
Return Types for Fun
tional Continuations

�

|Last revision: September 1998|

Carl A. Gunter

University of

Pennsylvania

Didier R�emy

INRIA, Ro
quen
ourt

Jon G. Rie
ke

Bell Laboratories

Abstra
t

We study the typing of
ontrol operators in a language with an ML-style type system. We

introdu
e a new set of
ontrol operators that subsume most
ontrol operators that have been

proposed for languages su
h as S
heme or ML. We prove subje
t redu
tion for the extended

language. We also show how the new operators
an easily en
ode a variety of already known

onstru
ts:
all

, shift and reset, ex
eptions, referen
es as well as new variants of these
on-

stru
ts. We also des
ribe an implementation of fun
tional
ontinuations in terms of the more

primitive
all

 operator.

1 Introdu
tion

Control operations are a heavily used feature in mostly fun
tional languages. For instan
e, all

diale
ts of the ML language|in
luding the ML of the LCF theorem prover [7℄, CAML [10℄, and

Standard ML (SML) [13℄|build in an ex
eption me
hanism. Ex
eptions give the programmer

the ability to re
over from errors in a modular and eÆ
ient fashion. Continuations are another,

though less
ommon,
ontrol fa
ility that
an be added to any diale
t of ML [3℄. The
ontinuation

me
hanism
onsists of two primitives:
all

 (
all-with-
urrent-
ontinuation) whi
h rei�es the

entire
ontrol
ontext as a fun
tion and passes it to another fun
tion, and throw whi
h invokes

a
ontinuation on an argument, aborting the
urrent
omputation. Continuations
an be used

to implement other
ontrol features, e.g.,
on
urren
y [18℄. Both ex
eptions and
ontinuations

preserve the inherent type soundness properties of ML.

In this paper we give a generalization of the
ontinuation me
hanism of [3℄ for a language with

an ML-style type system. We prove that the language is type-safe, i.e., evaluation of programs

annot generate run-time type errors. There are two interesting and important aspe
ts of the gen-

eralization. First, unlike the type system of SML/NJ, our system requires no new type
onstru
tor

for
ontinuations;
ontinuations have fun
tional type. These \
ontinuations" are really \fun
tional

ontinuations". Fun
tional
ontinuations|a programming language feature in whi
h portions of

the
ontrol
ontext
an be rei�ed as an ordinary, non-abortive fun
tion|have been studied in the

ontext of untyped languages [2, 4℄, but not in the
ontext of ML-like languages. Se
ond, fun
tional

ontinuations over
ome some of the anomalies of
all

 in the top-level intera
tive loop, allow a

leaner style of programming than
all

, and in
rease the expressiveness of the language .

Type systems for
ontinuation-based operations are not well understood. Sitaram and Felleisen [22℄

were the �rst to give a limited type system for
ontinuation-based operations. They added
all

�

A preliminary version entitled A generalization of ex
eptions and
ontrol in ML-like languages appeared in Pro-

eedings of the 1995 Conferen
e on Fun
tional Programming and Computer Ar
hite
ture, ACM Press, 1995.

1

into PCF, a simply-typed language with basi
 arithmeti
, and used the typing rule

A ` a : (� ! nat)! �

(
all

)

A ` (
all

 a) : �

where A spe
i�es the types of free variables. The limitation in the typing is obvious: only a

ontinuation whose result type is nat
an be rei�ed. In essen
e, the problem of typing
all

 in

PCF hinges on the fa
t that one must pi
k one return type for
ontinuations.

The type nat is a
anoni
al
hoi
e in PCF, but not in languages with more
omplex type

stru
ture. In a language with ML-style polymorphism,
all

 ought to have a polymorphi
 type

with an arbitrary return type. Duba, Harper, and Ma
Queen [3℄ have proposed adding a unary

type
onstru
tor
ont for typing
all

 whi
h hides the return type of the
ontinuation. The type

for
all

 is

all

 : ('a
ont -> 'a) -> 'a

in their proposal, whi
h is the type given in the SML/NJ implementation. To invoke the
ontinu-

ation, one uses the operation

throw : 'a
ont -> 'a -> 'b

Although there are only two type variables in the type of throw, in a
tuality three types are

ne
essary to explain the type of throw. For instan
e,
onsider typing the following expression

==> 5 > (1 +
all

 (fn k =>

if s = "a" then throw k 2

else size s))

at the top-level, where ==> denotes the \prompt" of the intera
tive loop. There is the argument

type int of the
ontinuation, whi
h must be the same as that expe
ted by the
ontext in whi
h it

was rei�ed; there is the type int of the
ontext in whi
h the throw is invoked; and there is the type

bool of the value returned to the prompt after a value is throw'n to the rei�ed
ontinuation. The

third type is not dire
tly represented in the types for
all

 and throw, but is rather \hidden" in

the abstra
t type
onstru
tor
ont.

The failure to represent the prompt type
an lead to diÆ
ulty with the operational behavior of

all

. From a theoreti
al standpoint, what Wright and Felleisen [26℄
all \strong soundness" fails

to hold. A language satis�es strong soundness if the type obtained from evaluating an expression

is the type assigned stati
ally; the absen
e of run-time type errors is what Wright and Felleisen

term \weak soundness". This di�eren
e between strong and weak soundness arises in the following

session of the SML/NJ intera
tive loop:

==> val
 =
all

 (fn k=> fn x=>

throw k (fn y=> x+4));

val
 = fn : int -> int

==> fun g () = 5 > (
 2);

val g = fn : unit -> bool

The value of g applied to () should be a fun
tion that, given any value, returns 6, and so the

type should be a fun
tion type. Nevertheless, the type system predi
ts the type bool. The same

behavior would happen any time a
ontinuation is stored in some data stru
ture like a
losure or

referen
e
ell. SML/NJ regards this as an anomaly, and resolves the problem by pla
ing \prompt

2

stamps" on the initial
ontinuations and aborting with a runtime ex
eption if an initial
ontinuation

is invoked under a prompt that does not mat
h its stamp.

Our approa
h to typing
all

 is simpler: we for
e the missing type of the prompt to be

in
luded in the type of the rei�ed
ontinuation. If we were to modify the
onstru
tor
ont, the

ontinuation k above would have a type like

(int -> int)
ont (int -> int)

where the right side is the type of the prompt. This information
ould be used in the typing of an

expression that throw's to this
ontinuation. For instan
e, a top-level phrase yielding a value of

boolean type in whi
h a value is throw'n to k must be reje
ted as having a type error. A logi
al

extension of this idea is to allow the programmer to insert expli
it
ontrol points representing his

own prompts. This idea is not new; Felleisen [4℄ and Danvy and Filinski [2℄ study �rst-
lass prompts

in the untyped setting. It simpli�es matters to resume exe
ution at the
ontrol point marked by

the prompt, thus leaving the issue of whether to resume the
omputation within the rei�ed
ontrol

to the program. To make this work with types, su
h a rei�
ation must
arry the type of the

en
losing prompt. Our design makes it possible to
he
k the
orre
tness of this type stati
ally.

We a
hieve this by requiring that prompts be typed and named|for Felleisen's and Danvy and

Filinski's original prompts, in
ontrast, there is only a single, untyped prompt [2, 4℄. The rei�ed

ontrol fragments
an then be treated as fun
tions|that is, we do not need the type
onstru
tor

ont, only the fun
tion type
onstru
tor ->.

Before beginning the formal treatment, let us see how one example works. To begin with, we

reate a new prompt by a gensym-like primitive operation new prompt:

==> val p = new_prompt (): int prompt

val p : int prompt

This prompt
an be set at
ontrol points expe
ting an integer and used to delimit a
ontrol fragment

that returns an integer. Two more primitives are required: (set p in a) whi
h sets prompt p in

expression a, and the primitive (
upto p as k in b), whi
h rei�es the
ontrol up to p and binds this

to k in the expression b. Thus,

==> 5 > (set p in 1 + (
upto p as k in 2 + (k 3)))

val it = false : bool

binds to k the
ontrol 1 + [℄ (the
ontrol up to the point where the prompt was set), i.e., an

int-expe
ting, int-returning
ontinuation, and evaluates (2 + (k 3)) in the
ontrol
ontext 5 >

[℄ (not 5 > 1 + [℄). When k is invoked as a fun
tion with 3 as its argument, the expression 5

> 2 + 1 + 3 is evaluated to false. The rei�
ation k is treated as the ordinary fun
tion fn x =>

1 + x.

Noti
e how similar these operations are to ex
eptions and
all

, e.g.,
ontrol behavior as

provided by
all

 is a
hieved by setting a prompt at top level. In fa
t, the operation that rei�es

the
ontinuation is a typed version of Felleisen's \fun
tional
ontinuation" operator F [4℄ or Danvy

and Filinski's shift operator, operators that
apture
ontinuations as fun
tions whose appli
ation

does not ne
essarily abort the
omputation. In terms of ma
ro-expressiveness, F and shift
an

express
all

 and other
ontrol operators. The new prompt and set operations, though, have

dire
t analogs in the ex
eptions of ML: new prompt de
lares a new prompt just like the keyword

ex
eption generates a new ex
eption value, and set marks a breakpoint in the
ontrol
ontext

just as try in CAML or handle in SML marks a breakpoint (although these have a handler

asso
iated with them). After �rst des
ribing the syntax and operational semanti
s of our language

3

and proving that the language is type safe, we show how to express a generalization of
all

 and

simple ex
eptions, and show how to implement the operations as eÆ
iently as
all

.

