
From Classes to Objects via Subtyping

?

Didier R�emy

INRIA-Rocquencourt

??

Abstract

We extend the Abadi-Cardelli calculus of primitive objects with object extension. We enrich

object types with a more precise, uniform, and exible type structure. This enables to type

object extension under both width and depth subtyping. Objects may also have extend-only

or virtual contra-variant methods and read-only co-variant methods. The resulting subtyping

relation is richer, and types of objects can be weaken progressively from a class level to a more

traditional object level along the subtype relationship.

1 Introduction

Object extension has long been considered unsound when combined with subtyping. The problem

may be explained as follows: in an object built with two methods `

1

and `

2

of types �

1

and �

2

, the

method `

1

may require `

2

to be of type �

2

. Forgetting the method `

2

by subtyping would result

in the possible rede�nition of method `

2

with another, incompatible type �

3

. Then, the invocation

of `

1

may fail.

Indeed, the �rst strongly-typed object-based languages that have been proposed provided either

subtyping [1] or object extension [21] to circumvent the problem described above. However, each

proposal was missing an important feature supported by the other one.

Both of them were improved later following the same principle: At an earlier stage, object

components were assembled in prototypes [20] or classes [2], relying on some extension mechanism

to provide inheritance. Objects were formed in a second, atomic step, immediately losing their

extension capabilities for ever, to the bene�t of subtyping.

In contrast to the previous work, we allow both extension and subtyping at the level of ob-

jects, avoiding strati�cation. Our solution is based on the enrichment of the structure of object

types. Thus, our type-system rejects the above counter-example while keeping many other useful

programs. In our proposal, an object and its class are uni�ed and can be considered as two di�er-

ent perspectives on the same value: the type of an object is a supertype of the type of its class.

Fine grain subtyping allows type information to be lost gradually, both width-wise and depth-wise,

slowly fading classes into objects. As is well-known, when more type information is exposed, more

operations can be performed (class perspective). On the contrary, hiding a su�cient amount of

type information allows for more object interchangeability, but permits fewer operations (object

perspective).

We add object extension to the object calculus of Abadi and Cardelli [3]. We adapt their typing

rules to our enriched object types. In particular, we force methods to be parametric in self, that

is, polymorphic over all possible extensions of the respective object. In this sense, our proposal is

not a strict extension of theirs.

In addition to object extension, the enriched type structure has other bene�ts. We can allow

virtual methods in objects (i.e. methods that are required by some other method but that have

?

A preliminary version appeared in [26]

??

BP 105, 78153 Le Chesnay Cedex, France. Email: Didier.Remy@inria.fr

not been de�ned yet) since we are able to described them in types. Using co-variant subtyping

forbids further re-de�nition of the corresponding method, as in [3]. Since classes are objects, such

methods are in fact �nal methods. Final methods can only be accessed but no more rede�ned

(except, indirectly, by the invocation of a previously de�ned method).

Virtual methods are useful because they allow objects to be built progressively, component by

component, rather than all at once. They also improve security, since they sometime avoid the

arti�cial use of dangerous default methods. While �nal methods are co-variant, virtual methods,

are naturally contra-variant.

The rest of the paper is organized as follows. In the next section, we describe our solution

informally. The following section is dedicated to the formal presentation. In section 4, we show some

properties of the type system, in particular the type soundness property. Section 5 illustrates the

gain in security and exibility of our proposal by running a few examples. To a large extend, these

examples can be understood intuitively and may also be read simultaneously with or immediately

after the informal presentation. In section 6 we discuss possible extensions and variations of our

proposal, as well as further meta-theoretical developments. A brief comparison with other works is

done in section 7 before concluding.

2 Informal presentation

Technically, our �rst goal is to provide method extension, while preserving some form of subtyping.

The counter-example given above does not imply that both method extension and width subtyping

are in contradiction. It only shows that combining two existing typing rules would allow to write

unsafe programs. Thus, if ever possible, a type system with both method extension and subtyping

should clearly impose restrictions when combining them. Our solution is to enrich types so that

subtyping becomes traceable, and so that extension can be limited to those �elds whose exact type

is known.

We �rst recall record types with symmetric type information. Using a similar structure for

object types, some safe uses of subtyping and object extension can be typed, while the counter-

example given in the introduction is rejected.

Record types

Record values are partial functions with �nite domains that map labels to values. Traditionally,

the types of records are also partial functions with �nite domains that map labels to types. They

are represented as records of types, that is, f`

i

: �

i

i2I

g. This type says that �elds `

i

's are de�ned

with values of type �

i

's. However, it does not imply anything about other �elds.

Another richer, more symmetric structure has also been used for record types, originally to

allow type inference for records in ML [23, 24]. There, record types are treated as total functions

mapping labels to �eld types, with the restriction that all but a �nite number of labels have

isomorphic images (i.e. are equal modulo renaming). Thus, record types can still be represented

�nitely by listing all signi�cant labels with their corresponding �eld types and then adding an extra

�eld-type acting as a template for all other labels.

In their simplest form, �eld types are either P � (read present with type �) or A (read absent). For

instance, a record with two �elds `

1

of type �

1

and `

2

of type �

2

is given type h`

1

: P �

1

; `

2

: P �

2

; Ai.

It could also, equivalently, be given type h`

1

: P �

1

; `

2

: P �

2

; `: A ; Ai where ` is distinct from `

1

and

`

2

.

2

In the absence of subtyping, standard types for records f`

i

: �

i

i2I

g can indeed be seen as a

special case of record types, where �eld variables are disallowed; their standard subtyping relation

then corresponds to the one generated by the axiom P �<:A (and obvious structural rules). The type

f`

1

: �

1

; ::`

n

: �

n

g becomes an abbreviation for h`

1

: P �

1

; ::`

n

: P �

n

; Ai. However, record types are

much more exible. For instance, they inherently and symmetrically express negative information.

Before we added subtyping, a �eld ` of type A was known to be absent in the corresponding record.

This is quite di�erent from the absence of information about �eld `. Such precise information

is sometimes essential; a well-known example is record concatenation [16]. Instead of breaking

the symmetry with the subtyping axiom P � <: A, we might have introduced a new �eld U (read

unknown), with two axioms P � <: U and A <: U. This would preserve the property that a �eld of

type A is known to be absent, still allowing present and absent �eld to be interchanged but at their

common supertype U.

Field variables and row variables also increase the expressiveness of record types. However, for

simplicity, we do not take this direction here. Below, we use meta-variables for rows. This is just

a notational convenience. It does not add any power.

Object types

In their simplest form, objects are just records, thus object types mimic record types. We write

object types with [�] instead of h�i to avoid confusion. An object with type [`

1

: P �

1

; `

2

: P �

2

; A]

possesses two methods `

1

and `

2

of respective types �

1

and �

2

. Intuitively, an object [`

1

= a

i

i2I

]

can be given type [`

i

: P �

i

i2I

; A] provided methods a

i

's have type �

i

's.

However, objects soon di�er from records by their ability to send messages to themselves, or to

return themselves in response to a method call. More generally, objects are of the form [`

i

= &(x

i

)a

i

].

Here, x

i

is a variable that is bound to the object itself when the method `

i

is invoked. Consistently,

the expression a

i

must be typed in a context where x

i

is assumed of the so-called \mytype",

represented by some type variable � equal to the object type � . The following typing rule is a

variant of the one used in [3].

� � �(�)[`

i

: P �

i

i2I

; A] A;� = �; x

i

: � ` a

i

: �

i

A ` �(�; �)[`

i

= &(x

i

)a

i

i2I

] : �

(The type annotation (�; �) in the object expression binds the name of mytype locally and speci�es

the type of the object.)

An extendible object v may also be used to build a new object v

0

with more methods than v

and thus of a di�erent type, say �

0

. The type �

0

of self in v

0

is di�erent from the type � of self

in v. In order to remain well-typed in v

0

, the methods of v, should have been typed in a context

where the type of self could have been �

0

as well as � . This applies to any possible extension v

0

of

v. In other words, methods of an object of type � should be parametric in all possible types of all

possible successive extensions of an object of type � . This condition can actually be expressed with

subtyping by � <: # � , where # � is called the extension type of � (also called the internal type of

the object). That is, the least upper bound of all exact

1

types of complete extensions (extensions

in which no virtual method remains) of objects of external type � .

