed system. We call Mutate a

valid rule that transforms a multi-equation into an equivalent system such that applying the

four rules Fuse, Decompose,Mutate and Collision always terminates with a completely

decomposed system. Mutation does not necessarily exists. In particular, there is no possible

mutation in a theory that is not �nitary unifying. If the theory is unitary unifying, then the

mutation need not to introduce any disjunction.

e

--;

mutate(e)

(Mutate)

We say that a multi-equation e is directly inner the multi-equation e

0

if there is at least

one variable term of e

0

that appears in a non variable term of e. We write <� the direct-inner

relation, and 6<� its negation. We write

Q <� R for 8e

0

2 Q; 8e 2 R; e <� e

0

and

Q 66<� R for 8e 2 Q; 8e

0

2 R; e 6<� e

0

We call inner the transitive closure of the direct-inner relation on all multi-equations of Q,

written as <�

�

Q

. The intuition of the inner relation is the following: if � is a solution of Q and

e and e

0

are two equations of Q such that e <� e

0

, then � maps all terms of the equation e to

a common term � and all terms of e

0

to �

0

, such that � is a sub-term of �

0

of �(e

0

).

A conjunction Q equal to e

1

^ : : : e

p

is said to be in the outer-�rst order if

8i; 8j � i; e

i

6<� e

j

It is said to in outer-last order if the reverse sequence is outer-�rst order. A system is free if

no multi-equation is in inner relationship with one another.

The inner relation of a solvable completely decomposed system is strict. Checking the

strictness of the inner relation is called the occur-check. If occur check fails on a completely

decomposed subsystem of Q, it surely fails on the whole system. A theory is strict if any

solvable completely decomposed system has a strict inner relation. That is, in a strict theory,

a term is never equal to one of its sub-terms. The occur check for a strict theory is the rule

Q

-;

?

(Occur)if e <�

�

Q

e,

It is completed by the replacement rule.

e ^Q

---;

e ^ ê(Q)

(Replace)if e ^ Q 66<� e,

A principal uni�er of a strict, free and completely decomposed system e

1

^ : : :e

p

, is the

composition, in any order, of the trivial solutions of its equations: ê

p

� : : : ê

1

.

A free system does not need to be computed to exhibit a principal solution. It can be

directly read from a strict completely decomposed system: such a system can always be

written in an outer-�rst order e

1

^ : : : e

p

. Successive replacements in outer-�rst order produce

a free system in which ê

p

� : : : ê

1

is a principal uni�er. It is noted

^

Q.

The principal solution

^

Qj

�

W of a completely decomposed system 9W �Q is de�ned modulo

a renaming of variables in W .

Useless existential quanti�ers can be eliminated at anytime:

9� � (Q ^ � _= e)

--;

e ^Q

(Restrict)if � =2 V(e ^Q),

3.3 Hierarchical uni�cation 15

The rule Generalize could have been used initially to transform the system into a

system of small terms (of depth at most one), for which other rewriting rules will work more

e�ciently by more sharing.

(� 7! �)(e)

9� � (e ^ � = �)

(Generalize)if � 2 e n V(�) ^ � =2 V ,

3.3 Hierarchical uni�cation

We describe a very simple case of sorted uni�cation where variables are given ranks, and all

substitutions are rank decreasing, as in section 2. More precisely, we assume that a mapping

� of V into IN is givent such that there are in�nitely many variables of every rank. As in

section 2, we write T

n

the sets of terms of rank n and T

n

the sets of terms of rank smaller or

equal to n.

Rank decreasing substitutions are those for which there exists a decreasing function in

IN ! IN whose composition with � is equal to � � �. They are stable by composition, and

form an admissible set of substitutions for uni�cands. A renaming is a raw-renaming such

that � � � is equal to �. Its inverse is also a renaming.

We refer to non admissible substitutions as raw substitutions. Any uni�cand that is raw-

solvable is solvable, since the uni�cand can be mapped to T

0

by a raw renaming into V

0

which

is rank decreasing, then it is solvable since uni�cation in T

0

is isomorphic to raw-uni�cation

in T .

In the following we use the framework of uni�cands to show how to solve hierarchical

uni�cation problems. We add extra information to systems of multi-equations. Every multi-

equation e is constrained by one integer p called its rank. We write e # p the constrained

multi-equation and #(e) for p. The rank of a system is the maximum rank of its multi-

equations.