2 A Typed Language with Prompts

Table 1 de�nes the grammar of the language. The syntax is that of a restri
ted version of the
ore

of ML (without base
onstants, referen
es, and ex
eptions) with three extra
onstru
ts for manipu-

lating the
ontrol
ow of a program: new prompt, set in , and
upto as in . The language

is based on primitive syntax
lasses of variables x and prompts p. The
onstru
t new prompt re-

turns a fresh prompt; set in establishes a new dynami
 extent for the prompt to whi
h the �rst

subexpression evaluates and runs the se
ond subexpression; and
upto as in , where
upto is

an abbreviation for \
ontrol up to", rei�es a fun
tion from the
ontrol
ontext. The
upto oper-

ation binds its se
ond subexpression|whi
h must be a variable|to the
ontrol up to the value

of its �rst subexpression|whi
h must evaluate to a prompt|in the s
ope of its third. Binding

onventions for the �-
al
ulus portion of the language are the usual ones; we identify all terms up

to renaming of bound variables. We use the notation a[b=x℄ to denote the
apture-free substitution

of term b for variable x in term a.

The typing rules for the language are given in Table 2. Here, A stands for a type
ontext

whose syntax is given in Table 1. The operation
lose(A; �) returns a type s
heme (8�

1

: : : �

n

: �),

where f�

1

; : : : ; �

n

g is the set of type variables o

urring free in � but not in A. The syntax

restri
ts the expression bound by let to be a value, i.e., an expression that
auses no immediate

sub
omputation [13, 25℄. The type system be
omes unsound if the syntax of let is left unrestri
ted,

(this phenomenon|�rst pointed out by Tofte [23, 24℄ in the
ontext of typing referen
es in ML|

has been well-do
umented in the
ase of
ontinuations [8, 11, 26℄). For better readability we use the

synta
ti
 sugar (let x = a

1

in a

2

) for ((�x: a

2

) a

1

) for the monomorphi
 let. Some familiar fa
ts

follow immediately from the form of the type system, e.g., one may easily
onstru
t an algorithm

(based on uni�
ation) that derives a prin
ipal type, as in ML.

A rewriting semanti
s in the style of [4℄ (a
onvenient reformulation of stru
tured operational

semanti
s [15℄) is given in Table 3. The semanti
s is given in two parts: the �rst part de�nes a

olle
tion of evaluation
ontexts, whi
h spe
ify the positions in whi
h a redex
an be redu
ed,

and the se
ond part spe
i�es a
olle
tion of rules de�ning a binary relation �!

red

for the redu
tion

of redexes. To do a step of evaluation on a term a, one �nds a
ontext E and a redex a

0

su
h that

a � E[a

0

℄ and a

0

�!

red

a

1

; then E[a

0

℄ �! E[a

1

℄. The redex redu
tions are of the slightly

more
omplex form a

0

=P

0

�!

red

a

1

=P

1

, meaning \the redex a

0

with prompts P

0

redu
es to

expression a

1

with prompts P

1

" so redu
tions in an evaluation
ontext have the form E[a

0

℄=P

0

�!

E[a

1

℄=P

1

. The set P

i

|the
urrent set of allo
ated prompts|is mu
h like a \store" in an operational

semanti
s of referen
es, and determines the previously allo
ated prompts. Thus, the expression

(new prompt ()) allo
ates a \fresh prompt" relative to the
urrent P . Also, in the redex rules,

the notation E

p

denotes an evaluation
ontext in whi
h the hole is not in the s
ope of a setting

of prompt p. The rules spe
ify how to reify a
ontinuation and pass a value up to the nearest

dynami
ally en
losing prompt.

A few examples should make the behavior of the redu
tion semanti
s more apparent. To simplify

the examples, the term (let x = a in a

0

)|where the binding of x is not a value|stands for the

term ((�x: a

0

) a). For instan
e, the expression

let x =new_prompt () in

set x in
upto x as k in (k (�z: z))

4

Table 1: Syntax

a ::= Expression

v Value

j (a

1

a

2

) Appli
ation

j let x = v in a Polymorphi
 let binding

j set a

1

in a

2

Set a prompt

j
upto a

1

as x in a

2

Reify
ontrol up to a prompt

v ::= Value

x Variable

j () Unit value

j new prompt Generate new prompt

j (�x: a) Abstra
tion

j p Prompts

� ::= Type

� Type variable

j unit Unit type

j (� ! �) Fun
tion type

j (� prompt) Type of prompts

� ::= 8�

1

: : : �

k

: � Type s
heme

A ::= ; j A[x : �℄ j A[p : � ℄ Typing
ontext

Table 2: Typing Rules.

x : 8�

1

: : : �

n

: � 2 A

(Var)

A ` x : � [�

1

=�

1

; : : : ; �

n

=�

n

℄

(Unit)

A ` () : unit

p : � 2 A

(Prompt Const)

A ` p : (� prompt)

A[x : �

0

℄ ` a : �

1

(Fun)

A ` (�x: a) : (�

0

! �

1

)

A ` a

1

: �

2

! �

1

A ` a

2

: �

2

(App)

A ` (a

1

a

2

) : �

1

(Prompt)

A ` new prompt : (unit! � prompt)

A ` a

1

: (�

1

prompt) A[x : (�

0

! �

1

)℄ ` a

2

: �

1

(Cupto)

A `
upto a

1

as x in a

2

: �

0

A ` a

1

: (� prompt) A ` a

2

: �

(Set)

A ` set a

1

in a

2

: �

A ` v : �

1

A[x :
lose(A; �

1

)℄ ` a

2

: �

2

(Let)

A ` let x = v in a : �

2

5

Table 3: Operational Semanti
s.

E ::= Evaluation
ontext

[℄ Hole

j (E a) j (v E) Appli
ation

j set E in a j set p in E Set

j
upto E as x in a Cupto

Redex redu
tions

((�x: a) v)=P �!

red

a[v=x℄=P

let x = v in a=P �!

red

a[v=x℄=P

(new prompt ())=P �!

red

p=fpg [P p 62 P

set p in v=P �!

red

v=P

set p in E

p

[
upto p as x in a℄=P �!

red

(�x: a) (�y:E

p

[y℄)=P

Context redu
tions

a

0

=P

0

�!

red

a

1

=P

1

E[a

0

℄=P

0

�! E[a

1

℄=P

1

�rst allo
ates a fresh prompt, sets the dynami
 s
ope to be this prompt, rei�es the (empty)
ontin-

uation as a fun
tion k, and passes to k the identity fun
tion. The �nal result is thus the identity

fun
tion. At a high level, the formal steps are

(let x = new prompt() in set x in
upto x as k in (k (�z: z)))=;

�! set p in
upto p as k in (k (�z: z))=fpg

�! (�k: k (�z: z)) (�x: x)=fpg

�! ((�x: x) (�z: z))=fpg

�! (�z: z)=fpg

This expression is also well-typed in the language: the variable x has type ((� ! �) prompt)

and the
ontinuation k has type ((� ! �) ! (� ! �)). Another example is that of an abortive

omputation:

let x =new_prompt () in

set x in
upto x as k in (�z: �y: y)

whi
h aborts the
omputation and passes (�z: �y: y) to the top-level.

There is a
tually more latitude in assigning operational semanti
s to the language than it �rst

appears. For instan
e, any of the following rules preserve the strong type soundness theorem below:

set p in E

p

[
upto p as x in a℄=P �!

red

set p in ((�x: a) (�y:E

p

[y℄))=P

set p in E

p

[
upto p as x in a℄=P �!

red

set p in ((�x: a) (�y: set p in E

p

[y℄))=P

The �rst rule grabs the fun
tional
ontinuation but leaves the prompt p set in the
ontinuation;

this
orresponds to the operational semanti
s of Felleisen's F operation [4℄. The se
ond rule also

6

leaves the prompt p set, but also grabs the \set" when the fun
tional
ontinuation is rei�ed; this

orresponds to the operational semanti
s of Danvy and Filinski's shift operation [2℄. It is easy

to see how to simulate the �rst rule in our semanti
s by adding a set before every body of a

upto. Similarly, the se
ond rule
an be simulated using the �rst. The other dire
tion, though,

seems not to be known|that is, whether the weaker operational rules
an simulate the operational

semanti
s we have given to
upto. There are even further possibilities, in
luding ones that erase

all intervening set's during a
upto [14℄. All of these
hoi
es (as well as other, less interesting

hoi
es) of operational rules lead to strong type soundness. We have merely fo
used on one of the

more powerful forms.

3 Type Safety

We now show that redu
tion preserves typing and ea
h well-typed term never gets stu
k at a

run-time type error.

Type safety is a subtle issue be
ause \getting stu
k at a run-time type error" is open to inter-

pretation. Some examples of \run-time type error" require little justi�
ation. For instan
e, the

non-well-typed term

(new prompt()) (new prompt())=;

annot be redu
ed past a form (p

1

p

2

)=fp

1

; p

2

g for some prompts p

1

; p

2

; the result is obviously a

run-time type error be
ause of the attempt to apply a non-fun
tion to an argument. But the issue

is subtle in the presen
e of
ontrol operations, and for our purposes not every \stu
k" term is a

run-time type error. For instan
e, the well-typed term

let x =new_prompt () in
upto x as k in k = ;

redu
es to (
upto p as k in k)=fpg with no further redu
tions possible|the
ontinuation
annot

be rei�ed sin
e no prompt has been set. The situation for ex
eptions in ML is similar: well-typed

terms
an still result in an \un
aught ex
eption". We leave aside these
on
erns and adopt an analog

to the ML
onvention, i.e., the term above does not represent a run-time type error. Theorem 9

provides a pre
ise expression of our assumptions.

We �rst need a few simple lemmas about the type system that are essentially independent of

ontrol operations.

Lemma 1 (Type Substitution) If A ` a : � , then A[�

0

=�℄ ` a : � [�

0

=�℄.

Lemma 2 (Extension of Type Assignment) Let B be any type assignment whose domain
on-

tains no free variables of a. Then AB ` a : � i� A ` a : � .

A type s
heme 8�

1

: : : �

n

: � ismore general than a type s
heme 8�

1

: : : �

p

: �

0

if there are types �

1

,

: : : �

n

su
h that � [�

1

=�

1

; : : : ; �

n

=�

n

℄ = �

0

, where � [�

1

=�

1

; : : : ; �

n

=�

n

℄ is the result of simultaneously

substituting the �

i

's for the �

i

's. Similarly, a type assignment A is more general than a type

assignment B if they have the same domain D and, for all x 2 D the value A(x) of A at x is more

general than B(x).

