
1

System F with Coercion Constraints
Julien Cretin and Didier Rémy INRIA

{julien.cretin,didier.remy}@inria.fr

Abstract— We present a second-order λ-calculus with coercion
constraints that generalizes a previous extension of System F with
parametric coercion abstractions [1] by allowing multiple but
simultaneous type and coercion abstractions, as well as recursive
coercions and equi-recursive types. This allows to present in
a uniform way several type system features that had previ-
ously been studied separately: type containment, bounded and
instance-bounded polymorphism, which are already encodable
with parametric coercion abstraction, and ML-style subtyping
constraints. Our framework allows for a clear separation of
language constructs with and without computational content. We
also distinguish coherent coercions that are fully erasable from
potentially incoherent coercions that suspend the evaluation—
and enable the encoding of GADTs.

Technically, type coercions that witness subtyping relations
between types are replaced by a more expressive notion of typing
coercions that witness subsumption relations between typings,
e.g. pairs composed of a typing environment and a type. Our
calculus is equipped with a strong notion of reduction that allows
reduction under abstractions—but we also introduce a form of
weak reduction as reduction cannot proceed under incoherent
type abstractions. Type soundness is proved by adapting the
step-indexed semantics technique to strong reduction strategies,
moving indices inside terms so as to control the reduction steps
internally—but this is only detailed in the extended version.

I. INTRODUCTION

Type systems are syntactical languages to express properties
and invariants of programs. Their objects are usually types,
typing contexts, and typing derivations. These can be inter-
preted as mathematical objects or proofs. Typically, a typing
judgment Γ ` a : τ can be interpreted as a proof that the
term a is well-behaved and that its computational behavior
is approximated by the type τ when the approximations of
the behaviors of its free variables are given by the typing
context Γ. The simply-typed λ-calculus extended with con-
stants such as pairs or integers to model the core of a real
programming language is the simplest of all type systems. It
is also somewhat canonical: it just contains one type construct
for each related construct of the language: arrow types τ → σ
to classify functions, τ × σ to classify pairs, etc. and nothing
else. Each type construct has a counter-part in terms and we
may call them computational types.

Simply-typed λ-calculus is however too restrictive and type
systems are usually extended with some form of polymor-
phism that allows an expression to have several types, or
rather a type that stands for a whole collection of other types.
Parametric polymorphism, whose System F is the reference
introduces polymorphic types ∀α τ . A typing judgment Γ `
a : ∀α τ means that the program a has also type τ [α ← σ]
(i.e. τ where α has been replaced by σ) for all types σ.

This operation, called type instantiation is in fact indepen-
dent of the program a and can be captured as an auxiliary

instantiation judgment ∀α τ ≤ τ [α ← σ]. This means that
any term that has type ∀α τ also has type τ [α ← σ]. Type
instantiation is only a very specific form of some more general
concept called type containment introduced by Mitchell [2].
Mitchell showed that adding type containment to System F
is equivalent to closing System F by η-expansion (hence
the name Fη for the resulting system). Type containment
allows instantiation to be performed deeper inside terms (by
contrast with System F where it remains superficial), following
the structure of types covariantly, or contravariantly on the
left of arrow types. Type containment contains the germs
of subtyping, which usually refers to a restriction of type
containment that does not include type instantiation as part of
the subtyping relation, but instead injects primitive subtyping
relations between constants such as int ≤ float or a primitive
bottom and top types. F<: [3] is the system of reference for
combining subtyping with polymorphism. Surprisingly, the
languages Fη and F<: share the same underlying concepts but
have in fact quite different flavors and are incomparable (no
one is strictly more general then the other). For example, F<:

has bounded quantification ∀(α ≤ τ)σ that allows to abstract
over all type α that are a subtype of τ , a concept not present
in Fη . Although quite powerful, bounded quantification seems
bridled and somewhat ad hoc as it allows for a unique and
upper bound.

The language MLF [4] is another variant of System F that
has been introduced for performing partial type inference
while retaining principal types. It has similarities with both F<:

and Fη , but introduces yet another notion, instance bounded
quantification—or unique lower bounds.

In [1], we introduced Fpι , a language of type coercions
with the ability to abstract over coercions, that can express
Fη type containment, F<: upper bounded polymorphism, and
MLF instance-bounded polymorphism, uniformly. Following
a general and systematic approach to coercions lead to an
expressive and modular design. However, Fpι still comes with
a severe restriction: abstract coercions must be parametric
in either their domain or their codomain, so that abstract
coercions are coherent, i.e. their types are always inhabited by
concrete coercions. This limitation is disappointing from both
theoretical and practical view points. In practice, Fpι fails to
give an account of subtyping constraints that are used for type
inference with subtyping in ML. While in theory, subtyping
constraints and second-order polymorphism are orthogonal
concepts that should be easy to combine.

Summary of our contributions: In this work, we solve
this problem and present a language Fcc that generalizes Fpι
(and thus subsumes Fη , F<:, and MLF) to also model subtyping
constraints. Besides, Fcc includes a general form of recursive
coercions, from which we can recover powerful subtyping

2

rules between equi-recursive types. As in our previous work,
the language is equipped with a strong reduction strategy,
which also models reduction on open terms and provides
stronger properties. We still permit a form of weak reduction
on demand to model incoherent abstractions when needed, e.g.
to encode GADTs.

We also generalize type coercions to typing coercions which
enables a much clearer separation between computational
types and erasable types that are all treated as coercions. In
particular, type abstraction becomes a coercion and distributiv-
ity rules become derivable. Another side contribution of our
work which is however not detailed here by lack of space
but can be found in the extended version, is an adaption of
step-indexed semantics to strong reduction strategies, moving
indices inside terms.

Plan: The rest of the paper is organized as follows. We
discuss a few important issues underlying the design of Fcc
in §II. We present Fcc formally and state its properties in §III.
We discuss the expressivity of Fcc in §V and differences with
our previous work and other related works as well as future
works in §VI.

By lack of space, we have omitted many technical details
and the whole proof of type soundness via step-indexed terms,
which can be found in the extended version of this paper [5]
and in the first author’s PhD dissertation [6, chap 5]. The
language Fcc and its soundness and normalization proofs have
been formalized and mechanically verified in Coq.1

II. THE DESIGN OF FCC

The language Fcc is designed around the notion of erasable
coercions. Strictly speaking erasable coercions should leave no
trace in terms and not change the semantics of the underlying
untyped λ-term. When coercions are explicit and kept during
reduction, as in Fpι , one should show a bisimulation prop-
erty between the calculus with explicit coercions and terms
of λ-calculus after erasure of all coercions. However, since
coercions do not have computational content, they may also
be left implicit, as is the case in Fcc.

