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Abstrat

We study the typing of ontrol operators in a language with an ML-style type system. We

introdue a new set of ontrol operators that subsume most ontrol operators that have been

proposed for languages suh as Sheme or ML. We prove subjet redution for the extended

language. We also show how the new operators an easily enode a variety of already known

onstruts: all, shift and reset, exeptions, referenes as well as new variants of these on-

struts. We also desribe an implementation of funtional ontinuations in terms of the more

primitive all operator.

1 Introdution

Control operations are a heavily used feature in mostly funtional languages. For instane, all

dialets of the ML language|inluding the ML of the LCF theorem prover [7℄, CAML [10℄, and

Standard ML (SML) [13℄|build in an exeption mehanism. Exeptions give the programmer

the ability to reover from errors in a modular and eÆient fashion. Continuations are another,

though less ommon, ontrol faility that an be added to any dialet of ML [3℄. The ontinuation

mehanism onsists of two primitives: all (all-with-urrent-ontinuation) whih rei�es the

entire ontrol ontext as a funtion and passes it to another funtion, and throw whih invokes

a ontinuation on an argument, aborting the urrent omputation. Continuations an be used

to implement other ontrol features, e.g., onurreny [18℄. Both exeptions and ontinuations

preserve the inherent type soundness properties of ML.

In this paper we give a generalization of the ontinuation mehanism of [3℄ for a language with

an ML-style type system. We prove that the language is type-safe, i.e., evaluation of programs

annot generate run-time type errors. There are two interesting and important aspets of the gen-

eralization. First, unlike the type system of SML/NJ, our system requires no new type onstrutor

for ontinuations; ontinuations have funtional type. These \ontinuations" are really \funtional

ontinuations". Funtional ontinuations|a programming language feature in whih portions of

the ontrol ontext an be rei�ed as an ordinary, non-abortive funtion|have been studied in the

ontext of untyped languages [2, 4℄, but not in the ontext of ML-like languages. Seond, funtional

ontinuations overome some of the anomalies of all in the top-level interative loop, allow a

leaner style of programming than all, and inrease the expressiveness of the language .

Type systems for ontinuation-based operations are not well understood. Sitaram and Felleisen [22℄

were the �rst to give a limited type system for ontinuation-based operations. They added all

�

A preliminary version entitled A generalization of exeptions and ontrol in ML-like languages appeared in Pro-

eedings of the 1995 Conferene on Funtional Programming and Computer Arhiteture, ACM Press, 1995.
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into PCF, a simply-typed language with basi arithmeti, and used the typing rule

A ` a : (� ! nat)! �

(all)

A ` (all a) : �

where A spei�es the types of free variables. The limitation in the typing is obvious: only a

ontinuation whose result type is nat an be rei�ed. In essene, the problem of typing all in

PCF hinges on the fat that one must pik one return type for ontinuations.

The type nat is a anonial hoie in PCF, but not in languages with more omplex type

struture. In a language with ML-style polymorphism, all ought to have a polymorphi type

with an arbitrary return type. Duba, Harper, and MaQueen [3℄ have proposed adding a unary

type onstrutor ont for typing all whih hides the return type of the ontinuation. The type

for all is

all : ('a ont -> 'a) -> 'a

in their proposal, whih is the type given in the SML/NJ implementation. To invoke the ontinu-

ation, one uses the operation

throw : 'a ont -> 'a -> 'b

Although there are only two type variables in the type of throw, in atuality three types are

neessary to explain the type of throw. For instane, onsider typing the following expression

==> 5 > (1 + all (fn k =>

if s = "a" then throw k 2

else size s))

at the top-level, where ==> denotes the \prompt" of the interative loop. There is the argument

type int of the ontinuation, whih must be the same as that expeted by the ontext in whih it

was rei�ed; there is the type int of the ontext in whih the throw is invoked; and there is the type

bool of the value returned to the prompt after a value is throw'n to the rei�ed ontinuation. The

third type is not diretly represented in the types for all and throw, but is rather \hidden" in

the abstrat type onstrutor ont.

The failure to represent the prompt type an lead to diÆulty with the operational behavior of

all. From a theoretial standpoint, what Wright and Felleisen [26℄ all \strong soundness" fails

to hold. A language satis�es strong soundness if the type obtained from evaluating an expression

is the type assigned statially; the absene of run-time type errors is what Wright and Felleisen

term \weak soundness". This di�erene between strong and weak soundness arises in the following

session of the SML/NJ interative loop:

==> val  = all (fn k=> fn x=>

throw k (fn y=> x+4));

val  = fn : int -> int

==> fun g () = 5 > ( 2);

val g = fn : unit -> bool

The value of g applied to () should be a funtion that, given any value, returns 6, and so the

type should be a funtion type. Nevertheless, the type system predits the type bool. The same

behavior would happen any time a ontinuation is stored in some data struture like a losure or

referene ell. SML/NJ regards this as an anomaly, and resolves the problem by plaing \prompt
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stamps" on the initial ontinuations and aborting with a runtime exeption if an initial ontinuation

is invoked under a prompt that does not math its stamp.

Our approah to typing all is simpler: we fore the missing type of the prompt to be

inluded in the type of the rei�ed ontinuation. If we were to modify the onstrutor ont, the

ontinuation k above would have a type like

(int -> int) ont (int -> int)

where the right side is the type of the prompt. This information ould be used in the typing of an

expression that throw's to this ontinuation. For instane, a top-level phrase yielding a value of

boolean type in whih a value is throw'n to k must be rejeted as having a type error. A logial

extension of this idea is to allow the programmer to insert expliit ontrol points representing his

own prompts. This idea is not new; Felleisen [4℄ and Danvy and Filinski [2℄ study �rst-lass prompts

in the untyped setting. It simpli�es matters to resume exeution at the ontrol point marked by

the prompt, thus leaving the issue of whether to resume the omputation within the rei�ed ontrol

to the program. To make this work with types, suh a rei�ation must arry the type of the

enlosing prompt. Our design makes it possible to hek the orretness of this type statially.

We ahieve this by requiring that prompts be typed and named|for Felleisen's and Danvy and

Filinski's original prompts, in ontrast, there is only a single, untyped prompt [2, 4℄. The rei�ed

ontrol fragments an then be treated as funtions|that is, we do not need the type onstrutor

ont, only the funtion type onstrutor ->.

Before beginning the formal treatment, let us see how one example works. To begin with, we

reate a new prompt by a gensym-like primitive operation new prompt:

==> val p = new_prompt (): int prompt

val p : int prompt

This prompt an be set at ontrol points expeting an integer and used to delimit a ontrol fragment

that returns an integer. Two more primitives are required: (set p in a) whih sets prompt p in

expression a, and the primitive (upto p as k in b), whih rei�es the ontrol up to p and binds this

to k in the expression b. Thus,

==> 5 > (set p in 1 + (upto p as k in 2 + (k 3)))

val it = false : bool

binds to k the ontrol 1 + [ ℄ (the ontrol up to the point where the prompt was set), i.e., an

int-expeting, int-returning ontinuation, and evaluates (2 + (k 3)) in the ontrol ontext 5 >

[ ℄ (not 5 > 1 + [ ℄). When k is invoked as a funtion with 3 as its argument, the expression 5

> 2 + 1 + 3 is evaluated to false. The rei�ation k is treated as the ordinary funtion fn x =>

1 + x.

Notie how similar these operations are to exeptions and all, e.g., ontrol behavior as

provided by all is ahieved by setting a prompt at top level. In fat, the operation that rei�es

the ontinuation is a typed version of Felleisen's \funtional ontinuation" operator F [4℄ or Danvy

and Filinski's shift operator, operators that apture ontinuations as funtions whose appliation

does not neessarily abort the omputation. In terms of maro-expressiveness, F and shift an

express all and other ontrol operators. The new prompt and set operations, though, have

diret analogs in the exeptions of ML: new prompt delares a new prompt just like the keyword

exeption generates a new exeption value, and set marks a breakpoint in the ontrol ontext

just as try in CAML or handle in SML marks a breakpoint (although these have a handler

assoiated with them). After �rst desribing the syntax and operational semantis of our language
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and proving that the language is type safe, we show how to express a generalization of all and

simple exeptions, and show how to implement the operations as eÆiently as all.

