
EÆient representation of extensible reords

Didier R�emy

INRIA-Roquenourt

�

June 12, 2001

Abstrat

We desribe a way of representing polymorphi extensi-

ble reords in statially typed programming languages

that optimizes memory alloation, aess and reation,

rather than polymorphi extension.

Introdution

Type systems for reords have been studied extensively

in reent years. New operations on reords have been

proposed suh as polymorphi extension that builds a

reord from an older one without knowing its �elds.

Suh operations are very powerful, and were not always

provided as primitive onstruts in untyped languages.

In omparison to the numerous results on the type

theory of reords, there has been less interest in their

ompilation. Many languages still have monomorphi

operations on reords, e.g. most implementations of

ML [HMT90, Wei89, Ler90℄. Others, that have more

powerful reords, use assoiation list tehniques, even-

tually improved by ahing.

Safe untyped languages require that the presene

of �elds is heked before aess. The use of assoia-

tion lists interleaves dynami heking with aess to

�elds. In strongly typed languages, the presene of

�elds is statially heked. Thus the representation of

reords by assoiation lists performs superuous run-

time heks, and it seems that heaper solutions ould

be found.

We propose a representation of reords based on a

simple perfet-hash oding of �elds that allows aess

in onstant time with only a few mahine instrutions

whih an be dropped to a single instrution whenever

the set of �elds of the reord is statially known. Cre-

ation an be performed in time proportional to the size

of the reord, and alloates a vetor of size the number

�

Author's address: INRIA, B.P. 105, F-78153 Le Chesnay

Cedex. Email: Didier.Remy�inria.fr

of �elds plus one. Only the polymorphi reation of

reords has to pay more in time and memory.

In setion 1, the spei�ity of reords as data prod-

ut strutures serves as an introdution to the ondi-

tions for whih our representation will work in pratie.

The method is desribed in detail in setion 2 as the

enoding of partial funtions from labels to values with

�nite domains. In setion 3 we extend the method to

reords with defaults. These are total funtions from

labels to values that are onstant almost everywhere.

As an appliation we get safe standard reords in an

untyped language. In setion 4, we disuss how to han-

dle pathologial ases in order to prevent bad behavior.

1 Reords and their spei�ity

Reords are produt data strutures. Eah piee of in-

formation is stored with a key, more ommonly alled a

label, that is used to retrieve the information. There is

at most one value assoiated to a label. By �eld a pair

noted a 7! v of a label a and a value v. Suh data stru-

tures are of ommon use in omputer siene. However

our de�nition of reords is too vague for hoosing a good

representation of reords. It is neessary to know the

average and the maximum size of these strutures, to

know whether they are reated inrementally, the fre-

queny of the di�erent operations and whih ones are

privileged. It is obvious that di�erent programs will

give di�erent answers. These questions an only be an-

swered in general, or the answers that we give below

an also be taken as assumptions for whih our repre-

sentation of reords will work in pratie.

Reords are provided with three operations. Cre-

ation builds a reord with a �nite number of labels to-

gether with values assoiated to these labels. Extension

takes a reord and builds a new one that has all �elds

of the �rst one plus a �nite number of new �elds. A-

ess takes a reord and a label and returns the value

assoiated to that label. It fails if the label is not in the

domain of the reord.

Reords have a relatively small number of labels. At

most a ouple of hundred, on average less than ten. Non

inremental reation and aess are both very frequent

and are privileged. There are usually many reords

with the same domain. Spae and time are equally

important.

The simplest representation of reords by assoia-

tion lists is good for very small reords but it makes a-

ess to large reords too slow. Balane trees would have

better performanes for large reords but the overhead

has also to be paid for small reords; they also require

too muh memory. General hashed tables will also have

an overhead that is not aeptable for small reords.

2 Extensible reords with poly-

morphi aess

In this setion we onsider reords as partial funtions

from labels to values, with �nite domains. The problem

is to �nd a representation for suh funtions, suh that

under the assumptions of the above setion, the oper-

ations on reords an be performed eÆiently. By per-

forming, we mean evaluating in general. In partiular,

this applies to ompilation where some of the evaluation

an be done statially.

Standard monomorphi operations on non extensi-

ble reords should not be penalized by the introdu-

tion of more powerful reords. Although it is always

possible to keep two kinds of reords oexisting, the

new reords should replae the older, weaker ones. It

should be left to the ompiler to reognize that some

reord operations are monomorphi and thus an bet-

ter be ompiled. Indeed, this will not be possible for all

ompilation shema.

