
On the Power of Coercion Abstraction

Julien Cretin Didier Rémy
INRIA

{julien.cretin,didier.remy}@inria.fr

Abstract
Erasable coercions in System Fη , also known as retyping functions,
are well-typed η-expansions of the identity. They may change the
type of terms without changing their behavior and can thus be
erased before reduction. Coercions in Fη can model subtyping of
known types and some displacement of quantifiers, but not sub-
typing assumptions nor certain forms of delayed type instantiation.
We generalize Fη by allowing abstraction over retyping functions.
We follow a general approach where computing with coercions can
be seen as computing in the λ-calculus but keeping track of which
parts of terms are coercions. We obtain a language where coercions
do not contribute to the reduction but may block it and are thus not
erasable. We recover erasable coercions by choosing a weak reduc-
tion strategy and restricting coercion abstraction to value-forms or
by restricting abstraction to coercions that are polymorphic in their
domain or codomain. The latter variant subsumes Fη , F<:, and MLF
in a unified framework.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Design, Languages, Theory

Keywords Type, System F, F-eta, Polymorphism, Coercion, Con-
version, Retyping functions, Type containment, Subtyping, Bounded
Polymorphism.

1. Introduction
Parametric polymorphism and subtyping polymorphism are the two
most popular means of increasing expressiveness of type systems:
although first studied independently, they can be advantageously
combined together. Each mechanism alone is relatively simple to
understand and has a more or less canonical presentation. However,
their combination is more complex. The most popular combination
is the language F<: [Cardelli 1993]. However, this is just one
(relatively easy) spot in the design space. In fact, much work in the
90’s has been devoted to improving the combination of parametric
and subtyping polymorphism, motivated by its application to the
typechecking of object-oriented features.

Contravariance, the key ingredient of subtyping polymorphism,
is already modeled in the language Fη proposed by Mitchell [1988].
On the one-hand, Fη is the closure of System F by η-conversion. On
the other-hand it is a language of coercions: a retyping context from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

τ to σ in Fη is a one hole context G such that λ(x : τ) G〈x〉 is an
η-expansion of the identity and has type τ → σ in System F. For
now, we write G〈M〉 for filling a context G with a term M and
♦τ for the empty context of type τ . By definition of Fη , if G is a
retyping context from τ to σ andM is a term of type τ , thenG〈M〉
is a term of type σ. Contravariance is induced by η-expansion as
follows: if Gi is a retyping context from τi to τ ′i for i in {1, 2},
then λ(x : τ1) G2〈♦τ

′
1→τ2 (G1〈x〉)〉 is a retyping context from

type τ ′1 → τ2 to τ1 → τ ′2.
Besides contravariance, η-expansion also introduces opportu-

nities for inserting type abstractions and type applications, which
may change polymorphism a posteriori. For instance, the term
λ(x : ∀α. τ) λβ̄ ♦∀α. τ→σ ρ (x ρ) is a retyping context from
∀α. τ → σ to (∀α. τ) → (∀β̄. σ[α ← ρ]) provided β̄ does not
appear free in ∀α. σ. Such retypings are not supported in F<: where
polymorphism can only be introduced and eliminated explicitly at
the topmost part of expressions.

Conversely, F<: allows reasoning under subtyping assump-
tions, which Fη does not support. Indeed, bounded quantification
Λ(α <: τ)M of F<: introduces a type variable α that stands for
any subtype of τ inside M . In particular, a covariant occurrence of
α in M can be converted to type τ by subtyping.

Is there a language that supersedes both Fη and F<:? Before
we tackle this question, let us first consider another form of re-
typing assumptions that have been introduced in MLF [Le Botlan
and Rémy 2009]: instance-bounded polymorphism Λ(α ≥ τ)M
introduces a type variable α that stands for any instance of τ inside
M . That is, an occurrence of type α within M in an instantiable
position can be converted to any instance of τ . Instance-bounded
quantification delays the choice of whether a polymorphic expres-
sion should be instantiated immediately or kept polymorphic. This
mechanism enables expressions to have more general types and has
been introduced in MLF to enable partial type inference in the pres-
ence of first-class second-order polymorphism and some type an-
notations.

Notice that bounded type instantiation allows for deep type in-
stantiation of binders as Fη does, but using a quite different mecha-
nism (since Fη does not support it). Bounded type instantiation has
also similarities with bounded quantification of F<:, but the two
also differ significantly, since for instance, type conversion is not
congruent on arrow types in MLF.

Surprisingly, among the three languages Fη , F<:, and MLF, any
combination of two have features in common that the other one
lacks! Hence, the challenge becomes whether all their features
can be simultaneously combined together. This question has in
fact already been raised in previous work on MLF [Rémy and
Yakobowski 2010].

Our contributions We answer positively by introducing a lan-
guage Fpι that extends Fη with abstraction over retyping functions,
combining all features simultaneously in a unified framework (§5).
The language Fpι subsumes Fη , F<:, and MLF (§6); it also fixes

and extends a previous language of coercions designed for model-
ing MLF alone [Manzonetto and Tranquilli 2010]. Our subset of
Fpι that coincides with MLF is well-behaved: it satisfies the subject
reduction and progress lemmas and strongly normalizes. It also has
an untyped semantics.

Actually, the extension of Fη with abstraction over coercion
functions leads to a larger language Fι of which Fpι is a restric-
tion (§2). The language Fι is well-behaved. We show that Fι can be
simulated into System F. Hence, reduction rules in Fι are just par-
ticular instances of β-reduction (§4). Fι can also be simulated into
the untyped λ-calculus, by dropping coercions, which shows that
coercions do not contribute to the computation. Unfortunately, they
may block it, and are thus not erasable (§3). Erasability can be re-
covered if we choose a weak reduction strategy (§7), but this is not
entirely satisfactory either so that other restrictions or extensions
of Fι with erasable coercions are still to be found. Nevertheless, we
believe that Fι is a solid ground for understanding erasable coer-
cions (§9).

System F as the origin All languages we consider are second or-
der calculi which have System F at their origin. System F comes
in two flavors: in Curry-style, terms do not carry type information
and are thus a subset of the untyped λ-calculus, while in Church-
style, terms carry explicit type information, namely type abstrac-
tions, type applications, and annotations of function parameters.

Of course, both presentations are closely related, since there
is a bisimulation between the reduction of terms in Church-style
and terms in Curry-style via type erasure where the reduction of
type application between terms in Church-style is reflected as an
equality on terms in Curry-style. That is, calling ι the reduction
of type applications and β the reduction of term applications, the
type erasures of two explicitly-typed terms related by β-reduction
(resp. ι-reduction) are related by β-reduction (resp. equality); and
conversely, if the erasure of a termM β-reduces to a termM′, then
M also reduces by a sequence of ι-reductions followed by a single
β-reduction to a term whose erasure isM′.

Both views are equally useful: we prefer source expressions to
be explicitly typed, so that type checking is a trivial process and
types can be easily maintained during program transformations;
we also wish types to be erasable after compilation for efficiency
of program execution after its compilation. Moreover, a source lan-
guage with an untyped semantics is generally simpler to understand
and deal with. We may argue that even if the source language has
intentional polymorphism, it should first be compiled in a type-
dependent way to an intermediate language that itself has an un-
typed semantics [Crary et al. 2002].

From types to type conversions Our approach to coercions is sim-
ilar because we focus here on retyping functions that are erasable.
In some circumstances, one may use other forms of coercions that
may have some computational content, e.g. change the represen-
tation of values, and thus not be erasable. Then, as for types, we
should compile source expressions into an intermediate language
where remaining coercions, if any, are erasable; this is then the lan-
guage we wish to study here.

Erasability also means that the dynamic semantics of our lan-
guage is ultimately that of the underlying λ-calculus—possibly en-
riched with more constructs. Therefore the semantics only depends
on the reduction strategy we choose and not on the typechecking
details nor on the coercions we may use. Types are useful for pro-
grammers to understand their programs. It is also useful for pro-
grammers that types do not determine the semantics of their pro-
grams. At least, we should give them an intermediate representation
in which this is true.

Coercions may also be introduced a posteriori to make type
conversions explicit inside source terms, in which case they must

be erasable not to alter the semantics of the language. Coercions
usually simplify the meta-theoretical study of the language by pro-
viding a concrete syntax to manipulate typing derivations. Proofs
such as subject reduction become computation on concrete terms
instead of reasoning on derivations which are only objects of the
mathematical discourse.

While in practice programming languages use weak evaluation
strategies, strong evaluation strategies provide more insight into the
calculus by also modeling reduction of open terms. Since our prior
focus is on understanding the essence of coercions, and the meta-
theoretical properties, we prefer strong reduction strategies. Impos-
ing a weak reduction strategy on a well-behaved strong calculus af-
terward is usually easy—even if all properties do not automatically
transfer while, conversely, properties for weak reduction strategies
do not say much about strong reduction strategies.

The two faces of Fη Let us first return to the definition of Fη ,
which in Mitchell’s original presentation is given in Curry-style.
It is defined by adding to System F a type containment rule that
allows to convert a term M of type τ to one of type σ whenever
there exists a retyping context from type τ to σ, which we write
` τ . σ. This judgment, called type containment, is equivalent
to the existence of a (closed) retyping function M′ of System F
such that ` M′ : τ → σ. Interestingly, Mitchell gave another
characterization of type containment, exhibiting a proof system for
the judgment ` τ . σ, which can be read back as the introduction
of a language of coercions whose expressions G witness type
containment derivations. Then, we write ` G : τ .σ whereG fully
determines the typing derivation (much as a Church-style System-
F term M fully determines its typing derivation). For example,
G1 → G2 is a coercion that, given a functionM , returns a function
that coerces its argument with G1, passes it to M , and coerces the
result with G2—using the contravariance of type containment. (A
full presentation of coercions appears in §2 where Fη is described
as a subset of Fι.)

The interpretation of coercions as λ-terms is more intuitive than
coercions as proof witnesses. Unfortunately, its formal presentation
Fλι , which is equivalent to Fι, is technically more involved. Hence,
we prefer to present Fι first in §2 and only introduce Fλι informally
in §4. Interestingly, the reification of Fι into System F given in §3.3
already reveals this intuitive interpretation of coercions—without
the technicalities—and we refer to it when describing the typing
rules and reduction rules of Fι.