A substitution is solution of a hierarchical equation if it is a solution of the raw equation.

The rank of an equation is only a memory for e�ciency purposes. A constrained system of

multi-equations Q is one such that:

8� 2 U(Q); 8e 2 Q; 8� 2 e; �(�(�)) � #(e) � �(�)

The rank of a transformation

Q

-;

Q

0

is the rank of Q. The transformation is constrained if it is an

equivalence such that if Q is constrained, then Q

0

is constrained as well. It is compositional

if additionally

Q ^ R

--;

Q

0

^ R

is a constrained equivalence for all R. We associate a constrained

transformation to each raw transformation.

� = e # p ^ � = e

0

p

0

--;

� = e = e

0

min(p; p

0

)

(Fuse)

e = f(�

1

; : : :�

p

) = f(�

1

; : : :�

p

) # p

---;

9�

1

; : : :�

p

�

�

e = f(�

1

; : : :�

p

) ^

V

i2[1;p]

(�

i

= �

i

= �

i

)

�

p

(Decompose)If �

i

2 V

p

,

f(�

1

; : : :�

p

) = g(�

1

; : : :�

q

) = e

---;

?

(Collision)If f 6= g,

We call mutation at rank p, a constrained mutation of a multi-equation e # p.

16 3 UNIFICANDS

We add the compositional transformation

e

0

p ^ e

--;

e

0

q ^ e

(Propagate)If e

0

<� e; # (e) � q < p,

If 8� 2 T (e); (�(�) � q < p) _ (9e

0

2 Q;� 2 V (e

0

) ^ #(e

0

) � q < p),

e # p ^Q

--;

e # q ^Q

(Realize)

A constrained system Q is canonical if it is ? or completely decomposed, propagated and

realized and if every multi-equation e composed of variables has a variable of rank "(e). A

completely decomposed, propagated and realized system can always be turned into a canonical

system by using the following rule

V (e) # p

---;

9� � V (e) = � # p

(Extend)if

(

8� 2 V (e); �(�) > p;

� 2 V

p

;

When e is reduced to variables, we always require that the arbitrary variable chosen to de�ne

ê is of lower rank. This also applies to trivial solutions of strict, completely decomposed

uni�cands.

Theorem 2 If Q is strict, canonical and free, then

^

Q is a principal solution of Q.

Proof: When Q is free,

^

Q is trivially a solution, since it is a raw-solution and rank-decreasing,

and conversely, any solution � is such that � �

^

Q = �. Therefore, it su�ces to see that

replacement in the outer-�rst order keeps the system canonical, because then Q is equivalent

to a free canonical system, say R, obtained by replacement in an outer-�rst order, whose

principal solution

^

R is equal to

^

Q.

Thus hierarchical uni�cation proceeds as simple uni�cation leading to ? or a completely

decomposed system, and then computes ranks of variables before a principal solution can

be read. We show below that computation of ranks can be done by propagation and real-

ization after the system has been completely decomposed. While maintaining a completely

decomposed system can be done incrementally, the cost of propagation and realization dis-

suades from computing canonical systems incrementally. In the following, we introduce par-

tial canonical systems, for which the cost of propagation and realization is done only on a

subsystem.

A uni�cand Q ^ R is a conjunction at rank n if the maximum rank of Q is strictly lower

than n, then we write Q ^

n

R. A conjunction Q ^

n

R at rank n is a separation at rank n, if

additionaly:

1. 8e 2 R; n � #(e);

2. R is completely decomposed in Q ^R,

3. R 66<� Q

A separation Q ^

n

R at rank n is n-canonical if no Propagate, Realize or Extend rule

may apply to a multi-equation of R.

Theorem 3 A solvable n-canonical conjunction 9W � Q^

n

R has a principal solution of the

form (� �

^

R) j

�

W where � is a principal solution of 9W � Q.

3.3 Hierarchical uni�cation 17

Proof: Any fusion, decomposition, propagation or realization of an n-canonical system 9W �

Q ^ R only involves multi-equations of Q and leaves R in outer relation to the rest of the

system. Thus there is an equivalent canonical system 9W;W

0

� Q

0

^R such that R is in outer

relation to Q

0

. A principal solution of 9W �Q^R is (

^

Q

0

�

^

R) j

�

W [W

0

, that is (

^

Q

0

j

�

W

0

�

^

R) j

�

W .