2 A Typed Language with Prompts

Table 1 de�nes the grammar of the language. The syntax is that of a restrited version of the ore

of ML (without base onstants, referenes, and exeptions) with three extra onstruts for manipu-

lating the ontrol ow of a program: new prompt, set in , and upto as in . The language

is based on primitive syntax lasses of variables x and prompts p. The onstrut new prompt re-

turns a fresh prompt; set in establishes a new dynami extent for the prompt to whih the �rst

subexpression evaluates and runs the seond subexpression; and upto as in , where upto is

an abbreviation for \ontrol up to", rei�es a funtion from the ontrol ontext. The upto oper-

ation binds its seond subexpression|whih must be a variable|to the ontrol up to the value

of its �rst subexpression|whih must evaluate to a prompt|in the sope of its third. Binding

onventions for the �-alulus portion of the language are the usual ones; we identify all terms up

to renaming of bound variables. We use the notation a[b=x℄ to denote the apture-free substitution

of term b for variable x in term a.

The typing rules for the language are given in Table 2. Here, A stands for a type ontext

whose syntax is given in Table 1. The operation lose(A; �) returns a type sheme (8�

1

: : : �

n

: �),

where f�

1

; : : : ; �

n

g is the set of type variables ourring free in � but not in A. The syntax

restrits the expression bound by let to be a value, i.e., an expression that auses no immediate

subomputation [13, 25℄. The type system beomes unsound if the syntax of let is left unrestrited,

(this phenomenon|�rst pointed out by Tofte [23, 24℄ in the ontext of typing referenes in ML|

has been well-doumented in the ase of ontinuations [8, 11, 26℄). For better readability we use the

syntati sugar (let x = a

1

in a

2

) for ((�x: a

2

) a

1

) for the monomorphi let. Some familiar fats

follow immediately from the form of the type system, e.g., one may easily onstrut an algorithm

(based on uni�ation) that derives a prinipal type, as in ML.

A rewriting semantis in the style of [4℄ (a onvenient reformulation of strutured operational

semantis [15℄) is given in Table 3. The semantis is given in two parts: the �rst part de�nes a

olletion of evaluation ontexts, whih speify the positions in whih a redex an be redued,

and the seond part spei�es a olletion of rules de�ning a binary relation �!

red

for the redution

of redexes. To do a step of evaluation on a term a, one �nds a ontext E and a redex a

0

suh that

a � E[a

0

℄ and a

0

�!

red

a

1

; then E[a

0

℄ �! E[a

1

℄. The redex redutions are of the slightly

more omplex form a

0

=P

0

�!

red

a

1

=P

1

, meaning \the redex a

0

with prompts P

0

redues to

expression a

1

with prompts P

1

" so redutions in an evaluation ontext have the form E[a

0

℄=P

0

�!

E[a

1

℄=P

1

. The set P

i

|the urrent set of alloated prompts|is muh like a \store" in an operational

semantis of referenes, and determines the previously alloated prompts. Thus, the expression

(new prompt ()) alloates a \fresh prompt" relative to the urrent P . Also, in the redex rules,

the notation E

p

denotes an evaluation ontext in whih the hole is not in the sope of a setting

of prompt p. The rules speify how to reify a ontinuation and pass a value up to the nearest

dynamially enlosing prompt.

A few examples should make the behavior of the redution semantis more apparent. To simplify

the examples, the term (let x = a in a

0

)|where the binding of x is not a value|stands for the

term ((�x: a

0

) a). For instane, the expression

let x =new_prompt () in

set x in upto x as k in (k (�z: z))
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Table 1: Syntax

a ::= Expression

v Value

j (a

1

a

2

) Appliation

j let x = v in a Polymorphi let binding

j set a

1

in a

2

Set a prompt

j upto a

1

as x in a

2

Reify ontrol up to a prompt

v ::= Value

x Variable

j () Unit value

j new prompt Generate new prompt

j (�x: a) Abstration

j p Prompts

� ::= Type

� Type variable

j unit Unit type

j (� ! �) Funtion type

j (� prompt) Type of prompts

� ::= 8�

1

: : : �

k

: � Type sheme

A ::= ; j A[x : �℄ j A[p : � ℄ Typing ontext

Table 2: Typing Rules.

x : 8�

1

: : : �

n

: � 2 A

(Var)

A ` x : � [�

1

=�

1

; : : : ; �

n

=�

n

℄

(Unit)

A ` () : unit

p : � 2 A

(Prompt Const)

A ` p : (� prompt)

A[x : �

0

℄ ` a : �

1

(Fun)

A ` (�x: a) : (�

0

! �

1

)

A ` a

1

: �

2

! �

1

A ` a

2

: �

2

(App)

A ` (a

1

a

2

) : �

1

(Prompt)

A ` new prompt : (unit! � prompt)

A ` a

1

: (�

1

prompt) A[x : (�

0

! �

1

)℄ ` a

2

: �

1

(Cupto)

A ` upto a

1

as x in a

2

: �

0

A ` a

1

: (� prompt) A ` a

2

: �

(Set)

A ` set a

1

in a

2

: �

A ` v : �

1

A[x : lose(A; �

1

)℄ ` a

2

: �

2

(Let)

A ` let x = v in a : �

2

5



Table 3: Operational Semantis.

E ::= Evaluation ontext

[ ℄ Hole

j (E a) j (v E) Appliation

j set E in a j set p in E Set

j upto E as x in a Cupto

Redex redutions

((�x: a) v)=P �!

red

a[v=x℄=P

let x = v in a=P �!

red

a[v=x℄=P

(new prompt ())=P �!

red

p=fpg [ P p 62 P

set p in v=P �!

red

v=P

set p in E

p

[upto p as x in a℄=P �!

red

(�x: a) (�y:E

p

[y℄)=P

Context redutions

a

0

=P

0

�!

red

a

1

=P

1

E[a

0

℄=P

0

�! E[a

1

℄=P

1

�rst alloates a fresh prompt, sets the dynami sope to be this prompt, rei�es the (empty) ontin-

uation as a funtion k, and passes to k the identity funtion. The �nal result is thus the identity

funtion. At a high level, the formal steps are

(let x = new prompt() in set x in upto x as k in (k (�z: z)))=;

�! set p in upto p as k in (k (�z: z))=fpg

�! (�k: k (�z: z)) (�x: x)=fpg

�! ((�x: x) (�z: z))=fpg

�! (�z: z)=fpg

This expression is also well-typed in the language: the variable x has type ((� ! �) prompt)

and the ontinuation k has type ((� ! �) ! (� ! �)). Another example is that of an abortive

omputation:

let x =new_prompt () in

set x in upto x as k in (�z: �y: y)

whih aborts the omputation and passes (�z: �y: y) to the top-level.

There is atually more latitude in assigning operational semantis to the language than it �rst

appears. For instane, any of the following rules preserve the strong type soundness theorem below:

set p in E

p

[upto p as x in a℄=P �!

red

set p in ((�x: a) (�y:E

p

[y℄))=P

set p in E

p

[upto p as x in a℄=P �!

red

set p in ((�x: a) (�y: set p in E

p

[y℄))=P

The �rst rule grabs the funtional ontinuation but leaves the prompt p set in the ontinuation;

this orresponds to the operational semantis of Felleisen's F operation [4℄. The seond rule also
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leaves the prompt p set, but also grabs the \set" when the funtional ontinuation is rei�ed; this

orresponds to the operational semantis of Danvy and Filinski's shift operation [2℄. It is easy

to see how to simulate the �rst rule in our semantis by adding a set before every body of a

upto. Similarly, the seond rule an be simulated using the �rst. The other diretion, though,

seems not to be known|that is, whether the weaker operational rules an simulate the operational

semantis we have given to upto. There are even further possibilities, inluding ones that erase

all intervening set's during a upto [14℄. All of these hoies (as well as other, less interesting

hoies) of operational rules lead to strong type soundness. We have merely foused on one of the

more powerful forms.

3 Type Safety

We now show that redution preserves typing and eah well-typed term never gets stuk at a

run-time type error.

Type safety is a subtle issue beause \getting stuk at a run-time type error" is open to inter-

pretation. Some examples of \run-time type error" require little justi�ation. For instane, the

non-well-typed term

(new prompt()) (new prompt())=;

annot be redued past a form (p

1

p

2

)=fp

1

; p

2

g for some prompts p

1

; p

2

; the result is obviously a

run-time type error beause of the attempt to apply a non-funtion to an argument. But the issue

is subtle in the presene of ontrol operations, and for our purposes not every \stuk" term is a

run-time type error. For instane, the well-typed term

let x =new_prompt () in upto x as k in k = ;

redues to (upto p as k in k)=fpg with no further redutions possible|the ontinuation annot

be rei�ed sine no prompt has been set. The situation for exeptions in ML is similar: well-typed

terms an still result in an \unaught exeption". We leave aside these onerns and adopt an analog

to the ML onvention, i.e., the term above does not represent a run-time type error. Theorem 9

provides a preise expression of our assumptions.