In Church-style System F, the use of a coercion G around a
termM is witnessed explicitly asG〈M〉. (We may continue seeing
a coercion G as a retyping context and reading this as filling the
hole of G or, equivalently, see G as a retyping function and read
this as an application of a coercion to a term.) Reduction rules are
added to reduce such applications when both G and M have been
sufficiently evaluated—in a way depending on the form of both—
so that a coercion G is never stuck in the middle of a (well-typed)
redex as in (G〈λ(x : τ) M〉) N . The type system ensures that G
is of a certain shape for which a reduction exists. For example, G
may be G1

σ→ G2 and then G〈λ(x : τ) M〉 can be reduced to
λ(x : σ) G2〈M [x← G1〈x〉]〉.

The genesis of Fι To abstract over coercion functions, we intro-
duce a new form λ(c : τ . σ) M in Fι, where the parameter c
stands for a coercion function that can be used inside M to convert
an expression of type τ to one of type σ. This abstraction can be
typed as (τ . σ) ⇒ ρ where ρ is the type of M . Correspondingly,
we need a new application form M{G} to pass a coercion G to a
coercion abstraction, i.e. a term M of type (τ . σ)⇒ ρ.

By typing constraints, coercion abstractions can only be instan-
tiated with coercions, which by construction are erasable. Thus,
intuitively, coercions do not really contribute to the computation.

x, y variables
M ::= x | λx.M |MM terms
C ::= λx.[] | []M |M [] reduction contexts

REDCONTEXT

M M′

C[M] C[M′]

REDBETA

(λx.M)M′ M[x←M′]

Figure 1. λ-calculus: syntax and semantics

Is this enough to erase them? Formally, we can exhibit a forward
simulation between reduction of terms in Fι and of their erasure
in the untyped λ-calculus. Moreover, Fι has the subject reduc-
tion property and is strongly normalizing. Still, coercions cannot
be erased in Fι, since although they do not create new evalua-
tion paths, they may block existing evaluation paths: a subterm
may be stuck while its erasure could proceed. Since coercions are
erasable in Fη , this can only be due to the use of a coercion vari-
able. Indeed, a coercion variable c may appear in the middle of a
β-redex as in (c〈λ(x : τ) M〉) N . This is irreducible because
reduction of coercion applications G〈M〉 depends simultaneously
on the shapes of G and M so that no rule fires when G is un-
known. More generally, we call a wedge an irreducible term of the
form (G〈λ(x : τ) M〉) N . Notice that the erasure of a wedge
(λ(x : τ) bMc) bNc can be reduced, immediately. Hence, the
existence of wedges in reduction contexts prevents erasability.

Taming coercions in Fpι An obvious solution to recover erasabil-
ity is to make wedge configurations ill-typed—so that they never
appear during the reduction of well-typed programs. One interest-
ing restriction, called Fpι (read Parametric Fι), is to request that co-
ercion parameters be polymorphic in either their domain or their
codomain. This allows coercion variables to appear either applied
to a function or inside an application, but not both simultaneously.

Another solution is to change the semantics: choosing a weak
reduction strategy for coercion abstractions and restricting them
to appear only in front of value forms, coercion variables, hence
wedges, cannot occur in a reduction context any more. This variant
is called Fwι (read Weak Fι).

Although our main goal—combining Fη , F<:, and MLF in a
same language—is reached, both Fpι and Fwι are restrictions of Fι.
We may thus wonder whether other yet more interesting solutions
exist. We further discuss some of the issues in §9, argue about some
of the difficulties in the general case, and suggest other restrictions
worth exploring. We defer a discussion of related works to §8.

2. The language Fι
The language Fι generalizes Fη with abstraction over coercions.
We recall the definition of the (untyped) λ-calculus on Figure 1.
We normally include pairs and projections both to have non trivial
errors (otherwise, even untyped terms cannot be stuck) and to have
more interesting forms of subtyping. However, we omit them in this
summary for conciseness of exposition. We occasionally refer to
them informally to explain how the definitions generalize to pairs.
We assume an enumerable collection of term variables, ranged over
by letters x and y. Untyped terms, written M, include variables,
abstractions λx.M, and applications MM′. The semantics of
untyped λ-terms is given by a small-step strong reduction relation.
Reduction contexts of the λ-calculus are all one-hole contexts,
written C. We now write C[M] for the term obtained by filling
the hole of C withM andM[x ← M′] for the capture avoiding
substitution ofM′ for x inM. Expressions are considered equal
up to the renaming of bound variables, which are defined in the

τ, σ ::= α | τ → τ | ∀α.τ | > Types
| ϕ⇒ τ coercion abstraction

ϕ ::= τ . τ coercion type

M,N ::= x | λ(x : τ) M |M M Terms
| λα M |M τ type abs & app
| G〈M〉 term coercion
| λ(c : ϕ) M |M{G} coercion abs & app

G ::= c | Topτ | ♦τ | G τ→ G Coercions
| Dist∀α.τ→τ | Distϕ⇒τ→τ distributivity
| λα G | Gτ type abs & app
| G〈G〉 coercion coercion
| λ(c : ϕ) G | G{G} coercion abs & app

Γ ::= ∅ | Γ, α | Γ, x : τ | Γ, c : ϕ Typing environments

Figure 2. Syntax of Fι.

usual way. This convention applies to the λ-calculus, as well as to
all typed languages presented below.

2.1 Syntax of Fι
The language Fι is explicitly typed. Types are described on Fig-
ure 2. We assume given an enumerable set of type variables, ranged
over by α and β. Types are type variables, arrow types τ → τ ,
polymorphic types ∀α. τ , the top type >, or coercion abstractions
ϕ ⇒ τ where the coercion type ϕ is of the form τ . τ . Coercions
are not first class, hence a coercion type ϕ is not itself a type.

The language of expressions is split into terms and coercions.
We reuse the term variables of the λ-calculus. In addition, we
assume an enumerable set of coercion variables written c. Terms
are an extension of Church-style System F. Hence, they include
type variables x, abstractions λ(x : τ) M , applications MM , type
abstractions λα M , and type applicationsM τ . A construct already
present in Fη is the use of the applicationG〈M〉 of a coercionG to a
termM . There are two new constructs specific to Fι and not present
in Fη: coercion abstraction λ(c : ϕ) M which is annotated with
the coercion type ϕ; and coercion application M{G} that passes
a coercion G to a term M—and should not be confused with the
earlier construct G〈M〉 of Fη that places a coercion G around a
term M .

Since the main purpose of coercions is to change types, we
could postpone the description of coercion constructs together with
their typing rules—and their associated reduction rules that justify
the typing rules. Still, each coercion expression can be understood
as a one-hole retyping context witnessing some type-containment
rule. So we introduce each construct with the retyping context it
stands for, also preparing for the reification of coercions as System-
F terms given in §3.3.

A coercion variable c stands for the coercion it will be bound to.
The opaque coercion Topτ is a downgraded version of existential
types (we currently do not handle existential types for reasons
explained in §9): it turns a term of any type into an opaque term
of type > that can only be used abstractly. The empty coercion
♦τ stands for the empty retyping context and witnesses reflexivity
of type containment. The arrow coercion G1

τ→ G2 stands for
λ(x : τ) G2〈[] (G1〈x〉)〉 and witnesses contravariance of the
arrow type constructor. The distributivity coercion Dist∀α.τ→σ stands
for λ(x : τ) λα []α x and permutes a type abstraction with a
term abstraction: assuming the hole has type ∀α. τ → σ where α
does not appear free in τ , it returns a term of type τ → ∀α. σ. For
instance, the coercion of a polymorphic function λα λ(y : τ) N

bxc = x

bλ(x : τ) Mc = λx.bMc
bM Nc = bMc bNc

bλα Mc = bM τc = bMc
bG〈M〉c = bMc

bλ(c : ϕ) Mc = bM{G}c = bMc

Figure 3. Coercion erasure

makes it appear as if it had been defined as λ(y : τ) λα N—which
is actually what it will reduce to. The other distributivity coercion
Distϕ⇒τ→σ , which stands for λ(x : τ) λ(c : ϕ) ([]{c} x), is similar
but permutes a coercion abstraction with a term abstraction.

We may need more distributivity coercions when extending the
language of terms. Hence, the notation Distab→c uses the following
mnemonic: the superscript a and the subscript b → c indicate
the kind of the first and second type constructs, respectively. They
can be combined into ab → c to form the type of the hole,
or recombined into b → ac to form the type of the coerced
term. For example, Dist∀α.τ→σ is a coercion from ∀α. (τ → σ) to
τ → (∀α. σ), while Distϕ⇒τ→σ is a coercion from ϕ⇒ (τ → σ) to
τ → (ϕ⇒ σ).

The remaining coercions are the lifting of all term constructs
without computational content to coercions: type abstraction λα G
and type applicationGτ ; coercion of a coercionG′〈G〉which intu-
itively stands for G′〈G〈[]〉〉 and witnesses transitivity of coercions:
it has type ρ . σ if G′ and G have coercion types τ . σ and ρ . τ ,
respectively; finally, coercion abstraction λ(c : ϕ) G and coercion
applicationG′{G}. All these coercions are of the form P [G] where
P is one of the contexts λα [], [] τ , G′〈[]〉, λ(c : ϕ) [], or []{G′},
where the hole is filled with G. It is convenient to overload the no-
tation P when the hole holds a term instead of a coercion, although
this is formally another syntactic node.

We recover the syntax of System Fη by removing coercion
types from types and coercion variables, coercion abstractions and
applications from both terms and coercions. We recover the syntax
of System F by further removing the top type, term coercions, and
all coercion forms, which become vacuous.

The coercion erasure, written b·c, defined on Figure 3, is as
expected: type annotations on function parameters and coercions
are erased, while other constructs are projected on their equivalent
constructs in the untyped λ-calculus.

2.2 Typing rules
Typing environments, written Γ, are lists of bindings where bind-
ings are either type variables α, coercion variables along with their
coercion type c : ϕ, or term variables along with their type x : τ
(Figure 2). We write Γ `M : τ if term M has type τ under Γ and
Γ ` G : ϕ if coercion G has coercion type ϕ under Γ.