Lemma 3 (Generalization of Type Assignment) If A is more general than B and B ` a : � ,

then A ` a : � .

Lemma 4 (Term Substitution) Suppose A ` a

0

: �

0

and A[x : 8�

1

: : : �

n

: �

0

℄ ` a : � , where

�

1

; : : : ; �

n

are not free in A. Then A ` a[a

0

=x℄ : � .

7

The proof of type safety for our parti
ular language requires a few de�nitions. A type assignment

A is a prompt assignment if A = ;[p

1

: �

1

℄ : : : [p

n

: �

n

℄, and A

0

is a prompt extension of a

prompt assignment A if A

0

is of the form AA

00

where A

00

is a prompt assignment. Evaluation of

expressions may
reate new prompts but
annot
hange the type of an expression; thus, we write

a

0

=P

0

� a

1

=P

1

if P

1

ontains P

0

and, for any prompt assignment A

0

with prompts P

0

and any type

� su
h that A

0

` a

0

: � , there exists a prompt extension A

1

of A

0

su
h that P

1

is the domain of A

1

and A

1

` a

1

: � . It is not hard to see that the relation � is re
exive and transitive. One may also

easily prove the following lemma by indu
tion on the stru
ture of evaluation
ontexts.

Lemma 5 If a

0

=P

0

� a

1

=P

1

, then E[a

0

℄=P

0

� E[a

1

℄=P

1

.

The important step of redu
tion is the
apture of the
urrent
ontext up to a prompt. The
ontext

E used in a program E[x℄ is turned into a fun
tion �x:E[x℄. The following lemma will simplify the

orresponding
ase in the proof of subje
t redu
tion.

Lemma 6 Suppose A ` E[a

1

℄ : � . Then there exists a type �

0

su
h that A ` a

1

: �

0

and, for any

term a

2

su
h that A ` a

2

: �

0

, we also have A ` E[a

2

℄ : � .

Proof: By indu
tion on the form of the evaluation
ontext; the proof relies on the fa
t that the

hole in an evaluation
ontext is not in the s
ope of any binding operation. Here are three typi
al

ases:

Case E = [:℄: Then pi
k �

0

to be � .

Case E = (E

0

a

0

): From the hypothesis we know that A ` E

0

[a

1

℄ : �

1

! � and A ` a

0

: �

1

. Thus,

by the indu
tion hypothesis, there is a type �

0

su
h that A ` a

1

: �

0

, and, for any a

2

su
h that

A ` a

2

: �

0

, we have A ` E

0

[a

2

℄ : �

1

! � . The statement now follows from the typing rule (App).

Case E = (set E

0

in a

0

): From the hypothesis, we have A ` E

0

[a

1

℄ : (� prompt) and A ` a

0

: � .

Thus, by the indu
tion hypothesis, there is a type �

0

su
h that A ` a

1

: �

0

, and, for any a

2

with

A ` a

2

: �

0

, we have A ` E

0

[a

2

℄ : (� prompt). The statement now follows from the typing rule

(Set).

Lemma 7 (Redex Contra
tion) If a

0

=P

0

�!

red

a

1

=P

1

, then a

0

=P

0

� a

1

=P

1

.

Proof: Ea
h
ase of redex redu
tion
an be
onsidered independently. Assume there is a prompt

assignment A

0

with prompts P

0

, a type � su
h that A

0

` a

0

: � ; we need to exhibit a prompt

extension A

1

of A

0

su
h that P

1

is the domain of A

1

and A

1

` a

1

: � .

Case a

0

= ((�x: a) v) or (let x = v in a): In both
ases the redu
tion steps for these forms do

not
hange the set of prompts. In ea
h
ase, there exists a type �

1

and a list W of type variables

not in the free variables of A

0

su
h that A

0

` v : �

1

and A

0

[x : 8W: �

1

℄ ` a : � . Sin
e a

1

= a[v=x℄,

it follows from Lemma 4 that A

0

` a

1

: � .

Case a

0

= (new prompt ()): Note that A

0

` new prompt : (unit! �

0

prompt) andA

0

` () : unit.

Suppose a

1

= p where p 62 P

0

. If P

1

= P

0

[fpg and A

1

= A

0

[p : �

0

℄, then A

1

` a

1

: (�

0

prompt).

Case a

0

= (set p in v): Trivial.

8

Case a

0

= (set p in E

p

[
upto p as x in a℄): The redu
tion step for
upto does not introdu
e

any new prompts. Thus, A

0

` E

p

[
upto p as x in a℄ : � and A

0

` p : (� prompt). Applying

Lemma 6, there exists a type �

1

su
h that A

0

` (
upto p as x in a) : �

1

(1) and A

0

` E

p

[a

1

℄ : � for

any expression a

1

su
h that A

0

` a

1

: �

1

(2). From (1) it follows that A

0

[x : �

1

! � ℄ ` a : � and,

onsequently, A

0

` �x: a : (�

1

! �)! � . Let y be a variable that appears neither in the domain of

A

0

nor in E

p

. By (2) and Lemma 2, A

0

[y : �

1

℄ ` E

p

[y℄ : � , and hen
e A

0

` (�y:E

p

[y℄) : (�

1

! �).

Thus, A

0

` (�x: a)(�y:E

p

[y℄) : � follows.

Theorem 8 (Subje
t Redu
tion) If a

0

=P

0

�! a

1

=P

1

, then a

0

=P

0

� a

1

=P

1

.

Proof: A simple
ombination of Lemmas 5 and 7.

Note that Theorem 8 does not hold without the value-only restri
tion (or other restri
tions on

polymorphi
 let); see [8, 11, 26℄ for examples.

Theorem 9 (Value Halting) Suppose A is a prompt assignment with prompts P . If A ` a : �

and a=P
annot be redu
ed, then a is either a value or a term of the form E

p

[
upto p as x in a

0

℄.

Proof: The proof is by indu
tion on the size of a. The
ases when a = (), new prompt, p, and

(�x: a

0

) are trivial, so
onsider the remaining
ases:

Case a = (a

1

a

2

): There must be a type �

2

su
h that A ` a

1

: (�

2

! �). By the indu
tion

hypothesis applied to a

1

=P , a

1

either is a value or has the form E

p

[
upto p as x in a

0

℄. The latter

implies a has the form E

p

[
upto p as x in a

0

℄, so
onsider the
ase when a

1

is a value. By the

indu
tion hypothesis applied to a

2

=P , a

2

either is a value or has the form E

p

[
upto p as x in a

0

℄.

Again, the latter
ase means that the lemma holds, so
onsider the
ase when a

2

is a value too.

Note that a

1

annot be an abstra
tion, sin
e a
annot be redu
ed. Sin
e a

1

has a fun
tional type,

it
an only be new prompt. Hen
e, a

2

is of type unit, and it must be the value (). However, this is

not possible sin
e a
annot be redu
ed. This rules out all
ases but the
ase when a has the form

E

p

[
upto p as x in a

0

℄, so the statement holds.

Case a = (let x = v in a

1

): Then a
ould be redu
ed,
ontradi
ting the hypothesis.

Case a = (set a

1

in a

2

): Then A ` a

1

: � prompt and A ` a

2

: � . If a

1

is not a value, then it has

the form E

p

[
upto p as x in a

0

℄, and therefore a is also of the form E

0

p

[
upto p as x in a

0

℄ where

E

0

p

= (set E

p

in a

2

). If a

1

is a value, a

1

must be a prompt q. Note that a

2

annot be a value, for

otherwise a
ould be redu
ed. Thus, a

2

must be E

p

[
upto p as x in a

0

℄ where p 6= q (otherwise a

an be redu
ed). It follows that a = E

0

p

[
upto p as x in a

0

℄ where E

0

p

= (set q in E

p

).

Case a = (
upto a

1

as x in a

2

): Then A ` a

1

: �

1

prompt and A[x : �

0

! �

1

℄ ` a

2

: �

1

. If a

1

is

not a value, it must be of the form E

p

[
upto p as y in a

0

℄ and so is a. Otherwise, it must be a

prompt q and E

p

must not set q. Thus a is of the form E

q

[
upto q as x in a

2

℄ where E

q

= E

p

.

The following theorem then follows immediately from the previous two theorems:

Theorem 10 (Type Safety) Suppose ; ` a : � . Then either

1. There exists a value v and a prompt assignment A with prompts P su
h that a=; �!

�

v=P

and A ` v : � ;

2. a=; �!

�

E

p

[
upto p as x in a

0

℄=P ; or

3. The redu
tion sequen
e starting from a=; is in�nite.

9

Table 4: Signature for Prompts.

signature PROMPT =

sig

ex
eption Un
aught_prompt (* to report un
aught prompt *)

type 'a prompt

val new_prompt : unit -> 'a prompt

val set : 'a prompt -> (unit -> 'a) -> 'a

val
upto : 'a prompt -> (('b -> 'a) -> 'a) -> 'b

end

4 Expressiveness

In this se
tion, we
onsider several extensions to the base language: regular (aborting)
ontinua-

tions, simple ex
eptions, and global referen
es.

In this se
tion, we assume that
upto is provided in the language as a module with the following

interfa
e given in table 4. That is, we will write
upto a

1

(�x: a

2

) and set a

1

(�():)a

2

instead of

upto a

1

as x in a

2

and set a

1

in a

2

.

4.1 Call

Using prompts, we
an provide a safe implementation of
all

. However, as opposed to
all

in SML/NJ, a di�erent prompt is set (here expli
itly) at the begenning of ea
h phrase. The type

system will then prohibit intera
tion of
ontrol between di�erent toplevel phrases, and avoid the

runtime anomaly of
all

 in SML/NJ.