A reord r is a partial funtion from labels to val-

ues with a �nite domain (a

i

7! v

i

)

i21::n

. The simplest

deomposition of this funtion is

Labels

h

* [1; n℄

v

! Values

a

i

> i > v

i

The total funtion v stores the omponents of the

reord, while the the partial funtion h, alled the

header, desribes how labels are mapped to indies.

This deomposition suggests the representation of r in

a vetor R:

�

0 7! H

i 7! v

i

i 2 [1; n℄

where H represents the funtion h.

The partial funtion h needs to be de�ned at least

on the domain of r and it should better be injetive on

the domain of r too. Any suh funtion would work,

sine v is then de�ned by

(h j

�

dom (r))

�1

Æ r

up to permutation of indexes with idential values.

If all reords are oded suh that their headers (the

representations may di�er provided they implement the

same funtion) only depend on their domains, then

ompilation of operations on reords whose set of �elds

is statially known an be optimized by partially evalu-

ating their header. The aess beome a single indiret

read to feth the value of the reord on that �eld. The

reation is always in that ase, sine it builds a reord

with n �elds from nothing. The header an be om-

puted statially and shared between all reords built

by the same funtion. The ost is redued to alloat-

ing and �lling n+ 1 �elds of a vetor. More generally,

headers an be shared between all reords that have the

same domain by keeping all existing headers in a table.

Polymorphi aess and polymorphi extension

must use the headers. For sake of simpliity, we on-

sider that labels are integers. The parser and the printer

would deal with the isomorphism between integers and

names in a real language.

Finding a good representation of h seems as diÆ-

ult as �nding a good representation of r. There are

two di�erenes, though. Sine the header is shared, we

are allowed a little more exibility on the size of H .

Also, h is a funtion on integers, thus we are allowed to

use arithmeti and logi operation on integers. There

is no hope of �nding a diret representation of h by

arithmeti operations, sine its domain is ompletely

arbitrary. At least some mapping between integers has

to be an arbitrary map represented by a vetor of inte-

gers for instane. A mixed deomposition of the header

h is:

IN

(mod p)

! [0; p� 1℄

�

* [1; n℄

where (mod p) is injetive on the domain of r. Suh

a deomposition is always possible, to the prie of a

higher p. In pratie the smallest p that works is on

average twie the size of n for a few labels and three to

four times for larger sets of labels. Sine the header is

shared, this is very aeptable.

The interest of this deomposition of h is that it an

be ompiled eÆiently and oded in a vetor H :

�

0 7! p

j 7! ��(j � 1) j 2 [1; p℄

The partial funtion � must be extended into a total

funtion on [1; p℄. We write it �� the unonstrained ex-

tension of �.

In too ases below, We will also be interested in

two partiular extensions of � below that we write �̂

and ��. The former �̂ is an extension of � with values

of [1; n℄, thus it makes r a total funtion. The later ��

extends � outside of [1; n℄, for instane 0, whih provides

a membership test to the domain of � by testing �� for

equality to zero.

The domain of r must also be oded in H for poly-

morphi extension. All its labels an be listed at the

end of H .

8

>

<

>

:

0 7! p

1 7! n

2 + j 7! ��(j) j 2 [0; p� 1℄

1 + p+ i 7! a

i

i 2 [1; n℄

The aess an be optimized whenever the domain of

the reord, and onsequently the header, are statially

known. Suh information is expeted to be found by the

typeheker. This annot always be the ase, however.

In order to rely on the types to know the domains

of reords, the attendanes of �elds, given by the types

of reords, must orrespond exatly to their domains.

This implies that the restrition of a reord on a �eld

modi�es its header, sine its hanges the attendane.

This is one possible semantis for restrition. Another

one is to take the restrition of �elds as a retyping fun-

tion, that is, a funtion that evaluates as the identity.

The hoie is between an expensive ative restrition

that allows aess optimizations or a heap retyping re-

stritions that forbids them.

3 Reords with defaults

In this setion we onsider reords as partial funtions

from labels to values, onstant almost everywhere. The

problem is now to reognize whenever the �eld does

not belong to the domain of the reord (we mean the

expliitly de�ned values, here), in whih ase the de-

fault value is returned. The membership test might be

expensive in time or in spae.

There is a heap solution based on the same teh-

nique as above. In fat, we oded reords by total fun-

tion on labels, and desribed the domain separately in

order to implement the extension of �elds. Thus we

ould apply them outside of their domain (but get a

value of unpreditable type).