We �rst need a few simple lemmas about the type system that are essentially independent of

ontrol operations.

Lemma 1 (Type Substitution) If A ` a : � , then A[�

0

=�℄ ` a : � [�

0

=�℄.

Lemma 2 (Extension of Type Assignment) Let B be any type assignment whose domain on-

tains no free variables of a. Then AB ` a : � i� A ` a : � .

A type sheme 8�

1

: : : �

n

: � ismore general than a type sheme 8�

1

: : : �

p

: �

0

if there are types �

1

,

: : : �

n

suh that � [�

1

=�

1

; : : : ; �

n

=�

n

℄ = �

0

, where � [�

1

=�

1

; : : : ; �

n

=�

n

℄ is the result of simultaneously

substituting the �

i

's for the �

i

's. Similarly, a type assignment A is more general than a type

assignment B if they have the same domain D and, for all x 2 D the value A(x) of A at x is more

general than B(x).

Lemma 3 (Generalization of Type Assignment) If A is more general than B and B ` a : � ,

then A ` a : � .

Lemma 4 (Term Substitution) Suppose A ` a

0

: �

0

and A[x : 8�

1

: : : �

n

: �

0

℄ ` a : � , where

�

1

; : : : ; �

n

are not free in A. Then A ` a[a

0

=x℄ : � .
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The proof of type safety for our partiular language requires a few de�nitions. A type assignment

A is a prompt assignment if A = ;[p

1

: �

1

℄ : : : [p

n

: �

n

℄, and A

0

is a prompt extension of a

prompt assignment A if A

0

is of the form AA

00

where A

00

is a prompt assignment. Evaluation of

expressions may reate new prompts but annot hange the type of an expression; thus, we write

a

0

=P

0

� a

1

=P

1

if P

1

ontains P

0

and, for any prompt assignment A

0

with prompts P

0

and any type

� suh that A

0

` a

0

: � , there exists a prompt extension A

1

of A

0

suh that P

1

is the domain of A

1

and A

1

` a

1

: � . It is not hard to see that the relation � is reexive and transitive. One may also

easily prove the following lemma by indution on the struture of evaluation ontexts.

Lemma 5 If a

0

=P

0

� a

1

=P

1

, then E[a

0

℄=P

0

� E[a

1

℄=P

1

.

The important step of redution is the apture of the urrent ontext up to a prompt. The ontext

E used in a program E[x℄ is turned into a funtion �x:E[x℄. The following lemma will simplify the

orresponding ase in the proof of subjet redution.

Lemma 6 Suppose A ` E[a

1

℄ : � . Then there exists a type �

0

suh that A ` a

1

: �

0

and, for any

term a

2

suh that A ` a

2

: �

0

, we also have A ` E[a

2

℄ : � .

Proof: By indution on the form of the evaluation ontext; the proof relies on the fat that the

hole in an evaluation ontext is not in the sope of any binding operation. Here are three typial

ases:

Case E = [:℄: Then pik �

0

to be � .

Case E = (E

0

a

0

): From the hypothesis we know that A ` E

0

[a

1

℄ : �

1

! � and A ` a

0

: �

1

. Thus,

by the indution hypothesis, there is a type �

0

suh that A ` a

1

: �

0

, and, for any a

2

suh that

A ` a

2

: �

0

, we have A ` E

0

[a

2

℄ : �

1

! � . The statement now follows from the typing rule (App).

Case E = (set E

0

in a

0

): From the hypothesis, we have A ` E

0

[a

1

℄ : (� prompt) and A ` a

0

: � .

Thus, by the indution hypothesis, there is a type �

0

suh that A ` a

1

: �

0

, and, for any a

2

with

A ` a

2

: �

0

, we have A ` E

0

[a

2

℄ : (� prompt). The statement now follows from the typing rule

(Set).

Lemma 7 (Redex Contration) If a

0

=P

0

�!

red

a

1

=P

1

, then a

0

=P

0

� a

1

=P

1

.

Proof: Eah ase of redex redution an be onsidered independently. Assume there is a prompt

assignment A

0

with prompts P

0

, a type � suh that A

0

` a

0

: � ; we need to exhibit a prompt

extension A

1

of A

0

suh that P

1

is the domain of A

1

and A

1

` a

1

: � .

Case a

0

= ((�x: a) v) or (let x = v in a): In both ases the redution steps for these forms do

not hange the set of prompts. In eah ase, there exists a type �

1

and a list W of type variables

not in the free variables of A

0

suh that A

0

` v : �

1

and A

0

[x : 8W: �

1

℄ ` a : � . Sine a

1

= a[v=x℄,

it follows from Lemma 4 that A

0

` a

1

: � .

Case a

0

= (new prompt ()): Note that A

0

` new prompt : (unit! �

0

prompt) andA

0

` () : unit.

Suppose a

1

= p where p 62 P

0

. If P

1

= P

0

[ fpg and A

1

= A

0

[p : �

0

℄, then A

1

` a

1

: (�

0

prompt).

Case a

0

= (set p in v): Trivial.
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Case a

0

= (set p in E

p

[upto p as x in a℄): The redution step for upto does not introdue

any new prompts. Thus, A

0

` E

p

[upto p as x in a℄ : � and A

0

` p : (� prompt). Applying

Lemma 6, there exists a type �

1

suh that A

0

` (upto p as x in a) : �

1

(1) and A

0

` E

p

[a

1

℄ : � for

any expression a

1

suh that A

0

` a

1

: �

1

(2). From (1) it follows that A

0

[x : �

1

! � ℄ ` a : � and,

onsequently, A

0

` �x: a : (�

1

! �)! � . Let y be a variable that appears neither in the domain of

A

0

nor in E

p

. By (2) and Lemma 2, A

0

[y : �

1

℄ ` E

p

[y℄ : � , and hene A

0

` (�y:E

p

[y℄) : (�

1

! �).

Thus, A

0

` (�x: a)(�y:E

p

[y℄) : � follows.

Theorem 8 (Subjet Redution) If a

0

=P

0

�! a

1

=P

1

, then a

0

=P

0

� a

1

=P

1

.

Proof: A simple ombination of Lemmas 5 and 7.

Note that Theorem 8 does not hold without the value-only restrition (or other restritions on

polymorphi let); see [8, 11, 26℄ for examples.

Theorem 9 (Value Halting) Suppose A is a prompt assignment with prompts P . If A ` a : �

and a=P annot be redued, then a is either a value or a term of the form E

p

[upto p as x in a

0

℄.

Proof: The proof is by indution on the size of a. The ases when a = (), new prompt, p, and

(�x: a

0

) are trivial, so onsider the remaining ases:

Case a = (a

1

a

2

): There must be a type �

2

suh that A ` a

1

: (�

2

! �). By the indution

hypothesis applied to a

1

=P , a

1

either is a value or has the form E

p

[upto p as x in a

0

℄. The latter

implies a has the form E

p

[upto p as x in a

0

℄, so onsider the ase when a

1

is a value. By the

indution hypothesis applied to a

2

=P , a

2

either is a value or has the form E

p

[upto p as x in a

0

℄.

Again, the latter ase means that the lemma holds, so onsider the ase when a

2

is a value too.

Note that a

1

annot be an abstration, sine a annot be redued. Sine a

1

has a funtional type,

it an only be new prompt. Hene, a

2

is of type unit, and it must be the value (). However, this is

not possible sine a annot be redued. This rules out all ases but the ase when a has the form

E

p

[upto p as x in a

0

℄, so the statement holds.

Case a = (let x = v in a

1

): Then a ould be redued, ontraditing the hypothesis.

Case a = (set a

1

in a

2

): Then A ` a

1

: � prompt and A ` a

2

: � . If a

1

is not a value, then it has

the form E

p

[upto p as x in a

0

℄, and therefore a is also of the form E

0

p

[upto p as x in a

0

℄ where

E

0

p

= (set E

p

in a

2

). If a

1

is a value, a

1

must be a prompt q. Note that a

2

annot be a value, for

otherwise a ould be redued. Thus, a

2

must be E

p

[upto p as x in a

0

℄ where p 6= q (otherwise a

an be redued). It follows that a = E

0

p

[upto p as x in a

0

℄ where E

0

p

= (set q in E

p

).