This extension is given as a module with the following interfa
e:

type ('a,'b) f
ont

type 'a toplevel

val shift : 'a toplevel -> (('b,'a)
ont -> 'a) -> 'b

val reset : 'a toplevel -> (unit -> 'a) -> 'a

val
all

 : 'a toplevel -> (('a,'b)
ont -> 'b) -> 'b

val throw : 'a toplevel -> ('a,'b)
ont -> 'b -> '

val eval : ('a toplevel -> 'a) -> 'a

Ea
h phrase will be evaluated after setting a new prompt.

let eval a =

let toplevel = new_prompt () in

set toplevel (fun () -> a toplevel);;

The type of the prompt passed to a is also the type of the toplevel phrase. (Here, the user is

responsible for setting the prompt at the beginning of ea
h phrase, by
alling the eval fun
tion.)

The abstra
t type 'a toplevel of this prompt (see the interfa
e) for
es the user to
all eval on
e,

but it does not prevent from several
alls to eval, whi
h would be erroneous.

type 'a toplevel = 'a prompt

10

Continuations are all returning to the toplevel. Thus, their type ('a,'b) f
ont uses an extra

parameter 'b to remember the type of the toplevel phrase.

type ('a,'b) f
ont = 'a -> 'b;;

The en
oding uses an auxiliary operator shift that
aptures the
urrent evaluation up to the

toplevel prompt, then resets the toplevel prompt, and starts a new evaluation in whi
h the aborted

omputation is bound.

let shift toplevel a =
upto toplevel (fun k -> set toplevel (fun () -> a k))

The typing
onstraint imposes that the return of the new expression is also the type of the toplevel

phrase. Note that the traditional abort is in fa
t a spe
ial
ase of shift when the new evaluation

does not uses the aborted
ontinuation). The operator reset is just the same as set:

let reset = set

The most interesting operation is
all

, whi
h
an easily be expressed with shift :

let
all

 toplevel a =

shift toplevel

(fun k -> k (fun () -> (a (fun r -> k (fun () -> r)))))

();;

The
urrent
ontinuation k is shifted but it is immediately reinstalled before the evaluation pro
eeds

with a. The only diÆ
ulty is to get the evaluation order right.

Here, k is
aptured as a non-aborting fun
tional
ontinuation. Thus, when k is resumed it must

�rst abort the
urrent
ontinuation. This is realized the following fun
tion.

let throw toplevel v1 v2 = shift toplevel (fun k -> v1 v2);;

Sin
e
ontinuations
aptured with
all

 have the abstra
t type "('a,'b)
ont", they
an only be

rei�ed by
alling throw. This ensures that the
urrent evaluation will always be aborted right

before a
ontinuation is reinstalled. This use of throw instead of a fun
tional
ontinuation allows a

better typing of rei�
ation: sin
e rei�
ation abort the
urrent evaluation, the return type a throw

expression is un
onstrained. .

These
ontinuations gives a better a

ount of
ontinuations in an intera
tive language. However,

they do not provide more safety: a new distin
t prompt is set at the begenning of ea
h phrase so

that di�erent toplevel phrases may return values of di�erent types. Thus, if a
ontrol operation is

transmitted from one phrase to another one, e.g. through a
losure or a referen
e
ell, the prompt

of the old
ontrol will not mat
h the
urrent prompt and an un
aught-prompt error will o

ur

dynami
ally. This will be dete
ted stati
ally whenever the return type of the two
ontinuations

do not mat
h. However, this is not dete
ted when the two phases have the same return type. We

ould strengthen se
urity by giving ea
h toplevel prompt a di�erent abstra
t type.

The un
aught-prompt error will o

ur even if the
ontinuation does not a
tually attempt to

return to an old toplevel. In the follow se
tion, we explain how to re
over the less permissive

behavior of Sml/Nj.

11

4.2 Stamped toplevel prompts

We now provide a module with the following interfa
e:

type 'a
ont

val
all

: ('a
ont -> 'a) -> 'a

val throw: 'a
ont -> 'a -> 'b

val eval: (unit -> 'a) -> 'a

To allow
ontrol to
ross toplevel boundaries, one solution is to make all toplevel prompts

identi
al. Thus, one
ould make the following de�nitions:

let toplevel = new_prompt();;

let
all

 f =
all

 toplevel f;;

let throw v1 v2 = throw toplevel v1 v2;;

This will a
tually work, but all phrases will be for
ed to have the same type. Indeed, if several

phrases ex
hange
ontrol, they must have the same prompt and therefore they must return values

of the same type.

The implementation of
all

 in Sml/Nj allows several phrases to
ommuni
ate as long as a

phrase never returns to the toplevel prompt of another one. This is a
tually suÆ
ient to ensure

safety, but the proof of this fa
t relies on a global invariant and
annot be derived from types.

We
an easily provide an implementation of the above behavior, but we must bypass the type

system at one point. In the implementation we will assume that the toplevel prompt is unit. (Any

arbitrary
ontant type would be �ne).

type 'a
ont = ('a, unit) f
ont;;

Then, we repla
e the eval fun
tion by

let phrase = ref (ref ());;

ex
eption Toplevel;;

let eval a =

let p = ref() in

phrase := p;

set (Obj.magi
 toplevel)

(fun () -> let r = a() in if !phrase == p then r else raise Toplevel);;

The referen
e phrase
ontains a marker of the
urrent phrase. The ex
eption Toplevel is used to

report a prompt mismat
h as in Sml/nj.

The fun
tion eval di�ers from the previous de�nition in two ways. First, it disables the typing

onstraint between the type of the phrase and the one of the prompt. This is
orre
ted by marking

ea
h phrase with a new stamp, and
he
king before the result is returned that the stati
 marker of

the phrase is also the marker of the phrase that is
urrently being evaluated.

There is another slightly less natural en
oding that does not require any magi
. Instead, on
e

an use the ex
eptional me
hanism of
upto (see next se
tion) to \jump other the type
onstraint".

Only the eval fun
tion need to be rewritten:

let eval a =

let p = ref() in

12

phrase := p;

let q = new_prompt() in

set q

(fun () ->

set toplevel

(fun () ->

let r = a() in

if !phrase == p then
upto q (fun _-> r) else raise Toplevel);

raise Toplevel);;

The potential type error has been repla
e by a potential un
aught prompt. Of
ourse none will

ever o

ur if our implementation is
orre
t, but the is a meta property.

Note that one
ould also have used a lo
al ex
eption instead of a lo
al prompt to produ
e

the same e�e
t. As is well known, lo
al ex
eptions provide are an extensible datatype (several

indenpendent extensible datatypes
an then be obtained using the generativity of the module

system). In turn, extensible datatypes provides some weak form of dynami
s, whi
h is one what

is needed in the above example. As we shall see in the next se
tion ex
eption as implementable in

terms of
upto's...

4.3 Simple ex
eptions

Simple ex
eptions are a simpli�
ation of the ex
eption me
hanism found in most ML variants.

Simple ex
eptions require three new forms: new exn, whi
h generates a new internal name for an

ex
eption; (raise a

1

a

2

), whi
h raises an ex
eption a

1

with value a

2

; and (handle a

1

a

2

a

3

), whi
h

evaluates a

1

to ex
eption h and a

2

to v

2

, and then evaluates a

3

so that if ex
eption h is raised with

a value v, the evaluation of a

3

aborts and handler v

2

is applied to v. The semanti
s of ex
eptions

uses internal ex
eption names h, new evaluation
ontexts

E ::= : : : j (raise E a) j (raise v E) j (handle E a a

0

) j (handle v E a) j (handle v v

0

E)

and new redex rules

(new exn ())=X;P �!

red

h=fhg [X;P; h 62 X

(handle h v v

0

)=X;P �!

red

v

0

=X;P

(handle h v E

h

[raise h v

0

℄)=X;P �!

red

(v v

0

)=X;P

where X is a �nite set of ex
eptions and E

h

is an evaluation
ontext with no intervening (handle

h v

00

E) expressions. The new operations
an also be typed|not surprisingly|using typings similar

to those in ML. If we add a new type
onstru
tion (� exn) to the syntax of types, the types of the

new operations are

(New Ex
eption)

A ` new exn : (unit! � exn)

h : � 2 A

(Ex
eption Const)

A ` h : (� exn)

A ` a

1

: (� exn) A ` a

2

: �

(Raise)

A ` (raise a

1

a

2

) : �

0

A ` a

1

: (� exn) A ` a

2

: (� ! �

0

) A ` a

3

: �

0

(Handle)

A ` (handle a

1

a

2

a

3

) : �

0

13

It is a simple exer
ise to extend the proof of Theorem 10 to the enhan
ed language.

The ability to en
ode simple ex
eptions represents a distin
t in
rease in expressive power over

the language with
all

. The argument, due to Mark Lillibridge, is remarkably simple. In

the polymorphi
 �-
al
ulus without re
ursion, adding
all

 does not
hange the terminating

nature of
omputations, while adding simple ex
eptions suddenly permits the programmer to write

nonterminating
omputations. The en
oding, whi
h a
tually permits the en
oding of the entire

untyped �-
al
ulus, appears in [12℄.

Simple ex
eptions di�er from the form of ex
eptions found in SML and CAML in three ways.

First, ex
eptions are generated from new exn rather than de
lared by the keyword ex
eption.

This di�eren
e is in
onsequential, sin
e one may use let to bind an ex
eption to a name. Se
ond,

one may not handle multiple ex
eptions in one handler. Again, the di�eren
e is in
onsequential,

sin
e one may use multiple handle expressions to yield the same e�e
t. Third, handlers must

be given with respe
t to a spe
i�
 ex
eption. For example, in most ML variants one
an write

(handle a

2

a

3

) that
at
hes any ex
eption raised during the evaluation of a

3

|even one that is

de
lared in a

3

. This di�eren
e is substantive; wild
ard patterns are a useful feature, giving the

programmer the ability to re
over from arbitrary errors.

Simple ex
eptions are a redundant feature in our language.

1

That is, one may easily expand

the three primitives for simple ex
eptions into our base language without ex
eptions but with

new prompt, set, and
upto (i.e., simple ex
eptions do not
hange the \expressiveness", in the sense

of [5℄, of the language). Let [[a℄℄ be the notation for the translation of a term with simple ex
eptions

to one without. The translation of new exn is simply new prompt, i.e., [[new exn℄℄ = new prompt.