Indeed,

^

Q

0

j

�

W

0

is a principal solution of 9W � Q.

Algorithm 1 A n-canonical system can be obtained using the following steps:

1. Starting with R

0

, apply decomposition, fusion and collision. Then apply the occur-check.

This produces either ?, or a strict, completely decomposed system 9W � R

1

. Return ?

in the �rst case, continue otherwise.

2. Apply propagation to R

1

in an outer-�rst order. It terminates in at most as many steps

as there are multi-equations in R

1

, with a uni�cand R

2

.

3. Apply realization to R

2

in an inner-�rst order. It terminates in at most as many steps

as there are multi-equations in R

2

, with a uni�cand R

3

.

4. Let Q the composition of all multi-equations of R

3

of rank lower than n, and R

4

of all

others. Extend R

4

to 9W

0

� R.

The conjunction 9W;W

0

� Q ^

n

R is n-canonical.

Proof: The uni�cand Q is propagated (respectively realized) in R if no propagation (respec-

tively realization) of R involves a multi-equation of R. The correction of the algorithm easily

follows from:

� Let Q ^ R be completely decomposed. If R is propagated in Q ^ R and R is outer to

Q and if R

0

is a propagation of Q, then R

0

is propagated in Q ^R

0

.

� Let Q ^ R be completely decomposed. If Q is realized in Q ^ R and R is outer to Q

and if R

0

is a realization of R, then Q is realized in Q ^R

0

.

� Realization of a completely decomposed and propagated system keeps the system prop-

agated.

Lemma 13 If Q ^ R is n-canonical, and all variables of Q

0

are of ranks at most n, then

(Q ^Q

0

) ^R is n-canonical.

Proof: It is a conjunction at rank n. Propagation of R into Q

0

cannot happen since the lower

rank of R is greater than the higher rank of Q

0

. Realization of an equation of R by Q

0

cannot

happen since no equation of Q

0

is not inner to R. Realization of Q by equations of Q

0

cannot

indirectly �re the realization of an equation of R by Q.

Algorithm 2 The algorithm 1 for computing a n-canonical form of R

0

can be improved by

initially splitting R

0

into a conjunction at Q

0

^ R

0

0

where Q

0

is the largest sub-uni�cand of

Q

0

that has all its variables in V

n

. Running the algorithm 1 on R

0

0

produces Q ^ R. Then,

(Q

0

^Q) ^R is n-canonical.

The algorithm 2 is implemented in the appendix A.

18 4 TYPE INFERENCE

4 Type inference

The substitution lemma allows us to consider triples A.

n

M : � as uni�cands for the admissible

set of ranked substitutions and the following three de�nitions:

1. V(A .

n

M : �) is V(A) [V(�),

2. �(A .

n

M : �) is �(A) .

n

M : �(�),

3. valid

n

is the relation `

n

.

The closure of the disjoint union of these uni�cands and systems of multi-equations by con-

junction and existential quanti�cation are called typing problems.

The principal typing property is equivalent to having principal solutions to all solvable

typing problems. We can formalize the algorithm that computes principal solutions as a set

of simpli�cations of typing uni�cands that are equivalences.

Lemma 14 Let A be a context of level n and � be a type variable of level at most n. The

following rules are equivalences:

1. If x : 8W � � is in A, � in T

n

and W a subset of V

n

n f�g, then:

A .

n

x : �

---;

9W � � = �

(Var)

If x is not in A, then A .

n

x : � is not solvable.

2. If � is in V

n

, then

A .

n

M N : �

--;

9 � � A .

n

M : � ^A .

n

N : � ! �

(App)

3. If � and
 are in V

n

, then

A .

n

� x: M : �

--;

9 �
 � A[x : �] .

n

M :
 ^ � = � !
 # n

(Fun)

4. Let � be in V

n+1

n V(A).

If 9W � Q ^

n

R is a solvable n-canonical uni�cand equivalent to A .

n+1

M : � (such

that W is disjoint from V(A) and �), then

A .

n

let x = M in N : �

--;

9W � Q ^A[x : 8 V

n+1

�

^

R(�)] .

n

N : �

(Let)

If A .

n

M : � is not solvable, then neither is A .

n

let x = M in N : �.

