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Abstract

We study the typing of control operators in a language with an ML-style type system. We
introduce a new set of control operators that subsume most control operators that have been
proposed for languages such as Scheme or ML. We prove subject reduction for the extended
language. We also show how the new operators can easily encode a variety of already known
constructs: callce, shift and reset, exceptions, references as well as new variants of these con-
structs. We also describe an implementation of functional continuations in terms of the more
primitive callcc operator.

1 Introduction

Control operations are a heavily used feature in mostly functional languages. For instance, all
dialects of the ML language—including the ML of the LCF theorem prover [7], CAML [10], and
Standard ML (SML) [13]—build in an exception mechanism. Exceptions give the programmer
the ability to recover from errors in a modular and efficient fashion. Continuations are another,
though less common, control facility that can be added to any dialect of ML [3]. The continuation
mechanism consists of two primitives: callcc (call-with-current-continuation) which reifies the
entire control context as a function and passes it to another function, and throw which invokes
a continuation on an argument, aborting the current computation. Continuations can be used
to implement other control features, e.g., concurrency [18]. Both exceptions and continuations
preserve the inherent type soundness properties of ML.

In this paper we give a generalization of the continuation mechanism of [3] for a language with
an ML-style type system. We prove that the language is type-safe, i.e., evaluation of programs
cannot generate run-time type errors. There are two interesting and important aspects of the gen-
eralization. First, unlike the type system of SML/NJ, our system requires no new type constructor
for continuations; continuations have functional type. These “continuations” are really “functional
continuations”. Functional continuations—a programming language feature in which portions of
the control context can be reified as an ordinary, non-abortive function—have been studied in the
context of untyped languages [2, 4], but not in the context of ML-like languages. Second, functional
continuations overcome some of the anomalies of callcc in the top-level interactive loop, allow a
cleaner style of programming than callcc, and increase the expressiveness of the language .

Type systems for continuation-based operations are not well understood. Sitaram and Felleisen [22]
were the first to give a limited type system for continuation-based operations. They added callcc
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into PCF, a simply-typed language with basic arithmetic, and used the typing rule

Al—a:(T—>nat)—>T(

callcc)
Al (callcca): T

where A specifies the types of free variables. The limitation in the typing is obvious: only a
continuation whose result type is nat can be reified. In essence, the problem of typing callcc in
PCF hinges on the fact that one must pick one return type for continuations.

The type nat is a canonical choice in PCF, but not in languages with more complex type
structure. In a language with ML-style polymorphism, callcc ought to have a polymorphic type
with an arbitrary return type. Duba, Harper, and MacQueen [3] have proposed adding a unary
type constructor cont for typing callcc which hides the return type of the continuation. The type
for callcc is

callcc : (’a cont -> ’a) -> ’a

in their proposal, which is the type given in the SML/NJ implementation. To invoke the continu-
ation, one uses the operation

throw : ’a cont -> ’a -> ’b

Although there are only two type variables in the type of throw, in actuality three types are
necessary to explain the type of throw. For instance, consider typing the following expression

==>5 > (1 + callcc (fn k =>
if s = "a" then throw k 2
else size s))

at the top-level, where ==> denotes the “prompt” of the interactive loop. There is the argument
type int of the continuation, which must be the same as that expected by the context in which it
was reified; there is the type int of the context in which the throw is invoked; and there is the type
bool of the value returned to the prompt after a value is throw’n to the reified continuation. The
third type is not directly represented in the types for callcc and throw, but is rather “hidden” in
the abstract type constructor cont.

The failure to represent the prompt type can lead to difficulty with the operational behavior of
callcc. From a theoretical standpoint, what Wright and Felleisen [26] call “strong soundness” fails
to hold. A language satisfies strong soundness if the type obtained from evaluating an expression
is the type assigned statically; the absence of run-time type errors is what Wright and Felleisen
term “weak soundness”. This difference between strong and weak soundness arises in the following
session of the SML/NJ interactive loop:

==> val ¢ = callcc (fn k=> fn x=>
throw k (fn y=> x+4));
val ¢ = fn : int -> int
==>fun g () =5 > (c 2);
val g = fn : unit -> bool

The value of g applied to () should be a function that, given any value, returns 6, and so the
type should be a function type. Nevertheless, the type system predicts the type bool. The same
behavior would happen any time a continuation is stored in some data structure like a closure or
reference cell. SML/NJ regards this as an anomaly, and resolves the problem by placing “prompt



stamps” on the initial continuations and aborting with a runtime exception if an initial continuation
is invoked under a prompt that does not match its stamp.

Our approach to typing callcc is simpler: we force the missing type of the prompt to be
included in the type of the reified continuation. If we were to modify the constructor cont, the
continuation k above would have a type like

(int -> int) cont (int -> int)

where the right side is the type of the prompt. This information could be used in the typing of an
expression that throw’s to this continuation. For instance, a top-level phrase yielding a value of
boolean type in which a value is throw'n to k must be rejected as having a type error. A logical
extension of this idea is to allow the programmer to insert explicit control points representing his
own prompts. This idea is not new; Felleisen [4] and Danvy and Filinski [2] study first-class prompts
in the untyped setting. It simplifies matters to resume execution at the control point marked by
the prompt, thus leaving the issue of whether to resume the computation within the reified control
to the program. To make this work with types, such a reification must carry the type of the
enclosing prompt. Our design makes it possible to check the correctness of this type statically.
We achieve this by requiring that prompts be typed and named—for Felleisen’s and Danvy and
Filinski’s original prompts, in contrast, there is only a single, untyped prompt [2, 4]. The reified
control fragments can then be treated as functions—that is, we do not need the type constructor
cont, only the function type constructor ->.

Before beginning the formal treatment, let us see how one example works. To begin with, we
create a new prompt by a gensym-like primitive operation new_prompt:

==> val p = new_prompt (): int prompt
val p : int prompt

This prompt can be set at control points expecting an integer and used to delimit a control fragment
that returns an integer. Two more primitives are required: (set p in a) which sets prompt p in
expression a, and the primitive (cupto p as k in b), which reifies the control up to p and binds this
to k in the expression b. Thus,

==>5 > (set p in 1 + (cupto p as k in 2 + (k 3)))
val it = false : bool

binds to k the control 1 + [_] (the control up to the point where the prompt was set), i.e., an
int-expecting, int-returning continuation, and evaluates (2 + (k 3)) in the control context 5 >
[.] (not 5 > 1 + []). When k is invoked as a function with 3 as its argument, the expression 5
> 2 + 1 + 3is evaluated to false. The reification k is treated as the ordinary function fn x =>
1+ x.

Notice how similar these operations are to exceptions and callcc, e.g., control behavior as
provided by callcc is achieved by setting a prompt at top level. In fact, the operation that reifies
the continuation is a typed version of Felleisen’s “functional continuation” operator F [4] or Danvy
and Filinski’s shift operator, operators that capture continuations as functions whose application
does not necessarily abort the computation. In terms of macro-expressiveness, F and shift can
express callcc and other control operators. The new_prompt and set operations, though, have
direct analogs in the exceptions of ML: new_prompt declares a new prompt just like the keyword
exception generates a new exception value, and set marks a breakpoint in the control context
just as try in CAML or handle in SML marks a breakpoint (although these have a handler
associated with them). After first describing the syntax and operational semantics of our language



and proving that the language is type safe, we show how to express a generalization of callcc and
simple exceptions, and show how to implement the operations as efficiently as callcc.