Case a = (upto a

1

as x in a

2

): Then A ` a

1

: �

1

prompt and A[x : �

0

! �

1

℄ ` a

2

: �

1

. If a

1

is

not a value, it must be of the form E

p

[upto p as y in a

0

℄ and so is a. Otherwise, it must be a

prompt q and E

p

must not set q. Thus a is of the form E

q

[upto q as x in a

2

℄ where E

q

= E

p

.

The following theorem then follows immediately from the previous two theorems:

Theorem 10 (Type Safety) Suppose ; ` a : � . Then either

1. There exists a value v and a prompt assignment A with prompts P suh that a=; �!

�

v=P

and A ` v : � ;

2. a=; �!

�

E

p

[upto p as x in a

0

℄=P ; or

3. The redution sequene starting from a=; is in�nite.
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Table 4: Signature for Prompts.

signature PROMPT =

sig

exeption Unaught_prompt (* to report unaught prompt *)

type 'a prompt

val new_prompt : unit -> 'a prompt

val set : 'a prompt -> (unit -> 'a) -> 'a

val upto : 'a prompt -> (('b -> 'a) -> 'a) -> 'b

end

4 Expressiveness

In this setion, we onsider several extensions to the base language: regular (aborting) ontinua-

tions, simple exeptions, and global referenes.

In this setion, we assume that upto is provided in the language as a module with the following

interfae given in table 4. That is, we will write upto a

1

(�x: a

2

) and set a

1

(�(): )a

2

instead of

upto a

1

as x in a

2

and set a

1

in a

2

.

4.1 Call

Using prompts, we an provide a safe implementation of all. However, as opposed to all

in SML/NJ, a di�erent prompt is set (here expliitly) at the begenning of eah phrase. The type

system will then prohibit interation of ontrol between di�erent toplevel phrases, and avoid the

runtime anomaly of all in SML/NJ.

This extension is given as a module with the following interfae:

type ('a,'b) font

type 'a toplevel

val shift : 'a toplevel -> (('b,'a) ont -> 'a) -> 'b

val reset : 'a toplevel -> (unit -> 'a) -> 'a

val all : 'a toplevel -> (('a,'b) ont -> 'b) -> 'b

val throw : 'a toplevel -> ('a,'b) ont -> 'b -> '

val eval : ('a toplevel -> 'a) -> 'a

Eah phrase will be evaluated after setting a new prompt.

let eval a =

let toplevel = new_prompt () in

set toplevel (fun () -> a toplevel);;

The type of the prompt passed to a is also the type of the toplevel phrase. (Here, the user is

responsible for setting the prompt at the beginning of eah phrase, by alling the eval funtion.)

The abstrat type 'a toplevel of this prompt (see the interfae) fores the user to all eval one,

but it does not prevent from several alls to eval, whih would be erroneous.

type 'a toplevel = 'a prompt

10



Continuations are all returning to the toplevel. Thus, their type ('a,'b) font uses an extra

parameter 'b to remember the type of the toplevel phrase.

type ('a,'b) font = 'a -> 'b;;

The enoding uses an auxiliary operator shift that aptures the urrent evaluation up to the

toplevel prompt, then resets the toplevel prompt, and starts a new evaluation in whih the aborted

omputation is bound.

let shift toplevel a = upto toplevel (fun k -> set toplevel (fun () -> a k))

The typing onstraint imposes that the return of the new expression is also the type of the toplevel

phrase. Note that the traditional abort is in fat a speial ase of shift when the new evaluation

does not uses the aborted ontinuation). The operator reset is just the same as set:

let reset = set

The most interesting operation is all, whih an easily be expressed with shift :

let all toplevel a =

shift toplevel

(fun k -> k (fun () -> (a (fun r -> k (fun () -> r)))))

();;

The urrent ontinuation k is shifted but it is immediately reinstalled before the evaluation proeeds

with a. The only diÆulty is to get the evaluation order right.

Here, k is aptured as a non-aborting funtional ontinuation. Thus, when k is resumed it must

�rst abort the urrent ontinuation. This is realized the following funtion.

let throw toplevel v1 v2 = shift toplevel (fun k -> v1 v2);;

Sine ontinuations aptured with all have the abstrat type "('a,'b) ont", they an only be

rei�ed by alling throw. This ensures that the urrent evaluation will always be aborted right

before a ontinuation is reinstalled. This use of throw instead of a funtional ontinuation allows a

better typing of rei�ation: sine rei�ation abort the urrent evaluation, the return type a throw

expression is unonstrained. .

These ontinuations gives a better aount of ontinuations in an interative language. However,

they do not provide more safety: a new distint prompt is set at the begenning of eah phrase so

that di�erent toplevel phrases may return values of di�erent types. Thus, if a ontrol operation is

transmitted from one phrase to another one, e.g. through a losure or a referene ell, the prompt

of the old ontrol will not math the urrent prompt and an unaught-prompt error will our

dynamially. This will be deteted statially whenever the return type of the two ontinuations

do not math. However, this is not deteted when the two phases have the same return type. We

ould strengthen seurity by giving eah toplevel prompt a di�erent abstrat type.

The unaught-prompt error will our even if the ontinuation does not atually attempt to

return to an old toplevel. In the follow setion, we explain how to reover the less permissive

behavior of Sml/Nj.

11



4.2 Stamped toplevel prompts

We now provide a module with the following interfae:

type 'a ont

val all: ('a ont -> 'a) -> 'a

val throw: 'a ont -> 'a -> 'b

val eval: (unit -> 'a) -> 'a

To allow ontrol to ross toplevel boundaries, one solution is to make all toplevel prompts

idential. Thus, one ould make the following de�nitions:

let toplevel = new_prompt();;

let all f = all toplevel f;;

let throw v1 v2 = throw toplevel v1 v2;;

This will atually work, but all phrases will be fored to have the same type. Indeed, if several

phrases exhange ontrol, they must have the same prompt and therefore they must return values

of the same type.

The implementation of all in Sml/Nj allows several phrases to ommuniate as long as a

phrase never returns to the toplevel prompt of another one. This is atually suÆient to ensure

safety, but the proof of this fat relies on a global invariant and annot be derived from types.

We an easily provide an implementation of the above behavior, but we must bypass the type

system at one point. In the implementation we will assume that the toplevel prompt is unit. (Any

arbitrary ontant type would be �ne).

type 'a ont = ('a, unit) font;;

Then, we replae the eval funtion by

let phrase = ref (ref ());;

exeption Toplevel;;

let eval a =

let p = ref() in

phrase := p;

set (Obj.magi toplevel)

(fun () -> let r = a() in if !phrase == p then r else raise Toplevel);;

The referene phrase ontains a marker of the urrent phrase. The exeption Toplevel is used to

report a prompt mismath as in Sml/nj.

The funtion eval di�ers from the previous de�nition in two ways. First, it disables the typing

onstraint between the type of the phrase and the one of the prompt. This is orreted by marking

eah phrase with a new stamp, and heking before the result is returned that the stati marker of

the phrase is also the marker of the phrase that is urrently being evaluated.

There is another slightly less natural enoding that does not require any magi. Instead, one

an use the exeptional mehanism of upto (see next setion) to \jump other the type onstraint".

Only the eval funtion need to be rewritten:

let eval a =

let p = ref() in

12



phrase := p;

let q = new_prompt() in

set q

(fun () ->

set toplevel

(fun () ->

let r = a() in

if !phrase == p then upto q (fun _-> r) else raise Toplevel);

raise Toplevel);;

The potential type error has been replae by a potential unaught prompt. Of ourse none will

ever our if our implementation is orret, but the is a meta property.

Note that one ould also have used a loal exeption instead of a loal prompt to produe

the same e�et. As is well known, loal exeptions provide are an extensible datatype (several

indenpendent extensible datatypes an then be obtained using the generativity of the module

system). In turn, extensible datatypes provides some weak form of dynamis, whih is one what

is needed in the above example. As we shall see in the next setion exeption as implementable in

terms of upto's...

4.3 Simple exeptions

Simple exeptions are a simpli�ation of the exeption mehanism found in most ML variants.