Proof: Each case of the lemma is of the form

A

-;

B

(R). We successively show that any solution

� of A is solution of B (R-Direct), and conversely that any solution � of B is a solution of A

(R-Inverse).

Case Var-Direct: We can choose W disjoint from �(�) and form �. From the hypothesis

�(A) `

n

x : �(�) we know that there exists a substitution � with domain W that maps �(�)

to �(�) modulo E. The term �(�) is also equal to (� � �)(�). Therefore, � � � is a solution

of � _= � , and so is (� � �) nW .

19

Case Var-Inverse: We again choose W disjoint from �(�) and from �. We know from

the hypothesis that � is a solution of 9W � � _= � . That is, there exists a substitution � of

domain W such that � � � is a solution of � _= �. As for the Var-Direct case, this means

that � maps �(�) to �(�). Therefore, � is a solution of A .

n

x : �.

Case App, Fun: They are both immediate.

Case Let-Direct: We know from the hypothesis �(A) `

n

let x = M in N : �(�) that

there exists � such that �(A) `

n+1

M : � and �(A)[x : 8 V

n+1

� �] `

n

N : �(�). The

substitution (� 7! �) � � is a solution of A `

n+1

M : � and thus, it is a solution also

of 9W � Q ^

n

R. Therefore, it can be extended to a solution � of Q ^

n

R of domain W .

By theorem 3, � is of the form � �

^

R where � is a solution of Q. Since

^

R is of domain

in V

n+1

, it leaves A and � unchanged. We have �(A)[x : 8 V

n+1

� �(

^

R(�))] `

n

N : �(�)

and by lemma C-Gen we get �(A)[x : 8 V

n+1

� (� j

�

V

n

)(

^

R(�))] `

n

N : �(�), that is �

is a solution of A[x : 8 V

n+1

�

^

R(�)] .

n

N : �. Finally, � is a solution of the uni�cand

9W � Q ^A[x : 8 V

n+1

�

^

R(�)] .

n

N : � of rank n, and so is �, which is equal to � on the set

V

n

(their restrictions to V

n

are equal).

Case Let-Inverse: We know that � is a solution of 9W � Q^A[x : 8 V

n+1

�

^

R(�)].

n

N : �.

That is, � can be extended to a solution � of domain W of both uni�cands Q and A[x :

8 V

n+1

�

^

R(�)] .

n

N : �. The substitution � �

^

R, say �, satis�es both Q and R. Therefore,

� nW , is a solution of A .

n

M : �. So is � since W is disjoint from both V(A) and �. The

substitution � also satis�es �(A)[x : 8 V

n+1

� �(�)] .

n

N : �(�). Using rule Let, we conclude

that � is a solution of the uni�cand A.

n

let x = M in N : � at rank n. So are � and � which

are equal to � on the set V

n

.

Case Failure: The two unsolvable cases are immediate by showing the inverse implica-

tions.

Theorem 4 If the equational theory is unitary unifying, all solvable typing problems have

principal solutions; there is an algorithm that given any typing problem, either returns a

principal solution or returns failure, if the problem is unsolvable.

Algorithm 3 For any integer n, an n-canonical uni�cand equivalent to a typing problem

A .

n

M : � is recursively computed by the two steps, starting with the uni�cand Q reduced to

A .

n

M : � :

1. Apply rules Var, App, Fun and Let to Q in any order. Rule Let recursively calls

the algorithm on smaller typing problems. This terminates with a uni�cation problem

9W � R.

2. Put R in n-canonical form using algorithm 2. This produces a conjunction 9W

0

�Q

0

^R

0

.

Then 9W;W

0

� Q

0

^ R

0

is n-canonical and equivalent to A .

n

M : � .

The decomposition, fusion, collision and mutation of the last step may be merged

with the �rst step. The soundness and correctness of the algorithm directly follows from

lemma 14.

5 Extensions of the core language

In this section we describe a few extensions of the core language and examples of practical

equational theories in ML. We �rst show that the language can be extended with constants.

Type abbreviations in ML are nicely formalized by an equational theory on types. We brie
y

mention the extension of ML with extensible records and indicate other possible applications.