2 A Typed Language with Prompts

Table 1 defines the grammar of the language. The syntax is that of a restricted version of the core
of ML (without base constants, references, and exceptions) with three extra constructs for manipu-
lating the control flow of a program: new_prompt, set _ in _, and cupto _as _ in _. The language
is based on primitive syntax classes of variables x and prompts p. The construct new_prompt re-
turns a fresh prompt; set _ in _ establishes a new dynamic extent for the prompt to which the first
subexpression evaluates and runs the second subexpression; and cupto _ as _ in _, where cupto is
an abbreviation for “control up to”, reifies a function from the control context. The cupto oper-
ation binds its second subexpression—which must be a variable—to the control up to the value
of its first subexpression—which must evaluate to a prompt—in the scope of its third. Binding
conventions for the A-calculus portion of the language are the usual ones; we identify all terms up
to renaming of bound variables. We use the notation a[b/z] to denote the capture-free substitution
of term b for variable z in term a.

The typing rules for the language are given in Table 2. Here, A stands for a type context
whose syntax is given in Table 1. The operation close(A, 7) returns a type scheme (VY a; ... ap,. 7),
where {a1,...,a,} is the set of type variables occurring free in 7 but not in A. The syntax
restricts the expression bound by let to be a value, i.e., an expression that causes no immediate
subcomputation [13, 25]. The type system becomes unsound if the syntax of let is left unrestricted,
(this phenomenon—first pointed out by Tofte [23, 24] in the context of typing references in ML—
has been well-documented in the case of continuations [8, 11, 26]). For better readability we use the
syntactic sugar (let z = a; in ag) for ((Az.az) a;) for the monomorphic let. Some familiar facts
follow immediately from the form of the type system, e.g., one may easily construct an algorithm
(based on unification) that derives a principal type, as in ML.

A rewriting semantics in the style of [4] (a convenient reformulation of structured operational
semantics [15]) is given in Table 3. The semantics is given in two parts: the first part defines a
collection of evaluation contexts, which specify the positions in which a redex can be reduced,
and the second part specifies a collection of rules defining a binary relation —»,..4 for the reduction
of redexes. To do a step of evaluation on a term «a, one finds a context £ and a redex ag such that
a = Elag] and ay —yeq a1; then Flay] — Flai]. The redex reductions are of the slightly
more complex form ag/Py —peq @1/P1, meaning “the redex ay with prompts P, reduces to
expression a; with prompts P;” so reductions in an evaluation context have the form Elag]/Py —
Ela1]/P;. The set P,—the current set of allocated prompts—is much like a “store” in an operational
semantics of references, and determines the previously allocated prompts. Thus, the expression
(new_prompt ()) allocates a “fresh prompt” relative to the current P. Also, in the redex rules,
the notation E, denotes an evaluation context in which the hole is not in the scope of a setting
of prompt p. The rules specify how to reify a continuation and pass a value up to the nearest
dynamically enclosing prompt.

A few examples should make the behavior of the reduction semantics more apparent. To simplify
the examples, the term (let z = a in a’)—where the binding of z is not a value—stands for the
term ((Az.a') a). For instance, the expression

let = =new_prompt () in
set x in cupto z as k in (k (Az.z))



Table 1: Syntax

a = Expression
v Value
| (a1 a2) Application
|let z=vina Polymorphic let binding
| set a1 in ag Set a prompt
| cupto a; as z in ay Reify control up to a prompt
v = Value
T Variable
| () Unit value
| new_prompt Generate new prompt
| (A\z.a) Abstraction
| p Prompts
T = Type
« Type variable
| unit Unit type
| (1 — 1) Function type
| (7 prompt) Type of prompts
ou=Vay...oT Type scheme
Av=0]|Alz:0o]|Alp: 7] Typing context

Table 2: Typing Rules.

x:Var...an.T€EA (Var) (Unit) p:T€EA (Prompt Const)
AFz:7in/al,... /o] AF():unit AFp: (7 prompt)
Alz :mo)Fa:m (Fun) Alay:m—mn At ag:m (App)
A (Az.a): (o = 1) At (a1 az): 7
(Prompt)

A new_prompt : (unit — 7 prompt)

Abai:(nprompt)  Alz: (o = )lFa2:m (qypio)

At cuptoa; as x inas : Ty

At ay: (7 prompt) Ablag:T (Set) AFov:m Alz : close(A, )| Fag: 7 (Let)

AbFseta;inay: T AFletz=vina:m




Table 3: Operational Semantics.

E = Evaluation context
[-] Hole
| (Fa)|(vE) Application
| set £ ina|setpin E Set
| cupto F as z in a Cupto

Redex reductions

(Az.a) v)/P —eq alv/z]/P
let z=v ina/P —.¢q alv/z]/P
(new_prompt ())/P —rea p/{p}UP pgr
set pinv/P —,¢q v/P
set p in Ep[cupto p as z in a|/P — g (Az.a) (M\y. Eply])/P

Context reductions

ao/ Py —rea a1/ P
E[ag]/Pg — E[al]/Pl

first allocates a fresh prompt, sets the dynamic scope to be this prompt, reifies the (empty) contin-
uation as a function k, and passes to k the identity function. The final result is thus the identity
function. At a high level, the formal steps are

(let z = new_prompt () in set z in cupto z as k in (k (Az.2)))/0
— set p in cupto p as k in (k (M\z.2))/{p}
— (Ak.k (Az.2)) (A\z.z)/{p}

— ((Az.z) (Az.2))/{p}
— (Az.2)/{p}

This expression is also well-typed in the language: the variable z has type ((« — «) prompt)
and the continuation k£ has type ((« — «) — (@ — «)). Another example is that of an abortive
computation:

let = =new_prompt () in
set x in cupto z as k in (Az.)\y.y)

which aborts the computation and passes (Az. Ay.y) to the top-level.
There is actually more latitude in assigning operational semantics to the language than it first
appears. For instance, any of the following rules preserve the strong type soundness theorem below:

set p in Ey[cupto p as x in a|/P —,¢q set p in ((Az.a) (A\y. Eply]))/P
set p in Ey[cupto p as x in a|/P —,¢q set p in ((Az.a) (Ay.set p in Eyly]))/P

The first rule grabs the functional continuation but leaves the prompt p set in the continuation;
this corresponds to the operational semantics of Felleisen’s F operation [4]. The second rule also



leaves the prompt p set, but also grabs the “set” when the functional continuation is reified; this
corresponds to the operational semantics of Danvy and Filinski’s shift operation [2]. It is easy
to see how to simulate the first rule in our semantics by adding a set before every body of a
cupto. Similarly, the second rule can be simulated using the first. The other direction, though,
seems not to be known—that is, whether the weaker operational rules can simulate the operational
semantics we have given to cupto. There are even further possibilities, including ones that erase
all intervening set’s during a cupto [14]. All of these choices (as well as other, less interesting
choices) of operational rules lead to strong type soundness. We have merely focused on one of the
more powerful forms.

3 Type Safety

We now show that reduction preserves typing and each well-typed term never gets stuck at a
run-time type error.

Type safety is a subtle issue because “getting stuck at a run-time type error” is open to inter-
pretation. Some examples of “run-time type error” require little justification. For instance, the
non-well-typed term

(new_prompt()) (new_prompt())/0

cannot be reduced past a form (p; p2)/{p1,p2} for some prompts pi,pe; the result is obviously a
run-time type error because of the attempt to apply a non-function to an argument. But the issue
is subtle in the presence of control operations, and for our purposes not every “stuck” term is a
run-time type error. For instance, the well-typed term

let = =new_prompt () in cupto z as k in k / 0

reduces to (cupto p as k in k)/{p} with no further reductions possible—the continuation cannot
be reified since no prompt has been set. The situation for exceptions in ML is similar: well-typed
terms can still result in an “uncaught exception”. We leave aside these concerns and adopt an analog
to the ML convention, i.e., the term above does not represent a run-time type error. Theorem 9
provides a precise expression of our assumptions.

We first need a few simple lemmas about the type system that are essentially independent of
control operations.

Lemma 1 (Type Substitution) If AFa: 7, then A[ry/a] b a: 7[19/c].