Some languages also use coercions with computational
content. These are necessarily explicit and cannot be erased
at runtime. They are of quite a different nature, so we restrict
our study to erasable coercions.

Still, erasability is subtle in the presence of coercion ab-
straction, because one could easily abstract over nonsensical
coercions, e.g. that could coerce any type into any other type.
By default, these situations should be detected and rejected
of course. We say that coercion abstraction is coherent when
the coercion type is inhabited and incoherent when it may be
uninhabited. Notice that type abstraction in System F, bounded
polymorphism in F<:, and instance bounded polymorphism in
MLF are all coherent.

Coherent abstraction ensures that the body of the abstraction
is meaningful—whenever well-typed. Hence, it makes sense
to reduce the body of the abstraction before having a concrete
value for the coercion— or equivalently to reduce open terms
that contain coherent abstract coercions.

1Scripts are available at http://gallium.inria.fr/~remy/coercions/.

Conversely, incoherent abstraction must freeze the eval-
uation of the body until it is specialized with a concrete
coercion that provides inhabitation evidence. Therefore, ab-
straction over incoherent coercions cannot be erased, even
though coercions themselves carry no information and can be
represented as the unit type value, as in FC—the internal lan-
guage of Haskell whose coercion abstractions are (potentially)
incoherent.

Choosing a weak evaluation strategy as is eventually done
in all programming languages does not solve the problem, but
just sweeps it under the carpet: while type-soundness will hold,
static type errors will be delayed until applications and library
functions that will never be applicable may still be written.

Conversely, a strong reduction strategy better exercises the
typing rules: that is, type soundness for a strong reduction
strategy provides stronger guarantees. In our view, type sys-
tems should be designed to be sound for strong reduction
strategies even if their reduction is eventually restricted to
weak strategies for efficiency reasons. This is how program-
ming languages based on System F or F<: have been con-
ceived, indeed.

Therefore, Fcc is equipped with strong reduction as the
default and this is a key aspect of our design which could
otherwise have been much simpler but also less useful.

However, we also permit abstraction over (potentially) inco-
herent coercions on demand, as this is needed to encode some
form of dynamic typing, as can be found in programming
languages with GADTs, for example. Indeed, GADTs allow
to define parametric functions that are partial and whose body
may only make sense for some but not all type instances. When
accepting a value of a GADT as argument, the function may
gain evidence that some type equality holds and that the value
is indeed in the domain of the function. We claim that inco-
herent abstraction should be used exactly when needed and
no more. In particular, one should not make all abstractions
incoherent just because some of them must be.

From explicit to implicit coercions: Coherence is ensured
in Fpι by the parametricity restriction that limits abstraction
to have a unique upper or lower bound. This also prevents
abstract coercions from appearing in between the destructor
and the constructor of a redex, a pattern of the form c〈λ(x :
τ ′)M〉N (where c〈·〉 is the application of a coercion) called a
wedge, which could typically block the reduction of explicitly
typed terms—therefore loosing the bisimulation with reduction
of untyped terms. While the coherence of the abstract coercion
c should make it safe to break it apart into two pieces, one
attached to the argument N , the other one attached to the body
M , this would require new forms of coercions, new reduction
rules and quite sophisticated typing rules to keep track of the
relation between the residual of wedges after they have been
split apart. Even though it should be feasible in principle, this
approach seemed far too complicated in the general case to be
of any practical use.

Therefore our solution is to give up explicit coercions
and leave them implicit. While this removes the problem of
wedges at once, it also prevents us from doing a syntactic
proof of type soundness. Instead, type soundness in Fcc is
proved semantically by interpreting types as sets of terms and

http://gallium.inria.fr/~remy/coercions/

3

coercions as proofs of inclusion between types.
Simultaneous coercion abstractions: In order to relax

the parametricity restriction of Fpι and allow coercions whose
domain and range are simultaneously structured types, while
preserving coherence, we permit multiple type abstractions to
be introduced simultaneously with all coercion abstractions
that constraint them. Since coherence does not come by
construction anymore, coherence proofs must be provided
explicitly for each block of abstraction as witnesses that the
types of coercions are inhabited, i.e. that they can be at least
instantiated once in the current environment.

Grouping related abstractions allows to provide coherence
proofs independently for every group of abstractions, and
simultaneously for every coercion in the same group.

From type coercions to typing coercions: A type coercion
τ . σ is a proof that all programs of type τ have also type σ
in some environment Γ. Pushing the idea of coercions further,
typings (the pair of an environment and a type, written Γ ` τ)
are themselves approximations of program behaviors, which
are also naturally ordered. Thus, we may consider syntactical
objects, which we call typing coercions, to be interpreted as
proofs of inclusions between the interpretation of typings.
By analogy with type coercions that witness a subtyping
relation between types, typing coercions witness a relation
between typings. This idea, which was already translucent in
our previous work [1], is now internalized.

Interestingly, type generalization can be expressed as a
typing coercion—but not as a type coercion: it turns a typing
Γ, α ` τ into the typing Γ ` ∀α τ . This allows to replace
what is usually a term typing rule by a coercion typing
rule, with two benefits: superficially, it allows for a clearer
separation of term constructs that are about computation
from coercion constructs that do not have computational
content (type abstraction and instantiation, subtyping, etc.);
more importantly, it makes type generalization automatically
available anywhere a coercion can be used and, in particular,
as parts of bigger coercions. An illustration of this benefit
is that the distributivity rules (e.g. as found in Fη) are now
derivable by composing type generalization, type instantiation,
and η-expansion (generalization of the subtyping rule for
computational types).

The advantage of using typing coercions is particularly
striking in the fact that all erasable type system features
studied in this paper can be expressed as coercions, so that
computation and typing features are perfectly separated.

III. LANGUAGE DEFINITION

A. The syntax and semantics of terms

The syntax of the language is given in Figure 1. Because
our calculus is implicitly typed, its syntax is in essence that of
the λ-calculus extended with pairs. Terms contain variables x,
abstractions λx a, applications a b, pairs 〈a, b〉, and projections
πi a for i in {1, 2}.