The two typing judgments are recursively defined on figures 4
and 5. They use auxiliary well-formedness judgments for types and
typing contexts: we write Γ ` ok to mean that typing environment
Γ is well-formed and Γ ` τ or Γ ` ϕ to mean that type τ or
coercion type ϕ is well-formed in Γ.

As usual, we require that typing contexts do not bind twice
the same variable, which is not restrictive as all expressions are
considered equal up to renaming of bound variables (details can be
found in the extended version).

Typing rules for terms are described in Figure 4. Rules TERM-
VAR, TERMTERMLAM, TERMTERMAPP, TERMTYPELAM, and TERM-
TYPEAPP are exactly the typing rules of System F. Rule TERMCOER

is similar to rule TERMTERMAPP, except that a coercion G of coer-
cion type τ . σ is used instead of a function M of type τ → σ.
Rule TERMCOERLAM is similar to TERMTERMLAM, except that the
parameter c stands for a coercion of coercion type ϕ instead of a
term of type σ: the result is a coercion abstraction of type ϕ ⇒ τ .

p ::= x | p v | p τ | p{G} | c〈v〉 Prevalues
| Dist∀α.τ→τ 〈p〉 | Dist∀α.τ→τ 〈λα p〉 | (G

τ→ G)〈p〉
| Distϕ⇒τ→τ 〈p〉 | Distϕ⇒τ→τ 〈λ(c : ϕ) p〉

v ::= p | λ(x : τ) v | λα v | λ(c : ϕ) v | Topτ 〈v〉 Values

C ::= λ(x : τ) [] | [] M |M [] | P Reduction contexts

P ::= λα [] | [] τ | G〈[]〉 | λ(c : ϕ) [] | []{G}Retyping contexts

Figure 6. System Fι: values and reduction contexts

Consistently, TERMCOERAPP applies a term that is a coercion ab-
straction of type ϕ⇒ τ to a coercion G of coercion type ϕ.

Typing rules for coercions are described in Figure 5. They are
all straightforward when read with the retyping context that the co-
ercion stands for in mind. Rule COERVAR reads the coercion type
of a coercion variable from its typing context. The empty coercion
has type τ . τ provided τ is well-formed in the current context. As
all basic coercions, it contains just enough type information so that
its typing rule is syntax-directed. The top coercion Topτ converts
an expression of type τ to the top type, provided τ is well-formed.
The arrow coercion G1

τ1→ G2 turns an arrow type τ ′1 → τ2 into
an arrow type τ1 → τ ′2, provided Gi coerces type τi into τ ′i for
i in {1, 2}. The distributivity coercion Dist∀α.τ→σ turns an expres-
sion of type ∀α. τ → σ into one of type τ → ∀α. σ provided τ is
well-formed in the current environment, which prevents α from ap-
pearing free in τ , and σ is well-formed in the current environment
extended with α. Finally, Rule COERDISTCOERARROW is similar to
COERDISTTYPEARROW, but swaps a coercion abstraction and a term
abstraction.

The remaining rules COERTYPELAM, COERTYPEAPP, COER-
COER, COERCOERLAM, and COERCOERAPP are similar to their
counterpart for terms, but where the term M of type τ has been
replaced by a coercion (i.e. a one-hole context) G of coercion type
τ1 . τ2, where τ1 is the type of the hole and τ2 the type of the
body. Rule COERTYPELAM for typing λα G introduces a variable
α that is bound in G and can be used in the type of the body of
G but not in the type of its hole, which is enforced by the first
premise. In particular, λα G builds a coercion to a polymorphic
type τ . ∀α. σ and not a polymorphic coercion ∀α. τ . σ. Accord-
ingly, only the codomain of the type of the conclusion is polymor-
phic. Rule COERCOERLAM is typed in a similar way: λ(c : ϕ) G
has type τ1 . (ϕ⇒ τ2) and not ϕ⇒ (τ1 . τ2) as one could naively
expect—which would be ill-formed. Type and coercion applica-
tions are typed accordingly (COERTYPEAPP and COERCOERAPP).

The typing rules for Fη are obtained by removing TERMCOER-
LAM and TERMCOERAPP for terms and their counter parts COERCO-
ERLAM and COERCOERAPP for coercions as well as Rule COERVAR

for coercion variables and Rule COERDISTCOERARROW for distribu-
tivity of coercion abstraction.

The type superscripts that appear in reflexivity, distributivity,
and top coercions make type checking syntax directed. The type
superscript in arrow coercions is not needed for typechecking but
to keep reduction a local rewriting rule. (We may leave superscripts
implicit when they are unimportant or can be unambiguously re-
constructed from the context.)

Our presentation of Fι is in Church-style. Curry-style Fι is the
image of Fι by coercion erasure. That is, it is the subset of terms
of the untyped λ-calculus that are the erasure of a term of Church-
style System Fι. We write Γ ` M : τ to mean that there exists M
such that Γ `M : τ and bMc isM.

TERMVAR

Γ ` ok x : τ ∈ Γ

Γ ` x : τ

TERMTERMLAM

Γ, x : τ `M : σ

Γ ` λ(x : τ) M : τ → σ

TERMTERMAPP

Γ `M : τ → σ Γ ` N : τ

Γ `M N : σ

TERMTYPELAM

Γ, α `M : τ

Γ ` λα M : ∀α. τ

TERMTYPEAPP

Γ `M : ∀α. τ Γ ` σ
Γ `M σ : τ [α← σ]

TERMCOER

Γ ` G : τ . σ Γ `M : τ

Γ ` G〈M〉 : σ

TERMCOERLAM

Γ, c : ϕ `M : τ

Γ ` λ(c : ϕ) M : ϕ⇒ τ

TERMCOERAPP

Γ `M : ϕ⇒ τ Γ ` G : ϕ

Γ `M{G} : τ

Figure 4. System Fι: term typings

COERDOT

Γ ` τ
Γ ` ♦τ : τ . τ

COERFORGET

Γ ` τ
Γ ` Top

τ : τ .>

COERARROW

Γ ` G1 : τ1 . τ
′
1 Γ ` G2 : τ2 . τ

′
2

Γ ` G1
τ1→ G2 : (τ ′1 → τ2) . (τ1 → τ ′2)

COERDISTTYPEARROW

Γ ` τ Γ, α ` σ
Γ ` Dist∀α.τ→σ : ∀α. (τ → σ) . τ → ∀α. σ

COERDISTCOERARROW

Γ ` τ Γ ` ϕ Γ ` σ
Γ ` Distϕ⇒τ→σ : (ϕ⇒ (τ → σ)) . (τ → (ϕ⇒ σ))

COERTYPELAM

Γ ` τ Γ, α ` G : τ . σ

Γ ` λα G : τ . ∀α. σ

COERTYPEAPP

Γ ` G : τ ′ . ∀α. σ Γ ` τ
Γ ` Gτ : τ ′ . σ[α← τ]

COERCOER

Γ ` G : τ . σ Γ ` G′ : ρ . τ

Γ ` G〈G′〉 : ρ . σ

COERCOERLAM

Γ, c : ϕ ` G : τ . σ

Γ ` λ(c : ϕ) G : τ . (ϕ⇒ σ)

COERCOERAPP

Γ ` G′ : τ . (ϕ⇒ σ) Γ ` G : ϕ

Γ ` G′{G} : τ . σ

COERVAR

Γ ` ok c : ϕ ∈ Γ

Γ ` c : ϕ

Figure 5. System Fι: coercion typings

REDCONTEXTBETA

M β N

C[M] β C[N]

REDCONTEXTIOTA

M ι N

C[M] ι C[N]

REDTERM

(λ(x : τ) M) N β M [x← N]
REDTYPE

(λα M) τ ι M [α← τ]

REDCOER

(λ(c : ϕ)M){G} ι M [c← G]

REDCOERARROW

(G1
τ→ G2)〈λ(x : σ) M〉 ι λ(x : τ) G2〈M [x← G1〈x〉]〉

REDCOERDISTTYPEARROW

Dist∀α.τ ′→σ′〈λα λ(x : τ) M〉 ι λ(x : τ) λα M

REDCOERDISTCOERARROW

Distϕ
′⇒
τ ′→σ′〈λ(c : ϕ) λ(x : τ) M〉 ι λ(x : τ) λ(c : ϕ) M

REDCOERDOT

♦τ 〈M〉 ι M
REDCOERFILL

(P [G])〈M〉 ι P [G〈M〉]

Figure 7. Reduction rules for Fι

2.3 Dynamic semantics
The dynamic semantics of System Fι is given by a standard small-
step strong reduction relation. The syntax of values and reduction
contexts is recalled on Figure 6.

A value is an abstraction of a value, an opaque value Topτ 〈v〉,
or a prevalue. A prevalue is a variable, a prevalue applied to a value,
type, or coercion, a value coerced by a coercion variable, or a partial
application of a distributivity coercion. Reduction contexts C are
all one-hole term contexts. For convenience, we have distinguished
a subset of reduction contextsP , called retyping reduction contexts:
a term M placed in a retyping reduction context is just a retyping
of M , i.e. a term that behaves as M but possibly with another type.

Reduction rules are defined on Figure 7. We have indexed the
reduction rules so as to distinguish between β-steps with compu-
tational content (REDTERM), that are preserved after erasure, and

ι-steps (REDTYPE) that become equalities after erasure. We write
 βι for the union of β and ι.

Hence, Rule REDCONTEXT is split into two rules, so as to pre-
serve the index of the premise. The only β-redex is REDTERM; all
other reductions are ι-reductions. Rule REDTYPE is type reduction
(a ι-reduction). The first four rules cover System F. Notice that
REDCONTEXT allows all possible contexts. Hence, there is no par-
ticular reduction strategy and a call-by-value evaluation would be a
particular case of reduction.

Rule REDCOER is the counterpart of β-reduction for coercion
application M{G}. It only reduces a term applied to a coercion;
a coercion applied to a coercion is a coercion and is not reduced
directly, but only when it is applied to a term so that rule REDCO-
ERCOERAPP eventually applies.

All other rules reduce the application G〈M〉 of a coercion G to
a termM , which plays the role of a destructor: bothG andM must
be sufficiently evaluated before it reduces—except when G is the
opaque coercion or a variable since Topτ 〈v〉 and c〈v〉 are values.