Simple exeptions require three new forms: new exn, whih generates a new internal name for an

exeption; (raise a

1

a

2

), whih raises an exeption a

1

with value a

2

; and (handle a

1

a

2

a

3

), whih

evaluates a

1

to exeption h and a

2

to v

2

, and then evaluates a

3

so that if exeption h is raised with

a value v, the evaluation of a

3

aborts and handler v

2

is applied to v. The semantis of exeptions

uses internal exeption names h, new evaluation ontexts

E ::= : : : j (raise E a) j (raise v E) j (handle E a a

0

) j (handle v E a) j (handle v v

0

E)

and new redex rules

(new exn ())=X;P �!

red

h=fhg [X;P; h 62 X

(handle h v v

0

)=X;P �!

red

v

0

=X;P

(handle h v E

h

[raise h v

0

℄)=X;P �!

red

(v v

0

)=X;P

where X is a �nite set of exeptions and E

h

is an evaluation ontext with no intervening (handle

h v

00

E) expressions. The new operations an also be typed|not surprisingly|using typings similar

to those in ML. If we add a new type onstrution (� exn) to the syntax of types, the types of the

new operations are

(New Exeption)

A ` new exn : (unit! � exn)

h : � 2 A

(Exeption Const)

A ` h : (� exn)

A ` a

1

: (� exn) A ` a

2

: �

(Raise)

A ` (raise a

1

a

2

) : �

0

A ` a

1

: (� exn) A ` a

2

: (� ! �

0

) A ` a

3

: �

0

(Handle)

A ` (handle a

1

a

2

a

3

) : �

0
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It is a simple exerise to extend the proof of Theorem 10 to the enhaned language.

The ability to enode simple exeptions represents a distint inrease in expressive power over

the language with all. The argument, due to Mark Lillibridge, is remarkably simple. In

the polymorphi �-alulus without reursion, adding all does not hange the terminating

nature of omputations, while adding simple exeptions suddenly permits the programmer to write

nonterminating omputations. The enoding, whih atually permits the enoding of the entire

untyped �-alulus, appears in [12℄.

Simple exeptions di�er from the form of exeptions found in SML and CAML in three ways.

First, exeptions are generated from new exn rather than delared by the keyword exeption.

This di�erene is inonsequential, sine one may use let to bind an exeption to a name. Seond,

one may not handle multiple exeptions in one handler. Again, the di�erene is inonsequential,

sine one may use multiple handle expressions to yield the same e�et. Third, handlers must

be given with respet to a spei� exeption. For example, in most ML variants one an write

(handle a

2

a

3

) that athes any exeption raised during the evaluation of a

3

|even one that is

delared in a

3

. This di�erene is substantive; wildard patterns are a useful feature, giving the

programmer the ability to reover from arbitrary errors.

Simple exeptions are a redundant feature in our language.

1

That is, one may easily expand

the three primitives for simple exeptions into our base language without exeptions but with

new prompt, set, and upto (i.e., simple exeptions do not hange the \expressiveness", in the sense

of [5℄, of the language). Let [[a℄℄ be the notation for the translation of a term with simple exeptions

to one without. The translation of new exn is simply new prompt, i.e., [[new exn℄℄ = new prompt.

The translation of (raise a

1

a

2

) is

let x

1

= [[a

1

℄℄ in

let x

2

= [[a

2

℄℄ in

upto x

1

as k in x

2

where x

1

; x

2

; k are distint fresh variables. The translation of the term (handle a

1

a

2

a

3

) is

let x

1

= [[a

1

℄℄ in

let x

2

= [[a

2

℄℄ in

let p =new_prompt () in

set p in

(�z: (upto p as k in (x

2

z)))

(set x

1

in

let x

3

= [[a

3

℄℄ in

upto p as k in x

3

)

where x

1

; x

2

; z; p; k are distint fresh variables. The translation of an exeption onstant h is a

prompt onstant with the same name. Finally, the translation is homomorphi in all of the other

operations, e.g., [[(a

1

a

2

)℄℄ = ([[a

1

℄℄ [[a

2

℄℄).

Exeptions an be provided as a module with the following signature:

type 'a exn

1

We do not know how to enode ML handlers with wildard expressions without an extensible datatype in the

language. An extensible datatype is an ML datatype where new onstrutors an be added later. Indeed, the type

exn is suh an extensible datatype in several implementations of ML, e.g., CAML or SML. One an then simulate

full exeptions with a unique \exeption" arrying values of type exn and the wildard handler beomes a regular

handler.
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val new_exn : unit -> 'a exn

val raise : 'a exn -> 'a -> 'b

val handle : 'a exn -> ('a -> 'b) -> (unit -> 'b) -> 'b

and implementation

Open upto;;

type 'a exn = 'a prompt;;

let new_exn = new_prompt;;

let raise p v = upto p (fun _ -> v);;

let handle p h a =

let q = new_prompt() in

set q (fun () ->

h (set p (fun () ->

let v = a() in upto q (fun _ -> v))));;

4.4 Referenes

Funtional ontinuations an also be used to enode referene ells. This fat is not surprising:

referenes an be enoded with Danvy and Filinski's shift and reset, and shift and reset an

be enoded using our operations. Nevertheless, the ability to enode referene ells demonstrates a

large inrease in expressive power over a language with all: referene ells that store funtions

give one the ability to enode nonterminating omputations, just as exeptions do. For instane,

the SML program

let val r = ref (fn () => ())

val f = fn x => (!r) x

in r:= f;

f ()

end

diverges, even though the ode involves no reursion or reursive types.

Preisely, we will provide a module with the following interfae:

type 'a ref

val ref : 'a prompt -> 'b -> ('b ref -> ') -> '

val (!) : 'a ref -> 'a

val (:=) : 'a ref -> 'a -> unit

val eval : ('a prompt -> 'a) -> 'a

The type 'a memory is the type of the store for a program returning values of type 'a.

The priniple of our implementation is to losely follow the store small-step redution semantis

for referenes, whih an be de�ned as follows. Expressions are extended with a �nite olletion of

loations writte with letter l, and three primitives ref , ! and :=. Programs are now run in a toplevel

store omposed of a list of bindings. We atually prefer to treat bindings as loal onstruts, i.e.

we extend the language of expressions, and evaluation ontexts with bindings

a :: [℄ j lo l = a in aE ::= [℄ j lo l = v in E
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We write E

l

for a ontext that does not de�ne l on the its path. We also write y for the toplevel

mark. Evaluations rules are:

yE[ref v℄ �! ylo l = v in E[l℄ l =2 dom (S)

yE[lo l = v in E

l

[!l℄℄ �! yE[lo l = v in E

l

[v℄℄

yE[lo l = v in E

l

[l := v

0

℄℄ �! yE[lo l = v

0

in E

l

[()℄℄

lo l = v in v

0

�! v

0

l =2 dom (v

0

)

Funtional expressions do interat a with the store sine:

[a

1

℄ �! [a

1

℄

(Funtional)

yE[a

1

℄ �! yE[a

2

℄

Sine new loations are always added in front, the evaluation of a program with originally no

loation stops with a value preeded by a sequene of store bindings.

In the implementation, we use one prompt to get diret aess to the top of the store where

new ells an be dynamially added. As usual, we evaluate a phrase after having set a new toplevel

prompt

let eval a =

let toplevel = new_prompt() in

set toplevel (fun () -> a toplevel);;

New referene ells an be inserted in front of the urrent evaluation.

let ref toplevel (x : 'a) (a : 'a ref -> 'b) =

let return x = upto toplevel (fun _ -> x) in

let a p () = a p in

(upto toplevel

(fun z ->

(set toplevel

(fun () ->

let p = new_prompt() in

store p x (set p (fun () -> return (z (a p)))))))

) ();;

Here, x is the initial value of the referene ell to be reated and a is the part of the program that

should have the referene in its stati sope. Thus it is an expression abstrated over the prompt

p that will serve as a handle to reah the new referene. The funtion return is used to abort

the evaluation when it terminates and jump over all the referene remaining of the store. This

also prevents the referene ells to be onstrained to being of the same type. The next line is just

to freeze the evaluation of \a p" and thus drive the evaluation in a orret order. Finally, the

evaluation ontext is aptured up to the toplevel, the toplevel prompt is reset, the ell is installed,

and the evaluation ontinues with value p as a handle to the new referene ell.

The ell itself is implementated as a ontinuation store x p [℄ that is de�ned as follows. It

waits for an ation of the following form:

type 'a ation =

Write of ('a * (unit -> 'a ation))

| Read of ('a -> 'a ation);;
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and proesses the ation aordingly.

let re store p (x:'a) (ation : 'a ation) =

math ation with

Write (y,f) -> store p y (set p f)

| Read f -> store p x (set p (fun () -> f x));;

A Read f request is answered by reinstalling the same store and the previous evaluation ontext

f with value x. A Write (y,f) request is answered by reinstalling a the store with value y and

the previous evaluation ontext f with value (). Thus, the two remaining primitives are straight-

forward:

let (!) r = upto r (fun f -> Read f);;

let (:=) r x = upto r (fun f -> Write (x,f));;

The type of referene ell is the type of its prompt handle. That is,

type 'a ref = 'a ation prompt;;

Another possible enoding would be to have a single referene ell and represent the store as an

assoiation list (using extensible-data types). The enoding we gave here is more diret and more

interesting. It would be possible to extend the enoding, for instane to enable expliit dealloation

of referene ells during evaluation, as an be done in C for instane. This operation would of ourse

be unsafe and result in an unaught prompt.