Terms also contain two new constructs ∂ a and a♦ called
incoherent abstraction and incoherent application, respectively.
The incoherent abstraction ∂ a can be seen as a marker on
the term a that freezes its evaluation, while the incoherent

α, β Type variables
x, y Term variables
a, b ::= x | λx a | a a | 〈a, a〉 | πi a | ∂ a | a♦ Terms
κ ::= ? | 1 | κ× κ | {α : κ | P} Kinds

τ, σ ::= α | τ → τ | τ × τ | ∀(α : κ) τ Types
| Π(α : κ) τ | µα τ | ⊥ | >
| 〈〉 | 〈τ, τ〉 | πi τ

P ::= > | P ∧ P | (Σ ` τ) . τ Propositions
| ∃κ | ∀(α : κ) P

Θ ::= ∅ | Θ,P | Θ,P† Coinduction environments
Γ ::= ∅ | Γ, (α : κ) | Γ, (x : τ) Environments
χ ::= ne | wf Recursive tokens

Fig. 1. Syntax

Σ ::= ∅ | Σ, (α : κ) Erasable environments
p ::= x | p v | πi p | p♦ Prevalues
v ::= p | λx v | 〈v, v〉 | ∂ a Values
h ::= λx a | 〈a, a〉 | ∂ a Constructors
D ::= [] a | πi [] | []♦ Destructors
E ::= λx [] | [] a | a [] |��∂ [] | []♦ Contexts

| 〈[], a〉 | 〈a, []〉 | πi []

Fig. 2. Notations

application a♦ allows evaluation of the frozen term a to
be resumed. These two constructs enforce a form of weak
reduction in a calculus with strong reduction by default. They
are required to model GADTs, but removing them consistently
everywhere preserves all the properties of Fcc. Hence, one can
always ignore them in a first reading of the paper.

The reduction rules are given on Figure 3. We write
a[x ← b] for the capture avoiding substitution of the term
b for the variable x in the term a, defined as usual. Head
reduction is described by the β-reduction rule REDAPP, the
projection rule REDPROJ, and REDIAPP for unfreezing frozen
computations. Reduction can be used under any evaluation
context as described by Rule REDCTX. Evaluation contexts,
written E , are defined on Figure 2. Since we choose a strong
reduction relation, all possible contexts are allowed—except
reduction under incoherent abstractions. The notation��∂ [] is to
emphasize that ∂ [] is not an evaluation context.) Notice that
evaluation contexts contain a single node, since the context
rule REDCTX can be applied recursively.

The terms we are interested in are the sound ones, i.e. whose
evaluation never produces an error. Errors are the subset of
syntactically well-formed terms that “we don’t want to see”
neither in source programs nor during their evaluation: an error
is either immediate or occurring in an arbitrary context E
(Figure 2); immediate errors are potential redexes D[h] (the
application of a destructor D to a constructor h) that are not
valid redexes (the left-hand side of a head-reduction rule).
Conversely, values are the irreducible terms that we expect
as results of evaluation: they are either constructors applied
to values or prevalues which are themselves either variables

4

TERMVAR

(x : τ) ∈ Γ

Γ ` x : τ

TERMLAM

Γ ` τ : ? Γ, (x : τ) ` a : σ

Γ ` λx a : τ → σ

TERMAPP

Γ ` a : τ → σ Γ ` b : τ

Γ ` a b : σ

TERMPAIR

(Γ ` ai : τi)
i∈{1,2}

Γ ` 〈a1, a2〉 : τ1 × τ2
TERMPROJ

Γ ` a : τ1 × τ2
Γ ` πi a : τi

TERMCOER

Γ,Σ ` a : τ Γ ` (Σ ` τ) . σ

Γ ` a : σ

TERMBLOCK

Γ
 κ Γ, (α : κ) ` a : τ

Γ ` ∂ a : Π(α : κ) τ

TERMUNBLOCK

Γ ` σ : κ Γ ` a : Π(α : κ) τ

Γ ` a♦ : τ [α← σ]

Fig. 4. Term typing rules

REDCTX

a; b

E [a] ; E [b]

(λx a) b; a[x← b] (RedApp)
πi 〈a1, a2〉 ; ai (RedProj)

(∂ a)♦ ; a (RedIApp)

Fig. 3. Reduction relation

or destructors applied to prevalues. Notice that the definition
of errors is independent of the reduction strategy while the
definition of values is not. This is why we prefer to state
soundness as the fact that reduction never produces errors,
avoiding the reference to the more fragile definition of values.

B. Types, kinds, propositions, and coercions

We use types to approximate the behavior of terms, but
types are themselves classified by kinds. So let us present
kinds first. Although we do not have type functions, we need
to manipulate tuples of types because several type variables
and coercion constraints sometimes need to be introduced
altogether. For sake of simplicity and a slight increase in
flexibility, we mix types, type sequences, and constrained
types into the same syntactical class of types which are then
classified by kinds. Kinds are written κ. The star kind ?
classifies sets of terms, as usual. The unit kind 1 and the
product kind κ × κ are used to classify the unit object and
pairs of types, which combined together, may encode type
sequences: for example, a type variable of kind κ1 × κ2
may stand for a pair of variables of kinds κ1 and κ2. The
constrained kind {α : κ | P} restricts the set κ to the elements
α satisfying the proposition P. For instance, {α : ? | α . τ}
is the set of types σ that can be coerced to (e.g. are a subtype
of) τ—assuming that α is not free in τ .

Instead of having only proofs of inclusion between sets of
terms, which we call coercions, we define a general notion of
propositions, written P. Propositions contain the true proposi-
tion >, conjunctions P∧P, coercions (Σ ` τ) . τ , coherence
propositions ∃κ, and polymorphic propositions ∀(α : κ) P.
The proposition (Σ ` τ) . σ in a context Γ means the
existence of a coercion from the typing Γ,Σ ` τ to the typing
Γ ` σ. When Σ is ∅, we write τ . σ for (∅ ` τ) . σ and
recover the usual notation for type coercions. For example,
α . τ means that α can be coerced to τ (e.g. α is a subtype
of τ). The coherence proposition of the constrained kind
{α : κ | P}, namely ∃ {α : κ | P}, gives the usual existential
proposition, because coherence corresponds to inhabitation
and a type τ is in the constrained kind {α : κ | P} if it
is in κ and satisfies P.

Types are described on Figure 1. They are written τ or σ.