Other coercion nodes are all constructors. We thus have one rule
for each possible shape of G. The most interesting rules are:

• When G is an arrow coercion G1
τ→ G2 and M is a function

λ(x : σ) M , Rule REDCOERARROW reduces the application by
pushingG1 on all occurrences of x inM andG2 outside ofM .
This changes the type of the parameter x from σ to τ , hence the
need for the annotation τ on arrow coercions.
• WhenG is a distributivity coercion Dist∀α.τ ′→σ′ andM is a poly-

morphic function λα λ(x : τ) M , Rule REDCOERDISTTY-
PEARROW reduces the application to λ(x : τ) λα M by ex-
changing the type and value parameters; this is sound since α
cannot be free in τ .
• WhenG is a distributivity coercion Distϕ

′⇒
τ ′→σ′ andM is a coer-

cion abstraction followed by a value abstraction λ(c : ϕ) λ(x :
τ) M , Rule REDCOERDISTCOERARROW reduces the application
to λ(x : τ) λ(c : ϕ) M by exchanging the parameters.

The remaining cases for G can be factored as P [G′]. Rule REDCO-
ERFILL fills G′ with M , transforming P [G′]〈M〉 into P [G′〈M〉].
Notice that the two occurrences of P are different abstract nodes
on each side of the rule—a coercion on the left-hand side and a

term on the right-hand side. Rule REDCOERFILL is actually a meta-
rule that could be expanded into, and should be understood as, the
following five different rules:

(λα G)〈M〉 ι λα (G〈M〉) REDCOERTYPELAM

(Gτ)〈M〉 ι (G〈M〉) τ REDCOERTYPEAPP

(G2〈G1〉)〈M〉 ι G2〈G1〈M〉〉 REDCOERCOER

(λ(c : ϕ) G)〈M〉 ι λ(c : ϕ) (G〈M〉) REDCOERCOERLAM

(G1{G2})〈M〉 ι (G1〈M〉){G2} REDCOERCOERAPP

The use of the meta-rule emphasizes the similarity between all five
cases; it is also more concise.

For example, the application G1{G2} of a coercion abstraction
G1 to a coercion G2 is only reduced when it is further applied to a
term M (as other complex coercions), by first wrapping elements
of G around M (two first steps below) so that Rule REDCOER can
finally fire (last step):

((λ(c : τ . σ)G){G′})〈M〉 ι ((λ(c : τ . σ)G)〈M〉){G′}
 ι (λ(c : τ . σ) (G〈M〉)){G′}
 ι (G〈M〉)[c← G′]

The reduction rules for System Fη are obtained by removing
rules REDCOER, REDCOERCOERLAM, REDCOERCOERAPP, and RED-
COERDISTCOERARROW.

Optional reduction rules Our presentation of Fι could be ex-
tended with additional reduction rules for arrow and distributivity
coercions such as ((G1

τ→ G2)〈M〉) N ι G2〈M (G1〈N〉)〉.
However, this narrows the set of values and reestablishing progress
would require binding coercions, as for Fλι described in §4, which
are technically more involved. For sake of simplicity, the current
presentation has fewer, but sufficiently many, reduction paths.

2.4 Examples
Let us first see examples in the Fη subset. Retyping functions in Fη
allow for the commutation of quantifiers and removal of useless
quantifiers. They also let terms have more principal types. For
example, in System F, the S-combinator λx.λy.λz.x z (y z) can
be given the two incomparable types:

∀α.∀β. ∀γ. (α→ β → γ)→ (α→ β)→ α→ γ

(∀α. α→ α)→ (∀α. α→ α)→ (∀α. α→ α)→ (∀α. α→ α)

However, the former type is more general as it can be coerced to
the latter (already in Fη), using three η-expansions. This example
does not use distributivity, but the following example, still in Fη ,
does. (In the examples, we use type constructors List andD, which
we assume to be covariant.) The map function has type:

∀α.∀β. (α→ β)→ List α→ List β (1)

It can also be given the type

(∀α. α→ Dα)→ ∀α. List (Dα)→ List (D(Dα)) (2)

for some type constructor D, using the following coercion, which
is already typable in Fη:(

(♦ → λα ♦ (Dα))〈Dist∀〉
)
〈λα (♦ α→ ♦)〈♦ α (Dα)〉〉

Indeed, applying the coercion λα (♦ α→ ♦)〈♦ α (Dα)〉 turns a
term of type (1) into one of type:

∀α. (∀α. α→ Dα)→ List (α)→ List (Dα)) (3)

which in turn (♦ → λα ♦ (Dα))〈Dist∀〉 coerces to type (2).
This example also illustrates the low-level nature of the language
of coercions, to which we will come back in §4.

The next example, which is inspired from F<: and is not typable
in Fη , illustrates coercion abstraction. It defines a function first that

implements the first projection for non-empty tuples of arbitrary
length. Tuples are encoded as chained pairs ending with >. (We
assume pairs have been added to Fι and write left and right for the
projections.) The function first

λβ λα λ(c : α . (β ∗ >))λ(x : α) left (c〈x〉)
of type ∀β. ∀α. (α . (β ∗ >)) ⇒ α → β, say τ , abstracts over
a coercion c from arbitrary tuples to the singleton tuple. It can be
applied to any non-zero tuple by passing the appropriate coercion.

Finally, passing first to a function choose of type ∀γ. γ → γ →
γ that picks one of its two arguments randomly can be defined as
λγ λ(c : τ . γ) choose γ (c〈first〉) of type ∀γ. (τ . γ)⇒ γ → γ.
We have delayed the choice of whether and how to instantiate the
type of first, since we can recover the different resulting types
a posteriori by choosing appropriate coercions. For example, it
can be coerced to type ∀α. (σ . α) ⇒ α → α where σ is
∀β. ∀β′.∀α. (α.β∗β′∗>)⇒ α→ β, which is the first projection
for tuples of length greater than one.

3. Properties of Fι
In this section, we show that Fι is well-behaved; moreover, there
is a forward simulation between terms of Fι and their coercion
erasure. Hence, coercions do not really contribute to the reduction.
However, coercions are not erasable as they may sometimes appear
in wedges and block the reduction.

3.1 Soundness
Type soundness of Fι follows as usual from the subject reduction
and progress lemmas. The proof of subject reduction uses substi-
tution lemmas for terms, types, and coercions, which in turn use
weakening. The proof is easy because coercions are explicit. So
the reduction rules actually are the proof.

Proposition 1 (Subject Reduction). If Γ ` M : τ and M βι N
hold, then Γ ` N : τ holds.

Proposition 2 (Progress). If Γ ` M : τ holds, then either M is a
value or M reduces.

3.2 Termination of reduction
The termination of reduction for Fι can be piggybacked on the
termination of reduction in System F: following Manzonetto and
Tranquilli [2010], we show a forward simulation between Fι and
System F, by translating Fι into System F so that every reduction
step in Fι is simulated by at least one reduction step in System F.

3.3 Reification of Fι in System F
There is indeed a natural translation of Fι into System F obtained
by reifying coercions as actual computation steps: even though we
ultimately erase ι-steps, we do not actually need to do so, and on
the contrary, we may see them as computation steps in System F.

Reification is described on Figure 8. We write dMe for the
reification of M . Coercions of coercion type τ . σ are reified as
functions of type τ → σ. Hence, a coercion abstraction λ(c :
τ . σ) M is reified as a higher-order function λ(xc : dτe →
dσe) dMe. A coercion variable c is reified as a term variable xc
(we assume an injective mapping of coercion variables to reserved
term variables). Thus, the type (τ . σ) ⇒ ρ of a term abstracted
over a coercion is translated into the type (dτe → dσe) →
dρe of a higher-order function. Other type expressions are reified
homomorphically. The application of a coercion to a term and the
application of a term to a coercion are both reified as applications.

The remaining cases are the translation of coercions G, which
are all done in two steps: we first translate G into some Fι-term
performing η-expansions to transform a coercion from τ to σ into

dαe = α
dτ → σe = dτe → dσe
d∀α. τe = ∀α. dτe
dϕ⇒ τe = dϕe → dτe
d>e = ∀α. (∀β. β → α)→ α

dτ . σe = dτe → dσe

dxe = x
dλ(x : τ) Me = λ(x : dτe) dMe

dM Ne = dMe dNe

dλα Me = λα dMe
dM τe = dMe dτe
dG〈M〉e = dGe dMe

dλ(c : ϕ) Me = λ(xc : dϕe) dMe
dM{G}e = dMe dGe

d∅e = ∅
dΓ, Be = dΓe, dBe
dαe = α

d(x : τ)e = (x : dτe)
d(c : ϕ)e = (xc : dϕe)

dce = dxce
d♦τe = dλ(x : τ) xe
dTopτe = dλ(y : τ) λα λ(x : ∀β. β → α) x τ ye

dG1
τ→ G2e = dλ(y : dom(G1

τ→ G2)) λ(x : τ) G2〈y (G1〈x〉)〉e
dDist∀α.τ→σe = dλ(y : dom(Dist∀α.τ→σ)) λ(x : τ) λα y α xe
dDistϕ⇒τ→σe = dλ(y : dom(Distϕ⇒τ→σ)) λ(x : τ) λ(c : ϕ) y{c} xe
dP [G]e = dλ(x : dom(G)) P [G〈x〉]e

Figure 8. Reification of Fι into System F

a function from τ to σ. For atomic coercions (variables, identity,
or distributivity), the result of this step is in the System-F subset
of Fι. However, for complex coercions, the result still contains inner
coercions. Hence, in the second step, we recursively translate the
result of the first step. This translates types and residual coercions.
Notice that the first step may introduce applications of coercions to
terms, which are then turned into applications of terms to terms.

The translation of P [G] covers five subcases, one for each form
of P . Here as in the reduction rules, the two occurrences of P are
different abstract nodes since P is a coercion on the left-hand side
and a term on the right-hand side.