Let r be a reord. Consider the reord r

0

equal to

id j

�

dom (r). An arbitrary label a is in the domain of

r if and only if it is equal to r

0

:a. The auxiliary reord

r

0

only depends on the domain of r is already be oded

in the header H as the domain of r. Remember that i

is the index in R where the value of label a

i

is stored.

Thus it is the index where a

i

is in R

0

, whih is also in

H at position 2 + p+ i, provided i = �(a

i

mod p).

We simply shift the indies in R to plae the default

value at position 1:

8

<

:

0 7! H

1 7! d

1 + i 7! v

i

i 2 [1; n℄

We ompute the appliation of r to the label a as fol-

lows. First ompute the index i assoiated to a, that

is H:(amod (H:0)). If H:(2 + p+ i) is equal to a, then

the label belongs to the domain of r and the result is

R:(1 + i) otherwise it is the default R:(1).

One must be areful to use the �̂ extension of �.

The �� extension is still possible, but the above mem-

bership test must be preeded by a membership test to

the domain of �, and in ase of failure the default value

should also be used.

In fat, the enoding of reords with defaults an

be easily adapted to implement safe lassial reords in

n 3 5 8 11 23 30 40 60 100 200

p

ave

4 9 18 30 86 132 207 400 902 2565

p

max

11 18 29 48 148 206 298 576 1195 3053

Figure 1: Average header size

an untyped language: a dynami type error is raised

when the membership test fails instead of returning the

default.

4 About eÆieny

This setion does not onsider the ase of reords with

defaults for sake of simpliity, but it an be adapted

very easily to them.

The previous representation of reords is very at-

trative sine it implements linear time aess, uses

very little memory, keeps the same performane on

monomorphi reords as if all reords were monomor-

phi. However we must hek the following points.

First, that the size of the header does not get too large.

Seondly, that the polymorphi extension does not have

too bad performane, even though it is not privileged.

Last, that pathologial ases an be handled.

The omputation of the integer p is at the heart of

every question. The problem is given a set of integers

D, �nd a small integer p suh that (modn) is injetive

on D. The integer p does not need to be minimal, even

if omputed at ompile time, sine a larger header might

make polymorphi extension more eÆient. However,

the minimal p gives a lower bound on the size of the

header. For instane if D is randomly hosen, and the

set of labels is large enough in omparison to the size n

of D, the probability that p disambiguates n integers is

p!

(p� b)! p

n

The formula that gives the average smallest p in fun-

tion of n is simple, but �gure 1 gives an experimental

result on the average p

ave

and the largest p

max

for on

a hundred runs per olumn.

For small reords, 10

4

runs did not give very di�er-

ent maximal p. The dispersion of p is shown by �gure 2

The �gures show that under 30 labels, the size of D

does not exeeds, in average, four times the number of

�elds, and exeeds very rarely twie the average. For

large reords (above 50 �elds) the header beomes very

large. It is lear that another solution must be applied

for large reords. Even if one wished to push this limit

to a hundred labels, there is always a rank that an

be reahed in pratie (even if it is pathologial) for

another representation should be used.

10

20

30

40

50

20050 100 400

Figure 2: Dispersion of the header size

Sine, we annot avoid a mixed representation, if

we want to handle large size reords in order to rep-

resent them with reasonable size headers, we use tags

to distinguish between the two representations. For in-

stane, negative integers an be used as tags for an

alternate representations. There are many possibilities

for the alternate representations, and sine these are

pathologial ases, in the sense that they do not meet

the requirement that we set in setion 1, we do not are

muh about the eÆieny of the alternate representa-

tion. We propose, two possible solutions that �t well

with the regular representation.

The �rst solution is whenever a and b are equal to j

modulo p to assign �(j) with an integer �q suh that q

is in [2; p℄ and modulo q distinguishes a and b and with

values that are not in the image of �.

The seond solution replaes perfet hashing by

hashing with linear probing ([Sed88℄, Chapter 16). The

header is H is

8

>

>

>

<

>

>

>

:

0 7! p

1 7! n

2 + j 7! ��(j) j 2 [0; p� 1℄

1 + p+ i 7! a

i

i 2 [1; n℄

2 + n+ p+ j 7! a

�(j)

j 2 [0; p� 1℄

for labels that do not onit. When 2+n+p+(a

i

modp)

is already oupied, the label a

i

is plaed at the smallest

free position after, say j, and �(j) is �lled with i.