They contain type variables α, arrow types τ → σ, product
types τ×σ, coherent polymorphic types ∀(α : κ) τ , incoherent
polymorphic types Π(α : κ) τ , recursive types µα τ , the top
type >, and the bottom type ⊥.

Types also contain the unit object 〈〉, pairs of types 〈τ, τ〉,
and projections πi τ to construct and project type sequences.
We define the projections of pairs πi 〈τ1, τ2〉 to be equal to
the corresponding components τi. Type equality is then closed
by reflexivity, symmetry, transitivity, and congruence for all
syntactical constructs. This defines equality judgments on
types (τ1 = τ2), kinds (κ1 = κ2), and propositions (P1 = P2),
which are used in typing rules below. Notice that equality is
never applied implicitly.

We use environments to approximate the behavior of vari-
ables. The syntax of environments, written Γ, is described on
Figure 1. Environments are lists of type binders (α : κ) and
term binders (x : τ). We write Σ for environments that do
not contain term bindings. We also use lists of propositions,
written Θ, called coinduction environments, to keep track of
which propositions can be used coinductively.

Let t be a type, a kind, a proposition, a typing environment,
a sequence, or a set of such objects. We write fv(t) the set of
free variables of t, defined in the obvious way, and t[α← τ]
for the capture avoiding substitution of τ for the variable α in
t. All objects t are taken up to α-conversion of their bound
variables.

We assume that environments are well-scoped. That is,
Γ, (x : τ) can only be formed when x /∈ dom(Γ) and
fv(τ) ⊆ dom(Γ); and Γ, (α : κ) can only be formed when
α /∈ dom(Γ) and fv(κ) ⊆ dom(Γ). Similarly, Γ; Θ requires
fv(Θ) ⊆ dom(Γ).

C. Typing judgments
Types, kinds, and propositions are recursively defined and

so are their typing judgments. We actually have the following
judgments all recursively defined:

Γ ` a : τ term
Γ; Θ ` P prop.
Γ ` τ : κ type

Γ ` κ kind coherence
Γ ` Σ environment coherence
Γ
 κ kind well-formedness
Γ
 P prop. well-formedness

We assume that judgments are always well-scoped: free vari-
ables of objects appearing on the right of the turnstile must
be bound in the typing environment Γ.

Auxiliary judgments: The main two judgments are for
terms and coercions. Others are auxiliary judgments and we
describe them first.

The kind judgment Γ ` κ states that the kind κ is coherent
relative to the environment κ. This judgment is actually

5

equivalent to the proposition judgment Γ ` ∃κ that will be
explained below. The environment coherence judgment Γ ` Σ
checks that every kind appearing in Σ is coherent in the
environment that precedes it. It is defined by the two rules:

Γ ` ∅
Γ ` Σ Γ,Σ ` κ

Γ ` Σ, (α : κ)

Kind and proposition well-formedness are recursively scan-
ning their subexpressions for all occurrences of coercion
propositions (Σ ` τ) . σ to ensure that Σ, τ , and σ are
well-typed, as described by the following rule:

Γ ` Σ Γ,Σ ` τ : ? Γ ` σ : ?

Γ
 (Σ ` τ) . σ

See the extended version for the complete description of well-
formedness rules.

The type judgment Γ ` τ : κ is defined in Figure 5, but
we only present the most interesting rules. Rule TYPEPACK is
used to turn a type τ of kind κ satisfying a proposition P
into a type of the constrained kind {α : κ | P}. Conversely,
TYPEUNPACK turns back a type of the constrained kind {α :
κ | P} into one of kind κ, unconditionally. TYPEMU allows to
build the recursive type µα τ , which can be formed whenever
τ is productive as stated by the judgment α 7→ τ : wf . Other
rules are omitted by lack of space.

Term typing rules: Following the tradition, we write Γ `
a : τ to mean that in environment Γ the term a has type
τ . However, we would also like to write this a : Γ ` τ too
and say that the term a has the typing Γ ` τ , that is, a is
approximated by the type τ whenever its free variables are in
the approximations described by Γ. We will keep the standard
notation to avoid confusion, but we will read the judgment as
above when helpful. The judgment Γ ` a : τ implies that τ
has kind ? under Γ whenever Γ is well-formed.

Term typing rules are given on Figure 4. Observe that the
first five rules are exactly the typing rules of the simply-typed
λ-calculus.

The last two rules are for incoherent abstraction and appli-
cation (they could be skip at first): Rule TERMBLOCK says that
the program ∂ a whose evaluation is frozen may be typed with
the incoherent polymorphic type Π(α : κ) τ if a can be typed
with τ in an extended context that assigns a well-formed kind
κ to α. Notice that Γ
 κ, as opposed to Γ ` κ, does not imply
that the kind is coherent, but well-formed. Rule TERMUNBLCK

is the counterpart of TERMBLOCK. If we have a term a of an
incoherent polymorphic type Π(α : κ) τ , i.e. whose evaluation
has been frozen and a type σ of kind κ, we know that the kind
κ is inhabited by σ. Therefore, we may safely unfreeze a and
give it the type τ [α← σ].

Rule TERMCOER is at the heart of our approach which
delegates most of the logic of typing to the existence of
appropriate typing coercions. The rule reads as follows: if
a term a admits the typing Γ,Σ ` τ and there exists a
coercion from τ to σ introducing Σ under Γ, which we write
Γ ` (Σ ` τ) . σ, then the term a also admits the typing
Γ ` σ. The presence of Σ allows the coercion to manipulate
the typing context as well as the type, which is the reason for
our generalization from type coercions to typing coercions.

When Σ is ∅, the rule looks more familiar and resembles the
usual subtyping rule: if a term a has type τ under Γ and there
exists a coercion from the type τ to the type σ under Γ (which
is written Γ ` τ . σ), then the term a has also type σ under Γ.

This factorization of all rules but those of the simply-
typed λ-calculus under one unique rule, namely TERMCOER,
emphasizes that coercions are only decorations for terms. Rule
TERMCOER annotates the term a to change its typing without
changing its computational content, as the resulting term is a
itself. This is only made possible by using typing coercions
instead of type coercions.