A �eld of type A can be overridden with methods of arbitrary types. Thus, the best type for

that �eld in the self parameter is U, i.e. we choose #A to be U. Symmetrically, we choose #(P �)

to be U. This makes methods of type P � internally unaccessible. Fields of type P � are known

1

The exact type of an object is the type with which the methods can initially be typed. The external type of an

object may be a supertype of the exact type.

3

to be present externally, but are not assumed to be so internally. Thus, �elds of type P � can

be overridden with methods of arbitrary types, such as �elds of type A. To recover the ability to

send messages to self, we introduce a new type �eld R � (read required of type �). A �eld of type

R � is de�ned with a method of type � , and is required to remain of at least type � , internally.

Such a �eld can only be overridden with a method of type � . Therefore, self can also view it as a

�eld that is, and will remain, of type � . In math, #R � is R � . A �eld of type P � , can safely be

considered as a �eld of type R � . Thus, we assume P � <: R � . We also assume R � to be a subtype

of U. As an example, # �(�)[`

1

: R �

1

; `

2

: P �

2

; `

3

: U ; A] is �(�)[`

1

: R �

1

; `

2

: U ; `

3

: U ; U], or shortly

�(�)[`

1

: R � ; U].

The extension of a �eld with a method of type � requires that �eld to be either of type A or R �

in the original record (the �eld may also be of type P � , which is a subtype of R � .) It is possible

to factor the two cases by introducing a new �eld type M � (read maybe of type �), and the axioms

R � <: M � , A <: M � , and M � <: U. Intuitively, M � is the union type R � [A. This allows, in a

�rst step, to ignore the presence of a method while retaining its type, and, in a second step, to

forget the type itself. The type of object extension becomes more uniform. Roughly, if the original

object has type [`

1

: M �

1

; �

2

] and the new method `

1

has type �

1

then the resulting object has type

[`

1

: R �

1

; �

2

].

A �eld of type M � may later be de�ned or rede�ned with some method of type � , becoming of

type R � , which is a subtype of M � . It may also be left unchanged and thus remain of type M � .

Thus, a �eld of type M � will always remain of a subtype of M � . That is, #(M �) is M � .

Deep subtyping

Subtyping rules described so far allow for width subtyping but not for depth subtyping, since all

constructors have been left invariant. The only constructor that could be made covariant without

breaking type-soundness is P. Making R co-variant would be unsafe. However, we can safely

introduce a new �eld type R

+

� to tell that a method is de�ned and required to be of a subtype of

� , provided that a �eld of type R

+

� is never overridden. On the other hand, a method `

1

can safely

be invoked on any object of type [`

1

: R

+

�

1

; U], which returns an expression of type �

1

. Of course,

we also add R � <: R

+

� to just forget the fact that we are revealing the exact type information.

Symmetrically, a �eld ` of type M � cannot be accessed, but it can be rede�ned with a method of

a subtype of � . Still, it would be unsound to make M � contra-variant. By contradiction, consider an

object p of type �(�)[`: R � ; `

0

: P � ; A] where calling method `

0

overrides ` in self with a new method

of type � . By subtyping p

0

could be given type �(�)[`: M �

0

; `

0

: P � ; A] where �

0

is a subtype of � .

Then let p

2

of type �(�)[`: M �

0

; `

0

: P � ; `

00

: P unit ; A] be the extension of p

1

with a new method

`

00

that requires ` of type �

0

. Calling method `

0

of p

2

restore �eld ` of p

2

to some method of type �

and returns an object p

3

. However, calling method `

00

of p

3

expects a method ` of type �

0

but �nds

one of type � .

We can still introduce a contra-variant symbol M

�

with the axiom M � <: M

�

� . Then, a method

M

�

� can be rede�ned, but the method in the resulting object remains of type M

�

� and is thus

unaccessible. This is still useful in situations where contra-variance is mandatory or to enforce

protection against accidental access (see sections 5.6, 5.2 and [3].)

Virtual methods

A method ` is virtual with type � (which we write V �) if other methods have assumed ` to be of type

R � , while the method itself might not have been de�ned yet. When an object has a virtual method,

no other method of that object can be invoked. Thus, V � should not be a subtype of U. A method

4

of type V � can be extended as a method of type R � . Virtual methods may also be contra-variant.

We use another symbol V

�

� to indicate that deep subtyping has been used. A contra-variant

virtual method can be extended, but it must remain contra-variant after its extension, i.e. of type

M

�

� , and thus inaccessible. This may be surprising at �rst. The intuition if that #(V

�

�) should be

R

�

� . However, a method of �eld-type R

�

� would be inaccessible, since its best type is unknown.

Thus R

�

� has been identi�ed with M

�

� .

For convenience, we also introduce a new constant F that is a top type for �elds. That is, we

assume V

�

� <: F and U<: F (all other relations hold by transitivity).

P �

A

R �

M �

V �

M

�

�

V

�

�

R

+

�

U

F

Static Dynamic Allowed

' #' Pre Type :`

(

)

P � U

p

<:� � 8

A U <:� ? 8

R � '

p

<:� � �

R

+

� '

p

<:� � ?

M � ' <:� ? �

M

�

� ' 8 ? �

U ' 8 ? ?

V � R � <:� ? �

V

�

� M

�

� 8 ? �

Figure 1: Structure of �eld types

The �nal structure of �eld types and subtyping axioms are summarized in �gure 1. Thick

arrows represent the function #. Thick nodes are used instead of reexive thick arrows, that is,

thick nodes are left invariant by #. Thin arrows represent subtyping. We added a redundant but

useful distinction between continuous and dashed thin arrows. They are respectively covariant and

contra-variant by type-extension: when a continuous arrow connects �

1

and �

2

, then # �

1

is also a

subtype of # �

2

; the inverse applies to dashed arrows.

Although it is easy to give intuitions for parts of the hierarchy taken alone (variances, virtual

methods, idempotent �eld-types), we are not able to propose a good intuition for the whole hier-

archy. The di�erent components are modular technically, but their intuitive, thus approximative

descriptions, cannot be composed here. We think that the �eld-type hierarchy should be understood

locally, and then considered as such.

The table on the right is a summary of �eld types and their properties. The entry ' in the �rst

column indicates the static external type. The second column #' is its extension type, i.e. the

static internal type. The two following columns tell whether the �eld is guaranteed to be present

(

p

sign) and its type if present. The reason for having <:� instead of � is the covariance of P. The

symbol 8 means any possible type. The last two columns describe access and overriding capabilities

5

(? means disallowed).

3 Formal developments

3.1 Types

We assume given a denumerable collection of type variables, written �, �, or �. Type expres-

sions, written with letter � , are type variables, object types, or the top type T. An object type

�(�)[`

i

:'

i

i2I

; '] is composed of a �nite sequence of �elds `

i

: '

i

, without repetition, and a tem-

plate ' for �elds that are not explicitly mentioned. Variable � is bound in the object type, and

should only appear positively in '

i

's as in '.

� ::= � j �(�)[`

i

:'

i

i2I

; '] j T

' ::= A j P � j R � j M � j V � j R

+

� j M

�

� j V

�

� j U j F

The variance of an occurrence is de�ned in the usual way: it is the parity of the number of times a

variable crosses a contra-variant position (i.e., the number of symbols V

�

or M

�

) on that path from

the root to that occurrence. The set of free variables of � is fv(�). We write fv

�

(�) the subset of

those variables that occurs negatively at least once.

Object types are considered equal modulo reordering of �elds. They are also equal modulo

expansion, that is, by extracting a �eld from the template:

�(�)[`

i

:'

i

i2I

; '] = �(�)[`

i

:'

i

i2I

; `:' ; '] ` 6= `

i

;8i 2 I

Rules for the formation of types will be de�ned jointly with subtyping rules in �gure 2 and are

described below.