The translation uses an auxiliary predicate dom that computes
the domain of a coercion: the domain of a coercion G in environ-
ment Γ is the unique type τ such that Γ ` G : τ . σ for some type
σ. This cannot be computed locally. Hence, we assume that terms
of Fι have been previously typechecked and all coercions have been
annotated with their domain type. Alternatively, we can define the
reification as a translation of typing derivations. We actually use
such a translation to show that reification preserves well-typedness
(easy but lengthy details can be found in the extended version).

Proposition 3 (Well-typedness of reification). If Γ ` M : τ then
dMe is well-defined and dΓe ` dMe : dτe.
It is easy to verify that reduction in Fι can be simulated in the
translation, which implies the termination of reduction in Fι.

Lemma 4 (Forward simulation). If Γ `M : τ holds, then:

1. If M β N , then dMe dNe;
2. If M ι N , then dMe + dNe.

Corollary 5 (Termination). Reduction in Fι is terminating.

3.4 Confluence
Reduction in Fι is allowed in any term-context. Since coercions do
not contain terms and coercions are never reduced alone, we may
equivalently allow reduction in all coercion contexts, since no rule
will ever apply. Hence, reduction in Fι is a rewriting system.

An analysis of reduction rules in Fι shows that there are no criti-
cal pairs. Hence, the reduction is weakly confluent. Since reduction
is also terminating, it is confluent. In fact, the relation ι alone is
confluent. Moreover, the reduction β and ?

ι commute.

Corollary 6 (Confluence). Reduction in Fι is confluent.

Lemma 7. If M β M1 and M ι M2 hold, then there is a
term N such that M1 ?

ι N and M2 β N .

3.5 Forward simulation
Coercion erasure sends terms of Fι into the (untyped) λ-calculus. It
also induces a simulation from the reduction in Fι by the reduction
in the λ-calculus, where ι-steps becomes equalities.

Lemma 8 (Forward simulation). If Γ `M : τ holds, then:

1. If M β N , then bMc bNc.
2. If M ι N , then bMc = bNc.

Unfortunately, the backward simulation fails. The wedge λ(c :
τ → τ . τ → τ)λ(y : τ) c〈λ(x : τ) x〉 y is a well-typed
closed value in Fι while its erasure λy.(λx.x) y β-reduces to λy.y.

To recover bisimulation, the definition of the language must be
adjusted so that wedge configurations cannot appear in a reduction
context. This observation leads to two opposite solutions, which we
present in §5 and §7.

4. Coercions as retyping functions: Fλι
While the reification of Fι into System F carries good intuitions
about what coercions really are, it lacks the ability to distinguish
coercions from expressions with computational content. There is
an alternative presentation of Fι, called Fλι and described in the
extended version, that maintains the distinction between coercions
and expressions while remaining closer to the reified form of co-
ercions: Fλι is mainly a coercion decoration of System F. In this
sense, it can be seen as an explicit version (with coercion abstrac-
tion) of Mitchell’s presentation of Fη as System F with retyping
functions.

The reification of Fι into System F can be redefined as the com-
position of a translation from Fι to Fλι that keeps the distinction be-
tween coercions and terms and the final erasing of this difference.
The first part, along with its inverse, define translations between
Fι and Fλι that preserves well-typedness and coercion erasure. Al-
though we have not proved it, Fι and Fλι should be the same up to
their representation of coercions.

Unfortunately, typechecking in Fλι is more involved than in Fι,
as we need to typecheck coercions as binding expressions.

The reason is that coercions are not exactly λ-expressions. Hav-
ing coercions as λ-expressions would require an even more elab-
orated type system, as it would have to ensure that coercions are
η-expansions, which means maintaining a stack of the currently η-
expanded variables to remember closing them. For example, con-
sider typechecking the retyping context λ(x : τ) λα []α x that
permutes term abstraction and type abstraction (known as distribu-
tivity): when typechecking the subterm λα []α x, we must verify
that it is the body of an η-expansion with the variable x. We ini-
tially followed this approach and it was cumbersome; moreover, it
did not scale to products as the type system must also ensure that
two sub-derivation trees have the same coercion erasure.

Instead, we make the η-expansion of a term M an atomic con-
struct, namely λ(φ1 : τ)G2 {φ2 ←M G1}. This can be inter-
preted as λ(x : τ) G′2[M G′1[x]] which is the η-expansion of
M (i.e. λx.M x) using coercion G1 (interpreted as G′1) around the
argument and coercion G2 (interpreted as G′2) around the result.
By looking at the interpretation, it should be obvious that G2 may
bind variables that are used inside M and G1. Hence, the type sys-
tem must keep track of those variables with their types when type-

/. ::= / | . bounds
τ ::= . . . 6 | ϕ⇒ τ | ∀(α /. τ)⇒ τ types

M ::= . . . 6 | λ(c : ϕ) M | λ(α /. c : τ)M expressions
6 | M{G} |M{τ /. G}

G ::= . . . 6 | Distϕ⇒τ→τ | Dist∀α/.τ⇒τ→τ coercions
6 | λ(c : ϕ) G | λ(α /. c : τ)G

6 | G{G} | G{τ /. G}

Γ ::= . . . 6 | Γ, c : ϕ | Γ, α /. c : τ environments

Figure 9. Parametric Fι: syntax restriction wrt Fι

checking G2 and extend the typing environment accordingly when
typechecking M and G1.

We presented Fι rather than its more intuitive version Fλι to
avoid the additional complexity in the type system; moreover, it is
not obvious how to extend Fλι with projectors, as discussed in §9.

5. Parametric Fι
Parametric Fι, written Fpι , restricts the language so as to rule out
wedge configurations by means of typechecking. The restriction is
on the type ϕ of coercion abstractions λ(c : ϕ) M , i.e. on the type
of coercion variables. Observe that a coercion variable appearing
in a wedge position c〈λ(x : τ) M〉 N has a coercion type σ . ρ
where σ and ρ are both arrow types. To prevent this situation from
happening in Fpι , we require that either the domain or the codomain
of the type of a coercion parameter be a variable. Hence, we only
allow λ(c : α . ρ) M or λ(c : σ . α) M .

In order to preserve this invariant by reduction, we must request
the type variable to be introduced simultaneously. So, we may write
λα λ(c : α . τ) M but not λ(c : α . τ) M alone. This is a
form of parametricity since either the domain or the codomain of c
must be treated abstractly (and thus not as an arrow type) in M . To
enforce this restriction we stick a type abstraction to every coercion
abstraction and see λα λ(c : α . τ) M as a single syntactic node,
which we write λ(α . c : τ)M to avoid confusion. Although, we
modify the syntax of source terms, Fpι can still be understood as a
syntactic restriction of Fι.

5.1 Syntax changes
The syntax of Parametric Fι is defined on Figure 9 as a patch to
the syntax of Fι (we write 6 | for removal of a previous grammar
form). We replace coercion abstraction λ(c : τ . σ)M of Fι by
two new constructs λ(α . c : τ)M and λ(α / c : τ)M to mean
λα λ(c : α . τ)M and λα λ(c : τ . α)M but atomically. For
conciseness, we introduce a mode /. that ranges over . and /.
Hence, we write λ(α /. c : τ)M for either λ(α . c : τ)M or
λ(α / c : τ)M . Note that the type variable α is bounded in both τ
andM . As a mnemonic device, we can read the type of the coercion
variable by moving “c :” in front, i.e. α . c : τ becomes c : α . τ
while α / c : τ becomes c : α / τ which can also be read c : τ . α.
The reason to keep the type variable α before the coercion variable
is to preserve the order of the abstractions in Fι.

We say that λ(α . c : τ)M and λ(α / c : τ)M are negative
and positive coercion abstractions, respectively. The positive form
is parametric on the codomain of the coercion and implements a
lower bounded quantification τ .α, as in xMLF. The negative form
is parametric on the domain of the coercion and implements an
upper bounded quantification α . τ , as in F<:.

Continuing with the definition of Fpι , we replace coercion appli-
cation M{G} by M{τ /. G} to perform type and coercion appli-
cations (M τ){G} atomically. Both positive and negative versions

p ::= . . . 6 | p{G} | p{τ /. G} prevalues
6 | Distϕ⇒τ→τ 〈p〉 | Dist∀α/.τ⇒τ→τ 〈p〉
6 | Distϕ⇒τ→τ 〈λ(c : ϕ) p〉 | Dist∀α/.τ⇒τ→τ 〈λ(α /. c : τ) p〉

v ::= . . . 6 | λ(c : ϕ) v | λ(α /. c : τ) v values

P ::= . . . 6 | λ(c : ϕ) [] | λ(α /. c : τ) [] retyping contexts
6 | []{G} | []{τ /. G}

Figure 11. Parametric Fι: changes in values wrt Fι

have the same meaning, but different typing rules. Type τ appears
beforeG to remind that the type application is performed before the
coercion application in the expanded form. As a mnemonic device,
the /. is oriented towards the side of the variable it instantiates in
the coercion type of M . Hence, if M is λ(α . c : σ)N , we must
write M{τ . G}.

We must change types accordingly, replacing coercion types
ϕ⇒ τ by ∀(α/.τ)⇒ σ, which factors the two forms ∀(α.τ)⇒
σ and ∀(α / τ)⇒ σ whose expansions in Fι are ∀α. (α . τ)⇒ σ
and ∀α. (τ . α) ⇒ σ, respectively. Typing environments are
modified accordingly. Notice that Γ, α /. c : τ stands for Γ, α, c :
α /. τ (c : α / τ should be read as c : τ . α) and therefore α may
appear free in τ—as for coercion abstractions.

In the syntax of coercions, we replace coercion abstractions and
coercion applications as we did for expressions. We also change
the distributivity coercion that exchanges term abstraction with
coercion abstraction to reflect the change in coercion types: it
must simultaneously permute the term abstraction with the type
abstraction and coercion abstraction that are stuck together.

5.2 Adjustments to the semantics
The syntactic changes imply corresponding adjustments to the se-
mantics of the language. Notice that all restrictions are captured
syntactically, so no further restriction of typing rules is necessary.