Propositions typing judgment: The judgment Γ ` (Σ `
τ) . σ is in fact an abbreviation for Γ;∅ ` (Σ ` τ) . σ,
which is itself a special case of the more general judgment
Γ; Θ ` P when Θ is ∅ and P is (Σ ` τ) . σ. Indeed, (Σ `
τ) . σ a particular proposition P stating the existence of a
typing coercion from τ to σ introducing Σ. The proposition
environment Θ contains additional hypotheses that can be used
coinductively when proving that a coercion holds.

The proposition judgment is split into two figures, with
rules for general propositions in Figure 6 and rules specific
to coercion propositions in Figure 7. We first explain typing
rules for general propositions.

Rule PROPEQ allows the use of type equality. Rule PROPVAR

allows the use of a coinductive hypothesis P in Θ. This is
written P† ∈ Θ because propositions that are guarded are
marked † in Θ and only those are safe to use coinductively.

In particular, rule PROPFIX which we do not usually find in
type systems allows to prove a proposition by coinduction: if P
is true assuming P in the unguarded coinduction environment,
then P is true without this additional hypothesis. Coinductive
propositions are introduced as unguarded so that they cannot
be used directly, which would be ill-founded. Only some of
the coercion rules (described below) allow coinduction to be
guarded. The usual rules about recursive types that can be
found in other type systems are derivable from this general
rule (see Section III-C).

Rules PROPTRUE, PROPANDPAIR, and PROPANDPROJ are
uninteresting. Rule PROPFORINTRO and PROPFORELIM are un-
surprising. Rule PROPEXI allows to embed the coherence of a
kind κ, i.e. the existence of a type inhabitant of kind κ as the
proposition ∃κ. Rule PROPRES allows to extract a proposition
from a type τ of a constrained kind {α : κ | P}, replacing the
variable α of kind κ by the witness τ of kind κ.

Coercions: We now explain typing rules for coercion
propositions. We may ignore the environment Θ in most
cases, as it is just unused or transferred to the premises
unchanged, except for the three η-expansion rules that mark
the environment as guarded Θ† in their premises, therefore
allowing coinductive uses of propositions Θ via Rule PROPFIX.
These are the rules that decompose computational types that
have a counterpart in terms, namely COERARR, COERPROD,
and COERPI.

We now explain coercion rules ignoring Θ. Intuitively,
the judgment Γ ` (Σ ` τ) . σ implies that any term
that admits the typing Γ,Σ ` τ also admits the typing
Γ ` σ. (The converse is not true as the coercion typing
judgment is semantically incomplete.) One could expect this

6

TYPEMU

α 7→ τ : wf Γ, (α : ?) ` τ : ?

Γ ` µα τ : ?

TYPEPACK

Γ, (α : κ)
 P Γ ` τ : κ Γ ` P[α← τ]

Γ ` τ : {α : κ | P}

TYPEUNPACK

Γ ` τ : {α : κ | P}
Γ ` τ : κ

Fig. 5. Type judgment relation (excerpt)

PROPEQ

Γ; Θ ` P P = P′ Γ
 P′

Γ; Θ ` P′

PROPVAR

P† ∈ Θ

Γ; Θ ` P

PROPTRUE

Γ; Θ ` >

PROPANDPAIR

(Γ; Θ ` Pi)
i∈{1,2}

Γ; Θ ` P1 ∧ P2

PROPANDPROJ

Γ; Θ ` P1 ∧ P2

Γ; Θ ` Pi

PROPFORINTRO

Γ
 κ Γ, (α : κ); Θ ` P

Γ; Θ ` ∀(α : κ) P

PROPFORELIM

Γ ` τ : κ
Γ; Θ ` ∀(α : κ) P

Γ; Θ ` P[α← τ]

PROPRES

Γ ` τ : {α : κ | P}
Γ; Θ ` P[α← τ]

PROPEXI

Γ ` τ : κ

Γ; Θ ` ∃κ

PROPFIX

Γ
 P
Γ; Θ,P ` P

Γ; Θ ` P

Fig. 6. Proposition judgment relation

judgment to be of the form (Γ,Σ ` τ) . (Γ ` σ), or even
(Γ1 ` τ1) . (Γ2 ` τ2). However, in our notation, Σ describes
environment actions under Γ in a compositional manner and
eventually permits to go from Γ1 to Γ2.

The coercion typing rules can be understood under the
light of Rule TERMCOER. The first two rules, COERREFL and
COERTRANS, close the coercion relation by reflexivity and
transitivity. To understand COERTRANS let’s take a term a with
typing Γ,Σ2,Σ1 ` τ1. Applying Rule TERMCOER with the
second premise of Rule TERMTRANS ensures that the term
a admits the typing Γ,Σ2 ` τ2. Applying Rule TERMCOER

again with the first premise of Rule TERMTRANS, ensures
that a admits the typing Γ ` τ3 as if we have applied Rule
TERMCOER to the original typing of a with the conclusion of
Rule COERTRANS.

The Rule COERWEAK implements a form of weakening. It
tells that if any term of typing Γ,Σ ` τ can be seen as Γ ` σ,
then any term of typing Γ ` τ can also be seen as Γ ` σ. Since
weakening holds for term judgments, we can do the following
reasoning to justify this rule. Assume that the premise Γ,Σ ` τ
holds; we argue that the conclusion should also hold. Indeed,
a term that admits the typing Γ ` τ also have typing Γ,Σ ` τ
by weakening; therefore, by the premise of Rule COERWEAK,
it must also have typing Γ ` σ. However, this reasoning is
mathematical and based on our interpretation of coercions:
Rule COERWEAK is required as it is would not be derivable
from other rules—not even admissible—if we removed it from
the definition. Notice that this is the only rule that removes
binders.

The rules COERBOT and COERTOP close the coercion rela-
tion with extrema. For any typing Γ ` τ , there is a smaller
typing, namely Γ ` ⊥, and a bigger typing, namely Γ ` >.

The rules COERPROD, COERARR, and COERPI close the
coercion relation by η-expansion, which is the main feature
of subtyping. Here, η-expansion is generalized to typing
coercions instead of type coercions. The η-expansion rules
describe how the coercion relation goes under computational
type constructors, i.e. those of the simply-typed λ-calculus. In-
terestingly, the η-expansion rules for erasable type constructors
can be derived as their introduction and elimination rules are
already coercions.

Intuitively, η-expansion rules can be understood by decorat-

ing the η-expansion context with coercions at their respective
type constructor. These coercions are erasable because the η-
expansion of a term has the same computational behavior as
the term itself.