The translation of (raise a

1

a

2

) is

let x

1

= [[a

1

℄℄ in

let x

2

= [[a

2

℄℄ in

upto x

1

as k in x

2

where x

1

; x

2

; k are distin
t fresh variables. The translation of the term (handle a

1

a

2

a

3

) is

let x

1

= [[a

1

℄℄ in

let x

2

= [[a

2

℄℄ in

let p =new_prompt () in

set p in

(�z: (
upto p as k in (x

2

z)))

(set x

1

in

let x

3

= [[a

3

℄℄ in

upto p as k in x

3

)

where x

1

; x

2

; z; p; k are distin
t fresh variables. The translation of an ex
eption
onstant h is a

prompt
onstant with the same name. Finally, the translation is homomorphi
 in all of the other

operations, e.g., [[(a

1

a

2

)℄℄ = ([[a

1

℄℄ [[a

2

℄℄).

Ex
eptions
an be provided as a module with the following signature:

type 'a exn

1

We do not know how to en
ode ML handlers with wild
ard expressions without an extensible datatype in the

language. An extensible datatype is an ML datatype where new
onstru
tors
an be added later. Indeed, the type

exn is su
h an extensible datatype in several implementations of ML, e.g., CAML or SML. One
an then simulate

full ex
eptions with a unique \ex
eption"
arrying values of type exn and the wild
ard handler be
omes a regular

handler.

14

val new_exn : unit -> 'a exn

val raise : 'a exn -> 'a -> 'b

val handle : 'a exn -> ('a -> 'b) -> (unit -> 'b) -> 'b

and implementation

Open
upto;;

type 'a exn = 'a prompt;;

let new_exn = new_prompt;;

let raise p v =
upto p (fun _ -> v);;

let handle p h a =

let q = new_prompt() in

set q (fun () ->

h (set p (fun () ->

let v = a() in
upto q (fun _ -> v))));;

4.4 Referen
es

Fun
tional
ontinuations
an also be used to en
ode referen
e
ells. This fa
t is not surprising:

referen
es
an be en
oded with Danvy and Filinski's shift and reset, and shift and reset
an

be en
oded using our operations. Nevertheless, the ability to en
ode referen
e
ells demonstrates a

large in
rease in expressive power over a language with
all

: referen
e
ells that store fun
tions

give one the ability to en
ode nonterminating
omputations, just as ex
eptions do. For instan
e,

the SML program

let val r = ref (fn () => ())

val f = fn x => (!r) x

in r:= f;

f ()

end

diverges, even though the
ode involves no re
ursion or re
ursive types.

Pre
isely, we will provide a module with the following interfa
e:

type 'a ref

val ref : 'a prompt -> 'b -> ('b ref -> '
) -> '

val (!) : 'a ref -> 'a

val (:=) : 'a ref -> 'a -> unit

val eval : ('a prompt -> 'a) -> 'a

The type 'a memory is the type of the store for a program returning values of type 'a.

The prin
iple of our implementation is to
losely follow the store small-step redu
tion semanti
s

for referen
es, whi
h
an be de�ned as follows. Expressions are extended with a �nite
olle
tion of

lo
ations writte with letter l, and three primitives ref , ! and :=. Programs are now run in a toplevel

store
omposed of a list of bindings. We a
tually prefer to treat bindings as lo
al
onstru
ts, i.e.

we extend the language of expressions, and evaluation
ontexts with bindings

a :: [℄ j lo
 l = a in aE ::= [℄ j lo
 l = v in E

15

We write E

l

for a
ontext that does not de�ne l on the its path. We also write y for the toplevel

mark. Evaluations rules are:

yE[ref v℄ �! ylo
 l = v in E[l℄ l =2 dom (S)

yE[lo
 l = v in E

l

[!l℄℄ �! yE[lo
 l = v in E

l

[v℄℄

yE[lo
 l = v in E

l

[l := v

0

℄℄ �! yE[lo
 l = v

0

in E

l

[()℄℄

lo
 l = v in v

0

�! v

0

l =2 dom (v

0

)

Fun
tional expressions do intera
t a with the store sin
e:

[a

1

℄ �! [a

1

℄

(Fun
tional)

yE[a

1

℄ �! yE[a

2

℄

Sin
e new lo
ations are always added in front, the evaluation of a program with originally no

lo
ation stops with a value pre
eded by a sequen
e of store bindings.

In the implementation, we use one prompt to get dire
t a

ess to the top of the store where

new
ells
an be dynami
ally added. As usual, we evaluate a phrase after having set a new toplevel

prompt

let eval a =

let toplevel = new_prompt() in

set toplevel (fun () -> a toplevel);;

New referen
e
ells
an be inserted in front of the
urrent evaluation.

let ref toplevel (x : 'a) (a : 'a ref -> 'b) =

let return x =
upto toplevel (fun _ -> x) in

let a p () = a p in

(
upto toplevel

(fun z ->

(set toplevel

(fun () ->

let p = new_prompt() in

store p x (set p (fun () -> return (z (a p)))))))

) ();;

Here, x is the initial value of the referen
e
ell to be
reated and a is the part of the program that

should have the referen
e in its stati
 s
ope. Thus it is an expression abstra
ted over the prompt

p that will serve as a handle to rea
h the new referen
e. The fun
tion return is used to abort

the evaluation when it terminates and jump over all the referen
e remaining of the store. This

also prevents the referen
e
ells to be
onstrained to being of the same type. The next line is just

to freeze the evaluation of \a p" and thus drive the evaluation in a
orre
t order. Finally, the

evaluation
ontext is
aptured up to the toplevel, the toplevel prompt is reset, the
ell is installed,

and the evaluation
ontinues with value p as a handle to the new referen
e
ell.

The
ell itself is implementated as a
ontinuation store x p [℄ that is de�ned as follows. It

waits for an a
tion of the following form:

type 'a a
tion =

Write of ('a * (unit -> 'a a
tion))

| Read of ('a -> 'a a
tion);;

16

and pro
esses the a
tion a

ordingly.

let re
 store p (x:'a) (a
tion : 'a a
tion) =

mat
h a
tion with

Write (y,f) -> store p y (set p f)

| Read f -> store p x (set p (fun () -> f x));;

A Read f request is answered by reinstalling the same store and the previous evaluation
ontext

f with value x. A Write (y,f) request is answered by reinstalling a the store with value y and

the previous evaluation
ontext f with value (). Thus, the two remaining primitives are straight-

forward:

let (!) r =
upto r (fun f -> Read f);;

let (:=) r x =
upto r (fun f -> Write (x,f));;

The type of referen
e
ell is the type of its prompt handle. That is,

type 'a ref = 'a a
tion prompt;;

Another possible en
oding would be to have a single referen
e
ell and represent the store as an

asso
iation list (using extensible-data types). The en
oding we gave here is more dire
t and more

interesting. It would be possible to extend the en
oding, for instan
e to enable expli
it deallo
ation

of referen
e
ells during evaluation, as
an be done in C for instan
e. This operation would of
ourse

be unsafe and result in an un
aught prompt.

4.5 Mixing the en
odings

The three previous en
odings
an be merged together. However, they should be hierar
hi
al, the

higher ones preserving the invariants of the lower ones. This is a
tually the
ase if the en
oding of

the store is the outer one (its prompts are outer all other prompts), then the en
oding of
all

,

and the last the en
oding of ex
eptions.

5 Multiple prompts

Cupto is a generalization of known
ontrol operators in two ways. On the one hand, it slightly di�ers

from Danvy and Fellinsky's shift/reset and Felleisen's C
ontrol operators in the way it
aptures

and resets the prompt itself. These di�eren
es are minor from a typing point of view. Our
hoi
e

in
reases expressiveness, sin
e other operators
an be derived, but it simultaneaously weakens our

invariants, whi
h may make reasoning on programs harder. On the other hand, Cupto allows for

multiple prompts. Although multiple prompts have been proposed earlier in the litterature as a

way of hiera
hizing
ontrol, multiple prompts are more essential in our proposal sin
e they dire
tly

allow for
ontinuations returning values of di�erent types.

In this se
tion, we show that multiple prompts
an in fa
t be derived from
uptos with a single

prompt using an extensible data-type. Su
h an extensible data-type
ould be primitive, as for

instan
e the type of ex
eptions, or provided as a library. To be independent, we will use the

following library:

module type Extensible = sig

type t

type 'a
onstru
tor

17

val
reate : unit -> 'a
onstru
tor

val inje
t : 'a
onstru
tor -> 'a -> t

val mat
hes : t -> 'a
onstru
tor -> ('a -> 'b) -> (t -> 'b) -> 'b

end;;

whi
h we
an implement as follows

module Make (X : sig end) : Extensible = stru
t

type t = Obj.t

type 'a
onstru
tor = unit ref

let
reate () = ref ()

let inje
t
 v = Obj.repr (
,v)

let mat
hes x
 f g =

let x
, xv = Obj.magi
 x in if x
 ==
 then f xv else g x

end;;

The operation
reate builds a new data
onstru
tor of the extensible datatype; inje
t takes a

onstru
tor and a value and inje
ts the value into the extensible datatype; and mat
hes bran
hes

on the value of the
onstru
tor,
alling the third argument or the fourth depending on whether or

not the �rst and se
ond arguments mat
h. Note the use of
asts, and the fa
t that t|an abstra
t

type outside the module|is given a quite meaningless, but
on
rete, implementation type in the

module. (Another way of implementing the extensible datatype idea without
asts is to use the

type of ex
eptions.) Thus, the sta
k is a sta
k of elements of the extensible datatype t.