The �rst method still gives aess in linear time,

but headers are more diÆult to ompute. The may be

muh faster on average, but require larger headers. In

both ases there is a lot of freedom on how to hose p,

aording to how many onits are aepted. Letting

p be about 3 times the size of r may avoid searhing

for optima while limiting the number of lashes. The

�rst method is more exible, sine a onit for one

label does not need to double the size of the header or

reompute another header: it simply uses the holes of

the atual header. Then, it an also be used even for

average size reords in some ases in order to ompile

more eÆient extension.

The eÆieny of polymorphi extension has not

been onsidered yet, sine it was not a privileged op-

eration. It has to dynamially ompute a new header,

whih may be very expensive | and at least propor-

tional to the size of the reord it extends. The time for

omputing the header now beomes important. There

are di�erent ases (we exlude large size reords, that

should be represented otherwise):

� There is no need to ompute a new p,

� The average ase for omputing a new p,

� The worse ases for omputing a new p.

In the average ase, omputing a new header means

that 3 di�erent p's must be probed per extension, sine

headers are in average 3 times the size of n. The opti-

misti unit ost U is the one of a loop that ontains at

least one vetor write and one modulo instrution. The

ost for a probe is pU , sine the failure is probable to

happen at the end. Thus the average ost for reating

a new header is 3pU plus two other pU for �lling the

header.

However, a reord with a very ompat header may

be extended with a label that will make the header get

loser to its average size. Then about nU probes may

be needed, making the ost for the new header inrease

to pnU .

On the other hand, it is very probable that the ex-

tended header already exists or is trivial. If the label

a of the extended �eld is taken at random, there is a

probability of (p�n)=p that the n+1 �elds will still be

disambiguated by p. In that ase, the ost for reating

a new header is the same as opying the old one plus

modifying a few �elds pU .

The reation of a new header may be avoided most

of the time sine it is very probable that it has already

be reated. This requires that all existing headers are

stored in a ditionary. This will save both spae and

time. The keys in the ditionary are the domains of

headers that an be kept ordered in H , so that equal-

ity tests are not too expensive, and the whole ost of

searhing would be lower than the minimal ost of ex-

tension.

Ative restrition of �elds an be implementing

along the same ideas. The header is looked up in the

table. If it does not exist, then the new header need

not be the smallest one, provided that it is of reason-

able size. This avoids the expensive ost of �nding the

smallest integer modulo whih all elements of the do-

main as distinguished.

5 Other ompilation shemas

There are three di�erent ideas in the above representa-

tion of reords

1. The value of �elds and the position of �elds are

represented separately. The header that desribes

the later is shared between all reords having the

same set of �elds, two reords with the same do-

main always have the same �elds at the same po-

sition.

2. The header an be represented by a modulo fol-

lowed by a projetion.

3. Di�erent representation of the headers an live

together.

The �rst point is ruial in our representation. Any rep-

resentation of reords that does not originally respet

this point an still be used to implement headers, then

values an be stored in vetors as above. Sharing of

headers will save the large amount of spae required by

assoiation lists or balaned trees.

The representation of the header itself is not im-

portant. We desribed one possibility that is very on-

venient for small and medium size reords. But many

other representations are possible. We hoose to repre-

sent the header as a struture that is interpreted both

by extension and aess. It ould also be a losure for

the aess part, together with a desription of the do-

main that is needed for the extension. This is the tag

vs losure duality.

If the extension and the restrition of �elds are

themselves losed with the header, reords ould really

be viewed as objets with two methods for aess and

extension.

Conlusion

We have presented a way of representing reords with

or without defaults that allows eÆient aess and re-

ation. Only the more powerful features suh as poly-

morphi extension, or true restrition of �elds have to

pay a higher prie.

Our representation of reord with defaults an be

used to implement safe aess in an untyped language.

An orthogonal appliation ould be the representa-

tion of feature terms that are very related to reords.

Thanks

These ideas originate in disussions with Xavier Leroy.

They have been mentioned for the �rst time in [Ler90℄

and tested in the untyped version of Zin, the anestor

of Caml-Light.

Referenes

[HMT90℄ Robert Harper, Robin Milner, and Mads

Tofte. The de�nition of Standard ML. The

MIT Press, 1990.

[Ler90℄ Xavier Leroy. The ZINC experiment: an eo-

nomial implementation of the ML language.

Tehnial Report 117, INRIA-Roquenourt,

BP 105, F-78 153 Le Chesnay Cedex, 1990.

[Sed88℄ Robert Sedgewik. Algorithms. Computer

Siene. Addison-Wesley, seond edition edi-

tion, 1988.

[Wei89℄ Pierre Weis. The CAML Referene Manual.

INRIA-Roquenourt, BP 105, F-78 153 Le

Chesnay Cedex, 1989.