Notation For convenience and brevity of notation, we use meta-variables � for rows of �elds,

that is, syntactic expressions of the form (`

i

:'

i

i2I

; '

0

), where '

i

's and I are left implicit. We

write �(`) the value of � in `, that is, '

i

if ` is one of the `

i

's, or '

0

otherwise. We write � n ` for

(`

i

:'

i

i2I;`

i

6=`

; '

0

). and ` : '; � for (`:' ; `

i

:'

i

i2I;`

i

6=`

; '

0

). If R is a relation, we write �R �

0

for

8`; �(`)R �

0

(`).

This is just a meta-notation that is not part of the language of types. It can always be expanded

unambiguously into the more explicit notation (`

i

:'

i

i2I

; ').

3.2 Type extension

We de�ne the extension of �eld type ', written #' by the two �rst columns of the table 1. Type

extension is lifted to object types homomorphically, i.e., # �(�)[�] is �(�)[# �]. The extension is

not de�ned for type variables, nor for F. Note that the extension is idempotent, that is #(# �) is

always equal to # � .

6

Well-formation of environments

(Env ;)

; ` �

(Env x)

E ` � <: T x =2 dom (E)

E; x : � ` �

(Env �)

E ` � <: T � =2 dom (E)

E;� <: � ` �

General subtyping

(Sub Var)

E;� <: �; E

0

` �

E;� <: �; E

0

` � <: �

(Sub Ref F)

E ` ' <: F

E ` ' <: '

(Sub Ref T)

E ` � <: T

E ` � <: �

(Sub Trans T)

E ` �

1

<: �

2

E ` �

2

<: �

3

E ` �

1

<: �

3

(Sub Trans F)

E ` '

1

<: '

2

E ` '

2

<: '

3

E ` '

1

<: '

3

Field subtyping (assuming E ` � <: T)

(Sub PA)

E ` P � <: A

(Sub PR)

E ` P � <: R �

(Sub AM)

E ` A<: M �

(Sub UF)

E ` U<: F

(Sub RR

+

)

E ` R � <: R

+

�

(Sub RM)

E ` R � <: M �

(Sub R

+

U)

E ` R

+

� <: U

(Sub MV)

E ` M � <: V �

(Sub MM

�

)

E ` M � <: M

�

�

(Sub M

�

U)

E ` M � <: U

(Sub VV

�

)

E ` V � <: V

�

�

(Sub V

�

F)

E ` V

�

� <: F

(Sub PP)

E ` � <: �

0

E ` P � <: P �

0

(Sub R

+

R

+

)

E ` � <: �

0

E ` R

+

� <: R

+

�

0

(Sub M

�

M

�

)

E ` � <: �

0

E ` M

�

�

0

<: M

�

�

(Sub V

�

V

�

)

E ` � <: �

0

E ` V

�

�

0

<: V

�

�

Object subtyping

(Sub TT)

E ` �

E ` T<: T

(Sub Obj OK)

E;� <: T ` � <: F � =2 fv

�

(�)

E ` �(�)[�]<: T

(Sub Obj Invariant) (� � �(�)[�]; �

0

� �(�)[�

0

])

E ` � <: T E ` �

0

<: T E;� <: T ` � <: �

0

E ` � <: �

0

Figure 2: Types and Subtypes

3.3 Expressions

Expressions are variables, objects, method invocation, and method overriding.

a ::= x j �(�; �)[`

i

: &(x

i

)a

i

] j a:` j a:`

(

)

�(�; �)&(x)a

The expression a:`

(

)

�(�; �)&(x)a

`

is the extension of a on �eld ` with a method &(x)a

`

. The

expression (�; �) binds � to the type of self in a

`

and indicates that the resulting type of the

extension should be � . This information is important so that types do not have to be inferred but

7

only checked. Field update is just a special case of object extension. This is more general, since

the selection between update and extension is resolved dynamically.

3.4 Well formation of types and subtyping

Typing environments are sequences of bindings written with letter E. There are free kinds of

judgments (the second and third ones are similar):

E ::= ; j � <: � j x : � Typing environments

E ` � Environment E is well-formed

E ` � <: �

0

Regular type � is a subtype of �

0

in E

E ` ' <: '

0

Field type ' is a subtype of '

0

in E

E ` a : � Expression a has type � in E

The subtyping judgment E ` � <: T is used to mean that � is a well-formed regular type in E,

while E ` ' <: F means that ' is a well-formed �eld-type in E. Thus, T and F also play a

role of kinds. For sake of simplicity, we do not allow �eld variables � <: F in environments. We

have used di�erent meta-variables � and ' for regular types and �eld-types for sake of readability,

although this is redundant with the constraint enforced by the well-formation rules. The formation

of environments is recursively de�ned with rules for the formation of types and subtyping rules

given in �gure 2.

The subtyping rules are quite standard. Most of the rules are dedicated to �eld subtyping; they

formally described the relation that was drawn in �gure 1. A few facts are worth noticing. First

we cannot derive E ` F <: F . Thus F is only used in E ` ' <: F to tell that ' is a well-formed

�eld type. It prevents using F in object types. The typing rule Sub PA is also worth consideration.

By transitivity with other rules, it allows P � to be a subtype of M �

0

, even if types � and �

0

are

incompatible. However, it remains true, and this is essential, that P � is a subtype of R �

0

if and

only if � is a subtype of �

0

.

The rule Sub Obj Invariant describes subtyping for object types. As explained above, row

variables are just a meta-notation; thus, the judgment E ` � <: �

0

is just a short hand for E `

�(`) <: �

0

(`) for any label `, which only involves a �nite number of them. This rule is restrictive

and prevents (positive) occurrences of self to be replaced by # � where � is the current type of the

object. In particular, object types cannot be unfolded (see section 6.2).

3.5 Typing rules

Typing rules are given in �gure 3. The rules for subsumption, variables, and method invocation

are quite standard.

Rule Expr Object has been discussed earlier. The last premise says that the �elds `

i

may

actually be super-types of P �

i

in � and other �elds may also be super types of A. One cannot

simply require that � be (`

i

: P �

i

i2I

; A) and later use subsumption, since the assumption made on

the type of x

i

while typing a

i

could then be too weak.

Rule Expr Update is similar to the overriding rule in [3]. This rule is important since it

permits both internal and external updates: the result type of the object is exactly the same as

the one before the update.

On the contrary, rule Expr Extend is intended to add new methods that were not necessarily

de�ned before, and thus change the type of the object. There are three di�erent sub-cases in rule

Expr Extend; the one that applies is uniquely determined by the given type � . Then the type of

�eld ` in the argument is deduced from the small table.

8

(Expr Subsumption)

E ` a : � E ` � <: �

0

E ` a : �

0

(Expr Var)

E; x : �; E

0

` �

E; x : �; E

0

` x : �

(Expr Object) (� � �(�)[�])

E;� <: # �; x

i

: � ` a

i

: �

i

; i 2 I E; � <: # � ` (P �

i

i2I

; A)<: �

E ` �(�; �)[`

i

= &(x

i

)a

i

i2I

] : �

(Expr Select)

E ` a : � E ` � <: �(�)[`: R

+

�

`

; U]

E ` a:` : �

`

f�=�g

(Expr Update)

E ` a : � E ` � <: �(�)[`: R �

`

; �

0

] E;� <: # �; x : � ` a

`

: �

`

E ` a:`

(

)

�(�; �)&(x)a

`

: �

(Expr Extend) (� � �(�)[�])

('

0

; �(`)) 2 f(A; P �

`

); (V �

`

; R �

`

); (V

�

�

`

; M

�

�

`

)g

E ` a : �(�)[`:'

0

; � n `] E;� <: # �; x : � ` a

`

: �

`

E ` a:`

(

)

�(�; �)&(x)a

`

: �

Figure 3: Typing rules

Rules Expr Extend and Expr Update both apply only when � is of the form �(�)[`: P �

`

; �]

or �(�)[`: R �

`

; �]. Then, the requirements on the type of a are the same (letting the premise

of Sub Extend be preceded by a subsumption rule). Thus, di�erent derivations lead to the

same judgment. It would also be possible to syntactically distinguish between object extension and

method update, as well as to separate the extension between three di�erent primitive corresponding

to each of the three typing cases.