4.5 Mixing the enodings

The three previous enodings an be merged together. However, they should be hierarhial, the

higher ones preserving the invariants of the lower ones. This is atually the ase if the enoding of

the store is the outer one (its prompts are outer all other prompts), then the enoding of all,

and the last the enoding of exeptions.

5 Multiple prompts

Cupto is a generalization of known ontrol operators in two ways. On the one hand, it slightly di�ers

from Danvy and Fellinsky's shift/reset and Felleisen's C ontrol operators in the way it aptures

and resets the prompt itself. These di�erenes are minor from a typing point of view. Our hoie

inreases expressiveness, sine other operators an be derived, but it simultaneaously weakens our

invariants, whih may make reasoning on programs harder. On the other hand, Cupto allows for

multiple prompts. Although multiple prompts have been proposed earlier in the litterature as a

way of hierahizing ontrol, multiple prompts are more essential in our proposal sine they diretly

allow for ontinuations returning values of di�erent types.

In this setion, we show that multiple prompts an in fat be derived from uptos with a single

prompt using an extensible data-type. Suh an extensible data-type ould be primitive, as for

instane the type of exeptions, or provided as a library. To be independent, we will use the

following library:

module type Extensible = sig

type t

type 'a onstrutor

17



val reate : unit -> 'a onstrutor

val injet : 'a onstrutor -> 'a -> t

val mathes : t -> 'a onstrutor -> ('a -> 'b) -> (t -> 'b) -> 'b

end;;

whih we an implement as follows

module Make (X : sig end) : Extensible = strut

type t = Obj.t

type 'a onstrutor = unit ref

let reate () = ref ()

let injet  v = Obj.repr (,v)

let mathes x  f g =

let x, xv = Obj.magi x in if x ==  then f xv else g x

end;;

The operation reate builds a new data onstrutor of the extensible datatype; injet takes a

onstrutor and a value and injets the value into the extensible datatype; and mathes branhes

on the value of the onstrutor, alling the third argument or the fourth depending on whether or

not the �rst and seond arguments math. Note the use of asts, and the fat that t|an abstrat

type outside the module|is given a quite meaningless, but onrete, implementation type in the

module. (Another way of implementing the extensible datatype idea without asts is to use the

type of exeptions.) Thus, the stak is a stak of elements of the extensible datatype t.

Then we an implement a module of signature that reimplements upto in terms of upto, but

using only a single prompt from struture C. Its interfae is

2

module Mupto (C : PROMPT) : PROMPT = strut

First, we de�ne a new extensible datatype:

module E = Extensible.Make (strut end)

type ation = Return of E.t | Cupto of (E.t * ((unit->ation) -> ation))

type 'a r = R of 'a | C of (((unit->ation) -> ation) -> ation)

type 'a prompt = 'a r E.onstrutor

let new_prompt() = E.reate()

let injet_C p x = E.injet p (C x)

and mathes_C q p f g = E.mathes q p (fun (C y) -> f y) g

exeption Bug

let injet_R p x = Return (E.injet p (R x))

and is_R p (Return x) = E.mathes x p (fun (R y) -> y) (fun z -> raise Bug)

The heart of the implementation is the following ode

2

To be exat, PROMPT should here be a restrition of the signature PROMPT without the Unaught prompt exeption,

but this is unsigni�ant.
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let ontrol = C.new_prompt()

let ompose set k' k x = k' (fun () -> set (fun () -> k x))

let re set_ontrol p a =

let omp = ompose (set_ontrol p) in

math C.set ontrol a with

Cupto (qa, k) ->

mathes_C qa

p (fun a -> a k)

(fun qa-> C.upto ut (fun k'-> Cupto (qa, omp k' k)) ())

| x -> x

let upto_ontrol p a =

let a' k' k = a (ompose (set_ontrol p) k k') in

C.upto ontrol (fun k' -> Cupto (injet_C p (a' k'), fun x -> x()))

Then, set and upto are simply wrapping oerions around their -ontrol versions

let set p a = is_R p (set_ontrol p (fun () -> injet_R p (a())))

let upto p a =

upto_ontrol p (fun k -> injet_R p (a (fun x -> is_R p (k x))))

end;;

The enoding is interesting for several reasons. It is de�nitely more ompliated that the previous

enodings, whih suggests why multiple prompts should be provided as a primitive onstrution,

rather than enoded. As previous enoding, this one is well-type, but somehow bypass the type

system using extensible data-types and partial parttern mathing: this is of ourse, at the prie of

possible dynami unaught prompts. The enoding is orret, but the proof is external as opposed

to a (partial) internal proof given by the type system.

6 Implementation

To omplete the argument that prompts and upto are simpler and easier to use than all, we

show that the upto an be implemented as eÆiently (in an asymptoti sense) as all.

Our operations|inluding multiple prompts|an be implemented as a module in SML/NJ

with the signature in Table 4. Other implementations of funtional ontinuation operators appear

in the literature: for instane, Filinski [6℄ shows how to enode ontrol operators with all and

one referene ell under the assumption that there is one prompt. The module provides a way to

translate omplete programs in our language to SML programs. The module has three primitives

new_prompt, set and upto that implement the onstruts of the same name.

The Appendix gives an implementation in SML/NJ. It has the same avor as the untyped

enoding of shift and reset [22℄ into Sheme with all, but it is not easy to relate them in a

preise way, sine the languages that they enode are also di�erent.

The time analysis of our implementation is important to onsider. The analysis depends ru-

ially upon the implementation of all. Assuming that the ost of all and throw are

onstant|as they are in ps ompilation strategies used by, e.g., SML/NJ [1℄|the enoding yields

an eÆient implementation of the operations. Examining the ode in the Appendix, the new_prompt

and set are learly onstant time operations. The ost of upto may, however, be proportional to

the number of set's that have been done before. If the program ontains just one prompt|as is
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the ase with programs written using only all|all operations take onstant time. Moreover,

the small fator by whih the ost is inreased in the simulation might be ompensated by the

oniseness of programs using upto rather than all.

For stak-based ompilation strategies, all is an expensive operation, and therefore the

simulated operations will also be expensive. A diret implementation of our operations might be

more eÆient. For example, a primitive implementation of upto's ould mark the stak when

setting a prompt, so that one ould avoid opying the entire ontext. Of ourse, sine funtional

ontinuations an express all, reifying a funtional ontinuation annot be faster than apturing

an abortive ontinuation of the same size. However, in many examples (see the next setion),

all's ome in pairs and, in e�et, implement some portion of funtional ontinuations. In other

words, the use of funtional ontinuations in appliations might atually inrease the performane.

How an we ompare the eÆieny of our implementation via all to a primitive imple-

mentation of upto? For sake of simpliity, onsider a restoring upto and the following senario.

First, the exeution starts in an empty ontext whih grows to a ontrol point E

1

where a prompt

is set. Then the evaluation ontinues with a

1

and reahes a ontrol point E

1

[set p in E

2

[ ℄℄ where

the ontext up to p is rei�ed as k and evaluation ontinues with a

2

. The whole program is of the

form E

1

[set p in a

1

℄ where a

1

is itself

E

2

[upto x as k in set x in k a

2

℄:

The omparison of performane naturally depends on the quality of the ompilation of ontinua-

tions. Let us all an implementation \naive" if it always opies the part of ontext orresponding

to the ontext that is rei�ed. With a naive implementation of ontinuations, primitive funtional

ontinuations are learly more eÆient than simulated ones: both E

1

and E

2

are opied by the

simulation while only E

2

is opied with a primitive implementation. There are also \smart" imple-

mentations that opy the ontext lazily, i.e., just before the ontext is popped. Given support from

the garbage olletor, this may avoid opies of rei�ed ontinuations that have beome unreahable

at the time when opying should our. We do not know whether smart ompilation would equally

bene�t both the simulated and the primitive upto. It might also be the ase that if prompts

are set frequently, utting up the ontext would beome unneessary in the ase of prompts, i.e.,

a naive primitive implementation of upto might run as eÆiently as a smart implementation of

all.