Lemma 2 (Extension of Type Assignment) Let B be any type assignment whose domain con-
tains no free variables of a. Then ABFa:7 iff A-a:T.

A type scheme V o ... ay. 7 is more general than a type scheme V o ... ap. 7' if there are types 71,

. T such that 7[m /aq, ... , 7 /] = 7', where 7|11 /aq, ... , 7,/ ay] is the result of simultaneously
substituting the 7;’s for the «;’s. Similarly, a type assignment A is more general than a type
assignment B if they have the same domain D and, for all z € D the value A(x) of A at z is more
general than B(z).

Lemma 3 (Generalization of Type Assignment) If A is more general than B and Bt a : T,
then AFa:T.

Lemma 4 (Term Substitution) Suppose A+ ag : 7 and Alz : Vay...an.70] b a : 7, where
ai, ..., op are not free in A. Then At alag/z] : 7.



The proof of type safety for our particular language requires a few definitions. A type assignment
A is a prompt assignment if A = ([p; : 71]...[py : 7], and A’ is a prompt extension of a
prompt assignment A if A’ is of the form AA” where A" is a prompt assignment. Evaluation of
expressions may create new prompts but cannot change the type of an expression; thus, we write
ap/Py C ay/P; if P, contains Py and, for any prompt assignment Ay with prompts Py and any type
7 such that Ay F ag : 7, there exists a prompt extension A; of Ay such that P; is the domain of Ay
and Ay F ay : 7. It is not hard to see that the relation C is reflexive and transitive. One may also
easily prove the following lemma by induction on the structure of evaluation contexts.

Lemma 5 If ay/Py C a1/Py, then Elay]/Py C Ela1]/P:.

The important step of reduction is the capture of the current context up to a prompt. The context
E used in a program E[z] is turned into a function Az. F[z]. The following lemma will simplify the
corresponding case in the proof of subject reduction.

Lemma 6 Suppose A+ Elay]|: 7. Then there exists a type 179 such that A+ ay : 79 and, for any
term ag such that A& ag : 19, we also have A+ Elag] : 7.

Proof: By induction on the form of the evaluation context; the proof relies on the fact that the
hole in an evaluation context is not in the scope of any binding operation. Here are three typical
cases:

Case E =[.]: Then pick 79 to be 7.

Case F = (E' ap): From the hypothesis we know that A+ E'[a1] : 71 — 7 and A+ ag : 71. Thus,
by the induction hypothesis, there is a type 79 such that A - a; : 79, and, for any as such that
At ay: 19, we have AF E'[ag] : 11 — 7. The statement now follows from the typing rule (App).

Case E = (set E' in ag): From the hypothesis, we have A+ E’[a1] : (7 prompt) and A ag : 7.
Thus, by the induction hypothesis, there is a type 7y such that A - ay : 79, and, for any as with
At ag : 19, we have A  E'[as] : (7 prompt). The statement now follows from the typing rule
(Set). [ ]

Lemma 7 (Redex Contraction) If ag/Py —yeq a1/P1, then ag/Py C a1/P;.

Proof: Each case of redex reduction can be considered independently. Assume there is a prompt
assignment Ay with prompts Py, a type 7 such that Ag F ag : 7; we need to exhibit a prompt
extension A; of Ay such that P; is the domain of A; and A; Fa; : 7.

Case ag = ((Az.a) v) or (let z =v in a): In both cases the reduction steps for these forms do
not change the set of prompts. In each case, there exists a type 71 and a list W of type variables
not in the free variables of Ay such that Ag F v : 7 and Aglz : YW.n] F a: 7. Since a; = alv/z],
it follows from Lemma 4 that Ao F a1 : 7.

Case qg = (new_prompt ()): Note that Ay F new_prompt : (unit — 7’ prompt) and Ay F () : unit.
Suppose a; = p where p ¢ Py. If P, = Py U {p} and A; = Ap[p : 7], then A; F a; : (7' prompt).

Case ap = (set p in v): Trivial.



Case ap = (set p in Ej[cupto p as = in a]): The reduction step for cupto does not introduce
any new prompts. Thus, Ag - E,[cuptop as zina|: 7 and Ag - p : (7 prompt). Applying
Lemma 6, there exists a type 7y such that Ay F (cupto p as z in a) : 7 (1) and Ay = Epfa;] : 7 for
any expression a; such that Ag - a; : 71 (2). From (1) it follows that Ag[z : 71 — 7] F a : 7 and,
consequently, Ao F Az.a : (11 = 7) — 7. Let y be a variable that appears neither in the domain of
Agp nor in E,. By (2) and Lemma 2, Agly : 7] = Ep[y] : 7, and hence Ay = (Ay. E,[y]) : (11 — 7).
Thus, Ap = (Az.a)(Ay. Eply]) : 7 follows. ]

Theorem 8 (Subject Reduction) If ay/Py — a1/P1, then ag/Py C a1/ P;.
Proof: A simple combination of Lemmas 5 and 7. [ |

Note that Theorem 8 does not hold without the value-only restriction (or other restrictions on
polymorphic let); see [8, 11, 26] for examples.

Theorem 9 (Value Halting) Suppose A is a prompt assignment with prompts P. If A a: T
and a/P cannot be reduced, then a is either a value or a term of the form E,[cupto p as z in d/].

Proof: The proof is by induction on the size of a. The cases when a = (), new_prompt, p, and
(Az.a) are trivial, so consider the remaining cases:

Case a = (a; ag): There must be a type 7o such that A - a; : (72 — 7). By the induction
hypothesis applied to a1 /P, a; either is a value or has the form Ep[cupto p as z in a']. The latter
implies a has the form Ej[cupto p as z in a'], so consider the case when a; is a value. By the
induction hypothesis applied to az/P, as either is a value or has the form E,[cupto p as = in a/].
Again, the latter case means that the lemma holds, so consider the case when as is a value too.
Note that a; cannot be an abstraction, since a cannot be reduced. Since a; has a functional type,
it can only be new_prompt. Hence, as is of type unit, and it must be the value (). However, this is
not possible since a cannot be reduced. This rules out all cases but the case when a has the form
Ep[cupto p as z in d'], so the statement holds.

Case a = (let £ = v in a1): Then a could be reduced, contradicting the hypothesis.

Case a = (set a; in a): Then At ay : 7 prompt and A ag : 7. If a; is not a value, then it has
the form Ej[cupto p as x in ag], and therefore a is also of the form E[cupto p as x in ag] where
EI') = (set Ej, in ap). If a; is a value, a; must be a prompt ¢. Note that as cannot be a value, for
otherwise a could be reduced. Thus, az must be E,[cupto p as = in ag] where p # ¢ (otherwise a
can be reduced). Tt follows that a = E}[cupto p as = in ap] where E}, = (set ¢ in E}).

Case a = (cupto a; as = in ag): Then A+ a; : 7y prompt and Alz : 79 — 71| Fag : 7. If @y is
not a value, it must be of the form FE,[cupto p as y in ag] and so is a. Otherwise, it must be a
prompt ¢ and E, must not set ¢g. Thus a is of the form E,[cupto ¢ as = in ay] where £, = E,. m

The following theorem then follows immediately from the previous two theorems:

Theorem 10 (Type Safety) Suppose 0 - a : 7. Then either

1. There exists a value v and a prompt assignment A with prompts P such that a/} —* v/P
and AFv:T;

2. a/l) —* Ep[cupto p as z in da']/P; or

3. The reduction sequence starting from a/() is infinite.



Table 4: Signature for Prompts.

signature PROMPT =
sig
exception Uncaught_prompt (* to report uncaught prompt *)
type ’a prompt
val new_prompt : unit -> ’a prompt

val set : ’a prompt -> (unit -> ’a) -> ’a
val cupto : ’a prompt -> ((’b -> ’a) -> ’a) -> ’b
end

4 Expressiveness

In this section, we consider several extensions to the base language: regular (aborting) continua-
tions, simple exceptions, and global references.