3.6 Operational semantics

We give a reduction semantics for a call-by-value strategy. Values are reduced to objects. A leftmost

outermost evaluation strategy is enforced by the evaluation contexts C.

v ::= �(�; �)[`

i

= &(x

i

)a

i

i2I

] C ::= fg j C:` j C:`

(

)

�(�; �)&(x)a

The reduction rules are given in �gure 4. Since programs are explicitly typed, the reduction must

also manipulate types in order to maintain programs both well-formed and well-typed, even though

it is not type-driven. In fact, the reduction uses an auxiliary binary operation on types '

(

)

'

0

, to

recompute the witness type of object values during object extension. It is de�ned in �gure 5. The

partial '

(

)

'

0

is extended to object types homomorphically, i.e., �(�)[�]

(

)

�(�)[�

0

] is �(�)[�

(

)

�

0

].

Type extension is de�ned so as it validates lemma 4. When there is some exibility, we sought for

more uniformnity. Type extension is unde�ned when the cell is left empty in the �gure. Those are

cases that will never meet the hypotheses of lemma 4.

9

Let ` and `

i

i2I

be distinct labels, j in I,

and v be of the form �(�; �)[`

i

= &(x

i

)a

i

i2I

].

v:`

j

�! a

j

f�=�gfv=xg (Select)

v:`

j

(

)

�(�; �

0

)&(x)a �! �(�; �

(

)

�

0

)[`

i

= &(x

i

)a

i

i2I�j

; `

j

= &(x)a] (Update)

v:`

(

)

�(�; �

0

)&(x

0

)a

0

�! �(�; �

(

)

�

0

)[`

i

= &(x

i

)a

i

i2I

; ` = &(x)a] (Extend)

if a

1

�! a

2

then Cfa

1

g �! Cfa

2

g (Context)

Figure 4: Reduction rules

(

)

'

0

#'

P �

0

; A U R �

0

; R

+

�

0

M �

0

M

�

�

0

V �

0

V

�

�

0

P �; A '

0

U

R �; R

+

�; U; M

�

� . ' '

' M � . . R � ' V � ' '

V � . . R � ' R �

V

�

� M

�

� . ' M

�

�

#'

0

U '

0

R �

0

M

�

�

0

Figure 5: Type reduction '

(

)

'

0

4 Soundness of the typing rules

The soundness of the typing rules results from a combination of subject reduction and canonical

forms. The proof of subject reduction is standard (see [3] for instance). A few classical lemmas

help simplifying the main proof.

Lemma 1 (Bound weakening) If E ` � <: �

0

and E;� <: �

0

; E

0

` J , then E;� <: �; E

0

` J .

Proof: By induction on the size of the proof of the derivation of the second.

Lemma 2 (Substitution)

1. If E;� <: �; E

0

` J and E ` �

0

<: � , then E;E

0

f�

0

=�g ` J f�

0

=�g.

2. If E; x : �; E

0

` J and E ` a : � , then E;E

0

` J fa=xg.

Lemma 3 (Structural subtyping)

1. If � � �(�)[�] and E ` � <:�

0

, then �

0

is either T or of the form �(�)[�

0

] and E;�<:T ` �<:�

0

.

2. If E ` ' <: R �

`

, then ' is either R �

l

or P �

0

where E ` �

0

<: �

`

.

10

3. If E ` ' <: R

+

�

`

, then ' is either P �

0

, R �

0

, or R

+

�

0

where E ` �

0

<: '

`

.

4. If E ` ' <: P �

`

, then ' is P �

0

where E ` �

0

<: �

`

.

Etc.

Proof: By induction on the size of subtyping derivations. Should use the fact that transitivity rules

can be pushed to the leaves.

The proof of subject reduction also uses an essential lemma that relates computation on types

to subtyping. Actually, the proof does not depend on the particular de�nition of #, but only on

the following lemma.

Lemma 4 (Type computation) Let � and �

0

be two object types �(�)[�] and �(�)[�

0

]. Assume

that there exists a row �

00

such that E;� <: T ` � <: �

00

and for each label `, the pair (�

00

(`); �

0

(`))

is one of the four forms (A; P �

`

), (V �

`

; R �

`

), (V

�

�

`

; M

�

�

`

), or (';'). Let �̂ be �

(

)

�

0

and �̂ be

�

(

)

�

0

. Then,

E ` �̂ <: �

0

E ` # �̂ <: # � E ` # �̂ <: # �

0

Moreover, in the three �rst cases, if E;�<:T ` �(`)<:�

0

(`), then E;�<:T ` �(`)<: �̂(`); otherwise

E;� <: T ` P �

`

<: �̂(`).

Lemma 5 (Virtual methods) If E ` � <: �(�)[U], then E ` � <: # � .

Proof: This is obviously true �eld by �eld: the only �eld that does not satisfy E ` � <: # � are

virtual �elds, which are excluded if E ` � <: U. The property easily follows for object types.

Theorem 1 (Subject Reduction) Typings are preserved by reduction. If E ` a : �

a

and a �! a

0

then E ` a

0

: �

a

.

Theorem 2 (Canonical Forms) Well-typed expressions that cannot be reduced are values. If

; ` a : � and there exists no a

0

such that a �! a

0

, then a is a value.

Proof: If a value v has type �(�)[`: P � ; U], then v must have a �eld `. The theorem is then a trivial

induction on the size of a, assuming that a cannot be reduced.

5 Examples

For simplicity, we assume that the core calculus has been extended with abstraction and application.

This extension could either be primitive or derived from the encoding given in section 5.6. For

brievity, we write a:`

(

)

a

0

instead of a:`

(

)

�(�; �)&(z)a

0

when a

0

does not depend on the self

parameter z. In practice, other abbreviations could be made, but we avoid them here to reduce

confusion.

We consider the simple example of points and colored points. These objects can of course

already be written in [3]. The expressiveness of our calculus is not so much its capability to write

new forms of complete objects but to provide new means of de�ning them. This provides more

exibility, increases security in several ways , and removes the complexity of the encoding of classes

into objects.

11

5.1 Objects

A point object p

0

can be de�ned as follows:

�(�; point)[x = 0 ; mv = &(z)�y:(z:x

(

)

y) ; print = &(z)print int z:x]

where point is �(�)[x: R int ; mv: P int! � ; print: P unit ; A]. As in [3], new points can be cre-

ated using method update as in p

0

:x

(

)

�(�; point)&(z)1. Moreover, colored points can be de�ned

inheriting from points:

cpoint

4

= �(�)[x: R int ; c: R bool ; mv: P int! � ; print: P unit ; A]

cp

4

= (p

0

:c

(

)

�(�; cpoint)&(z)true):print

(

)

�(�; cpoint)&(z)if z:c then print int z:x

When two values of di�erent types have a common super-type � , they can be interchanged at type � .

Here, cpoint is not a subtype of point, since both types carry too precise type information. How-

ever, they admit the common super-type �(�)[x: R int ; c: U ; mv: P int! � ; print: P unit ; A]:.

5.2 Abstraction via subtyping

Subtyping can also be used to enforce security. For instance, �eld x may be hidden by weakening

its type to U. Similarly, method mv may be protected against further rede�nition by weakening its

type to R

+

� . That is, by giving p

0

the type �(�)[mv: R

+

int! � ; print: R unit ; U]. While method

mv can no longer be directly rede�ned, there is still a possibility for indirect rede�nition. For

instance, method print could have been written so that it overrides method mv before printing.

To ensure that a method can never be rede�ned, directly or indirectly, it must be given type R

+

�

at its creation.

5.3 Virtual methods

The creation of new points by updating the �eld of an already existing point is not quite satisfactory

since it requires the use of default methods to represent the unde�ned state, which are often

arbitrary and may be a source of errors. Indeed, a class of points can be seen as a virtual point

lacking its �eld components.

POINT

4

= �(�)[x: V int ; mv: P int! � ; print: P unit ; A]

P

4

= �(�; POINT)[mv = &(z)�y:(z:x

(

)

y) ; print = &(z)print int z:x]

New points are then created by �lling in the missing �elds:

new point

4

= �y:(P:x

(

)

�(�; point)&(z)y) p

1

4

= new point 0

5.4 Traditional class-based perspective

To keep closer to the traditional approach, we may by default choose to hide both �elds cor-

responding to instance variables and the extendible capabilities of the remaining methods. For

instance, treating x as an instance variable, and mv and print as \regular" methods, we choose

�(�)[mv: R

+

int! � ; print: R

+

unit ; U] for point. Intuitively, the object-type point hides all in-

formation that is not necessary to increase security. Conversely, the class-type POINT remains as

12

precise as possible, to keep expressiveness. Indeed, a class of points is still an object. However,

as opposed to the previous section, we adopt some uniform, more structured style, treating \real"

objects di�erently from those representing classes.