Queinne and Serpette have desribed an implementation of funtional ontinuations [17℄ that

never opies the stak. Roughly, their idea is to freeze some ative part of the stak, and jump

over that part until it beomes garbage. However, their semantis di�ers from ours sine prompts

are erased from the ontext during rei�ation (see Setion 8). It is not lear that their ompilation

shema an be applied to our semantis, and, if the shema an be applied, whether one obtains good

performane. Moreover, their method requires garbage olletion on the stak and penalizes blok

alloation. This makes the implementation loser to a stak-less implementation, and performane

should be omparable to the ase of CPS-implementations.

7 Programming Examples

7.1 Meta-programming

Manipulating ontrol is by nature more diÆult than sending values to fontions. For that reason,

it has often been argued that all is and should remain a meta-programming onstrut. That is,

it should only be used by experts to implement libraries whih would then be simpler and safer
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to use. A typial example are subroutines. Some enoding with of subroutines with all an be

found in . The enoding of subroutines with upto is similar.

The setion on enodings has shown that with respet to meta-programming, upto is more

expressive than all. Some of the enodings are not at all possible with all. Others would be

muh more diÆult. Here, we show a few useful onstruts than are both immediate appliations

of upto and small variations on know onstruts.

Pathers are a very restritive forms of upto that annot apture the ontinuation, but only

insert a path when the exeution will return at some urrent prompt and resume immediately.

let path p f = upto p (fun k -> f (set p k));;

For instane, an exeption may sometimes be replaed by a warning, whih should leave the exe-

ution but later report a possible mistake.

type 'a warning = 'a prompt;;

let new_warning = new_prompt;;

let warning p s = path p (fun (v, l) -> (v, s::l));;

let handle p h a = let (v,l) = set p (fun () -> a(), [℄) in h v l;;

let arith = new_warning();;

let arith_handler v = funtion

[℄ -> v | [s℄ -> print_string (s^"\n"); v

| _ -> print_string "Warning: many arithmeti errors\n"; v;;

let handle_arith a = handle arith arith_handler a;;

let (/) x y = if y = 0 then warning arith "division"; max_int) else x / y;;

let (mod) x y = if y = 0 then warning arith "modulo"; max_int) else x mod y;;

One ould think of using a global referene. Indeed, the pathing itself hanges the state of a

referene on the stak. However, the soping rules to reah the referene are dynamis, as those or

prompt or, equivalently those of exeptions. That is a warning ould be dynamially trapped, as

an exeption an. This suggests a notion of referene following similar soping rules.

Referenes with bakups Here, we extend the enoding of referenes with upto to provide

a bakuping operation. Bakuping follows the stak disipline, that is, the referene is impliitlty

reset to its old value saved on the stak when the stak is popped. More preisely, the redution

semantis is

lo l = v in E

l

[bakup l a℄ �! lo l = v in E

l

[lo l = v in a℄

Atually one also need to add a leaning up rule

lo l = v in E

l

[lo l = v in v

0

℄ �! lo l = v in E

l

[v

0

℄

whih allows to normally restore the saved loation. Note that sine a loaltion an only be non

loal if is already is global, loal always loations an be lean up.

We provide bakup's as a new primitive of the following type:
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value bakup : 'a ref -> (unit -> 'b) -> 'b

In a single-thread language, this an be trivially implemented by the following ode:

let bakup r a = let x = !r in let v = a() in r := x; v;;

Atually, in ML one must arefully protets against exeptions:

let bakup r a =

let x = !r in try let v = a() in r := x; v with z -> r := x; raise z

However, in languages with threads, all, or upto, this will not work anymore. We an easily add

the following funtion to our implementation of referenes:

let bakup r a =

let q = new_prompt() in

let return x = upto q (fun _ -> x) in

set q (fun () -> store r (!r) (set r (fun () -> return (a()))));;

Here, sine the new value is stored on the stak, the ode is multi-thread ompliant. Remark that

warnings an be trivially be easily enoded with bakup.

Pushy exeptions Pushy exeptions are a variant of exeptions used in some lisp dialets where

the handler is exeuted on the top of the stak. It may then deide either to ontinue of to stop the

urrent evaluation. We won't detailed the implementation here, but they an easily be enoded by

mixing exeptions with either warnings or bakups.

Shift/reset with multiple promts In setion 4, we have shown an enoding of shift/reset as a

side e�et of the enoding of all. Hierarhial shift/reset has been proposed. In fat our enoding

naturally allows shift/reset with multiple promps, as a module with the following interfae:

type 'a prompt

val shift : 'a prompt -> (('b -> 'a) -> 'a) -> 'b

val reset : 'a prompt -> (unit -> 'a) -> 'a

val new_prompt : unit -> 'a prompt

and the following trivial implementation, whih shows that shift/reset is a simple restrition of

upto.

type 'a prompt = 'a Cupto.prompt;;

let shift p a = Cupto.upto p (fun k -> Cupto.set p (fun () -> a k));;

let reset = Cupto.set;;

let new_prompt = Cupto.new_prompt;;

Here, the toplevel prompt has not been set, the user should ensure that "shift" should will only

our in a dynami ontext that ontains a "reset" ours.
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8 Comparison with Previous Work

We have already seen, in Setion 2, how the operational semantis of our ontrol operations om-

pares with Felleisen's F and Danvy and Filinski's shift operation. Many other hoies of fun-

tional ontinuation operations are possible, e.g., Hieb and Dybvig's spawn [9℄ and Queinne and

Serpette's splitter [17℄. See [14, 16℄ for a detailed omparison of the operational semantis of

these operations.

With one exeption, none of these papers onsider type systems for funtional ontinuations.

The sole exeption is Queinne and Serpette's paper [17℄ on splitter, abort, and all/p. These

operations di�er in some respets from our three operations of new prompt, set, and upto. Using

a notation similar to ours, the types of the operations are

splitter : (� prompt! �)! �

abort : � prompt! (unit! �)! �

0

all/p : � prompt! ((�

0

! �)! �

0

)! �

0

The splitter operation sets a new prompt and runs the body. If abort is ever alled with that

prompt and an argument (a thunk), the prompt is erased and the thunk is alled in the ontinuation

before the splitter. If all/p is ever invoked with a funtion, the ontinuation up to the prompt

is rei�ed and all its internal prompts are unset before it is passed as an argument. Using our notation

and operations for larity, the operational semantis an be expressed by the rules

(splitter a)=P �!

red

(set p in (a p))=P [ fpg; p 62 P

(set p in E

p

[abort p a℄)=P �!

red

(a ())=P

(set p in E

p

[all/p p a℄)=P �!

red

(set p in hE

p

i[a (�x: E

p

[x℄)℄)=P

where hEi stands for the ontext E where all prompts have been unset, i.e., hset p in Ei is E

and the transformation is homomorphi on other onstruts (only prompts an be in the position

of p, sine set in expressions are all introdued by the redution rule for splitter). We do

not know if they proved a type soundness theorem as we have: the paper [17℄ does not state the

theorem nor attempt to prove it, but using our proof tehnique it is easy to arry out.

Apart from this signi�ant di�erene, Queinne and Serpette's splitter also omes losest

to ours in adding multiple prompts. Others, notably Sitaram and Felleisen [22℄ and Danvy and

Filinski [2℄, have added multiple prompts and ontrol operations to languages to obtain more

ontrol. The di�erene between these operations and our language (and Queinne and Serpette's)

is important: prompts in our proposal are hidden in an abstrat type that only the ompiler

an manipulate, whereas in [2, 22℄ the representations of prompts are known to the programmer

(as integers). The hidden representation of prompts is essential for implementing exeptions in

a orret manner: the implementation generates fresh prompts that programmers annot upto.

Also, having a speial type of prompts makes it easy to inorporate prompts into a language like

ML; we otherwise would need some umbersome naming sheme for in�nite sets of prompts at eah

type.

Aside from the rigorous treatment of types, the single identi�ably new feature in our proposal is

the deomposition of delaring a new prompt from setting a prompt, and the orresponding ability

to set a prompt more than one. This is again used in our enoding of exeptions, but we know of

no other natural examples whih require one to set a prompt more than one.
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9 Disussion

We have shown how to inorporate primitives for �rst-lass prompts and the rei�ation of ontrol

up to a prompt in a statially-typed language. Let us onsider briey the theoretial, programming,

and ompilation issues related to these primitives.