In this section, we assume that cupto is provided in the language as a module with the following
interface given in table 4. That is, we will write cupto a; (Az.a2) and set aj (A().)ag instead of
cupto a; as = in as and set a; in as.

4.1 Callcc

Using prompts, we can provide a safe implementation of callcc. However, as opposed to callcc
in SML/NJ, a different prompt is set (here explicitly) at the begenning of each phrase. The type
system will then prohibit interaction of control between different toplevel phrases, and avoid the
runtime anomaly of callcc in SML/NJ.

This extension is given as a module with the following interface:

type (’a,’b) fcont

type ’a toplevel

val shift : ’a toplevel -> ((’b,’a) cont -> ’a) -> ’b
val reset : ’a toplevel -> (unit -> ’a) -> ’a

val callcc : ’a toplevel -> ((’a,’b) cont -> ’b) -> ’Db
val throw : ’a toplevel -> (’a,’b) cont -> ’b -> ’c
val eval : (’a toplevel -> ’a) -> ’a

Each phrase will be evaluated after setting a new prompt.

let eval a =
let toplevel = new_prompt () in
set toplevel (fun () -> a toplevel);;

The type of the prompt passed to a is also the type of the toplevel phrase. (Here, the user is
responsible for setting the prompt at the beginning of each phrase, by calling the eval function.)
The abstract type >a toplevel of this prompt (see the interface) forces the user to call eval once,
but it does not prevent from several calls to eval, which would be erroneous.

type ’a toplevel = ’a prompt

10



Continuations are all returning to the toplevel. Thus, their type (’a,’b) fcont uses an extra
parameter ’b to remember the type of the toplevel phrase.

type (’a,’b) fcont = ’a -> ’b;;

The encoding uses an auxiliary operator shift that captures the current evaluation up to the
toplevel prompt, then resets the toplevel prompt, and starts a new evaluation in which the aborted
computation is bound.

let shift toplevel a = cupto toplevel (fun k -> set toplevel (fun () -> a k))

The typing constraint imposes that the return of the new expression is also the type of the toplevel
phrase. Note that the traditional abort is in fact a special case of shift when the new evaluation
does not uses the aborted continuation). The operator reset is just the same as set:

let reset = set
The most interesting operation is callcc, which can easily be expressed with shift :

let callcc toplevel a =
shift toplevel
(fun k => k (fun () -> (&2 (fun r => k (fun () -> 1)))))
OF

The current continuation k is shifted but it is immediately reinstalled before the evaluation proceeds
with a. The only difficulty is to get the evaluation order right.

Here, k is captured as a non-aborting functional continuation. Thus, when £ is resumed it must
first abort the current continuation. This is realized the following function.

let throw toplevel vl v2 = shift toplevel (fun k -> vl v2);;

Since continuations captured with callcc have the abstract type ”(’a,’b) cont”, they can only be
reified by calling throw. This ensures that the current evaluation will always be aborted right
before a continuation is reinstalled. This use of throw instead of a functional continuation allows a
better typing of reification: since reification abort the current evaluation, the return type a throw
expression is unconstrained. .

These continuations gives a better account of continuations in an interactive language. However,
they do not provide more safety: a new distinct prompt is set at the begenning of each phrase so
that different toplevel phrases may return values of different types. Thus, if a control operation is
transmitted from one phrase to another one, e.g. through a closure or a reference cell, the prompt
of the old control will not match the current prompt and an uncaught-prompt error will occur
dynamically. This will be detected statically whenever the return type of the two continuations
do not match. However, this is not detected when the two phases have the same return type. We
could strengthen security by giving each toplevel prompt a different abstract type.

The uncaught-prompt error will occur even if the continuation does not actually attempt to
return to an old toplevel. In the follow section, we explain how to recover the less permissive
behavior of Sml/Nj.
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4.2 Stamped toplevel prompts

We now provide a module with the following interface:

type ’a cont

val callcc: (’a cont -=> ’a) -> ’a
val throw: ’a cont -> ’a -> ’b
val eval: (unit -> ’a) -> ’a

To allow control to cross toplevel boundaries, one solution is to make all toplevel prompts
identical. Thus, one could make the following definitions:

let toplevel = new_prompt();;
let callcc £ callcc toplevel f£f;;
let throw vl v2 = throw toplevel vl v2;;

This will actually work, but all phrases will be forced to have the same type. Indeed, if several
phrases exchange control, they must have the same prompt and therefore they must return values
of the same type.

The implementation of callcc in Sml/Nj allows several phrases to communicate as long as a
phrase never returns to the toplevel prompt of another one. This is actually sufficient to ensure
safety, but the proof of this fact relies on a global invariant and cannot be derived from types.

We can easily provide an implementation of the above behavior, but we must bypass the type
system at one point. In the implementation we will assume that the toplevel prompt is unit. (Any
arbitrary contant type would be fine).

type ’a cont = (’a, unit) fcont;;
Then, we replace the eval function by

let phrase = ref (ref ());;
exception Toplevel;;

let eval a =
let p = ref() in

phrase := p;
set (Obj.magic toplevel)
(fun () -> let r = a() in if !phrase == p then r else raise Toplevel);;

The reference phrase contains a marker of the current phrase. The exception Toplevel is used to
report a prompt mismatch as in Sml/nj.

The function eval differs from the previous definition in two ways. First, it disables the typing
constraint between the type of the phrase and the one of the prompt. This is corrected by marking
each phrase with a new stamp, and checking before the result is returned that the static marker of
the phrase is also the marker of the phrase that is currently being evaluated.

There is another slightly less natural encoding that does not require any magic. Instead, once
can use the exceptional mechanism of cupto (see next section) to “jump other the type constraint”.
Only the eval function need to be rewritten:

let eval a =
let p = ref() in

12



phrase := p;
let q = new_prompt() in

set q
(fun OO ->
set toplevel
(fun OO ->
let r = a() in
if !phrase == p then cupto q (fun _-> r) else raise Toplevel);

raise Toplevel);;

The potential type error has been replace by a potential uncaught prompt. Of course none will
ever occur if our implementation is correct, but the is a meta property.

Note that one could also have used a local exception instead of a local prompt to produce
the same effect. As is well known, local exceptions provide are an extensible datatype (several
indenpendent extensible datatypes can then be obtained using the generativity of the module
system). In turn, extensible datatypes provides some weak form of dynamics, which is one what
is needed in the above example. As we shall see in the next section exception as implementable in
terms of cupto’s...

4.3 Simple exceptions

Simple exceptions are a simplification of the exception mechanism found in most ML variants.
Simple exceptions require three new forms: new_exn, which generates a new internal name for an
exception; (raise a1 az2), which raises an exception a; with value ao; and (handle aq ay as3), which
evaluates a; to exception h and ao to vo, and then evaluates a3 so that if exception A is raised with
a value v, the evaluation of ag aborts and handler vs is applied to v. The semantics of exceptions
uses internal exception names h, new evaluation contexts

E :=...|(raise F a) | (raise v E) | (handle F a d') | (handle v E a) | (handle v v’ E)
and new redex rules
(newexn ())/X,P —reqa h/{h} UX,P, h¢gX
(handle h v v')/X,P —.eq v' /X, P
(handle h v Ej[raise h v'])/X, P —.cq (vv')/ X, P
where X is a finite set of exceptions and Ej, is an evaluation context with no intervening (handle
h v" E) expressions. The new operations can also be typed—mnot surprisingly—using typings similar

to those in ML. If we add a new type construction (7 exn) to the syntax of types, the types of the
new operations are

(New Exception)
A new_exn: (unit — 7 exn)

__h:7€A  (Exception Const)
AF h: (7 exn)
At ay: (7 exn) Al_agiT(

Raise)
Al (raise aj ag) : 1

AbFay:(rexn) AbFax:(r—1) Alas:m (Handle)
At (handle a1 ag a3) : 7o
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It is a simple exercise to extend the proof of Theorem 10 to the enhanced language.