20 5 EXTENSIONS OF THE CORE LANGUAGE

5.1 Term constants

For sake of simplicity, we have omitted term constants in the core language. They can be

incorporated quite easily:

M ::= : : : j c

Constants come with principal and closed type schemes, or equivalently, with a constant

context B with the set of constants ranging into closed type schemes as.

The typing relation `

B

for ML with term constants is de�ned with respect to the constant

context B by all the rules of S plus the following:

c : 8W � � 2 B � :W ! V ;

A `

B

c : �(�)

(Const-Inst)

If the context A and the constant context B are disjoint, then the judgements A `

B

M : �

and B[A `

S

M : � are equivalent. This also includes the case of an in�nite set of constants,

provided they are �nitely representable.

5.2 Type abbreviations

Type abbreviations are often considered as syntactic sugar. This would be correct if parsers

expanded them. However, it is more e�cient to keep type abbreviations during typechecking,

and expand them by need, since they are a more compact representation of large types. Type

abbreviations can be nicely formalized with a very simple equational theory on types.

The set of type symbols is the union of original symbols C and an ordered set of abbrevia-

tion symbols C

0

composed of f

0

0

, f

0

1

, and so on. Type abbreviations are de�ned by a sequence

of equalities:

f

0

i

(�

1

; : : :�

p

) = �

i

where �

i

is only composed of symbols of indices lower that i and all of variables among �

1

,

: : :�

p

. These equalities de�ne the presentation of a theory E.

Types are the algebra T (V ;�

C[C

0

)=E. Type-abbreviation theories are acyclic [Tha92]

and thus syntactic

1

[Kir85], but their presentation are not usually syntactic. Yet, there is a

trivial mutation that can be deduced from the non syntactic presentation. All symbols are

decomposable. All pairs of original symbols produce collision. Mutation is composed of the

following rules:

f

0

j

(�

1

; : : :�

p

) _= � _= e

--;

9�

1

; : : :�

p

� ^

8

>

<

>

:

f

j

(�

1

; : : :�

p

) _= e

� _= �

j

�

i

_= �

i

; i 2 [1; p]

Mutate (f)if Top (�) = Top (�

i

),

where Top (�) is the symbol of � at the empty occurrence.

The type-abbreviation theory is regular, and has a unitary uni�cation algorithm, thus

ML with abbreviations has principal typings and a type inference algorithm.

Type-abbreviation theories are very simple. Yet, they provide examples of theories that

may involve the arrow symbol: for instance, the theory E reduced to the axiom:

f

0

(�) = �! �

is a type abbreviation.

1

Syntactic theories are equational theories such that any provable equality can be proved with at most one

occurrence of an axiom at the root; they are theories for which there is a uni�cation algorithm that extends

the e�cient uni�cation algorithm for empty theories of [MM82].

5.3 Extensible records 21

5.3 Extensible records

An important application of the use of sorted types modulo an equational theory is type

inference with extensible records [R�em91]. The equations are used to describe duplication of

\row types". Sorts are used for two di�erent purposes: they restrict the formation of terms

and the power of the equations; they also introduce a �ne control of polymorphism since

generic variables range only over types of a certain sort.

A. Ohori also uses sorted types for record structure [Oho90] but his sorts are ordered

and our results do not directly apply to his system. Types modulo equations have also been

used in [Tha91] but type reconstruction is di�erent: it uses coercions in programs.

5.4 Other applications

Treating typing problems as uni�cands has two main advantages. Soundness and complete-

ness of the type-inference algorithm with respect to the typing rules can be proved indepen-

dently for each transformation, and is thus easier. It also formalizes uni�cation on graphs,

that leads to e�cient algorithms.

Ranks have been used to compute variables that can be generalized incrementally. It is

not so critical for the usual Damas-Milner type system, but it is for some extensions, for

example with subtypes where typing are constrained by a set of inequations. Simpli�cation

of inequations is usually expensive. The control of simpli�cation is crucial. Too many sim-

pli�cations are too expensive, but too few simpli�cations will unnecessarily duplicate large

structures through generic polymorphism. Ranks keep track of the dependencies of polymor-

phic binding variables and give the right boundary for simpli�cations.