Then we
an implement a module of signature that reimplements
upto in terms of
upto, but

using only a single prompt from stru
ture C. Its interfa
e is

2

module M
upto (C : PROMPT) : PROMPT = stru
t

First, we de�ne a new extensible datatype:

module E = Extensible.Make (stru
t end)

type a
tion = Return of E.t | Cupto of (E.t * ((unit->a
tion) -> a
tion))

type 'a r
 = R of 'a | C of (((unit->a
tion) -> a
tion) -> a
tion)

type 'a prompt = 'a r
 E.
onstru
tor

let new_prompt() = E.
reate()

let inje
t_C p x = E.inje
t p (C x)

and mat
hes_C q p f g = E.mat
hes q p (fun (C y) -> f y) g

ex
eption Bug

let inje
t_R p x = Return (E.inje
t p (R x))

and is_R p (Return x) = E.mat
hes x p (fun (R y) -> y) (fun z -> raise Bug)

The heart of the implementation is the following
ode

2

To be exa
t, PROMPT should here be a restri
tion of the signature PROMPT without the Un
aught prompt ex
eption,

but this is unsigni�
ant.

18

let
ontrol = C.new_prompt()

let
ompose set k' k x = k' (fun () -> set (fun () -> k x))

let re
 set_
ontrol p a =

let
omp =
ompose (set_
ontrol p) in

mat
h C.set
ontrol a with

Cupto (qa, k) ->

mat
hes_C qa

p (fun a -> a k)

(fun qa-> C.
upto
ut (fun k'-> Cupto (qa,
omp k' k)) ())

| x -> x

let
upto_
ontrol p a =

let a' k' k = a (
ompose (set_
ontrol p) k k') in

C.
upto
ontrol (fun k' -> Cupto (inje
t_C p (a' k'), fun x -> x()))

Then, set and
upto are simply wrapping
oer
ions around their -
ontrol versions

let set p a = is_R p (set_
ontrol p (fun () -> inje
t_R p (a())))

let
upto p a =

upto_
ontrol p (fun k -> inje
t_R p (a (fun x -> is_R p (k x))))

end;;

The en
oding is interesting for several reasons. It is de�nitely more
ompli
ated that the previous

en
odings, whi
h suggests why multiple prompts should be provided as a primitive
onstru
tion,

rather than en
oded. As previous en
oding, this one is well-type, but somehow bypass the type

system using extensible data-types and partial parttern mat
hing: this is of
ourse, at the pri
e of

possible dynami
 un
aught prompts. The en
oding is
orre
t, but the proof is external as opposed

to a (partial) internal proof given by the type system.

6 Implementation

To
omplete the argument that prompts and
upto are simpler and easier to use than
all

, we

show that the
upto
an be implemented as eÆ
iently (in an asymptoti
 sense) as
all

.

Our operations|in
luding multiple prompts|
an be implemented as a module in SML/NJ

with the signature in Table 4. Other implementations of fun
tional
ontinuation operators appear

in the literature: for instan
e, Filinski [6℄ shows how to en
ode
ontrol operators with
all

 and

one referen
e
ell under the assumption that there is one prompt. The module provides a way to

translate
omplete programs in our language to SML programs. The module has three primitives

new_prompt, set and
upto that implement the
onstru
ts of the same name.

The Appendix gives an implementation in SML/NJ. It has the same
avor as the untyped

en
oding of shift and reset [22℄ into S
heme with
all

, but it is not easy to relate them in a

pre
ise way, sin
e the languages that they en
ode are also di�erent.

The time analysis of our implementation is important to
onsider. The analysis depends
ru-

ially upon the implementation of
all

. Assuming that the
ost of
all

 and throw are

onstant|as they are in
ps
ompilation strategies used by, e.g., SML/NJ [1℄|the en
oding yields

an eÆ
ient implementation of the operations. Examining the
ode in the Appendix, the new_prompt

and set are
learly
onstant time operations. The
ost of
upto may, however, be proportional to

the number of set's that have been done before. If the program
ontains just one prompt|as is

19

the
ase with programs written using only
all

|all operations take
onstant time. Moreover,

the small fa
tor by whi
h the
ost is in
reased in the simulation might be
ompensated by the

on
iseness of programs using
upto rather than
all

.

For sta
k-based
ompilation strategies,
all

 is an expensive operation, and therefore the

simulated operations will also be expensive. A dire
t implementation of our operations might be

more eÆ
ient. For example, a primitive implementation of
upto's
ould mark the sta
k when

setting a prompt, so that one
ould avoid
opying the entire
ontext. Of
ourse, sin
e fun
tional

ontinuations
an express
all

, reifying a fun
tional
ontinuation
annot be faster than
apturing

an abortive
ontinuation of the same size. However, in many examples (see the next se
tion),

all

's
ome in pairs and, in e�e
t, implement some portion of fun
tional
ontinuations. In other

words, the use of fun
tional
ontinuations in appli
ations might a
tually in
rease the performan
e.

How
an we
ompare the eÆ
ien
y of our implementation via
all

 to a primitive imple-

mentation of
upto? For sake of simpli
ity,
onsider a restoring
upto and the following s
enario.

First, the exe
ution starts in an empty
ontext whi
h grows to a
ontrol point E

1

where a prompt

is set. Then the evaluation
ontinues with a

1

and rea
hes a
ontrol point E

1

[set p in E

2

[℄℄ where

the
ontext up to p is rei�ed as k and evaluation
ontinues with a

2

. The whole program is of the

form E

1

[set p in a

1

℄ where a

1

is itself

E

2

[
upto x as k in set x in k a

2

℄:

The
omparison of performan
e naturally depends on the quality of the
ompilation of
ontinua-

tions. Let us
all an implementation \naive" if it always
opies the part of
ontext
orresponding

to the
ontext that is rei�ed. With a naive implementation of
ontinuations, primitive fun
tional

ontinuations are
learly more eÆ
ient than simulated ones: both E

1

and E

2

are
opied by the

simulation while only E

2

is
opied with a primitive implementation. There are also \smart" imple-

mentations that
opy the
ontext lazily, i.e., just before the
ontext is popped. Given support from

the garbage
olle
tor, this may avoid
opies of rei�ed
ontinuations that have be
ome unrea
hable

at the time when
opying should o

ur. We do not know whether smart
ompilation would equally

bene�t both the simulated and the primitive
upto. It might also be the
ase that if prompts

are set frequently,
utting up the
ontext would be
ome unne
essary in the
ase of prompts, i.e.,

a naive primitive implementation of
upto might run as eÆ
iently as a smart implementation of

all

.

Queinne
 and Serpette have des
ribed an implementation of fun
tional
ontinuations [17℄ that

never
opies the sta
k. Roughly, their idea is to freeze some a
tive part of the sta
k, and jump

over that part until it be
omes garbage. However, their semanti
s di�ers from ours sin
e prompts

are erased from the
ontext during rei�
ation (see Se
tion 8). It is not
lear that their
ompilation

s
hema
an be applied to our semanti
s, and, if the s
hema
an be applied, whether one obtains good

performan
e. Moreover, their method requires garbage
olle
tion on the sta
k and penalizes blo
k

allo
ation. This makes the implementation
loser to a sta
k-less implementation, and performan
e

should be
omparable to the
ase of CPS-implementations.

7 Programming Examples

7.1 Meta-programming

Manipulating
ontrol is by nature more diÆ
ult than sending values to fon
tions. For that reason,

it has often been argued that
all

 is and should remain a meta-programming
onstru
t. That is,

it should only be used by experts to implement libraries whi
h would then be simpler and safer

20

to use. A typi
al example are subroutines. Some en
oding with of subroutines with
all

an be

found in . The en
oding of subroutines with
upto is similar.

The se
tion on en
odings has shown that with respe
t to meta-programming,
upto is more

expressive than
all

. Some of the en
odings are not at all possible with
all

. Others would be

mu
h more diÆ
ult. Here, we show a few useful
onstru
ts than are both immediate appli
ations

of
upto and small variations on know
onstru
ts.

Pat
hers are a very restri
tive forms of
upto that
annot
apture the
ontinuation, but only

insert a pat
h when the exe
ution will return at some
urrent prompt and resume immediately.

let pat
h p f =
upto p (fun k -> f (set p k));;

For instan
e, an ex
eption may sometimes be repla
ed by a warning, whi
h should leave the exe-

ution but later report a possible mistake.

type 'a warning = 'a prompt;;

let new_warning = new_prompt;;

let warning p s = pat
h p (fun (v, l) -> (v, s::l));;

let handle p h a = let (v,l) = set p (fun () -> a(), [℄) in h v l;;

let arith = new_warning();;

let arith_handler v = fun
tion

[℄ -> v | [s℄ -> print_string (s^"\n"); v

| _ -> print_string "Warning: many arithmeti
 errors\n"; v;;

let handle_arith a = handle arith arith_handler a;;

let (/) x y = if y = 0 then warning arith "division"; max_int) else x / y;;

let (mod) x y = if y = 0 then warning arith "modulo"; max_int) else x mod y;;

One
ould think of using a global referen
e. Indeed, the pat
hing itself
hanges the state of a

referen
e on the sta
k. However, the s
oping rules to rea
h the referen
e are dynami
s, as those or

prompt or, equivalently those of ex
eptions. That is a warning
ould be dynami
ally trapped, as

an ex
eption
an. This suggests a notion of referen
e following similar s
oping rules.

Referen
es with ba
kups Here, we extend the en
oding of referen
es with
upto to provide

a ba
kuping operation. Ba
kuping follows the sta
k dis
ipline, that is, the referen
e is impli
itlty

reset to its old value saved on the sta
k when the sta
k is popped. More pre
isely, the redu
tion

semanti
s is

lo
 l = v in E

l

[ba
kup l a℄ �! lo
 l = v in E

l

[lo
 l = v in a℄

A
tually one also need to add a
leaning up rule

lo
 l = v in E

l

[lo
 l = v in v

0

℄ �! lo
 l = v in E

l

[v

0

℄

whi
h allows to normally restore the saved lo
ation. Note that sin
e a lo
altion
an only be non

lo
al if is already is global, lo
al always lo
ations
an be
lean up.