In colored points, we may choose to leave �eld c readable and overridable, as if we de�ned two

methods set c and get c.

cpoint

4

= �(�)[c: R bool ; mv: R

+

int! � ; print: R

+

unit ; U]

Single inheritance is obtained by class extension:

CPOINT

4

= �(�)[x: V int ; c: V bool ; mv: P int! � ; print: P unit ; A]

CP

4

= (P:print

(

)

�(�; CPOINT)&(z)if z:c then print int z:x)

new cpoint

4

= �y:�w:(CP:x

(

)

�(�; cpoint)&(z)y):c

(

)

�(�; cpoint)&(z)w

While CPOINT is not a subtype of POINT at the class level, we recover the usual relationship that

cpoint is a subtype of point at the object level. Moreover, at the object level, types are invariant

by #. Thus, we also recover the subtyping relation of [3]. In particular, object types can be

unfolded.

5.5 An advanced example

A colorable point p

0

is a point prepared to be colored without actually being colored. It can be

obtained by adding to the point p

0

an extra method paint that when called with an argument y

returns the colored point obtained by adding the color �eld c with value y and by updating the

print method of p

0

.

p

0

4

= p

0

:paint

(

)

&(z; point

0

)�y:

((z:c

(

)

y):print

(

)

�(�; cpoint)&(z)if z:c then print int z:x)

where point

0

is

�(�)[x: R int ; :::print: R unit ; paint: P bool! cpoint ; c: M bool ; U]

This example may be seen as the installation (method paint) of a new behavior (method print)

that interacts with the existing state x and adds some new state c. The above solution becomes

more interesting if each installation involves many methods, and especially if several installation

are either di�erent �elds of the same objects or the same �eld of di�erent objects. Then, the

installation procedure can be selected dynamically by message invocation instead of manually by

applying an external function to the object.

5.6 Encoding of the lambda-calculus

This part improves the encoding proposed in [3]. It also illustrates the use of virtual methods and

variances. The untyped encoding of the lambda-calculus into objects in [3] is the following

2

:

hhxii

4

= x:arg hh�x:Mii

4

= [arg = &(x)x:arg ; val = &(x):hhMii]

hhM M

0

ii

4

= (hhMii:arg

(

)

&(x)hhM

0

ii):val

2

If both functions and objects co-exist, one should actually mark variables introduced by the encoding of functions

so as to leave the other variables unchanged.

13

A function is encoded as an object with a diverging method arg. The encoding of an application

overrides the method arg of the encoding of the function with the encoding of the argument and

invokes the method val of the resulting object. Programs obtained by the translation of functional

programs will never call val before loading the argument. However, if the encoding is used as a

programming style, the type system will not provide as much safety as a type system with primitive

function types would. The method val could also be called, accidently, before the �eld arg has

been overridden. In general, this will, in turn, call the method arg and diverge. The use of default

diverging methods is a hack that palliates the absence of virtual methods. It can be assimilated to

a \method not understood" type error and one could argue that the encoding of [3] is not strongly

typed.

The encoding can be improved using object extension to treat a function �x:M as an object

[val = &(x):hhMii] with a virtual method arg (remember that x:arg may appear in hhMii). The

type-system will then prevent the method val to be called before the argument has been loaded.

More precisely, let us consider the simply typed lambda-calculus:

t ::= � j t! t M ::= x j �x : t:M jM M

Functional types are encoded as follows:

hh�ii

4

= � hht! t

0

ii

4

= �(�)[arg: V

�

hhtii ; val: R

+

hht

0

ii ; U]

This naturally induces a subtyping relation between function types that is contra-variant on the

domain and covariant on the co-domain. The typed encoding is given by the following inference

rules:

x : t 2 A

A ` x : t) x:arg

A; x : t `M : t

0

) a x =2 dom (A)

A ` �x : t:M : t! t

0

) �(�; hht! t

0

ii)[val = &(x):a]

A `M : t

0

! t) a A `M

0

: t

0

) a

0

A `M M

0

: t) (a:arg

(

)

�(�;#hht! t

0

ii)&(x)a

0

):val

It is easy to see that the translation transforms well-typed judgments ; ` M : t into well-typed

judgments ; ` hhMii : hhtii.

As in [3], the translation provides a call-by-name operational semantics for the lambda-calculus.

The encoding of [3] also provides an equational theory for the object calculus and, thefore, for the

lambda calculus, via translation, which we do not.

6 Discussion

6.1 Variations

Several variations can be made by consistently modifying �eld-types, their subtyping relationship,

and the typing rule for object extension. The easiest is to drop some subtyping asumption (such

as Sub PP, or Sub PA) or drop the �eld-type P � altogether. This weakens the type system (some

examples are not typable any longer), but it retains the essential features. More signi�cant sim-

pli�cations can be made at the price of a higher restriction of expressiveness. For instance, virtual

�eld-types could be removed.

Some extensions or modi�cations to the type hierarchy are also possible. For instance, one

could introduce �elds of type yP � that do no depend on any other method. These methods would

14

be dual of those of type P � on which no other method depend; somehow they would behave as

record �elds in the sense they could always be called even if the object is virtual. This extends to

�eld-types yR � and yR

+

� similarly.

6.2 Better subtyping for object types

The subtyping rule Sub-Obj-Invariant does not allow unfolding of object types. It is thus weaker

that the Abadi-Cardelli:

(Sub Obj Deep) (� � �(�)[�]; �

0

� �(�)[�

0

])

E ` � <: T E ` �

0

<: T E;� <: � ` � <: �

0

E ` � <: �

0

This rule would not be correct, since it would not be transitive. Indeed transitivity would require

that A ` � <: �

0

implies A ` # � <: # �

0

which is not true.

Just replacing the bound T of � in Sub Obj Deep by # � would actually not behave well with

respect to transitivity. In a preliminary version of this work [26], we added another premise to

recover transitivity. However, this simultaneously weakens the subtyping relationship, and some

useful examples become untypable.

It should be possible to de�ne a subtyping rule that allows unfolding of self types only when

objects have no more extension capabilities. It seems however, that the subtyping structure of

�elds should either be simpli�ed (e.g. eliminating the arrow from M � to V �) or almost equivalently

enriched to avoid M � <: V � but only once in a certain de�nite state.

6.3 Extensions

Imperative update is an orthogonal issue to the one studied here, and it could be added without

any problem. Object extension should, of course, remain functional.

Equational theory We see no di�culty in adding an equational theory to our calculus, but this

remains to be investigated. Treating object extension as a commutative operator would allow to

reduce object construction to a sequence of object extensions of the empty object (virtual methods

would be crucial here).

Higher-order types As shown above, our objects are su�ciently powerful to represent classes.

As opposed to [3], this does not necessitate higher-order polymorphism because methods are already

required to be parametric in all possible extensions of self.

The addition of higher-order polymorphism might still be useful, in particular to enable para-

metric classes. We believe that there is no problem in constraining type abstraction by some

supertype bound, written �<: � as in F

<:

. However, it would also be useful to introduce #-bounds

of the form � <: # � . This might require more investigation.

Row variables and binary methods We have used row variables only as a meta-notation for

simplifying the presentation. It would be interesting to really allow row variables in types. This

would probably augment the expressiveness of the language, since it should provide some form of

matching that revealed quite useful, especially for binary methods [11, 9, 27].

Actually, it remains to investigate how the presented calculus could be extended to cope with

binary methods. Row variables might not be su�cient to express matching, and some new form of

15

matching might have to be found. It is unclear whether the known solutions [10] could be adapted

to our calculus.