Conclusion

The extension of ML with a regular, decidable and unitary unifying equational theory on

types preserve all usual syntactic properties of ML; the formulation itself is changed so little

that the extension is quite natural. Types can be sorted, provided that judgements and arrow

types are of the same toplevel sort.

The language of uni�cands is well adapted to type inference: properties are easily stated

and proofs are usually simpler since they are separated in small independent parts. The al-

gorithm is described by transformation of uni�cands, which leaves the control more
exible.

Uni�cands allows one to treat type inference and uni�cation in a uniform manner and for-

malize the sharing between types in typing problems and in uni�cation problems naturally.

Bene�tting from the work on uni�cation, the use of existential uni�cands nicely handles the

introduction of variables during resolution, avoiding the informal fresh variables or the heavy

formalization of garbage collection.

Generalization in ML only applies to variables that have been recently introduced. Hier-

archical types keep track of the freshness of type variables during uni�cation; they are very

simple order-sorted types, and �t well eithin the same framework of uni�cation. They make

generalization a trivial step.

This work includes the original ML language and ML with type abbreviations as a simple

instance. An important application is typechecking of extensible records.

22 A TYPE INFERENCE FOR THE ORIGINAL ML LANGUAGE IN CAML-LIGHT

A Type inference for the original ML language in Caml-

Light

The aim of this appendix is to give a real implementation of the type inference algorithm

based on uni�cands and ranked uni�cation. The language that is considered is the one of

section 1 extended with integer constants. Types are unsorted and taken in the empty theory.

Type declarations and type abbreviations are not allowed. The language is a toy language,

but the implementation is robust, and adding more features to the language is not di�cult.

We separately describe all modules with their interfaces. We give the complete implemen-

tations of most important modules, but we leave to the user the front and back end module

implementations. In fact, the implementation can be used for typechecking without its front

and back ends by typing in the abstract syntax of programs instead of entering the programs

themselves.

The implementation runs on Caml-Light, version 0.5

2

[LM92].

Module ml

This module de�nes the abstract syntax of ML programs and a parser of concrete programs.

type expr =

Var of string

j Fun of string * expr

j App of expr * expr

j Let of string * expr * expr

j Int of int;;

value parse expr : char stream ! expr;;

Module multi

This module de�nes the deep representation of types and uni�cands and provides a few

functions to manipulate them.

Types and completely decomposed multi-equations are represented by the same multi

structure. In order to perform in-place fusion (which corresponds to applying a partial

solution of an uni�cand to the uni�cand itself in non destructive uni�cation algorithms), all

multi structures are mutable objects. The nod of a variable that has been substituted is a Linto

nod and points to another multi structure, but eventually ends with a Nolink nod that contains

the canonical element of the multi-equation. The term �eld of a variable or a multi-equation

that has only variable terms is Var. Otherwise it is Term (symb, args) where symb and args are

the top symbol and the list of immediate subterms of the canonical element. The �eld rank

stores the rank of the multi-equation, and the mark �eld is used internally by algorithms to

keep track of nods that have been visited at some stage of a recursive visit of the structure.

They avoid looping since multi structures are graphs.

All multi-equations are kept completely decomposed at any time. A multi-equation � _=

� _= � can be thought of as two variables � and � both substituted by the term � .

type symbol = Arrow j Int;;

type multi = fmutable nod: nodg

and nod = Nolink of desc j Linkto of multi

and desc = fterm: term; mutable rank: int; mutable mark : unit refg

2

This version is distributed by anonymous ftp at nuri.inria.fr

23

and term = Var j Term of symbol * multi list;;

let rec repr u =

match u.nod

with Linkto v ! let v = repr v in u.nod Linkto v;v

j ! u;;

let rec desc u =

match u.nod

with Nolink u desc ! u desc

j ! desc (repr u);;

let mark() = ref();;

let no mark = mark();;

let level = ref 0;;

let equations = ref ([jj]: multi list vect);;

let reset level() = level := 1; equations := [j[]; []j];;

let push level() =

if vect length !equations < !level + 2 then

begin

let new equations = make vect (!level + 2) [] in

for i = 0 to !level do new equations.(i) (!equations).(i) done;

equations := new equations

end;

level := succ !level;;

let pop level() =

(!equations).(!level) []; level := pred !level;;

let new u =

let u desc = fterm = u; rank = !level; mark = no markg in

let u = fnod = Nolink u descg in

(!equations).(!level) u::((!equations).(!level));

u;;

The function repr computes canonical elements of multi-equations doing path compression.