We provide ba
kup's as a new primitive of the following type:

21

value ba
kup : 'a ref -> (unit -> 'b) -> 'b

In a single-thread language, this
an be trivially implemented by the following
ode:

let ba
kup r a = let x = !r in let v = a() in r := x; v;;

A
tually, in ML one must
arefully prote
ts against ex
eptions:

let ba
kup r a =

let x = !r in try let v = a() in r := x; v with z -> r := x; raise z

However, in languages with threads,
all
, or
upto, this will not work anymore. We
an easily add

the following fun
tion to our implementation of referen
es:

let ba
kup r a =

let q = new_prompt() in

let return x =
upto q (fun _ -> x) in

set q (fun () -> store r (!r) (set r (fun () -> return (a()))));;

Here, sin
e the new value is stored on the sta
k, the
ode is multi-thread
ompliant. Remark that

warnings
an be trivially be easily en
oded with ba
kup.

Pushy ex
eptions Pushy ex
eptions are a variant of ex
eptions used in some lisp diale
ts where

the handler is exe
uted on the top of the sta
k. It may then de
ide either to
ontinue of to stop the

urrent evaluation. We won't detailed the implementation here, but they
an easily be en
oded by

mixing ex
eptions with either warnings or ba
kups.

Shift/reset with multiple promts In se
tion 4, we have shown an en
oding of shift/reset as a

side e�e
t of the en
oding of
all

. Hierar
hi
al shift/reset has been proposed. In fa
t our en
oding

naturally allows shift/reset with multiple promps, as a module with the following interfa
e:

type 'a prompt

val shift : 'a prompt -> (('b -> 'a) -> 'a) -> 'b

val reset : 'a prompt -> (unit -> 'a) -> 'a

val new_prompt : unit -> 'a prompt

and the following trivial implementation, whi
h shows that shift/reset is a simple restri
tion of

upto.

type 'a prompt = 'a Cupto.prompt;;

let shift p a = Cupto.
upto p (fun k -> Cupto.set p (fun () -> a k));;

let reset = Cupto.set;;

let new_prompt = Cupto.new_prompt;;

Here, the toplevel prompt has not been set, the user should ensure that "shift" should will only

o

ur in a dynami

ontext that
ontains a "reset" o

urs.

22

8 Comparison with Previous Work

We have already seen, in Se
tion 2, how the operational semanti
s of our
ontrol operations
om-

pares with Felleisen's F and Danvy and Filinski's shift operation. Many other
hoi
es of fun
-

tional
ontinuation operations are possible, e.g., Hieb and Dybvig's spawn [9℄ and Queinne
 and

Serpette's splitter [17℄. See [14, 16℄ for a detailed
omparison of the operational semanti
s of

these operations.

With one ex
eption, none of these papers
onsider type systems for fun
tional
ontinuations.

The sole ex
eption is Queinne
 and Serpette's paper [17℄ on splitter, abort, and
all/p
. These

operations di�er in some respe
ts from our three operations of new prompt, set, and
upto. Using

a notation similar to ours, the types of the operations are

splitter : (� prompt! �)! �

abort : � prompt! (unit! �)! �

0

all/p
 : � prompt! ((�

0

! �)! �

0

)! �

0

The splitter operation sets a new prompt and runs the body. If abort is ever
alled with that

prompt and an argument (a thunk), the prompt is erased and the thunk is
alled in the
ontinuation

before the splitter. If
all/p
 is ever invoked with a fun
tion, the
ontinuation up to the prompt

is rei�ed and all its internal prompts are unset before it is passed as an argument. Using our notation

and operations for
larity, the operational semanti
s
an be expressed by the rules

(splitter a)=P �!

red

(set p in (a p))=P [fpg; p 62 P

(set p in E

p

[abort p a℄)=P �!

red

(a ())=P

(set p in E

p

[
all/p
 p a℄)=P �!

red

(set p in hE

p

i[a (�x: E

p

[x℄)℄)=P

where hEi stands for the
ontext E where all prompts have been unset, i.e., hset p in Ei is E

and the transformation is homomorphi
 on other
onstru
ts (only prompts
an be in the position

of p, sin
e set in expressions are all introdu
ed by the redu
tion rule for splitter). We do

not know if they proved a type soundness theorem as we have: the paper [17℄ does not state the

theorem nor attempt to prove it, but using our proof te
hnique it is easy to
arry out.

Apart from this signi�
ant di�eren
e, Queinne
 and Serpette's splitter also
omes
losest

to ours in adding multiple prompts. Others, notably Sitaram and Felleisen [22℄ and Danvy and

Filinski [2℄, have added multiple prompts and
ontrol operations to languages to obtain more

ontrol. The di�eren
e between these operations and our language (and Queinne
 and Serpette's)

is important: prompts in our proposal are hidden in an abstra
t type that only the
ompiler

an manipulate, whereas in [2, 22℄ the representations of prompts are known to the programmer

(as integers). The hidden representation of prompts is essential for implementing ex
eptions in

a
orre
t manner: the implementation generates fresh prompts that programmers
annot
upto.

Also, having a spe
ial type of prompts makes it easy to in
orporate prompts into a language like

ML; we otherwise would need some
umbersome naming s
heme for in�nite sets of prompts at ea
h

type.

Aside from the rigorous treatment of types, the single identi�ably new feature in our proposal is

the de
omposition of de
laring a new prompt from setting a prompt, and the
orresponding ability

to set a prompt more than on
e. This is again used in our en
oding of ex
eptions, but we know of

no other natural examples whi
h require one to set a prompt more than on
e.

23

9 Dis
ussion

We have shown how to in
orporate primitives for �rst-
lass prompts and the rei�
ation of
ontrol

up to a prompt in a stati
ally-typed language. Let us
onsider brie
y the theoreti
al, programming,

and
ompilation issues related to these primitives.

We believe that the primary theoreti
al bene�t of using named, typed prompts arises in the

simple proof of strong soundness. In fa
t, our
hoi
e of
onstru
ts
an be used to simplify proofs of

strong soundness for other
ontrol operations. For instan
e, to prove strong soundness for
all

,

Wright and Felleisen [26℄
onsider only expressions that do not
ontain an abort. Given their

way of expressing the semanti
s of
all

, this is essentially equivalent to ruling out expressions

ontaining
ontinuations rei�ed relative to a di�erent top-level. The restri
tion works be
ause any

ontinuations rei�ed in the
ourse of the evaluation of a given expression must all be relative to the

top-level for that expression. Our typing gives a way to explain the strong soundness for
all

more perspi
uously: when the user types an expression, the intera
tive top-level loop simply
reates

a fresh prompt (with the type of the expression) and set's; all
all

's are then done via
upto's

to this fresh prompt.

To determine whether named, typed prompts are useful in programming requires some experi-

en
e in writing programs. In the untyped
ase, prompts add signi�
ant expressive power [20, 21℄;

we believe the examples of [20℄
ould be typed in our system. We also
onje
ture that many appli-

ations that
urrently uses
all

 (su
h as various threads pa
kages or CML)
ould bene�t|for

instan
e, the expli
it prompt me
hanism may simplify the implementation of threads in a inter-

a
tive top-level loop. At the very least, the sense in whi
h
all

an be easily en
oded in our

language should ensure that swit
hing to expli
it prompts will
ost little.

A
hallenge left open by this work is still an eÆ
ient dire
t implementation of the operations,

espe
ially for sta
k-based
ompilation strategies.

Although our operations have better typing and programming properties than
all

 in a

language like ML, there is still the larger question of whether inexpensive,
ontinuation-based

operations are really ne
essary. Con
urren
y operations
an be easily built using
ontinuations,

but there are not very many other good examples of programs that need
ontinuations, and
on-

tinuations are diÆ
ult to use for the non-expert programmer. It may well be that
on
urren
y

primitives are more fundamental and important than
ontinuation operations, but until the right

set of primitives is found it may be best to build in
ontinuation operations.

A
knowledgements: We thank Andrew Appel for dis
ussions about how \prompts" are en
oded in

the SML/NJ intera
tive top-level loop, Bru
e Duba, Andrzej Filinski, Dan Friedman, Trevor Jim,

and Christian Queinne
 for several helpful dis
ussions, Chris Okasaki for revealing problems with

ex
eptions in our original SML/NJ implementation, and Matthias Felleisen and Tim GriÆn for

detailed
omments on drafts.

Referen
es

[1℄ A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[2℄ O. Danvy and A. Filinski. Representing
ontrol: A study of the
ps transformation. Mathe-

mati
al Stru
tures in Computer S
ien
e, 2(4):361{391, 1992.

24

[3℄ B. F. Duba, R. Harper, and D. Ma
Queen. Typing �rst-
lass
ontinuations in ML. In Confer-

en
e Re
ord of the Eighteenth Annual ACM Symposium on Prin
iples of Programming Lan-

guages, pages 163{173. ACM, 1991.

[4℄ M. Felleisen. The theory and pra
ti
e of �rst-
lass prompts. In Conferen
e Re
ord of the

Fifteenth Annual ACM Symposium on Prin
iples of Programming Languages, pages 180{190.

ACM, 1988.

[5℄ M. Felleisen. On the expressive power of programming languages. S
ien
e of Computer Pro-

gramming, 17:35{75, 1991.

[6℄ A. Filinski. Representing monads. In Conferen
e Re
ord of the Twenty-First Annual ACM

Symposium on Prin
iples of Programming Languages, pages 446{457. ACM, 1994.

[7℄ M. J. C. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Me
hani
al Logi
 of

Computation, volume 78 of Le
t. Notes in Computer S
i. Springer-Verlag, 1979.

[8℄ R. Harper and M. Lillibridge. ML with
all

 is unsound, July 1991. Message sent to the

"sml" mailing list.

[9℄ R. Hieb and R. K. Dybvig. Continuations and
on
urren
y. In Se
ond ACM SIGPLAN

Symposium on Prin
iples and Pra
ti
e of Parallel Programming, pages 128{136, 1990.

[10℄ X. Leroy. The Obje
tive Caml system. Software and do
umentation available via the URL

http://pauilla
.inria.fr/o
aml/, 1996.

[11℄ X. Leroy. Polymorphism by name for referen
es and
ontinuations. In Conferen
e Re
ord of the

Twentieth Annual ACM Symposium on Prin
iples of Programming Languages, pages 220{231.