We believe that the primary theoretial bene�t of using named, typed prompts arises in the

simple proof of strong soundness. In fat, our hoie of onstruts an be used to simplify proofs of

strong soundness for other ontrol operations. For instane, to prove strong soundness for all,

Wright and Felleisen [26℄ onsider only expressions that do not ontain an abort. Given their

way of expressing the semantis of all, this is essentially equivalent to ruling out expressions

ontaining ontinuations rei�ed relative to a di�erent top-level. The restrition works beause any

ontinuations rei�ed in the ourse of the evaluation of a given expression must all be relative to the

top-level for that expression. Our typing gives a way to explain the strong soundness for all

more perspiuously: when the user types an expression, the interative top-level loop simply reates

a fresh prompt (with the type of the expression) and set's; all all's are then done via upto's

to this fresh prompt.

To determine whether named, typed prompts are useful in programming requires some experi-

ene in writing programs. In the untyped ase, prompts add signi�ant expressive power [20, 21℄;

we believe the examples of [20℄ ould be typed in our system. We also onjeture that many appli-

ations that urrently uses all (suh as various threads pakages or CML) ould bene�t|for

instane, the expliit prompt mehanism may simplify the implementation of threads in a inter-

ative top-level loop. At the very least, the sense in whih all an be easily enoded in our

language should ensure that swithing to expliit prompts will ost little.

A hallenge left open by this work is still an eÆient diret implementation of the operations,

espeially for stak-based ompilation strategies.

Although our operations have better typing and programming properties than all in a

language like ML, there is still the larger question of whether inexpensive, ontinuation-based

operations are really neessary. Conurreny operations an be easily built using ontinuations,

but there are not very many other good examples of programs that need ontinuations, and on-

tinuations are diÆult to use for the non-expert programmer. It may well be that onurreny

primitives are more fundamental and important than ontinuation operations, but until the right

set of primitives is found it may be best to build in ontinuation operations.

Aknowledgements: We thank Andrew Appel for disussions about how \prompts" are enoded in

the SML/NJ interative top-level loop, Brue Duba, Andrzej Filinski, Dan Friedman, Trevor Jim,

and Christian Queinne for several helpful disussions, Chris Okasaki for revealing problems with

exeptions in our original SML/NJ implementation, and Matthias Felleisen and Tim GriÆn for

detailed omments on drafts.
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A Enoding upto with all

We �rst desribe the implementation in SML/NJ using all, and then give a sketh of the proof

that this enoding is orret. The ode has also been ported to the byteode version of Objetive

CAML with all implemented in C.

A.1 Implementation of prompts with all in SML/NJ

There are two key ideas in the implementation. The �rst is to use a stak of ontinuations to model

the prompts that have been set, eah ontinuation representing the rest of the omputation after

the set expression terminates normally. A diÆulty with types arises immediately, however: sine

prompts an have di�erent types, ontinuations orresponding to di�erent set's may expet values

of di�erent types. For instane, in the ode

let p = new_prompt ()

q = new_prompt ()

in 1 + set p (fun () => if set q (fun () => true) then 2 else 3)

end

the ontinuation exeuted after the �rst set expets an int, whereas the ontinuation exeuted

after the seond set expets a bool. In other words, the ontinuations have types (int ont) and

(bool ont) respetively. To solve the typing problem, we need a way to oere these di�erently

typed ontinuations into a single type.

A seond key idea is needed in order to implement the peuliarities of our operations. When

performing a upto, the stak must be unwound to the point of the orresponding set. All but the

last unwound ontinuation must be restored to the stak if the funtional ontinuation is ever alled,

beause they an be upto'ed. The last unwound ontinuation, orresponding to the ontinuation

after the set, an never be upto'ed beause of our semantis that erases the set. Nevertheless,
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we must still be able to jump to that ontinuation after the set expression terminates. Thus,

ontinuations on the stak ome in two avors: those that represent set's that have not been

upto'ed and those that do.

First, we de�ne some basi exeptions, abbreviations, and the stak operations themselves.

exeption Prompt;;

exeption Bug;; (* should never be raised *)

type 'a ontrol = 'a ont * exn list;;

module E = Extensible.Make (strut end);;

let stak = ref ([℄: E.t list);;

let push p = stak := p :: !stak;;

let pop () = math !stak with [℄ -> raise Prompt

| p :: rest -> (stak := rest; p);;

Seond, we de�ne two primitive types and two operations.

type 'a result = Value of 'a | Exeption of exn;;

let freeze f x = try Value (f x) with z -> Exeption z;;

let unfreeze = funtion Value x -> x | Exeption z -> raise z;;

type 'a prompt = (bool * 'a result ont) E.onstrutor;;

The value type onstrutor wraps two possible outomes for a omputation, either a value or

an exeption, into a single type; freeze is a way of running a omputation, and either athing

the exeption or returning the value; and unfreeze unloks a frozen omputation, re-raising the

exeption if one was raised. These operations help in ontrolling when exeptions get raised. The

prompt type onstrutor abbreviates pairs of a ontinuation and a boolean, where the boolean is

true if the orresponding set has not been upto'ed. The operation

let new_prompt = E.reate;;

simply reates a new onstrutor of the extensible datatype, one that will atually be of type 'a

prompt.

To set a prompt, the urrent ontinuation is aptured and transformed into a ontrol point

assoiated with prompt p that is pushed on the stak. The expression is run and ontrol resumes

at the ontrol point found on top of the ontrol stak.

let set p e =

unfreeze

(all (fun normal_ontinuation ->

let z = push (E.injet p (true, normal_ontinuation)) in

let v = freeze e() in

let (effetive_ontinuation,_) =

E.mathes (pop())

p (fun (b,) -> (,[℄))

(fun s ->

math v with

Value _ -> raise Bug

| Exeption z -> raise z)

in

(throw effetive_ontinuation v)

))
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There are two ases when the body e is run: either e does one or more additional set's and then

raises an exeption, or e does no more set's or terminates normally (or both). In the �rst ase,

the exeption gets re-raised by the fourth argument to the E.ases all. In the seond ase, the

top element on the stak should have a onstrutor mathing p. In that ase, the value is thrown

to the normal ontinuation, whih then unfreezes the result.

When apturing ontrol, we need to opy the stak of ontrol into a list|the top of the stak

being at the end of the list|up to the orresponding prompt. The following operation does this,

opying set's that have already been upto'ed (b is false) along the way.

let pop_ontrol (p:'a prompt) =

let re pop_more ontrol =

E.mathes (pop())

p (fun (b, ) ->

if b then (, ontrol)

else pop_more (E.injet p (b,):: ontrol))

(fun p -> pop_more (p :: ontrol))

in pop_more [℄;;

let re push_ontrol = funtion

(p :: ontrol) -> (push p; push_ontrol ontrol)

| [℄ -> ();;

When ontrol is used as a funtion, the saved ontrol stak is appended to the top of the urrent

ontrol stak.

let upto p f =

let (abort, ontrol) = pop_ontrol p in

let reified x v =

unfreeze (all (fun after ->

let z = push (E.injet p (false, after)) in

let z = push_ontrol ontrol in

throw x v)) in

all (fun x -> throw abort (freeze f (reified x)))

In words, upto �rst unwinds the top of the ontrol stak up to the �rst ourrene of the prompt

p, alling that portion of the stak ontrol, and retrieves the ontinuation abort. Note that when

the ontinuation abort is aptured|during a set operation|the ontinuation refers to the rest of

the omputation after the set operation returns. The upto operation next aptures the urrent

ontinuation x, and then alls f with a funtion (reified x) that represents the rei�ed portion of

the stak. If f never alls this funtion reified and never does a upto, the value returned by f

is returned to the ontinuation abort, the part of the omputation after the orresponding set.

The funtion reified is the trikiest part of the ode. If (reified x) is alled with a value v, it

aptures the urrent ontinuation after and pushes it on the ontrol stak as an already upto'ed

set of the prompt p. This prompt annot be upto'ed, but an be used as a return address. Then,

the saved ontrol is pushed on the ontrol stak and omputation jumps to position x. Later,

when reahing prompt p, omputation will resume at position after instead of abort.

Other funtional ontinuation operations an be implemented using modi�ations of the ode.

For instane, the all/p operation of Queinne and Serpette does not require the opying of

the stak done here in pop_ontrol, sine set's are erased during rei�ation in the exeution of

all/p. Similarly, in implementing Felleisen's F operation, there need be no distintion between
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set's that have been upto'ed and those that have not, sine the F operation does not erase the

set during rei�ation. We leave the modi�ations to the reader.
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