Typing rules Consistently with the change of syntax, we re-
place the typing rules TERMCOERLAM and TERMCOERAPP by rules
TERMTCOERLAM and TERMTCOERAPP given on Figure 10. The
corresponding typing rules COERCOERLAM and COERCOERAPP for
coercions are changed similarly. We also replace COERVAR by
TCOERVAR. Finally, the modified distributivity coercion is typed
as described by Rule COERDISTTCOERARROW. Notice that /. is
a meta-variable as M or τ and different occurrences of the same
meta-variable can only be instantiated simultaneously all by . or
all by /. (We use different meta-variables /.1 and /.2 when we
mean to instantiate them independently.)

The new typing rules for Fpι are derived from the typing rules
of the corresponding nodes in Fι. For example, TERMTCOERLAM is
the combination of rules TERMCOERLAM and TERMTYPELAM in Fι.

Well-formedness judgments are adjusted in the obvious way
(details can be found in the extended version).

Operational semantics The operational semantics is modified in
the obvious way. The syntax of values for Fpι is defined on Fig-
ure 11 as a modification of the syntax of Fι. The adjustments in
the reduction rules are the replacement of REDCOER by REDT-
COER, REDCOERDISTCOERARROW by REDCOERDISTTCOERARROW,
and the change of retyping contexts that induces a change in RED-
COERFILL as described in Figure 11.

5.3 Properties
Since Fpι can be seen as a restriction of Fι where coercion abstrac-
tion is always preceded by a type abstraction, some properties of
Fpι can be derived from those of Fι. In particular, normalization and

TERMTCOERLAM

Γ, α /. c : τ `M : σ

Γ ` λ(α /. c : τ)M : ∀(α /. τ)⇒ σ

TERMTCOERAPP

Γ `M : ∀(α /. τ)⇒ τ ′ Γ ` G : σ /. τ [α← σ]

Γ `M{σ /. G} : τ ′[α← σ]

TCOERVAR

Γ ` ok α /. c : τ ∈ Γ

Γ ` c : α /. τ

COERTCOERLAM

Γ, α /. c : τ ` G : σ . σ′ Γ ` σ
Γ ` λ(α /. c : τ)G : σ . ∀(α /. τ)⇒ σ′

COERTCOERAPP

Γ ` G′ : ρ . ∀(α /. τ)⇒ τ ′

Γ ` G : σ /. τ [α← σ]

Γ ` G′{σ /. G} : ρ . τ ′[α← σ]

COERDISTTCOERARROW

Γ ` τ Γ, α ` ρ Γ, α ` σ
Γ ` Dist∀α/.ρ⇒τ→σ : (∀(α /. ρ)⇒ τ → σ)

. (τ → ∀(α /. ρ)⇒ σ)

Figure 10. Parametric Fι: typing rules wrt Fι

REDTCOER

(λ(α /. c : τ)M){σ /. G} ι M [α← σ][c← G]

REDCOERDISTTCOERARROW

Dist∀α/.σ1⇒σ2→σ3 〈λ(α /. c : τ)λ(x : σ) M〉 ι

λ(x : σ) λ(α /. c : τ)M

Figure 12. Parametric Fι: new reduction rules wrt Fι

subject reduction properties are preserved, just by observing that
Fpι is syntactically closed by reduction.

Proposition 9 (Preservation). If Γ ` M : τ and M βι N hold,
then Γ ` N : τ holds.

Confluence and progress must still be verified. For confluence,
we observe that there are still no critical pairs (although this does
not follow from the absence of critical pairs in Fι), so weak conflu-
ence is still preserved and confluence comes as a corollary.

Progress is a proof on its own, but it is similar to the one in Fι.

Proposition 10 (Progress). If Γ `M : τ holds, then either M is a
value or M reduces.

As expected, coercions are erasable in Fpι . Because the new
reduction rules are a combination of two ι-rules, and are themselves
ι-rules, the forward simulation follows from forward simulation in
Fι. It remains to check the backward simulation.

Proposition 11 (Backward simulation). If Γ `M : τ and bMc
M, then M ?

ι β N such that bNc =M.

The proof schema is not original [Manzonetto and Tranquilli
2010]. We assume that bMc reduces to M and show that the ι-
normal-form of M β-reduces to N with bNc equal to M. Since
Fι strongly normalizes, we may assume, without lost of generality,
that M is already in ι-normal form. Because bMc reduces, we can
use the reduction derivation to show that it must be of the form
C[(λx.M1)M2]. By inversion of the coercion-erasure function,
we show that M is of the form C[Q[λ(x : τ) M1] M2] where C
is a reduction context and Q a retyping context of arbitrary depth,
such that C, M1, and M2 erase to C,M1, andM2, respectively.
We show that if a ι-normal term of the form Q[λ(x : τ) M]
has an arrow type, then Q is empty. Hence, M is of the form
C[(λ(x : τ) M1) M2] and β-reduces to C[M1[x ← M2]] whose
erasure is C[M1[x←M2]].

6. Expressiveness of Parametric Fι
Although it is bridled by-design, Fpι is already an interesting spot
in the design space, as it subsumes in a unified framework three
known languages: Fη , xMLF, and F<: (in fact, its more expressive
version with F-bounded polymorphism [Canning et al. 1989]).

By construction, Fη is included (and simulated) in Parametric Fι.
In the rest of this section, we show that xMLF and F<: are also
subsumed by Fpι . In each case, we exhibit a translation of typing
judgments from the source language to typing judgments of Fpι

so that the coercion erasure of the translation of a source term is
equal to its type erasure, and therefore the translation is semantics
preserving.

To avoid confusion between source and target terms, we write
T or S for terms, A or B for types, and Σ for typing environ-
ments in the source language. Formally, we exhibit a translation of
judgments Σ ` T : A Γ ` M : τ that is well-defined, type
preserving, and semantics preserving. That is, if Σ ` T : A then
Σ ` T : A Γ ` M : τ holds for some Γ, M , and τ such that
Γ ` M : τ and bT c = bMc. As a consequence, reduction in the
source language terminates, since it is simulated in Fpι .

Bounded polymorphism. F<: is a well-known extension of Sys-
tem F with subtyping. There are several variations on F<:, all shar-
ing the same features, but with different expressiveness due to the
way they deal with subtyping of bounded quantification. Bounded
quantification ∀(α<:A) B restricts types A′ that α ranges over to
be subtypes of the bound A. The differences lie in when the sub-
typing judgment Σ ` ∀(α <: A) B <: ∀(α <: A′) B′ holds.
Different versions of the corresponding subtyping rule are given
on Figure 13. In Kernel F<:, the bounds A and A′ must be equal,
whereas Full F<: only requires the bound A′ to be a subtype of
the bound A. Moreover, α cannot appear free in the bounds A or
A′ in Kernel or Full F<:, while Fµ<: allows this form of recur-
sion, called F-bounded polymorphism. The most general assump-
tion, Γ, α <: A′ ` α <: A, is that of Fµ<:. Perhaps surprisingly,
this is a slightly more general rule [Baldan et al. 1999] than the
more intuitive one Γ, α <: A′ ` A′ <: A. In summary, we have
Kernel F<: ⊂ Full F<: ⊂ Fµ<: where all inclusions are strict.

We show that the most expressive version Fµ<: is also included
into Fpι . The translation of typing judgments uses auxiliary trans-
lations of subtyping judgments Σ ` A <: B Γ ` G :
τ . σ and well-formedness judgments. Bounded polymorphism
∀(α <: A) B is translated into a negative coercion abstraction
∀(α . τ) ⇒ σ which encodes upper bounds. (Positive coercion
abstraction ∀(α / τ) ⇒ σ encodes lower bounds and are never
needed in the translation of Fµ<:.)

Translation of expressions is easy. For example, the translation
of a type application is a coercion application, as follows:

Γ ` T : ∀(α <:B) B′ Γ `M : ∀(α . σ)⇒ σ′

Σ ` A <: B[α← A] Γ ` G : τ . σ[α← τ]

Γ ` T A : B′[α← A] Γ `M{τ . G} : σ′[α← τ]

The most involved part in the translation is for subtyping judgments—
in particular, for the bounded-quantification case:

Σ, α <:A′ ` α <: A Γ, α . c : τ ′ ` G : α . τ (1)
Σ, α <: A′ ` B <: B′ Γ, α . c : τ ′ ` G′ : σ . σ′ (2)

Σ ` ∀(α <:A) B <: ∀(α <:A′) B′
Γ`λ(α . c : τ ′)G′〈♦{α . G}〉 :∀(α . τ)⇒σ . ∀(α . τ ′)⇒σ′

Let us check that the judgment returned by the conclusion holds
under the assumptions returned by the premises (1) and (2). The
implicit superscript of the hole in the conclusion is the domain of

KERNEL-FSUB
Σ, α <:A ` B <: B′

Σ ` ∀(α <:A) B <: ∀(α <:A) B′

FULL-FSUB
Σ ` A′ <: A Σ, α <:A′ ` B <: B′

Σ ` ∀(α <:A) B <: ∀(α <:A′) B′

F-BOUNDED
Σ, α <:A′ ` α <: A Σ, α <: A′ ` B <: B′

Σ ` ∀(α <:A) B <: ∀(α <:A′) B′

Figure 13. Bounded polymorphism: variants on the subtyping rule

the coercion ∀(α . τ) ⇒ σ, say ρ. In environment Γ, α . c : τ ′,
the coercion ♦{α . G} has type ρ . σ by rule COERTCOERAPP

and, since G′ coerces σ to σ′, the coercion G′〈♦{α . G}〉 has
type ρ . σ′. Hence, by rule COERTCOERLAM, the coercion of the
conclusion has type ρ . ∀(α . τ ′)⇒ σ′, as expected.

Notice that Fµ<: is missing type abstraction and type application
in coercions, as well as distributivity of the universal on the arrow
as in Fη . Indeed, Fµ<: only allows instantiation of quantifiers at
the root of types, as in System F and contrary to Fη . Hence, the
inclusion Fµ<: ⊂ Fpι is strict.

It is remarkable that Fpι naturally matches the most expressive
version Fµ<:. This encourages to follow a systematic approach
viewing type conversions as erasable coercions as in Fpι rather then
an ad hoc subtyping relation. Additionally, Fpι may simplify the
proof of type soundness for Fµ<:, as coercions are explicit.