For example, consider the η-expansion context for the arrow
type λx ([]x). Placing a term with typing Γ,Σ ` τ ′ → σ′ in the
hole, we may give λx ([]x) the typing Γ ` τ → σ provided
a coercion of type Γ,Σ ` τ . τ ′ is applied around x. The
result of the application has typing Γ,Σ ` σ′ which can in
turn be coerced to Γ ` σ if there exists a coercion of type Γ `
(Σ ` σ′) . σ. Thus, the η-expansion has typing Γ ` τ → σ.
While the coercion applied to the result of the application may
bind variables Σ for the hole (and the argument), the coercion
applied to the variable x needs not bind variables, since the
variable x could not use them anyway.

Rules COERGEN and COERINST, implement the main feature
of the language, namely simultaneous coherent coercion ab-
stractions. Intuitively, Rule COERGEN combines several type
and coercion abstractions. This is however transparent in rule
COERGEN since the simultaneous abstractions are grouped in
the kind κ. Hence, this rule looks like a standard generalization
rule. The only key here is the left premise that requires the
coercion to be coherent. Rule COERINST is the counter part
of COERGEN: it instantiates the abstraction by a type of the
right kind. Notice that COERGEN is the only rule using typing
coercions in a crucial way and that could not be presented as
a coercion if we just had type coercions.

Rule COERPI is an η-expansion rule and should be under-
stood by typing the η-expansion of the incoherent polymorphic
type ∂ ([]♦), inserting a coercion around the incoherent ap-
plication. Placing a term with typing Γ,Σ ` Π(α′ : κ′) τ ′ in
the hole, we may first apply weakening to get a typing of
the form Γ, (α : κ),Σ ` Π(α′ : κ′) τ ′. By instantiation (Rule
TERMINST), we get a typing Γ, (α : κ),Σ ` τ ′[α′ ← σ′]
provided Γ, (α : κ),Σ ` σ′ : κ′. Applying a coercion
(Σ ` τ ′[α′ ← σ′]) . τ (Rule TERMCOER), we obtain the typing
Γ, (α : κ) ` τ , which we may generalized (Rule TERMGEN) to
obtain the typing Γ ` Π(α : κ) τ of ∂ ([]♦). Notice that, as
Rule COERGEN, we do not require coherence for the kind κ,
just its well-formedness. However, we require the coherence
of the type environment extension Σ under Γ. This is a very
important premise because we do not want the incoherence

7

RECVAR

α 7→ α : ne

RECARR

(α 7→ τi : ne)i∈{1,2}

α 7→ τ1 → σ2 : wf

RECPROD

(α 7→ τi : ne)i∈{1,2}

α 7→ τ1 × σ2 : wf

RECFOR

α /∈ fv(κ) α 7→ τ : χ

α 7→ ∀(β : κ) τ : χ

RECPI

α /∈ fv(κ) α 7→ τ : ne

α 7→ Π(β : κ) τ : wf

RECMU

β 7→ τ : wf α 7→ τ : χ

α 7→ µβ τ : χ

RECWF

α /∈ fv(τ)

α 7→ τ : wf

RECNE

α 7→ τ : wf

α 7→ τ : ne

Fig. 8. Well-foundedness judgment relation

of κ to leak in Σ and thus under the coercion, because η-
expansions are coercions and thus erasable.

Rules COERFOLD and COERUNFOLD are the usual folding
and unfolding of recursive types, which give the equivalence
between µα τ and τ [α← µα τ]. Interestingly, the usual rules
for reasoning on recursive types [7] are admissible using
PROPFIX (we write τ1 /. τ2 for τ1 . τ2 ∧ τ2 . τ1):
COERPERIOD

α 7→ σ : wf

Γ; Θ ` (τi /. σ[α← τi])
i∈{1,2}

Γ; Θ ` τ1 . τ2

COERETAMU

Γ, (α, β, α . β); Θ ` τ . σ
Γ; Θ ` µα τ . µβ σ

Interestingly, the proof for COERPERIOD requires reinforcement
of the coinduction hypothesis since we need τ1 /. τ2 and not
just τ1 . τ2 in the coinduction hypothesis.

Finally, the well-foundedness judgment, written α 7→ τ : χ,
means that α 7→ τ is well-founded when χ is wf or non-
expansive when χ is ne. The rules are unsurprising. The most
interesting rules are RECARR, RECPROD, and RECPI which
ensure well-foundedness provided the components are them-
selves non-expansive. Conversely, rules RECFOR and RECMU

just transfer both well-foundedness and non-expansiveness
from their components. For polymorphic types the abstract
variable should not appear in its bound to ensure well-
foundedness or non-expansiveness. Of course, recursive types
can only be well-formed if they are well founded (left premise
of RECMU).

IV. PROPERTIES

System Fcc is sound: erroneous terms never appear during
the evaluation of well-typed programs. Moreover, in the ab-
sence of recursive types and coinduction, all reduction paths
terminate. Finally, in the absence of incoherent abstraction, the
reduction is confluent.

However, we loose confluence in the presence of incoherent
abstraction, since a partially evaluated term a may be sub-
stituted under an incoherent abstraction, after which further
reductions won’t be permitted inside a. This is a well-known
problem when mixing strong and weak reduction strategies
with also a well-known solution [8]: confluence can easily be
restored by using explicit substitutions to hold the substitution
at the entry of an incoherent abstraction until the abstraction
is applied and evaluation may be resumed. A variant of this
solution (in the spirit of [9]) is to add in the language an
incoherent weakening construct to cancel the freezing effect of

the incoherent abstraction: reduction could still be performed
in the weakened part of the incoherent abstraction. This avoids
explicit substitutions, but complicates reduction contexts that
have to look under incoherent abstractions for occurrences of
incoherent weakenings.

Subject reduction is also lost in Fcc—although the language
is sound. This is just the consequence of our decision to move
from an explicit calculus of coercions to implicit coercions.
The type system is just not rich enough to track after reduction
the invariants that can be expressed by coercions on source
programs, typically when coercions are used in wedges.

The language Fcc has been formalized in Coq and its
properties have been mechanically verified2.

V. EXPRESSIVITY

The language Fcc is more expressive than Fpι : apart from the
change of presentation, moving from type coercions to typing
coercions and from explicit coercions to implicit coercions, the
only significant change is for type and coercion abstraction:
the new construct of Fcc which by design generalizes the two
forms of coercion abstraction in Fpι . Indeed, we can choose
⊥ (resp. >) to witness coercions that are parametric in their
domain (resp. range). Therefore the languages F<:, MLF, and
Fη which are subsumed by Fpι can also be seen as sublanguages
of Fcc.