The ability to encode simple exceptions represents a distinct increase in expressive power over
the language with callcc. The argument, due to Mark Lillibridge, is remarkably simple. In
the polymorphic A-calculus without recursion, adding callcc does not change the terminating
nature of computations, while adding simple exceptions suddenly permits the programmer to write
nonterminating computations. The encoding, which actually permits the encoding of the entire
untyped A-calculus, appears in [12].

Simple exceptions differ from the form of exceptions found in SML and CAML in three ways.
First, exceptions are generated from new_exn rather than declared by the keyword exception.
This difference is inconsequential, since one may use let to bind an exception to a name. Second,
one may not handle multiple exceptions in one handler. Again, the difference is inconsequential,
since one may use multiple handle expressions to yield the same effect. Third, handlers must
be given with respect to a specific exception. For example, in most ML variants one can write
(handle _ ay a3) that catches any exception raised during the evaluation of az—even one that is
declared in a3. This difference is substantive; wildcard patterns are a useful feature, giving the
programmer the ability to recover from arbitrary errors.

Simple exceptions are a redundant feature in our language.” That is, one may easily expand
the three primitives for simple exceptions into our base language without exceptions but with
new_prompt, set, and cupto (i.e., simple exceptions do not change the “expressiveness”, in the sense
of [5], of the language). Let [a] be the notation for the translation of a term with simple exceptions
to one without. The translation of new_exn is simply new_prompt, i.e., [new_exn] = new_prompt.
The translation of (raise a1 ag) is

1

let z; = [a;] in
let x5 = [ag] in
cupto z; as k in x9

where x1, z9, k are distinct fresh variables. The translation of the term (handle ay a2 a3) is

let 1 = [a;] in

let z3 = [az] in

let p =new_prompt () in

set p in

(Az. (cupto p as k in (z32)))
(set z; in
let z3 = [ag] in
cupto p as k in x3)

where 1, x4, z,p, k are distinct fresh variables. The translation of an exception constant h is a
prompt constant with the same name. Finally, the translation is homomorphic in all of the other
operations, e.g., [(a1 a2)] = ([a1] [az])-

Exceptions can be provided as a module with the following signature:

type ’a exn

We do not know how to encode ML handlers with wildcard expressions without an extensible datatype in the
language. An extensible datatype is an ML datatype where new constructors can be added later. Indeed, the type
ezn is such an extensible datatype in several implementations of ML, e.g., CAML or SML. One can then simulate
full exceptions with a unique “exception” carrying values of type ezn and the wildcard handler becomes a regular
handler.
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val new_exn : unit -> ’a exn
val raise : ’a exn -> ’a -> ’b
val handle : ’a exn -> (’a -> ’b) -> (unit -> ’b) -> ’b

and implementation

Open cupto;;
type ’a exn = ’a prompt;;
let new_exn = new_prompt;;

let raise p v = cupto p (fun _ -> v);;

let handle p h a =
let q = new_prompt() in
set q (fun () —>
h (set p (fun () ->
let v = a() in cupto q (fun _ -> v))));;

4.4 References

Functional continuations can also be used to encode reference cells. This fact is not surprising:
references can be encoded with Danvy and Filinski’s shift and reset, and shift and reset can
be encoded using our operations. Nevertheless, the ability to encode reference cells demonstrates a
large increase in expressive power over a language with callcc: reference cells that store functions
give one the ability to encode nonterminating computations, just as exceptions do. For instance,
the SML program

let val r = ref (fn ) => ())
val f = fn x => (!r) x
in r:= f;
£ 0O
end

diverges, even though the code involves no recursion or recursive types.
Precisely, we will provide a module with the following interface:

type ’a ref

val ref : ’a prompt -> ’b -> (°b ref -> ’c) -> ’c
val (!) : ’a ref -> ’a

val (:=) : ’a ref -> ’a -> unit

val eval : (’a prompt -> ’a) -> ’a

The type ’a memory is the type of the store for a program returning values of type ’a.

The principle of our implementation is to closely follow the store small-step reduction semantics
for references, which can be defined as follows. Expressions are extended with a finite collection of
locations writte with letter /, and three primitives ref , ! and :=. Programs are now run in a toplevel
store composed of a list of bindings. We actually prefer to treat bindings as local constructs, i.e.
we extend the language of expressions, and evaluation contexts with bindings

a:[]|locl=ainalb =[] |locl=vin E
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We write E; for a context that does not define [ on the its path. We also write { for the toplevel
mark. Evaluations rules are:

TE[ref

fE[loc I =v in Ej]!
TE[locl =wvin Ejfl :=v
loc/=wvin

v] — floc ! =w in EJl] [ ¢ dom (S)
] — f1E[loc ! =w in Ejv]]
]/ — {E[loc =" in Ej[()]]

!

]
]
vo— v [ ¢ dom (v")

Functional expressions do interact a with the store since:

[a1] — [ad] (Functional)
Ela1] — E[a2]

Since new locations are always added in front, the evaluation of a program with originally no
location stops with a value preceded by a sequence of store bindings.

In the implementation, we use one prompt to get direct access to the top of the store where
new cells can be dynamically added. As usual, we evaluate a phrase after having set a new toplevel
prompt

let eval a =
let toplevel = new_prompt() in
set toplevel (fun () -> a toplevel);;

New reference cells can be inserted in front of the current evaluation.

let ref toplevel (x : ’a) (a : ’a ref -> ’b) =
let return x = cupto toplevel (fun _ -> x) in
letap O =apin
(cupto toplevel

(fun z ->
(set toplevel
(fun O —>

let p = new_prompt() in
store p x (set p (fun () -> return (z (a p)))))))
) O35

Here, x is the initial value of the reference cell to be created and a is the part of the program that
should have the reference in its static scope. Thus it is an expression abstracted over the prompt
p that will serve as a handle to reach the new reference. The function return is used to abort
the evaluation when it terminates and jump over all the reference remaining of the store. This
also prevents the reference cells to be constrained to being of the same type. The next line is just
to freeze the evaluation of “a p” and thus drive the evaluation in a correct order. Finally, the
evaluation context is captured up to the toplevel, the toplevel prompt is reset, the cell is installed,
and the evaluation continues with value p as a handle to the new reference cell.

The cell itself is implementated as a continuation store x p [] that is defined as follows. It
waits for an action of the following form:

type ’a action =
Write of (’a * (unit -> ’a action))
| Read of (’a —-> ’a action);;
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and processes the action accordingly.

let rec store p (x:’a) (action : ’a action) =
match action with
Write (y,f) -> store p y (set p f)
| Read £ -> store p x (set p (fun () -> f x));;

A Read f request is answered by reinstalling the same store and the previous evaluation context
f with value x. A Write (y,f) request is answered by reinstalling a the store with value y and
the previous evaluation context £ with value (). Thus, the two remaining primitives are straight-
forward:

let (!) r = cupto r (fun £ -> Read £f);;
let (:=) r x = cupto r (fun f -> Write (x,f));;

The type of reference cell is the type of its prompt handle. That is,
type ’a ref = ’a action prompt;;

Another possible encoding would be to have a single reference cell and represent the store as an
association list (using extensible-data types). The encoding we gave here is more direct and more
interesting. It would be possible to extend the encoding, for instance to enable explicit deallocation
of reference cells during evaluation, as can be done in C' for instance. This operation would of course
be unsafe and result in an uncaught prompt.

4.5 Mixing the encodings

The three previous encodings can be merged together. However, they should be hierarchical, the
higher ones preserving the invariants of the lower ones. This is actually the case if the encoding of
the store is the outer one (its prompts are outer all other prompts), then the encoding of callcc,
and the last the encoding of exceptions.