Instance-bounded polymorphism. The language xMLF [Rémy
and Yakobowski 2010] is the internal language of MLF which is
itself an extension of System F with instance-bounded polymor-
phism. Instance-bounded polymorphism is a mechanism to delay
type instantiation of System F; it is a key to performing type infer-
ence in MLF and keeping principal types—given optional type an-
notations of function parameters. As our current concern is not type
inference but expressiveness, we use xMLF rather than MLF for
comparison with Fpι . By lack of space, we cannot formally present
xMLF. Instead, we identify a subset Fxι of Fpι and explains how
it closely relates to xMLF without giving all the details of xMLF,
which can be found in the extended version.

We first define the subset Fµxι of Fpι by removing negative coer-
cion abstractions (in types, terms, and coercions), arrow coercions
G

τ→ G, and distributivity coercions from the syntax of terms. Of
course, we remove typing rules and reduction rules for these con-
structs, accordingly.

We then define Fxι as the restriction of Fµxι where a type variable
cannot appear in its instance bound, i.e. α is not free in τ in
∀(α / τ) ⇒ σ. Both restrictions are closed by reduction, so they
preserve the properties of Fpι .

We claim that xMLF is equivalent to Fxι . Unsurprisingly, the
translation of instance-bounded polymorphism ∀(α ≥ A).B is a
positive coercion abstraction ∀(α / τ) ⇒ σ where τ and σ are
the translation of A and B. The translation of expressions and
type instantiations is then routine (see the extended version). The
proof for the direct inclusion is similar to one by Manzonetto and
Tranquilli [2010]. The proof for the reverse inclusion is new but not
much more difficult.

In summary, we have xMLF ≈ Fxι ⊂ Fµxι ⊂ Fpι . It is inter-
esting that the natural restriction of Fι that resembles xMLF al-
lows variables to appear in their instance bounds, much as with F-
bounded polymorphism. This suggests an extension to xMLF with
recursively defined bounds. However, we do not know whether this
extension could still permit partial type inference in MLF.

Moreover, reduction in xMLF is simulated in Fxι . This implies
termination of reduction in xMLF (a result already proved by Man-
zonetto and Tranquilli [2010]).

Summary Features of Fpι and its variants are summed up on Fig-
ure 14. The expressiveness of Fη , xMLF, and F<: can be compared
by checking which feature is present in one language and not in the
others. Deep instantiation corresponds to the λα G and Gτ con-
structs, allowed in Fη and xMLF, but not in F<:. Upper bounds are

Extension of System F Fη F<: xMLF Fpι
Deep instantiation √ - √ √

Arrow congruence √ √ - √

Permutation of ∀ and→ √ - - √

Upper bounds - √ - √

Lower bounds - - √ √

Figure 14. Language and feature comparison

used in F<: and lower bounds are used xMLF. They correspond to
coercion abstraction λ(α/.c : τ)G andG{τ /.G} when /. is . or
/, respectively. Fη allows neither. Arrow congruence is the G τ→ G
construct, allowed in Fη and F<:. Distributivity Dist∀α.τ→σ is used in
Fη . The other form Dist∀α/.ρ⇒τ→σ is only used in Fpι since it involves
coercion abstraction.

Notice that xMLF and F<: only have coercion abstraction in
common, but with opposite polarities. Each of them share a dif-
ferent feature with Fη . None of them uses distributivity as it only
makes sense when deep instantiation and arrow congruence are
available simultaneously.

All examples of §2.4 are actually typable in Fpι —with some syn-
tactic adjustment of course. For instance, the last example becomes
λ(γ / c : τ) choose {γ / (c{first})} of type ∀(γ / τ) ⇒ γ → γ
where τ is ∀β. ∀(α . β ∗ >) ⇒ α → β. For instance, it can
be coerced to the type ∀(γ / σ) ⇒ γ → γ where σ is the type
∀β. ∀β′. ∀(α . β ∗ (β′ ∗ >)) ⇒ α → β. This uses the coercion
λ(γ/c : σ)♦{γ/c〈G〉}whereG is the coercion from τ to σ equal
to λβ λβ′ λ(α . c : β ∗ (β′ ∗>)) (♦ β){α . (♦β ∗ Topβ

′∗>)〈c〉}.

7. Weak Fι
Another solution to recover erasability is to prevent wedges from
appearing in a reduction context.

At first, it seems to suffice to use weak reduction on coercion
abstraction. Indeed, if a coercion variable cannot appear under a
reduction context, it cannot appear in a wedging configuration.
However, since λ(c : ϕ) M is irreducible, its erasure bMc should
also be irreducible, i.e. a value. If we choose strong reduction for
term abstraction, we must also choose strong reduction in the λ-
calculus used as the target, hence bMc must be a value for strong
reduction. That is, λ(c : ϕ) M would only be allowed when M
is fully evaluated, which would considerably limit the interest of
abstracting over c. Therefore, we choose a weak strategy for both
coercions and terms. Keeping strong reduction on types is optional
and independent.

The syntax of Weak Fι, written Fwι , is defined on Figure 15 as
a restriction of the syntax of Fι. We replace λ(c : ϕ) M in terms
by λ(c : ϕ) u where u is a value form. A value form is a term that
erases to a value, i.e. a value or an application of a coercion G to a
value form. A value is any form of abstraction whose subterm is an
arbitrary term for a term abstraction, a value for a type abstraction
(because we may evaluate under type abstractions), or a value form
for a coercion abstraction.

The static semantics of Fwι and Fι are the same. The reduction
relation of Fwι is a subrelation of the reduction relation of Fι that
prevents evaluation under term and coercion abstractions and pre-

M ::= . . . 6 | λ(c : ϕ) M | λ(c : ϕ) u expressions
G ::= . . . 6 | Distϕ⇒τ→σ coercions
v ::= λ(x : τ) M | λα v | λ(c : ϕ) u | Topτ 〈v〉 values
u ::= v | G〈u〉 value forms

C ::= [] M |M [] | λα [] | [] τ | G〈[]〉 | []{G} reduction ctx

REDCOERCOERLAM
w

(λ(c : ϕ) G)〈u〉 ι λ(c : ϕ) G〈u〉

Figure 15. Weak Fι: syntax and semantics wrt Fι

serves the value restriction. Reduction contexts are modified ac-
cordingly: λ(x : τ) [] and λ(c : ϕ) [] are removed. Rule RED-
COERCOERLAM (the coercion abstraction part of REDCOERFILL) is
restricted to make it call-by-value. Indeed, keeping the Fι rule:

(λ(c : ϕ) G)〈M〉 ι λ(c : ϕ) G〈M〉

would place the arbitrary term M under a coercion abstraction.
It is routine to check that Fwι is well-behaved and that coercions

are erasable. We refer the reader to the extended version.

8. Related work
Although many type systems could be explained using coercions,
since for instance they use a form of subtyping, very few have
followed this path and made the connection with coercions explicit.

We have already widely discussed Fη , F<:, and xMLF. Parts
of Fxι is closely related to the work of Manzonetto and Tranquilli
[2010] who proposed the first encoding of xMLF in a calculus of
coercions, but for the main purpose of proving the termination of
xMLF. They exhibit a type and semantics preserving encoding of
xMLF into (their version of) Fxι and show a simulation of compu-
tation between their Fxι and System F. Unfortunately, subject re-
duction and other properties that depend on it do not hold in their
system. Our version of Fxι can be seen as a fix to their definition.
Hence, there are many resemblances between their development
of Fxι and our development of Fι—but the typing rules differ. We
omitted the proof of inclusion from xMLF into Fxι by lack of space,
but also because it resembles theirs. In fact, their translation of
xMLF into Fxι has itself been inspired by the translation of MLF
into System F by Leijen and Löh [2005] and Leijen [2007]. How-
ever, Manzonetto and Tranquilli restrict their study to the termi-
nation of xMLF without any interest in Fη or F<:, while our main
interest is not in Fxι , but in Fpι and Fι, i.e. a general treatment of
abstraction over coercion functions that extends Fη , and as a side
result a possible enhancement of xMLF.

Although Fι subsumes core F<:, we have not included records
in Fι, which are often the first application of F<:. Our formalization
in the extended version includes tuples, and therefore models tuple
inclusion. We claim that Fι can model record subtyping as well.
However, our treatment of records in Fι would be similar to their
treatment in F<: and require an expressive runtime system so that
subtyping is erasable.

Record subtyping in F<: may also be compiled away into
records without subtyping in plain System F by inserting coer-
cions with computational content [Breazu-Tannen et al. 1991] that
change the representation of records whenever subtyping is used.
Since these coercions are not erasable and can be inserted in differ-
ent ways, the soundness of the approach depends on a coherence
result to show that the semantics of the translation does not actually
depend on the places where coercions are inserted.

Another method for eliminating subtyping has been used by
Crary [2000]: bounded polymorphism ∀(α ≤ τ). σ is compiled
away into an intersection type ∀α. σ[α← α∩τ] while intersection

types are themselves encoded with explicit erasable coercions. This
directly relates to our work by their canonization, which is similar
to our ι-reduction, and their use of bisimulation up to canoniza-
tion to show erasability of coercions. Of course, the languages are
different, as we do not consider intersection types while they do
have neither coercion abstraction nor distributivity and only con-
sider call-by-value reduction. Their work could serve as a reference
to extend Fι with recursive types.

Languages with dependent types often split terms with and
without computational content using kinds so that parts of terms
that contribute only to the static semantics can be dropped at run-
time. This is more powerful than our notion of coercions; for in-
stance, it could allow to build coercions by computation—a feature
that we would like to have. However, we do not know whether this
approach could be applied and benefit to our extension of Fη .

Coercions introduced in FC2 [Weirich et al. 2011], the inter-
nal language of Haskell, are interesting because they use coercion
projections and cannot be expressed in Fλι . Although FC2 uses a
weak evaluation strategy, it can declare abstract coercions at the
toplevel, which amount to a form of coercion abstraction—hence
they need coercion projections to regain erasability. However, co-
ercions in FC2 are non-oriented, do not have distributivity nor deep
instantiation of quantifiers and are thus structural, which allows
for an easier setting and a simple criteria to be used for consis-
tency checking. A new version of FC2 [Vytiniotis and Jones 2011]
makes coercions first-class values in an otherwise comparable set-
ting. Coercions can be abstracted over as in Fι and also stored in
data-structures. However, as a result of being first-class, coercions
may change the termination (hence the semantics) of programs and
are not erasable in our terminology. The two languages Fι and FC2

follow orthogonal approaches and are thus not easily comparable;
combining the features of both would be an interesting challenge.