ACM, 1993.

[12℄ M. Lillibridge. Ex
eptions are stri
tly more powerful than
all/

. Te
hni
al Report CMS-CS-

95-178, S
hool of Computer S
ien
e, Carnegie Mellon University, 1995.

[13℄ R. Milner, M. Tofte, R. Harper, and D. Ma
Queen. The De�nition of Standard ML (Revised).

MIT Press, 1997.

[14℄ L. Moreau and C. Queinne
. Partial
ontinuations as the di�eren
e of
ontinuations: A du-

umvirate of
ontrol operators. In Sixth International Symposium on Programming Languages,

Implementations, Logi
s and Programs, 1994.

[15℄ G. D. Plotkin. A stru
tural approa
h to operational semanti
s. Te
hni
al Report DAIMI

FN-19, Aarhus Univ., Computer S
ien
e Dept., Denmark, 1981.

[16℄ C. Queinne
. A library of high level
ontrol operators. Lisp Pointers, 1993.

[17℄ C. Queinne
 and B. Serpette. A dynami
 extent
ontrol operator for partial
ontinuations. In

Conferen
e Re
ord of the Eighteenth Annual ACM Symposium on Prin
iples of Programming

Languages, pages 174{184. ACM, 1991.

[18℄ J. H. Reppy. Higher-order
on
urren
y. PhD thesis, Computer S
ien
e Department, Cornell

University, Itha
a, NY, January 1992. Available as Cornell Te
hni
al Report 92-1285.

[19℄ J. H. Reppy. Con
urrent Programming in ML. Cambridge University Press, 1995. To appear.

25

[20℄ D. Sitaram. Handling
ontrol. In Pro
eedings of the 1993 ACM SIGPLAN Conferen
e on

Programming Language Design and Implementation, pages 147{155. ACM, 1993.

[21℄ D. Sitaram and M. Felleisen. Control delimiters and their hierar
hies. LISP and Symboli

Computation, 3:67{99, 1990.

[22℄ D. Sitaram and M. Felleisen. Reasoning with
ontinuations II: Full abstra
tion for models of

ontrol. In Pro
eedings of the 1990 ACM Conferen
e on Lisp and Fun
tional Programming,

pages 161{175. ACM, 1990.

[23℄ M. Tofte. Operational Semanti
s and Polymorphi
 Type Inferen
e. PhD thesis, Edinburgh

University, 1988.

[24℄ M. Tofte. Type inferen
e for polymorphi
 referen
es. Information and Computation, 89(1):1{

34, 1990.

[25℄ A. K. Wright. Polymorphism for imperative languages without imperative types. Te
hni
al

Report COMP TR93-200, Department of Computer, Ri
e University, 1993.

[26℄ A. K. Wright and M. Felleisen. A synta
ti
 approa
h to type soundness. Information and

Computation, 1994. To appear.

A En
oding
upto with
all

We �rst des
ribe the implementation in SML/NJ using
all

, and then give a sket
h of the proof

that this en
oding is
orre
t. The
ode has also been ported to the byte
ode version of Obje
tive

CAML with
all

 implemented in C.

A.1 Implementation of prompts with
all

 in SML/NJ

There are two key ideas in the implementation. The �rst is to use a sta
k of
ontinuations to model

the prompts that have been set, ea
h
ontinuation representing the rest of the
omputation after

the set expression terminates normally. A diÆ
ulty with types arises immediately, however: sin
e

prompts
an have di�erent types,
ontinuations
orresponding to di�erent set's may expe
t values

of di�erent types. For instan
e, in the
ode

let p = new_prompt ()

q = new_prompt ()

in 1 + set p (fun () => if set q (fun () => true) then 2 else 3)

end

the
ontinuation exe
uted after the �rst set expe
ts an int, whereas the
ontinuation exe
uted

after the se
ond set expe
ts a bool. In other words, the
ontinuations have types (int
ont) and

(bool
ont) respe
tively. To solve the typing problem, we need a way to
oer
e these di�erently

typed
ontinuations into a single type.

A se
ond key idea is needed in order to implement the pe
uliarities of our operations. When

performing a
upto, the sta
k must be unwound to the point of the
orresponding set. All but the

last unwound
ontinuation must be restored to the sta
k if the fun
tional
ontinuation is ever
alled,

be
ause they
an be
upto'ed. The last unwound
ontinuation,
orresponding to the
ontinuation

after the set,
an never be
upto'ed be
ause of our semanti
s that erases the set. Nevertheless,

26

we must still be able to jump to that
ontinuation after the set expression terminates. Thus,

ontinuations on the sta
k
ome in two
avors: those that represent set's that have not been

upto'ed and those that do.

First, we de�ne some basi
 ex
eptions, abbreviations, and the sta
k operations themselves.

ex
eption Prompt;;

ex
eption Bug;; (* should never be raised *)

type 'a
ontrol = 'a
ont * exn list;;

module E = Extensible.Make (stru
t end);;

let sta
k = ref ([℄: E.t list);;

let push p
 = sta
k := p
 :: !sta
k;;

let pop () = mat
h !sta
k with [℄ -> raise Prompt

| p
 :: rest -> (sta
k := rest; p
);;

Se
ond, we de�ne two primitive types and two operations.

type 'a result = Value of 'a | Ex
eption of exn;;

let freeze f x = try Value (f x) with z -> Ex
eption z;;

let unfreeze = fun
tion Value x -> x | Ex
eption z -> raise z;;

type 'a prompt = (bool * 'a result
ont) E.
onstru
tor;;

The value type
onstru
tor wraps two possible out
omes for a
omputation, either a value or

an ex
eption, into a single type; freeze is a way of running a
omputation, and either
at
hing

the ex
eption or returning the value; and unfreeze unlo
ks a frozen
omputation, re-raising the

ex
eption if one was raised. These operations help in
ontrolling when ex
eptions get raised. The

prompt type
onstru
tor abbreviates pairs of a
ontinuation and a boolean, where the boolean is

true if the
orresponding set has not been
upto'ed. The operation

let new_prompt = E.
reate;;

simply
reates a new
onstru
tor of the extensible datatype, one that will a
tually be of type 'a

prompt.

To set a prompt, the
urrent
ontinuation is
aptured and transformed into a
ontrol point

asso
iated with prompt p that is pushed on the sta
k. The expression is run and
ontrol resumes

at the
ontrol point found on top of the
ontrol sta
k.

let set p e =

unfreeze

(
all

 (fun normal_
ontinuation ->

let z = push (E.inje
t p (true, normal_
ontinuation)) in

let v = freeze e() in

let (effe
tive_
ontinuation,_) =

E.mat
hes (pop())

p (fun (b,
) -> (
,[℄))

(fun s
 ->

mat
h v with

Value _ -> raise Bug

| Ex
eption z -> raise z)

in

(throw effe
tive_
ontinuation v)

))

27

There are two
ases when the body e is run: either e does one or more additional set's and then

raises an ex
eption, or e does no more set's or terminates normally (or both). In the �rst
ase,

the ex
eption gets re-raised by the fourth argument to the E.
ases
all. In the se
ond
ase, the

top element on the sta
k should have a
onstru
tor mat
hing p. In that
ase, the value is thrown

to the normal
ontinuation, whi
h then unfreezes the result.

When
apturing
ontrol, we need to
opy the sta
k of
ontrol into a list|the top of the sta
k

being at the end of the list|up to the
orresponding prompt. The following operation does this,

opying set's that have already been
upto'ed (b is false) along the way.

let pop_
ontrol (p:'a prompt) =

let re
 pop_more
ontrol =

E.mat
hes (pop())

p (fun (b,
) ->

if b then (
,
ontrol)

else pop_more (E.inje
t p (b,
)::
ontrol))

(fun p
 -> pop_more (p
 ::
ontrol))

in pop_more [℄;;

let re
 push_
ontrol = fun
tion

(p
 ::
ontrol) -> (push p
; push_
ontrol
ontrol)

| [℄ -> ();;

When
ontrol is used as a fun
tion, the saved
ontrol sta
k is appended to the top of the
urrent

ontrol sta
k.

let
upto p f =

let (abort,
ontrol) = pop_
ontrol p in

let reified x v =

unfreeze (
all

 (fun after ->

let z = push (E.inje
t p (false, after)) in

let z = push_
ontrol
ontrol in

throw x v)) in

all

 (fun x -> throw abort (freeze f (reified x)))

In words,
upto �rst unwinds the top of the
ontrol sta
k up to the �rst o

urren
e of the prompt

p,
alling that portion of the sta
k
ontrol, and retrieves the
ontinuation abort. Note that when

the
ontinuation abort is
aptured|during a set operation|the
ontinuation refers to the rest of

the
omputation after the set operation returns. The
upto operation next
aptures the
urrent

ontinuation x, and then
alls f with a fun
tion (reified x) that represents the rei�ed portion of

the sta
k. If f never
alls this fun
tion reified and never does a
upto, the value returned by f

is returned to the
ontinuation abort, the part of the
omputation after the
orresponding set.

The fun
tion reified is the tri
kiest part of the
ode. If (reified x) is
alled with a value v, it

aptures the
urrent
ontinuation after and pushes it on the
ontrol sta
k as an already
upto'ed

set of the prompt p. This prompt
annot be
upto'ed, but
an be used as a return address. Then,

the saved
ontrol is pushed on the
ontrol sta
k and
omputation jumps to position x. Later,

when rea
hing prompt p,
omputation will resume at position after instead of abort.

Other fun
tional
ontinuation operations
an be implemented using modi�
ations of the
ode.

For instan
e, the
all/p
 operation of Queinne
 and Serpette does not require the
opying of

the sta
k done here in pop_
ontrol, sin
e set's are erased during rei�
ation in the exe
ution of

all/p
. Similarly, in implementing Felleisen's F operation, there need be no distin
tion between

28

set's that have been
upto'ed and those that have not, sin
e the F operation does not erase the

set during rei�
ation. We leave the modi�
ations to the reader.

29