7 Comparison with other works

Our proposal is built on the calculus of objects of Abadi and Cardelli [3], which is invoked through-

out this paper. Our use of variance annotations is in principle similar to theirs. By attaching

variance annotations to �eld-types rather than to �elds themselves, we eliminate some useless

types such as M

+

� . Indeed, such a �eld could not be overriden, nor accessed, and thus it could

be just given type U. (Our use of variances also eliminate the ability to specify the type of a �eld

without specifying its variance, which may cause problem with type inference [22].) An essential

imported tool is the structure of record-types of [23], which was originally designed for type infer-

ence in ML [24]. The use of a richer structure of record types has previously been proposed for type

checking records [15, 16, 13, 12]. To our knowledge, the bene�ts of symmetric information were �rst

transfered from record types to object types in [25]. There, �rst-order typing rules for objects with

extension and both deep and width subtyping were roughly drafted without any formal treatment.

A similar approach has also been independently proposed by Bono, Liquori and others. Their

�rst related work [6] has later lead to many closely related proposals [8, 7, 4, 18, 17, 19]. Most

of these are extensions of the Fisher-Honsel calculus of objects [20]. The di�erences between their

approach and the one of [3] (which is also ours) are not always signi�cant but they make a close

comparisson more di�cult. Only two of these works [19, 18] are extensions of the Abadi-Cardelli

calculus of objects [3] and are thus more connected to our proposal. The �rst-order version [19],

is subsumed by both [25] (which also covers deep subtyping) and [18] (which also addresses self

types.) Our proposal extends both [25] and [18].

The most interesting comparison can be made with [18]. The main motivation and the key idea

behind both proposals are similar: they integrate object subtyping and object extension, using a

richer type structure to preserve type soundness. Saturated vs diamond types correspond to our

object-types with a �eld template U vs A, respectively. Our treatment seems more uniform. We only

have one kind of object types. We distinguish between the \saturation" and \diamond" properties

in �elds instead of objects. As a result, we can write an object type that is saturated, except for

a few particular �elds. Our proposal also includes several additional features: it addresses deep

subtyping and virtual methods; it also allows methods to extend self. Moreover, in our proposal,

the subtyping relationship is structural for object types. Additionally, subtyping axioms are only

given at the level of �elds, each one of them treating a di�erent important subtyping capability. As

a result, object types have a more regular structure, and can easily be adapted to further extensions.

We think this is easier to understand, to modify, and to manipulate.

An alternative to virtual methods has also been studied in [4], using a quite di�erent approach,

which consists in annotating each method with the list of all other methods they depend on. Thus,

each method has a di�erent view of self. Their approach to incomplete objects is, in principle,

more powerful that ours; in particular, they can type programs that even traditional class-based

languages would reject. We found their types of objects too detailed, and thus their proposal less

practical than ours. (Tracing dependencies is closer to some form of program analysis than to

standard type systems.) In fact, we intendedly restricted our type system so that methods have a

uniform view of self. In practice, our solution is su�cient to capture common forms of inheritance.

In [20], pre-objects have pro-types and can be turned into objects with obj-types by subtyping.

Pro-types and obj-types are similar to our object types �(�)[`

i

: R �

i

i2I

; A] and �(�)[`

i

: R

+

�

i

i2I

; U].

One di�erence is that, in our case, subtyping is de�ned and permitted �eld by �eld rather than all at

16

once. Fisher and Mitchell also studied the relationship between objects and classes in [14]. They use

bounded existential quanti�cation to hide some of the structure of the object in the public interface.

This still allows public methods to be called, while private methods become innaccessible. In our

calculus, the richer structure of objects permits to use subtyping instead of bounded existential

quanti�cation to provide a similar abstraction. This is not suprising, theoretically, since subtyping,

as existential quanti�cation, is a lost of type information. However, this is practically a signi�cant

di�erence, since subtyping allows more explicit type information but is less expressive. Another

di�erence is that using the standard record types they had to introduce record sorts to express

negative type information. As pointed out in a more recent paper [5], the design of the language of

kinds becomes important for modularity. In particular, [5] improves over [14] by changing default

kinds from unknown (U in our setting) to absent (A). Instead, our record types express positive and

negative information symmetrically and are viewed as total functions from �elds to types, which

avoids the somehow ad hoc language of sorts.

In a recent paper, Riecke and Stone have circumvented the problem of merging extension with

deep and width subtyping by changing the semantics of objects [28]. In fact, their semantics remain

in correspondance with the standard semantics of objects in the general case, but the semantics

of extension is changed so that the counter example becomes sound in the new semantics. They

distinguish between method update and object extension. Then, a �eld that is already de�ned is

automatically renamed by extension into an anonymous �eld that becomes externally inaccessible.

With their semantics, some of our enriched type information would become obsolete for ensur-

ing type soundness, but it might remain useful for compile-time optimizations. Other pieces of

information, e.g. virtual types, would remain quite pertinent.

8 Conclusion

We have proposed a uniform and exible method for enriching type systems of object calculi by

re�ning the �eld structure of object types, so that they carry more precise type information.

Applying our approach to the object calculus of Abadi and Cardelli, we have integrated object

extension and depth and width subtyping, with covariant �nal methods and contra-variant virtual

methods, in a type-safe calculus. When su�cient type information is revealed, objects may rep-

resent classes. Type information may also be hidden progressively, until objects can be used and

interchanged in a traditional fashion.

An important gain is to avoid the encoding of classes as records of pre-methods. Instead,

we provide a more uniform, direct approach. Another bene�t of this integration is to allow mixed

formed of classes and objects. The use of richer object types also increases both safety by capturing

more dynamic misbehavior as static type errors and security by allowing more privacy via subtyping.

Moreover, our approach subsumes several other unrelated proposals, and it might provide a uni�ed

framework for studying or comparing new proposals. Some extensions and variations are clearly

possible, provided the operations on objects, their types and the subtyping hierarchy are changed

consistently.

More investigation still remains to be done. Adding an equational theory to the calculus, would

simplify our primitives, since objects could always be built �eld by �eld using object extension only.

This might also be a �rst step towards a better integration of record-based and delegation-based

object calculi. In the future, we would also like to study the potential increase of expressiveness

that �eld and row variables could provide. Of course, investigating binary methods remains one of

the most important issues.

Classes can be viewed as objects. We hope that an even richer type structure would �nally

17

enable to see objects for what they really are |records of functions| in the (yet untyped) self-

application interpretation.

References

[1] Mart��n Abadi and Luca Cardelli. A theory of primitive objects: Untyped and �rst-order

systems. In Theoretical Aspects of Computer Software, pages 296{320. Springer-Verlag, April

1994.

[2] Mart��n Abadi and Luca Cardelli. A theory of primitive objects: Second-order systems. Sci-

ence of Computer Programming, 25(2-3):81{116, December 1995. Preliminary version ap-

peared in D. Sanella, editor, Proceedings of European Symposium on Programming, pages

1-24. Springer-Verlag, April 1994.

[3] Mart��n Abadi and Luca Cardelli. A theory of objects. Springer, 1996.

[4] V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping Constraints for

Incomplete Objects. In Proceedings of TAPSOFT-CAAP-97, International Joint Conference

on the Theory and Practice of Software Development, Lecture Notes in Computer Science.

Springer-Verlag, 1997.

[5] V. Bono and K. Fisher. An imperative, �rst-order calculus with object extension. In Informal

Proceedings of the FOOL 5 workshop on Foundations of Object Oriented Programming, Sans

Diego, CA, January 1998. To appear.

[6] V. Bono and L. Liquori. A subtyping for the �sher-honsell-mitchell lambda calculus of object.

In Proc. of CSL-94, International Conference of Computer Science Logic, volume 933 of Lecture

Notes in Computer Science, pages 16{30. Springer-Verlag, 1995.

[7] Viviana Bono and Michele Bugliesi. A lambda calculus of incomplete objects. In Proceedings

of Mathematical Foundations of Computer Science(MFCS), number 1113 in Lecture Notes in

Computer Science, pages 218{229, 1996.

[8] Viviana Bono and Michele Bugliesi. Matching constraints for the lambda calculus of objects.

In Proceedings of (MFCS), 1997.

[9] Kim B. Bruce. Typing in object-oriented languages: Achieving expressibility and safety. Re-

vised version to appear in Computing Surveys, November 1995.