Adding coercion projections to Fι and taking distributivity
away, we could obtain a version much closer to FC2 but where
coercions are oriented. Surprisingly few works have consider dis-
tributivity and include the power of Fη , apart from theoretical pa-
pers on Fη itself.

Retyping functions can also be seen as a way of rearranging
typing derivations. Abstraction over coercions is then abstraction
over type derivation transformations. There might be interesting
connections to establish with expansion variables for ∀-quantifiers
introduced by Lenglet and Wells [2010].

9. Discussion and future work
The language Fι extends Fη with abstraction over coercion func-
tions in a general way where coercions are retyping functions, i.e.
certain terms of the λ-calculus that do not contribute but may block
the evaluation. In order to solve this problem and make coercions
erasable, we have proposed two restrictions of Fι.

Weak Fι restricts the reduction relation by choosing a weak eval-
uation strategy for both coercions and terms and restrict coercion
abstraction to value forms. The main advantage of this solution is
its simplicity and its generality. Still, the restriction of coercion ab-
stractions to value forms, which is analogous to value-only poly-
morphism in languages with side effects, is significant. Moreover,
it allows the abstraction over coercions of uninhabited coercion
types, which are never applicable, thus leaving the possibility of
non-sensible code hidden under coercion abstraction undetected—
or at least delaying its detection.

Instead, Fpι restricts the types of coercion parameters and forces
them to be polymorphic in either their domain or codomain. The
advantage of Fpι is to retain a strong reduction relation, which
shows that the calculus is really well-behaved. Although restrictive,
it already subsumes Fη , xMLF, and F<:. We believe it is an inter-
esting point in the design space. It also shows that an extension of

xMLF with subtyping would be possible and beneficial, even if the
question of designing the surface language to make type inference
possible remains open.

Still, as both solutions are significant and orthogonal restrictions
to Fι, we may explore other possibilities.

Relaxing Fpι Relaxing Fpι so that it could type more expressions
but still prevent wedges from being typable is probably the easiest
extension to this work. An obvious but minor generalization is to
let λ(α /. c̄ : τ̄)M abstract over several coercions simultaneously,
but all with the same polarity. Allowing multiple polarities cannot
come without further restrictions, as transitivity could then be used
to build an abstract coercion between arrow types.

A more ambitious generalization is to replace the local con-
straint on the type of coercions by a global constraint defined by
some auxiliary consistency judgment. We could allow abstractions
of the form λ(ᾱ, c̄ : τ̄ . σ̄) M using a side condition on the typing
rule to ensure that the combination of coercions in context still pre-
vents the creation of wedges. However, finding a suitable notion of
consistency in the presence of distributivity is challenging.

Beyond Fι So far, we have explored restrictions of Fι to prevent
wedges from appearing in a reduction context. Instead, we could
perhaps extend the calculus to allow breaking them apart. Observe
that when a coercion variable appears in a wedge, it is always a
coercion between arrow types and that any actual coercion that will
be passed at runtime will start with an arrow coercion G1

τ→ G2

that can be decomposed into G1 and G2 and pushed out of the
way. So, we could decompose the abstract coercion as well, by
introducing coercion projections LeftG and RightG that behaves
as G1 and G2 whenever G is G1

τ→ G2.
While this idea is intuitively simple, it is actually quite involved

as new difficulties appear one after the other when solving them,
due to the presence of distributivity. Projectors require both bind-
ing coercions as in Fλι and, independently, a notion of structural
equivalence to treat coercions up to some rearrangements; unfor-
tunately, the combination of both breaks confluence; a fix to con-
fluence is to reduce coercions themselves, which introduces further
problems! (See the extended version for more details.) Moreover,
even assuming that such a calculus can be set up, there will re-
main to solve a typechecking problem quite similar to (although
more flexible than) the one for relaxing Fpι with non-local consis-
tency. Indeed, decomposing nonsensical coercions cannot ensure
erasability, ι-reduction may either get stuck, being unsound, or loop
forever. We leave this exploration for future work.

Leaving Fη and freezing quantifiers We have added coercion ab-
straction to the language Fη as it is the reference in the absence
of abstraction. However, many of the difficulties in Fι come from
the distributivity rules, which allow coercions to move quantifiers
inside types, or more precisely, from the combination of distributiv-
ity with contravariance of the arrow constructor—which is already
the source of difficulties in Fη , including undecidability of type-
containment. This suggests exploring a restriction of Fι that does
not have distributivity, nor type abstraction and type application
of coercions, that would not extend Fη , but have a much simpler
metatheory.

Language extensions Several features of programming lan-
guages have also been left out of Fι. Although products are not
included in this short presentation, we have already verified that
they can easily be added. Labeled products should work as well.

We do not expect difficulties with tagged unions or iso-recursive
types, e.g. following Crary [2000] although details are subtle and
still need to be checked. We don’t foresee any difficulties for adding
fix points to the source language.

Some care is needed for existential types, which already raise a
problem in System F as they do not have an erasing semantics with
a strong evaluation strategy. Therefore, we left them out of Fι and
replaced them by a top type. This is, however, an orthogonal issue.

An interesting extension is to make coercion first-class objects
which raises another challenge for erasability: since coercions can
then be built by computation, should a computation that just builds
coercions be erasable as well? Coercion types are monomorphic in
Fι but between possibly polymorphic types. We do not expect dif-
ficulties to have polymorphic coercion types. First-class coercions
would naturally bring polymorphic coercion types.

We have studied coercions for second-order polymorphism. We
should not expect difficulties with higher-order polymorphism.
However, adding coercions to a language with dependent types
may be more challenging.

References
P. Baldan, G. Ghelli, and A. Raffaetà. Basic theory of F-bounded quan-

tification. Inf. Comput., 153:173–237, September 1999. URL http:
//portal.acm.org/citation.cfm?id=320278.320285.

V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance as
implicit coercion. Information and Computation, 93:172–221, 1991.

P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell. F-bounded
polymorphism for object-oriented programming. In FPCA, 1989. URL
http://doi.acm.org/10.1145/99370.99392.

L. Cardelli. An implementation of FSub. Research Report 97, Digital
Equipment Corporation Systems Research Center, 1993. URL http://
research.microsoft.com/Users/luca/Papers/SRC-097.pdf.

K. Crary. Typed compilation of inclusive subtyping. In ICFP, 2000. URL
http://doi.acm.org/10.1145/351240.351247.

K. Crary, S. Weirich, and J. G. Morrisett. Intensional polymorphism in type-
erasure semantics. Journal of Functional Programming, 12(6):567–600,
2002. URL http://dx.doi.org/10.1017/S0956796801004282.

D. Le Botlan and D. Rémy. Recasting MLF. Information and Computation,
207(6), 2009. URL http://dx.doi.org/10.1016/j.ic.2008.12.
006.

D. Leijen. A type directed translation of MLF to System F. In ICFP,
Oct. 2007. URL http://research.microsoft.com/users/daan/
download/papers/mlftof.pdf.

D. Leijen and A. Löh. Qualified types for MLF. In ICFP,
Sept. 2005. URL http://murl.microsoft.com/users/daan/
download/papers/qmlf.pdf.

S. Lenglet and J. B. Wells. Expansion for forall-quantifiers. Available elec-
tronically, 2010. URL http://sardes.inrialpes.fr/~slenglet/
papers/systemFs.pdf.

G. Manzonetto and P. Tranquilli. Harnessing MLF with the Power of
System F. In MFCS, volume 6281, 2010. doi: http://dx.doi.org/10.1007/
978-3-642-15155-2_46.

J. C. Mitchell. Polymorphic type inference and containment. Information
and Computation, 2/3(76), 1988.

D. Rémy and B. Yakobowski. A Church-Style Intermediate Language
for MLF. In FLOPS, volume 6009, pages 24–39. 2010. URL http:
//dx.doi.org/10.1007/978-3-642-12251-4_4.

D. Vytiniotis and S. P. Jones. Practical aspects of evidence-based
compilation in system FC. Available electronically, 2011. URL
http://research.microsoft.com/en-us/um/people/simonpj/
papers/ext-f/.

S. Weirich, D. Vytiniotis, S. Peyton Jones, and S. Zdancewic. Generative
type abstraction and type-level computation. In POPL, 2011. URL
http://doi.acm.org/10.1145/1926385.1926411.

http://portal.acm.org/citation.cfm?id=320278.320285
http://portal.acm.org/citation.cfm?id=320278.320285
http://doi.acm.org/10.1145/99370.99392
http://research.microsoft.com/Users/luca/Papers/SRC-097.pdf
http://research.microsoft.com/Users/luca/Papers/SRC-097.pdf
http://doi.acm.org/10.1145/351240.351247
http://dx.doi.org/10.1017/S0956796801004282
http://dx.doi.org/10.1016/j.ic.2008.12.006
http://dx.doi.org/10.1016/j.ic.2008.12.006
http://research.microsoft.com/users/daan/download/papers/mlftof.pdf
http://research.microsoft.com/users/daan/download/papers/mlftof.pdf
http://murl.microsoft.com/users/daan/download/papers/qmlf.pdf
http://murl.microsoft.com/users/daan/download/papers/qmlf.pdf
http://sardes.inrialpes.fr/~slenglet/papers/systemFs.pdf
http://sardes.inrialpes.fr/~slenglet/papers/systemFs.pdf
http://dx.doi.org/10.1007/978-3-642-12251-4_4
http://dx.doi.org/10.1007/978-3-642-12251-4_4
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
http://doi.acm.org/10.1145/1926385.1926411

	Introduction
	The language F-iota
	Syntax of F-iota
	Typing rules
	Dynamic semantics
	Examples

	Properties of F-iota
	Soundness
	Termination of reduction
	Reification of F-iota in System F
	Confluence
	Forward simulation

	Coercions as retyping functions: F-iota-lambda
	Parametric F-iota
	Syntax changes
	Adjustments to the semantics
	Properties

	Expressiveness of Parametric F-iota
	Weak F-iota
	Related work
	Discussion and future work