A. Encoding subtyping constraints

We claim that languages with ML-like subtyping con-
straints [10] can be simulated in Fcc. With subtyping con-
strains, term judgments may be written A ` e : τ | C where
A is the environment, e the expression, τ its type, and C is a
sequence of subtyping constraints, e.g. as in [11].

To ease the embedding of subtyping constraints in Fcc, we
slightly abuse of notations. First, we see let-bindings as the
usual syntactic sugar for redexes. We write α for a sequence of
variables α1 . . . αn where n is left implicit. Given a sequence
of variables α, we see αi as α.i, the i’th projection of α. We
write (α | P) as a shorthand for the type binding (α : {α :
?n | P}) where n is the size of α. Finally, we see constraint
type schemes ∀α.C ⇒ τ as the coherent polymorphic type
∀(α | C) τ .

A term judgment A ` e : τ | C can then be seen as the
Fcc judgment (ᾱ | C), A ` e : τ where α are free variables
of A, C, and τ . Notice that the environment in the translation
of judgments is always of the form (α | C), A composed of
a single abstraction block (α | C) followed by term bindings
A.

Type systems with subtyping constraints use two notions,
solvability and consistency, that coincide in ML. Solvability
means that one can find a ground instance for type variables
that solves the constraints. Consistency means that transitive
and congruence closure of the set of constraints does not
contain inconsistencies.

We claim that solvability of a set of constraints C implies
the consistency of the translation of C, since it amounts to

2See http://gallium.inria.fr/~remy/coercions/ for details.

http://gallium.inria.fr/~remy/coercions/

8

COERREFL

Γ ` τ : ?

Γ; Θ ` τ . τ

COERTRANS

Γ,Σ′; Θ ` (Σ ` τ) . τ ′ Γ; Θ ` (Σ′ ` τ ′) . τ ′′

Γ; Θ ` (Σ′,Σ ` τ) . τ ′′

COERWEAK

Γ; Θ ` (Σ ` τ) . σ

Γ; Θ ` τ . σ

COERTOP

Γ ` τ : ?

Γ; Θ ` τ . >
COERBOT

Γ ` τ : ?

Γ; Θ ` ⊥ . τ

COERARR

Γ,Σ; Θ† ` τ . τ ′ Γ; Θ† ` (Σ ` σ′) . σ

Γ; Θ ` (Σ ` τ ′ → σ′) . τ → σ

COERPROD

(Γ; Θ† ` (Σ ` τi) . σi)i∈{1,2}

Γ; Θ ` (Σ ` τ1 × τ2) . σ1 × σ2
COERPI

Γ
 κ Γ ` Σ Γ, (α : κ),Σ ` σ′ : κ′ Γ, (α : κ); Θ† ` (Σ ` τ ′[α′ ← σ′]) . τ

Γ; Θ ` (Σ ` Π(α′ : κ′) τ ′) . Π(α : κ) τ

COERGEN

Γ ` κ Γ, (α : κ) ` τ : ?

Γ; Θ ` (α : κ ` τ) . ∀(α : κ) τ

COERINST

Γ, (α : κ) ` τ : ? Γ ` σ : κ

Γ; Θ ` ∀(α : κ) τ . τ [α← σ]

COERUNFOLD

α 7→ τ : wf Γ, (α : ?) ` τ : ?

Γ; Θ ` µα τ . τ [α← µα τ]

COERFOLD

α 7→ τ : wf Γ, (α : ?) ` τ : ?

Γ; Θ ` τ [α← µα τ] . µα τ

Fig. 7. Coercion judgment relation

exhibit type witnesses such that the constraints hold. These
witnesses lie in a syntax with simple types and recursive types.
Moreover, since solvability is equivalent to consistency, we
conclude that consistency is equivalent to coherence.

The two interesting typing judgments for subtyping con-
straints are for let-binding and subsumption. These are as
follows and are derivable in Fcc:

α ` σ α ` C ′[β ← σ]

(α | C),Γ, (x : ∀(β,C ′)τ) ` b : ρ (α, β | C ′),Γ ` a : τ

(α | C),Γ ` (λx b) a : ρ

(α | C),Γ ` a : τ (α | C ′) ` C ∧ τ . σ
(α | C ′),Γ ` a : σ

However, there remain two differences with the way subtyping
constraints are usually handled. A judgment A ` e : τ | C is
valid when C is consistent while our corresponding judgment
(fv(A,C, τ) | C), A ` e : τ is valid when C is solvable, i.e.
` (fv(C) | C), which must exhibit a substitution θ of domain
fv(C) such that ∅ ` Cθ. While consistency and solvability
coincide in ML with subtyping constraints, this need not be
the case. Consistency is a semantic property while solvability
is a syntactic property. Using consistency instead of solvability,
we only have to verify a property of the constraints without
having to exhibit a concrete solution. Consistency is more
flexible than solvability. In practice, it can also be checked
more modularly.

We already have some flexibility to reason about coherence
in Fcc using propositions and assumptions in the typing con-
text. However, constraint entailment differs in both systems.
In particular, we cannot express the decomposition of typing
constrains, e.g. deduce the consistency of σ . σ′ from the
consistency of τ → σ . τ → σ′, as is the case with subtyping
constraints.

The reason is that subtyping constraints are syntactic and
taken in a closed-world view: subtyping relations that cannot
be expressed syntactically do not hold, which can be used
to reinforce constraint entailment. Our approach in Fcc is
semantic and syntactic coercions must be interpreted in the
semantics. Since our semantics has more types and coercions
than the syntax allows to build, some reasoning principles
that would be true from a purely syntactic point of view will

not hold in our semantics and thus cannot be added in the
syntax. We are bound to an open-world view. Still, it would
be interesting to see how our approach could be extended to
allow a form of closed world view and express some negative
information.

B. Encoding GADTs

Incoherent polymorphism is necessary for features that
contain some form of dynamic typing, such as GADTs. It may
also be a simplification for the programmer that does not have
to provide the witness type that proves the coherence—but at
his own risk of delaying type errors.

In this subsection we show how GADTs can be encoded
with incoherent polymorphism and also how coherence and
incoherent polymorphism can be interestingly mixed.