Its accompanying function nod return the nod of the canonical element.

Each creation of a variable or of a term is done at the current level and produces a new

multi-equation that is sorted with respect to its rank and stored in the equations reference.

Module print

This module implements a printer of multi objects. It is left to the user.

#open "multi";;

value reset namers : unit ! unit and print multi: multi ! unit;;

Module generic

This module is the heart of the algorithm; it implements generalization and instantiation of

types.

#open "multi";;

exception Cycle of multi;;

value generalize: multi ! unit

and instance: multi ! multi;;

24 A TYPE INFERENCE FOR THE ORIGINAL ML LANGUAGE IN CAML-LIGHT

Generalization of a uni�cand at the highest rank �rst propagates and realizes the uni�cand

at this rank. Then it turns variables of the highest rank into generic variables. Propagation,

realization and marking of generic variables of a multi-equation are completed by the function

propagate and generalize that recursively visits the uni�cand: propagation is executed before the

recursive calls, which comes in outer-most order, and realization proceeds after returns, thus

in inner-most order. Marking immediately follows the realization, since the sub-uni�cand

cannot be a�ected by inner-most returns. The function generalize controls the process. It

�rst marks fresh multi-equations and sort them according to their rank. Then it calls the

propagate and realize function starting with multi-equations of lower ranks. Garbage uni�cands

are not generalized but only checked for acyclicity.

Genericity is not a property of variables but of multi-equations. Generic multi-equations

are represented by setting their rank �eld to a negative integer. The absolute value identi�es

the multi-equation locally to the uni�cand that is being generalized and it is used by the

instance function that copies the generic part of the uni�cand as a graph.

#open "multi";;

let occur check visited =

let visiting = mark() in occur check

where rec occur check u =

let u desc = desc u in

if u desc.mark == visiting then raise (Cycle u) else

if u desc.mark != visited & u desc.rank = !level then

(match u desc.term

with Var ! ()

j Term(C,L) !

u desc.mark visiting; do list occur check L; u desc.mark visited);;

let propagate and realize n fresh visited =

let generic index = ref 0 and visiting = mark() in propagate realize

where rec propagate realize k u =

let u desc = desc u in

if u desc.mark == visiting then raise (Cycle u);

if u desc.mark != visited then

begin

begin match u desc.term

with Var ! u desc.rank min u desc.rank k

j Term(C,L) !

if u desc.mark == fresh then

begin

u desc.mark visiting;

let propagate realize = propagate realize (min u desc.rank k) in

u desc.rank it list (fun k u ! max k (propagate realize u)) 1 L

end

end;

u desc.mark visited;

if u desc.rank = n then (u desc.rank (decr generic index; !generic index))

end;

if u desc.rank < 0 then n else u desc.rank;;

let generalize u =

let visited = mark() and fresh = mark() in

let generalize = propagate and realize !level fresh visited

and occur check = occur check visited in

let sorted = make vect (!level +1) [] in

let sort u =

match u.nod

with Linkto ! ()

25

j Nolink u desc !

u desc.mark fresh; sorted.(u desc.rank) u::sorted.(u desc.rank) in

do list sort !equations.(!level);

for i = 0 to !level � 1 do do list (generalize i) sorted.(i) done;

generalize !level u;

let update u =

let u desc = desc u in

if u desc.rank = !level then occur check u else

if u desc.rank < 0 then () else

(!equations).(u desc.rank) u::(!equations).(u desc.rank) in

for i = 0 to !level do do list update sorted.(i) done

;;

type table = None j Multi of multi;;

let instance u =

let u = repr u in let u desc = desc u in

if u desc.rank >= 0 then u else

let table = make vect (�u desc.rank) None in

instance u

where rec instance u =

let u = repr u in let u desc = desc u in

if u desc.rank >= 0 then u else

match table.(�u desc.rank�1)

with None !

let v = new Var in

table.(�u desc.rank�1) Multi v;

let u desc =

match u desc.term

with Var ! Var

j Term (C, L) ! Term (C, map instance L) in

v.nod Nolink fterm = u desc; rank = !level; mark = no markg;

v

j Multi v ! v;;

Module unify

This module implements free uni�cation, following the three rules Fuse, Collision and

Decomposition.