5 Multiple prompts

Cupto is a generalization of known control operators in two ways. On the one hand, it slightly differs
from Danvy and Fellinsky’s shift/reset and Felleisen’s C control operators in the way it captures
and resets the prompt itself. These differences are minor from a typing point of view. Our choice
increases expressiveness, since other operators can be derived, but it simultaneaously weakens our
invariants, which may make reasoning on programs harder. On the other hand, Cupto allows for
multiple prompts. Although multiple prompts have been proposed earlier in the litterature as a
way of hierachizing control, multiple prompts are more essential in our proposal since they directly
allow for continuations returning values of different types.

In this section, we show that multiple prompts can in fact be derived from cuptos with a single
prompt using an extensible data-type. Such an extensible data-type could be primitive, as for
instance the type of exceptions, or provided as a library. To be independent, we will use the
following library:

module type Extensible = sig
type t
type ’a constructor
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val create : unit -> ’a constructor

val inject : ’a constructor -> ’a > ¢t

val matches : t -> ’a constructor -> (’a -> ’b) -> (¢t -> ’b) -> ’b
end;;

which we can implement as follows

module Make (X : sig end) : Extensible = struct

type t = Obj.t

type ’a constructor = unit ref

let create () = ref ()

let inject ¢ v = 0bj.repr (c,v)

let matches x ¢ £ g =

let xc, xv = Obj.magic x in if xc == ¢ then f xv else g x

end;;

The operation create builds a new data constructor of the extensible datatype; inject takes a
constructor and a value and injects the value into the extensible datatype; and matches branches
on the value of the constructor, calling the third argument or the fourth depending on whether or
not the first and second arguments match. Note the use of casts, and the fact that t—an abstract
type outside the module—is given a quite meaningless, but concrete, implementation type in the
module. (Another way of implementing the extensible datatype idea without casts is to use the

type of exceptions.) Thus, the stack is a stack of elements of the extensible datatype t.

Then we can implement a module of signature that reimplements cupto in terms of cupto, but

using only a single prompt from structure C. Its interface is 2

module Mcupto (C : PROMPT) : PROMPT = struct
First, we define a new extensible datatype:

module E = Extensible.Make (struct end)

type action = Return of E.t | Cupto of (E.t * ((unit->action) -> action))
type ’a rc = R of ’a | C of (((unit->action) -> action) -> action)

type ’a prompt = ’a rc E.constructor

let new_prompt() = E.create()

let inject_C p x = E.inject p (C x)
and matches_ C q p f g = E.matches g p (fun (Cy) -> f y) g

exception Bug
let inject_R p x = Return (E.inject p (R x))
and is_R p (Return x) = E.matches x p (fun (R y) -> y) (fun z -> raise Bug)

The heart of the implementation is the following code

2To be exact, PROMPT should here be a restriction of the signature PROMPT without the Uncaught_prompt exception,

but this is unsignificant.
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let control = C.new_prompt()
let compose set k’ k x = k’ (fun () -> set (fun ) -> k x))
let rec set_control p a =
let comp = compose (set_control p) in
match C.set control a with
Cupto (qa, k) —>
matches_C qa
p (fun a -> a k)
(fun ga-> C.cupto cut (fun k’-> Cupto (qa, comp k’> k)) ()
| x -> x

let cupto_control p a =
let a’ k’ k = a (compose (set_control p) k k’) in
C.cupto control (fun k’ -> Cupto (inject_C p (a’ k’), fun x -> x()))

Then, set and cupto are simply wrapping coercions around their -control versions

let set p a = is_R p (set_control p (fun () -> inject_R p (a())))
let cupto p a =
cupto_control p (fun k -> inject_ R p (a (fun x -> is_R p (k x))))
end; ;

The encoding is interesting for several reasons. It is definitely more complicated that the previous
encodings, which suggests why multiple prompts should be provided as a primitive construction,
rather than encoded. As previous encoding, this one is well-type, but somehow bypass the type
system using extensible data-types and partial parttern matching: this is of course, at the price of
possible dynamic uncaught prompts. The encoding is correct, but the proof is external as opposed
to a (partial) internal proof given by the type system.

6 Implementation

To complete the argument that prompts and cupto are simpler and easier to use than callcc, we
show that the cupto can be implemented as efficiently (in an asymptotic sense) as callcc.

Our operations—including multiple prompts—can be implemented as a module in SML/NJ
with the signature in Table 4. Other implementations of functional continuation operators appear
in the literature: for instance, Filinski [6] shows how to encode control operators with callcc and
one reference cell under the assumption that there is one prompt. The module provides a way to
translate complete programs in our language to SML programs. The module has three primitives
new_prompt, set and cupto that implement the constructs of the same name.

The Appendix gives an implementation in SML/NJ. It has the same flavor as the untyped
encoding of shift and reset [22] into Scheme with callcc, but it is not easy to relate them in a
precise way, since the languages that they encode are also different.

The time analysis of our implementation is important to consider. The analysis depends cru-
cially upon the implementation of callcc. Assuming that the cost of callcc and throw are
constant—as they are in cps compilation strategies used by, e.g., SML/NJ [1]—the encoding yields
an efficient implementation of the operations. Examining the code in the Appendix, the new_prompt
and set are clearly constant time operations. The cost of cupto may, however, be proportional to
the number of set’s that have been done before. If the program contains just one prompt—as is
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the case with programs written using only callcc—all operations take constant time. Moreover,
the small factor by which the cost is increased in the simulation might be compensated by the
conciseness of programs using cupto rather than callcc.

For stack-based compilation strategies, callcc is an expensive operation, and therefore the
simulated operations will also be expensive. A direct implementation of our operations might be
more efficient. For example, a primitive implementation of cupto’s could mark the stack when
setting a prompt, so that one could avoid copying the entire context. Of course, since functional
continuations can express callcc, reifying a functional continuation cannot be faster than capturing
an abortive continuation of the same size. However, in many examples (see the next section),
callcc’s come in pairs and, in effect, implement some portion of functional continuations. In other
words, the use of functional continuations in applications might actually increase the performance.

How can we compare the efficiency of our implementation via callcc to a primitive imple-
mentation of cupto? For sake of simplicity, consider a restoring cupto and the following scenario.
First, the execution starts in an empty context which grows to a control point £; where a prompt
is set. Then the evaluation continues with a; and reaches a control point E;[set p in E5[_]] where
the context up to p is reified as k and evaluation continues with ay. The whole program is of the
form Fi[set p in a;] where a; is itself

Es[cupto z as k in set z in k ag).

The comparison of performance naturally depends on the quality of the compilation of continua-
tions. Let us call an implementation “naive” if it always copies the part of context corresponding
to the context that is reified. With a naive implementation of continuations, primitive functional
continuations are clearly more efficient than simulated ones: both E; and E, are copied by the
simulation while only Ej is copied with a primitive implementation. There are also “smart” imple-
mentations that copy the context lazily, i.e., just before the context is popped. Given support from
the garbage collector, this may avoid copies of reified continuations that have become unreachable
at the time when copying should occur. We do not know whether smart compilation would equally
benefit both the simulated and the primitive cupto. It might also be the case that if prompts
are set frequently, cutting up the context would become unnecessary in the case of prompts, i.e.,
a naive primitive implementation of cupto might run as efficiently as a smart implementation of
callcc.

Queinnec and Serpette have described an implementation of functional continuations [17] that
never copies the stack. Roughly, their idea is to freeze some active part of the stack, and jump
over that part until it becomes garbage. However, their semantics differs from ours since prompts
are erased from the context during reification (see Section 8). It is not clear that their compilation
schema can be applied to our semantics, and, if the schema can be applied, whether one obtains good
performance. Moreover, their method requires garbage collection on the stack and penalizes block
allocation. This makes the implementation closer to a stack-less implementation, and performance
should be comparable to the case of CPS-implementations.