[10] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, Valery Trifonov) the Hopkins Objects Group

(Jonathan Eifrig, Scott Smith, Gary T. Leavens, and Benjamin Pierce. On binary methods.

Theory and Practice of Object Systems, 1(3):221{242, 1996.

[11] Kim B. Bruce, Angela Schuett, and Robert van Gent. Polytoil: A type-safe polymorphic

object-oriented language. In ECOOP, number 952 in LNCS, pages 27{51. Springer Verlag,

1995.

[12] Luca Cardelli. Extensible records in a pure calculus of subtyping. In Carl A. Gunter and

John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Programming. Types, Se-

mantics and Language Design, pages 373{425. MIT Press, 1994.

18

[13] Luca Cardelli and John C. Mitchell. Operations on records. In Fifth International Conference

on Mathematical Foundations of Programming Semantics, 1989.

[14] K. Fisher and J. C. Mitchell. On the relationship between classes, objects and data abstrac-

tion. Theoretical And Practice of Objects Systems, To appear, 1998. A preliminary version

appeared in the proceedings of the International Summer School on Mathematics of Program

Construction, Marktoberdorf, Germany, Springer LNCS, 1997.

[15] Robert W. Harper and Benjamin C. Pierce. Extensible records without subsumption. Technical

Report CMU-CS-90-102, Carnegie Mellon University, Pittsburg, Pensylvania, February 1990.

[16] Robert W. Harper and Benjamin C. Pierce. A record calculus based on symmetric concatena-

tion. Technical Report CMU-CS-90-157, Carnegie Mellon University, Pittsburg, Pensylvania,

February 1990.

[17] L. Liquori and G. Castagna. A Typed Lambda Calculus of Objects. In Proc. of ASIAN-96,

International Asian Computing Science Conference, volume 1212 of Lecture Notes in Computer

Science. Springer-Verlag, 1996.

[18] Luigi Liquori. Bounded polymorphism for extensible objects. Technical Report CS-24-96,

Dipartimento di Informatica, Universita' di Torino, 1997.

[19] Luigi Liquori. An Extended Theory of Primitive Objects: First Order System. In Proceedings

of ECOOP-97, International European Conference on Object Oriented Programming, Lecture

Notes in Computer Science. Springer-Verlag, 1997.

[20] John C. Mitchell and Kathleen Fisher. A delegation-based object calculus with subtyping. In

Fundamentals of Computation Theory, number 965 in LNCS, pages 42{61. Springer, 1995.

[21] John C. Mitchell, Furio Honsell, and Kathleen Fisher. A lambda calculus of objects and

method specialization. In IEEE Symposium on Logic in Computer Science, pages 26{38, June

1993.

[22] Jens Palsberg and Trevor Jim. Type inference of object types with variances. Private Discus-

sion, 1996.

[23] Didier R�emy. Syntactic theories and the algebra of record terms. Research Report 1869,

Institut National de Recherche en Informatique et Automatisme, Rocquencourt, BP 105, 78

153 Le Chesnay Cedex, France, 1993.

[24] Didier R�emy. Type inference for records in a natural extension of ML. In Carl A. Gunter

and John C. Mitchell, editors, Theoretical Aspects Of Object-Oriented Programming. Types,

Semantics and Language Design. MIT Press, 1993.

[25] Didier R�emy. Better subtypes and row variables for record types. Presented at the workshop

on Advances in types for computer science at the Newton Institute, Cambridge, UK, August

1995.

[26] Didier R�emy. From classes to objects via subtyping. In European Symposium On Programming,

volume 1381 of Lecture Notes in Computer Science. Springer, March 1998.

19

[27] Didier R�emy and J�erôme Vouillon. Objective ML: An e�ective object-oriented extension to ML.

Theoretical And Practice of Objects Systems, To appear, 1998. A preliminary version appeared

in the proceedings of the 24th ACM Conference on Principles of Programming Languages, 1997.

[28] Jon G. Riecke and Christopher A. Stone. Privacy via subsumption. In Informal Proceedings

of the FOOL 5 workshop on Foundations of Object Oriented Programming, Sans Diego, CA,

January 1998. To appear.

A Type computation

Lemma 4 (Type computation) Let � and �

0

be two object types �(�)[�] and �(�)[�

0

]. Assume

that there exists a row �

00

such that E;� <: T ` � <: �

00

and for each label `, the pair (�

00

(`); �

0

(`))

is one of the four forms (A; P �

`

), (V �

`

; R �

`

), (V

�

�

`

; M

�

�

`

), or (';'). Let �̂ be �

(

)

�

0

and �̂ be

�

(

)

�

0

. Then,

E ` �̂ <: �

0

E ` # �̂ <: # � E ` # �̂ <: # �

0

Moreover, in the three �rst cases, if E;�<:T ` �(`)<:�

0

(`), then E;�<:T ` �(`)<: �̂(`); otherwise

E;� <: T ` P �

`

<: �̂(`).

Proof: Let E

0

be E;� <: T. By rule Sub Obj Invariant it su�cies to check

(1) E

0

` �̂ <: �

0

(2) E

0

` # �̂ <: # � (3) E

0

` # �̂ <: # �

0

(4)

�

E

0

` � <: �̂ if �

00

is �

0

,

9�

0

`

; E

0

` �

`

<: �

0

`

^E

0

` P �

0

`

<: �̂(`) otherwise.

independently for each cell of the table 5 and for any of the fourth possible forms (three �rst forms

for (4)).

Case ('): These cases cannot occur because all hypotheses cannot be met simultaneously.

Case �rst line: Note that this completely covers the case where ('

00

; '

0

) is (A; P �

`

). Properties

(1) and (3) are immediate since '̂ is '

0

and (2) is obvious since #' is U. Since '̂ is '

0

, E

0

` '<: '̂

follows from E

0

` ' <: '

0

, and E

0

` '

0

<: '̂ is always true, hence (4).

Case E

0

` ' <: '

0

: In particular, this covers the case where ('

00

; '

0

) is (';').

Subcase '̂ is ': Then (1), (2) and (4) are obvious. When #'

0

is '

0

, it happens that #' is also

', thus (3) is true. There are 6 remaining cases in the last two columns:

� In the last column, we must show that E

0

` #'<:M

�

�

0

. If ' is V

�

� or M

�

� , then E ` �

0

<:� ,

and since #' is M

�

� , then E

0

` #' <: V

�

�

0

. Otherwise, ' is either R � or M � , invariant by

and E

0

` ' <: M

�

� .

� In the preceding column, we must show that E

0

` #'<:R �

0

(5). Here and since E

0

` '<:'

0

,

' is one of the form R � or V � , types � and �

0

are equal, and #' is R � . Hence (5).

Other subcases: given that E

0

` ' <: '

0

, the only remaining subcase is when ' is M � and '

0

is

V �

0

. Then � and �

0

are equal and thus so are '̂ and '

0

. Hence (1) and (3). Clearly, we also have

E

0

` R � <: M � (2) and E

0

` M � <: V � (4).

20

Case ('

00

; '

0

) is (V �

`

; R �

`

), �rst line excluded: Then ' is either M � or V � with � and �

l

equal

and '̂ is R � . Hence (1) and, since '̂ and '

0

are here invariant by #, we also have (3). Since both

E

0

` R � <: M � and E

0

` R � <: V � , we also have (2). The hypothesis E

0

` ' <: R �

`

never holds.

However, E

0

` P �

l

<: R � holds since � and �

l

are equal.

Case ('

00

; '

0

) is (V

�

�

`

; M

�

�

`

), �rst line excluded: If ' is either M � or V � with � and �

l

equal

and we reason as in the previous case. That is � and �

l

are equal and '̂ is R � . In particular, (2)

is unchanged. Since E

0

` R �

l

<: M

�

�

l

, we also have (1), (3) and E

0

` P �

l

<: '̂. The hypothesis

E

0

` ' <: M

�

�

`

holds when ' is M � , and then (4) holds since '̂ is '.

Otherwise, ' is either M

�

� or V

�

� with E

0

` �

`

<: � and '̂ is M

�

� . Since E

0

` M

�

� <: M

�

�

`

, i.e.