#open "multi";;

exception Collision of symbol * symbol;;

let rec unify u v =

let u = repr u in let v = repr v in

if u == v then () else

let U = desc u in let V = desc v in

match U.term, V.term

with Var, !

u.nod Linkto v; V.rank min U.rank V.rank

j , Var !

v.nod Linkto u; U.rank min U.rank V.rank

j Term(C,L), Term(D,M) !

26 A TYPE INFERENCE FOR THE ORIGINAL ML LANGUAGE IN CAML-LIGHT

if C 6= D then raise (Collision (C, D));

if U.rank < V.rank then v.nod Linkto u else u.nod Linkto v;

do list2 unify L M;;

The algorithm for syntactic uni�cation would be similar, but the collision case would be

preceeded by other successful decomposition cases, automatically deduced from a syntactic

presentation of the theory.

Module typing

This module implements algorithm 3.

#open "multi";;

#open "print";;

#open "unify";;

#open "generic";;

exception Unbound of string;;

let rec expr A = expr A

where rec expr A =

function ml Var x !

instance (try assoc x A with Not found ! raise (Unbound x))

j ml App (M, N) !

let u = expr A N in

let v = new Var in

unify (expr A M) (new (Term (Arrow, [u;v])));

v

j ml Fun (x,M) !

let u = new Var in

let v = expr ((x,u)::A) M in

new (Term (Arrow, [u; v]))

j ml Let (x, M, N) !

push level ();

let u = expr A M in

generalize u;

pop level ();

expr ((x,u)::A) N

j ml Int c ! new (Term (Int,[]))

;;

let type expr B M =

reset level(); let u = expr B M in generalize u; u;;

Module step

The function step parses an expression, calls type expr with an empty environment and this

expression, and pretty prints the result type, handling and reporting errors that may have

been raised.

value step: unit ! unit;;

REFERENCES 27

Module batch

The batch function make step loop for ever.

value batch: unit ! unit;;

This provides a stand alone typechecker.

References

[CDDK86] Dominique Cl�ement, Jo�elle Despeyroux, Thierry Despeyroux, and Gilles Kahn.

A simple applicative language: Mini-ML. Technical Report 529, INRIA-

Rocquencourt, France, 1986.

[Dam85] Luis Damas. Type assignment in programming languages. PhD thesis, University

of Edinburgh, 1985.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional programs.

In Nineteenth Annual Symposium on Principles Of Programming Langages, pages

207{212, 1982.

[Kir85] Claude Kirchner. M�ethodes et outils de conception syst�ematique d'algorithmes

d'uni�cation dans les th�eories �equationnelles. Th�ese de doctorat d'�etat en infor-

matique, Universit�e de Nancy 1, 1985.

[KJ90] Claude Kirchner and Jean-Pierre Jouannaud. Solving equations in abstract al-

gebras: a rule-based survey of uni�cation. Research Report 561, Universit�e de

Paris Sud, Orsay, France, April 1990.

[LM92] Xavier Leroy and Michel Mauny. The caml light system, version 0.5. documen-

tation and users' guide. Logiciel 3, INRIA-Rocquencourt, BP 105, F-78 153 Le

Chesnay Cedex, 1992.

[MM82] Alberto Martelli and Ugo Montanari. An e�cient uni�cation algorithm. ACM

Transactions on Programming Languages and Systems, 4(2):258{282, 1982.

[Oho90] Atsushi Ohori. Extending ML polymorphism to record structure. Technical re-

port, University of Glasgow, 1990.

[R�em90] Didier R�emy. Alg�ebres Tou�ues. Application au Typage Polymorphe des Objects

Enregistrements dans les Langages Fonctionnels. Th�ese de doctorat, Universit�e

de Paris 7, 1990.

[R�em91] Didier R�emy. Type inference for records in a natural extension of ML. Technical

Report 1431, INRIA-Rocquencourt, BP 105, F-78 153 Le Chesnay Cedex, May

1991.

[Tha91] Satish Thatte. coercive type isomorphism. In Functional Programming and Com-

puter Architecture, volume 523. Springer Verlag, 1991.

[Tha92] Satish Thatte. Finite acyclic theories are unitary. Personal communication, 1992.