7 Programming Examples

7.1 Meta-programming

Manipulating control is by nature more difficult than sending values to fonctions. For that reason,
it has often been argued that callcc is and should remain a meta-programming construct. That is,
it should only be used by experts to implement libraries which would then be simpler and safer
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to use. A typical example are subroutines. Some encoding with of subroutines with callcc can be
found in . The encoding of subroutines with cupto is similar.

The section on encodings has shown that with respect to meta-programming, cupto is more
expressive than callcc. Some of the encodings are not at all possible with callcc. Others would be
much more difficult. Here, we show a few useful constructs than are both immediate applications
of cupto and small variations on know constructs.

Patchers are a very restrictive forms of cupto that cannot capture the continuation, but only
insert a patch when the execution will return at some current prompt and resume immediately.

let patch p f = cupto p (fun k -> £ (set p k));;

For instance, an exception may sometimes be replaced by a warning, which should leave the exe-
cution but later report a possible mistake.

type ’a warning = ’a prompt;;

let new_warning = new_prompt;;

let warning p s = patch p (fun (v, 1) -> (v, s::1));;

let handle p h a = let (v,1) = set p (fun OO -> a(), [1) in h v 1;;

let arith = new_warning();;

let arith_handler v = function
[1 -> v | [s] -> print_string (s""\n"); v
| -> print_string "Warning: many arithmetic errors\n"; v;;

let handle_arith a handle arith arith_handler a;;
let (/) x y = if y = O then warning arith "division"; max_int) else x / y;;
let (mod) x y = if y = O then warning arith "modulo"; max_int) else x mod y;;

One could think of using a global reference. Indeed, the patching itself changes the state of a
reference on the stack. However, the scoping rules to reach the reference are dynamics, as those or
prompt or, equivalently those of exceptions. That is a warning could be dynamically trapped, as
an exception can. This suggests a notion of reference following similar scoping rules.

References with backups Here, we extend the encoding of references with cupto to provide
a backuping operation. Backuping follows the stack discipline, that is, the reference is implicitlty
reset to its old value saved on the stack when the stack is popped. More precisely, the reduction
semantics is

loc [ = v in Ejlbackup !l a] — loc | = v in Fj[loc [ = v in q]

Actually one also need to add a cleaning up rule
loc [ =v in Ejfloc [ = v in v'] — loc [ = v in E[v']

which allows to normally restore the saved location. Note that since a localtion can only be non
local if is already is global, local always locations can be clean up.
We provide backup’s as a new primitive of the following type:
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value backup : ’a ref -> (unit -> ’b) -> ’b

In a single-thread language, this can be trivially implemented by the following code:
let backup r a = let x = !r in let v = a() in r := x; v;;

Actually, in ML one must carefully protects against exceptions:

let backup r a =
let x = !r in try let v = a() in r := x; v with z -> r := x; raise z

However, in languages with threads, callc, or cupto, this will not work anymore. We can easily add
the following function to our implementation of references:

let backup r a =
let q = new_prompt() in
let return x = cupto q (fun _ -> x) in
set q (fun () -> store r (!r) (set r (fun () -> return (a()))));;

Here, since the new value is stored on the stack, the code is multi-thread compliant. Remark that
warnings can be trivially be easily encoded with backup.

Pushy exceptions Pushy exceptions are a variant of exceptions used in some lisp dialects where
the handler is executed on the top of the stack. It may then decide either to continue of to stop the
current evaluation. We won’t detailed the implementation here, but they can easily be encoded by
mixing exceptions with either warnings or backups.

Shift /reset with multiple promts In section 4, we have shown an encoding of shift/reset as a
side effect of the encoding of callcc. Hierarchical shift/reset has been proposed. In fact our encoding
naturally allows shift/reset with multiple promps, as a module with the following interface:

type ’a prompt

val shift : ’a prompt -> ((’b -> ’a) -> ’a) -> ’b
val reset : ’a prompt -> (unit -> ’a) -> ’a

val new_prompt : unit -> ’a prompt

and the following trivial implementation, which shows that shift/reset is a simple restriction of
cupto.

type ’a prompt = ’a Cupto.prompt;;

let shift p a = Cupto.cupto p (fun k -> Cupto.set p (fun () -> a k));;
let reset = Cupto.set;;

let new_prompt = Cupto.new_prompt;;

Here, the toplevel prompt has not been set, the user should ensure that ”shift” should will only
occur in a dynamic context that contains a "reset” occurs.
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8 Comparison with Previous Work

We have already seen, in Section 2, how the operational semantics of our control operations com-
pares with Felleisen’s F and Danvy and Filinski’s shift operation. Many other choices of func-
tional continuation operations are possible, e.g., Hieb and Dybvig’s spawn [9] and Queinnec and
Serpette’s splitter [17]. See [14, 16] for a detailed comparison of the operational semantics of
these operations.

With one exception, none of these papers consider type systems for functional continuations.
The sole exception is Queinnec and Serpette’s paper [17] on splitter, abort, and call/pc. These
operations differ in some respects from our three operations of new_prompt, set, and cupto. Using
a notation similar to ours, the types of the operations are

splitter: (7 prompt — 7) = T
abort : 7 prompt — (unit — 7) — 79
call/pc: 7 prompt — ((79 = 7) — 79) — To

The splitter operation sets a new prompt and runs the body. If abort is ever called with that
prompt and an argument (a thunk), the prompt is erased and the thunk is called in the continuation
before the splitter. If call/pc is ever invoked with a function, the continuation up to the prompt
is reified and all its internal prompts are unset before it is passed as an argument. Using our notation
and operations for clarity, the operational semantics can be expressed by the rules

(splitter a)/P —,¢q (set p in (a p))/PU{p}, p¢ P
(set p in Eylabort p a])/P —req (a ())/P
(set p in Ey[call/pc p a])/P —yeq (set p in (Ep)[a (Az. Ep[z])])/P

where (F) stands for the context E where all prompts have been unset, i.e., (set p in F) is F
and the transformation is homomorphic on other constructs (only prompts can be in the position
of p, since set _in _ expressions are all introduced by the reduction rule for splitter). We do
not know if they proved a type soundness theorem as we have: the paper [17] does not state the
theorem nor attempt to prove it, but using our proof technique it is easy to carry out.

Apart from this significant difference, Queinnec and Serpette’s splitter also comes closest
to ours in adding multiple prompts. Others, notably Sitaram and Felleisen [22] and Danvy and
Filinski [2], have added multiple prompts and control operations to languages to obtain more
control. The difference between these operations and our language (and Queinnec and Serpette’s)
is important: prompts in our proposal are hidden in an abstract type that only the compiler
can manipulate, whereas in [2, 22] the representations of prompts are known to the programmer
(as integers). The hidden representation of prompts is essential for implementing exceptions in
a correct manner: the implementation generates fresh prompts that programmers cannot cupto.
Also, having a special type of prompts makes it easy to incorporate prompts into a language like
ML; we otherwise would need some cumbersome naming scheme for infinite sets of prompts at each
type.

Aside from the rigorous treatment of types, the single identifiably new feature in our proposal is
the decomposition of declaring a new prompt from setting a prompt, and the corresponding ability
to set a prompt more than once. This is again used in our encoding of exceptions, but we know of
no other natural examples which require one to set a prompt more than once.
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9 Discussion

We have shown how to incorporate primitives for first-class prompts and the reification of control
up to a prompt in a statically-typed language. Let us consider briefly the theoretical, programming,
and compilation issues related to these primitives.