E

0

` '̂ <: '

0

, we have (1). Since M

�

, i.e. both sides, are invariant by #, we also have (3). Since

both #' is equal to '̂, which is invariant by #, we also have (2). The inequality E

0

` '<:'

0

holds

when ' is M

�

� , i.e. '̂, and then E

0

` ' <: '̂ trivially holds. Otherwise, (4) holds taking � for �

0

`

.

B Subject reduction

Theorem 1 (Subject Reduction) Typings are preserved by reduction. If E ` a : �

a

and a �! a

0

then E ` a

0

: �

a

.

Proof: By induction on the size of a and cases on the reduction.

Case Red Select: The expression a is of the form v:`

j

where v is �(�; �)[`

i

= &(x)a

i

i2I

] and j

is in I. It reduces to a

j

f�=�gfv=xg. The derivation of E ` a : �

a

ends with a subsumption rule

preceded by rule Expr Select. Thus, there exists types �

0

and �

00

j

such that

E ` v : �

0

E ` �

0

<: �(�)[`

j

: R

+

�

00

j

; U] (1) E ` �

00

j

f�

0

=�g<: �

a

(2)

The derivation E ` v : �

0

itself ends with a subsumption rule preceded by rule Expr Object.

Thus, � is of the form �(�)[�] and there exist �

i

i2I

such that

E;� <: # �; x

i

: � ` a

i

: �

i

; 8i 2 I (3) E;� <: # � ` (`

i

: P �

i

i2I

; A)<: � (4) E ` � <: �

0

(5)

By transitivity between (5) and (1), we have E ` �<:�(�)[`

j

: R

+

�

00

j

; U] (6). By structural subtyping

(lemma 3), and transitivity with (4), we have, in particular, E;� <: T ` P �

j

<: R

+

�

00

j

.

By structural subtyping (lemma 3), E;� <: T ` �

j

<: �

00

j

. Thus, by subsumption applied to (3),

E;� <: # �; x

i

: � ` a

i

: �

00

j

(7). The judgment (6) also implies that E ` � <: �(�)[U], and by

lemma 5 we have E ` � <: # � . Therefore, applying substitution (lemma 2) to (7), we have

E; x

i

: � ` a

i

f�=�g : �

00

j

f�=�g. Since E ` v : � , by substitution again, we have E ` a

i

f�=�gfv=xg :

�

00

j

f�=�g (8). Since �

00

j

is covariant, it follows from (5) that E ` �

00

j

f�=�g <: �

00

j

f�

0

=�g . By

transitivity with (2), E ` �

00

j

f�=�g <: �

a

(9). We conclude using subsumption applied to (8) with

(9).

Case Red Extend: The expression a is of the form v:`

(

)

�(�; �

0

)&(x

0

)a

0

where v is �(�; �)[`

i

= &(x

i

)a

i

i2I

]

and ` is not one of the `

i

's. It reduces to �(�; �̂)[` = &(x

0

)a

0

; `

i

= &(x

i

)a

i

i2I

] where �̂ is �

(

)

�

0

.

Let � and �

0

be �(�)[�] and �(�)[�

0

] (this is not restrictive) and �̂ be �

(

)

�

0

. A derivation

of v:`

j

(

)

�(�; �

0

)&(x)a ends with a subsumption rule preceded by rule Expr Extend. Thus, �

0

veri�es:

('

0

; �

0

(`)) 2 f(A; P �

`

); (V �

`

; R �

`

); (V

�

�

`

; M

�

�

`

)g (1) E ` v : �(�)[`:'

0

; �

0

] (2)

E;� <: # �

0

; x

0

: � ` a

0

: �

`

(3) E ` �

0

<: �

a

(4)

21

A derivation of (2) ends with subsumption preceded by rule Expr Object. Thus, � veri�es:

E;� <: # �; x

i

: � ` a

i

: �

i

; 8i 2 I (5) E;� <: # � ` (`

i

: P �

i

i2I

; A)<: � (6)

E ` � <: �(�)[`:'

0

; �

0

] (7)

From (7), by structural subtyping, we have E;�<:T ` �<:(` : '

0

; �

0

). Thus, E;�<:T ` �n`<:�

0

n`.

This, together with (1) meets the hypotheses of lemma 4. Therefore,

E ` �̂ <: �

0

(8) E ` # �̂ <: # � (9) E ` # �̂ <: # �

0

(10)

Moreover, for some �

0

`

:

E;� <: # � ` � n ` <: �̂ n ` (11) E;� <: # � ` �

`

<: �̂

0

`

(12) E;� <: # � ` P �

0

`

<: �̂(`) (13)

Combining (6), (11), and (13) we have E;� <: # � ` (` : P �

0

`

; `

i

: P �

i

i2I

; A) <: �̂. By bound

weakening, since (9), we get E;� <: # �̂ ` (` : P �

0

`

; `

i

: P �

i

i2I

; A) <: �̂ (14). Combining (3) with

(12), we have E;� <: # �

0

; x

0

: � ` a

0

: �

0

`

(15). By substitution lemma applied to (15) and (5),

with (9) we have

E;� <: # �̂ ; x

0

: � ` a

0

: �

0

`

E;� <: # �̂ ; x

i

: � ` a

i

: �

i

; 8i 2 I

Combining with (14), we have E ` a

0

: �̂ . By subsumption applied with (8) and (4), we �nally

have E ` a

0

: �

a

.

Case Red Update: We reuse the same notations. The di�erence is that ` is now one the `

j

for

j in I. The expression a is of the form v:`

(

)

�(�; �

0

)&(x)a where v is �(�; �)[`

i

= &(x

i

)a

i

i2I

]. It

reduces to �(�; �̂)[`

j

= &(x)a ; `

i

= &(x

i

)a

i

i2I�j

].

We distinguish two subcases according to form of the typing derivation for a.

Subcase Expr Extend: This case is similar to the case for extension. The only di�erences in

the proof if that here, from (6), (9) and (13), we have E;� <: # �̂ ` (` : P �

`

; `

i

: P �

i

i2I�j

; A)<: �̂

instead of (14).

Subcase Expr Update: A derivation of v:`

(

)

�(�; �

0

)&(x

0

)a

0

ends with a subsumption rule

preceded by rule Expr Update. Thus, �

0

veri�es:

E ` v : �

0

(1) E ` �

0

<:�(�)[`: R �

`

; �

0

] (2) E;�<:# �

0

; x

0

: � ` a

0

: �

`

(3) E ` �

0

<:�

a

(4)

A derivation of (1) ends with subsumption preceded by rule Object. Thus, � veri�es:

E;� <: # �; x

i

: � ` a

i

: �

i

; 8i 2 I (5) E;� <: # � ` (`

i

: P �

i

i2I

; A)<: � (6) E ` � <: �

0

(7)

From (7), by structural subtyping, we have E;�<: T ` �<:�

0

, which enables to apply lemma 4; we

get

E ` �̂ <: �

0

(8) E ` # �̂ <: # �(9) E ` # �̂ <: # �

0

(10) E;� <: # � ` � <: �̂ (11)

Combining (11) with (6), we have E;�<:# � ` (`

i

: P �

i

i2I

; A)<: �̂. By bound weakening, since (9),

we have E;� <: # �̂ ` (`

i

: P �

i

i2I

; A)<: �̂ (12). By structural subtyping (lemma 3) applied to (2),

we have E;�<:T ` �

0

(`)<:R �

`

. By bound weakening with (10), we have E;�<:# �̂ ` �

0

(`)<:R �

`

.

By transitivity with (8) after applying structural subtyping, we get E;� <: # �̂ ` �̂(`) <: R �

`

. By

structural subtyping, we must have E;� <: # �̂ ` P �

`

<: �̂(`). Combining this with (12), we have

E;� <: # �̂ ` (` : P �

`

; `

i

: P �

i

i2I�j

; A)<: �̂ (13).

By substitution lemma applied to (3) and (5), we have

E;� <: # �̂ ; x : � ` a : �

`

E;� <: # �̂ ; x

i

: � ` a

i

: �

i

; 8i 2 I

Combining with (13), we have E ` a

0

: �̂ . By subsumption applied with (8) and (4), we �nally

have E ` a

0

: �

a

.

22

Case Context: Trivial using the induction hypothesis.

23