We believe that the primary theoretical benefit of using named, typed prompts arises in the
simple proof of strong soundness. In fact, our choice of constructs can be used to simplify proofs of
strong soundness for other control operations. For instance, to prove strong soundness for callcc,
Wright and Felleisen [26] consider only expressions that do not contain an abort. Given their
way of expressing the semantics of callcc, this is essentially equivalent to ruling out expressions
containing continuations reified relative to a different top-level. The restriction works because any
continuations reified in the course of the evaluation of a given expression must all be relative to the
top-level for that expression. Our typing gives a way to explain the strong soundness for callcc
more perspicuously: when the user types an expression, the interactive top-level loop simply creates
a fresh prompt (with the type of the expression) and set’s; all callcc’s are then done via cupto’s
to this fresh prompt.

To determine whether named, typed prompts are useful in programming requires some experi-
ence in writing programs. In the untyped case, prompts add significant expressive power [20, 21];
we believe the examples of [20] could be typed in our system. We also conjecture that many appli-
cations that currently uses callcc (such as various threads packages or CML) could benefit—for
instance, the explicit prompt mechanism may simplify the implementation of threads in a inter-
active top-level loop. At the very least, the sense in which callcc can be easily encoded in our
language should ensure that switching to explicit prompts will cost little.

A challenge left open by this work is still an efficient direct implementation of the operations,
especially for stack-based compilation strategies.

Although our operations have better typing and programming properties than callcc in a
language like ML, there is still the larger question of whether inexpensive, continuation-based
operations are really necessary. Concurrency operations can be easily built using continuations,
but there are not very many other good examples of programs that need continuations, and con-
tinuations are difficult to use for the non-expert programmer. It may well be that concurrency
primitives are more fundamental and important than continuation operations, but until the right
set of primitives is found it may be best to build in continuation operations.

Acknowledgements: We thank Andrew Appel for discussions about how “prompts” are encoded in
the SML/NJ interactive top-level loop, Bruce Duba, Andrzej Filinski, Dan Friedman, Trevor Jim,
and Christian Queinnec for several helpful discussions, Chris Okasaki for revealing problems with
exceptions in our original SML/NJ implementation, and Matthias Felleisen and Tim Griffin for
detailed comments on drafts.
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A Encoding cupto with callcc

We first describe the implementation in SML/NJ using callcc, and then give a sketch of the proof
that this encoding is correct. The code has also been ported to the bytecode version of Objective
CAML with callcc implemented in C.

A.1 Implementation of prompts with callcc in SML/NJ

There are two key ideas in the implementation. The first is to use a stack of continuations to model
the prompts that have been set, each continuation representing the rest of the computation after
the set expression terminates normally. A difficulty with types arises immediately, however: since
prompts can have different types, continuations corresponding to different set’s may expect values
of different types. For instance, in the code

let p = new_prompt ()

q = new_prompt ()
in 1 + set p (fun () => if set q (fun () => true) then 2 else 3)
end

the continuation executed after the first set expects an int, whereas the continuation executed
after the second set expects a bool. In other words, the continuations have types (int cont) and
(bool cont) respectively. To solve the typing problem, we need a way to coerce these differently
typed continuations into a single type.

A second key idea is needed in order to implement the peculiarities of our operations. When
performing a cupto, the stack must be unwound to the point of the corresponding set. All but the
last unwound continuation must be restored to the stack if the functional continuation is ever called,
because they can be cupto’ed. The last unwound continuation, corresponding to the continuation
after the set, can never be cupto’ed because of our semantics that erases the set. Nevertheless,
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we must still be able to jump to that continuation after the set expression terminates. Thus,
continuations on the stack come in two flavors: those that represent set’s that have not been
cupto’ed and those that do.

First, we define some basic exceptions, abbreviations, and the stack operations themselves.

exception Prompt;;

exception Bug;; (* should never be raised *)
type ’a control = ’a cont * exn list;;

module E = Extensible.Make (struct end);;

let stack = ref ([]: E.t list);;

let push pc = stack := pc :: !stack;;
let pop () = match !stack with [] -> raise Prompt
| pc :: rest -> (stack := rest; pc);;

Second, we define two primitive types and two operations.

type ’a result
let freeze f x = try Value (f x) with z -> Exception z;;

let unfreeze = function Value x -> x | Exception z -> raise z;;
type ’a prompt = (bool * ’a result cont) E.constructor;;

Value of ’a | Exception of exn;;

The value type constructor wraps two possible outcomes for a computation, either a value or
an exception, into a single type; freeze is a way of running a computation, and either catching
the exception or returning the value; and unfreeze unlocks a frozen computation, re-raising the
exception if one was raised. These operations help in controlling when exceptions get raised. The
prompt type constructor abbreviates pairs of a continuation and a boolean, where the boolean is
true if the corresponding set has not been cupto’ed. The operation

let new_prompt = E.create;;

simply creates a new constructor of the extensible datatype, one that will actually be of type ’a
prompt.

To set a prompt, the current continuation is captured and transformed into a control point
associated with prompt p that is pushed on the stack. The expression is run and control resumes
at the control point found on top of the control stack.

let set pe =
unfreeze
(callcc (fun normal_continuation —->
let z = push (E.inject p (true, normal_continuation)) in
let v = freeze e() in
let (effective_continuation,_) =
E.matches (pop())
p (fun (b,c) -> (c,[1))
(fun sc ->
match v with
Value _ -> raise Bug
| Exception z -> raise z)
in
(throw effective_continuation v)

)
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There are two cases when the body e is run: either e does one or more additional set’s and then
raises an exception, or e does no more set’s or terminates normally (or both). In the first case,
the exception gets re-raised by the fourth argument to the E.cases call. In the second case, the
top element on the stack should have a constructor matching p. In that case, the value is thrown
to the normal continuation, which then unfreezes the result.

When capturing control, we need to copy the stack of control into a list—the top of the stack
being at the end of the list—up to the corresponding prompt. The following operation does this,
copying set’s that have already been cupto’ed (b is false) along the way.

let pop_control (p:’a prompt) =
let rec pop_more control =
E.matches (pop())
p (fun (b, ¢c) ->
if b then (c, control)
else pop_more (E.inject p (b,c):: control))

(fun pc —> pop_more (pc :: control))
in pop_more [];;
let rec push_control = function
(pc :: control) -> (push pc; push_control control)
I 0> 0;;

When control is used as a function, the saved control stack is appended to the top of the current
control stack.

let cupto p f =
let (abort, control) = pop_control p in
let reified x v =
unfreeze (callcc (fun after ->
let z = push (E.inject p (false, after)) in
let z = push_control control in
throw x v)) in
callcc (fun x -> throw abort (freeze f (reified x)))

In words, cupto first unwinds the top of the control stack up to the first occurrence of the prompt
p, calling that portion of the stack control, and retrieves the continuation abort. Note that when
the continuation abort is captured—during a set operation—the continuation refers to the rest of
the computation after the set operation returns. The cupto operation next captures the current
continuation x, and then calls £ with a function (reified x) that represents the reified portion of
the stack. If £ never calls this function reified and never does a cupto, the value returned by f
is returned to the continuation abort, the part of the computation after the corresponding set.

The function reified is the trickiest part of the code. If (reified x) is called with a value v, it
captures the current continuation after and pushes it on the control stack as an already cupto’ed
set of the prompt p. This prompt cannot be cupto’ed, but can be used as a return address. Then,
the saved control is pushed on the control stack and computation jumps to position x. Later,
when reaching prompt p, computation will resume at position after instead of abort.

Other functional continuation operations can be implemented using modifications of the code.
For instance, the call/pc operation of Queinnec and Serpette does not require the copying of
the stack done here in pop_control, since set’s are erased during reification in the execution of
call/pc. Similarly, in implementing Felleisen’s F operation, there need be no distinction between
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set’s that have been cupto’ed and those that have not, since the F operation does not erase the
set during reification. We leave the modifications to the reader.
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