Incoherent polymorphism permits type abstraction for any
well-formed kind: inhabited kinds, potentially inhabited kinds,
and empty kinds. In the polymorphic type Π(α : κ) τ , the
coherence of kind κ may depend over some type variable β
of the type environment. Depending on how β is instantiated,
the kind κ may or may not be inhabited.

Before we give a concrete example, let us first introduce
existential types by their CPS encoding. Because we have two
notions of polymorphism, coherent and incoherent, we also
have two notions of existential types: we write ∃(α : κ) τ
for coherent existential types and Σ(α : κ) τ for incoherent
existential types3 defined as follows.

coherent: ∃(α : κ) τ
def
= ∀β (∀(α : κ) (τ → β))→ β

incoherent: Σ(α : κ) τ
def
= ∀β (Π(α : κ) (τ → β))→ β

We define the pack and unpack term syntactic sugar for
the coherent existential, and ipack and iunpack for their
incoherent version. Notice that the body of the iunpack sugar
is hidden under an incoherent type abstraction, and as such is
allowed to be unsound because it cannot be reduced.

pack a
def
= λxx a unpack a asx in b

def
= a (λx b)

ipack a
def
= λxx♦ a iunpack a asx in b

def
= a (∂ λx b)

3Σ here is a binder and has of course no connection with Σ used as typing
environments.

9

Let’s assume we have type-level functions and sum types. We
can now define the following GADT, named Term, and with
kind ?→ ? (where τ /. σ stands for τ . σ ∧ σ . τ as above):

Termα
def
= Σ(β : ?× ? | α /. (π1 β → π2 β))α
+ ∃β Term (β → α)× Termβ

This GADT is the sum of an incoherent existential type and a
coherent one. The incoherent existential type requires α to be
an arrow type and stores a term of such type; it also names
π1 β the argument type and π2 β its return type. The coherent
existential type adds no constraint on α but stores a pair such
that its first component applied to its second component is of
type α; it names β the intermediate type. The Term GADT
contains two constructors: one for the left-hand side of the
sum injecting functions and one for the right-hand side of
the sum freezing function applications. We can define its two
constructors in the following manner:

Lamx
def
= inl (ipackx)
: ∀α ∀β (α→ β)→ Term (α→ β)

App y x
def
= inr (pack 〈y, x〉)
: ∀α ∀β Term (α→ β)→ Termα→ Termβ

We can now define a recursive eval function taking a term
of type Termα and returning a term of type α for all type
variable α. Said otherwise, eval has type ∀α (Termα→ α).
When the argument is on the left-hand side of the sum, eval
simply unpacks it and returns it. When the argument is on the
right-hand side of the sum, eval fist unpacks it as a pair and
applies the evaluation of the first component to the evaluation
of the second component. We thus use the incoherent version
of unpacking on the left-hand side and the coherent version
on the right-hand side.

evalx = case x of
{ inlx1 7→ iunpackx1 as y in y
| inr x2 7→ unpackx2 as y in (eval (π1 y)) (eval (π2 y))}

Let’s now suppose that we call eval with a term of type
Term (τ × σ). This term is necessarily from the right-hand
side of the sum because τ × σ cannot be equivalent to an
arrow type by consistency. However, in the first branch, in
the body of the inconsistent unpack, we have access to the
proposition τ × σ /. π1 β → π2 β which is inconsistent. This
sort of inconsistency in some branches of case expressions is
frequent with GADTs. Notice however, that we can reduce
the second branch because we used a coherent existential type
since there is a witness for β for any instantiation of α.

VI. DISCUSSION

We first compare Fcc with our prior work and other related
works; we then discuss language extensions and future works.

A. Comparison with Fpι
The closest work is of course our previous work on Fpι of

which Fcc is an extension. The main improvement in Fcc is the
ability to abstract other arbitrary constrains, but as a serious
drawback one has to provide coercion witnesses to ensure the
coherence.

Coherence is sufficient for type soundness, but in an explicit
language of coercions it does not suffice for subject reduction,
which also requires that the language has a rich syntactic
representation to keep track during the reduction of invariants
expressed by coercions. Our approach in Fcc is to avoid the
need for decomposing abstract coercions into smaller ones by
presenting an implicit version of the language. This also avoids
introducing new coercion constructs in the language and their
associated typing rules—which we failed to prove to be sound
by syntactic means in an explicit language of coercions.

Therefore, moving from Fpι to Fcc has a cost—the lost
an explicit calculus of coercions with subject reduction. Of
course, one can still introduce explicit syntax for coercion
typing rules in the source so as to ease type checking, but
terms with explicit coercions will not have reduction rules
in Fcc.

An interesting question is whether there are interesting
languages between Fpι and Fcc that would still have a (relatively
simple) calculus of explicit coercions. If we restrict to certain
forms of coercions, instead of general coercions, the question
of coherence may be much simpler. For example, one could
just consider equality coercions as in the language FC.

In Fcc, we simultaneously abstract over a group of type
variables and coercions that constrain those variables. The
choice of grouping must be such that the group is coherence
for all possible instantiation of variables in the context.

We have also explored a syntactically more atomic version
of Fcc where type and coercion abstraction are separate con-
structs as in Fι [1]. Namely, the usual type abstraction ∀α τ and
coercion abstraction (τ1 . τ2) ⇒ σ—a term of type σ under
the hypothesis that τ1 . τ2 holds. For instance, this would
permit to write a function of type ∀α (α → (τ1 . τ2) ⇒ σ)
and apply it to a type parameter, then to a value of type α,
and finally to a coercion. However, this additional flexibility is
negligible, these are just η-expansion variants of terms in Fcc.
Moreover, related type abstractions and coercions should still
be checked simultaneously. That is, even if the arguments are
passed separately, the typing derivation must maintain a notion
of grouping underneath so as to check for coherence. The
solution in Fcc seems a better compromise between simplicity
and expressiveness.

B. Comparison with other works

To the best of our knowledge there is no previous work con-
sidering typing coercions. However, the use of type coercions
to study features of type system is not at all new. Coercions
have also been used in the context of subtyping, but without
the notion of abstraction over coercions.

The heavy use of coercions in FC, the core language of
GHC, was one of our initial motivations for studying coercions
in a general setting. In FC, only toplevel coercion axioms
coming from type families and newtypes are checked for
consistency. Local coercion abstractions are not. This is safe
because all coercion abstractions in FC freeze the evaluation.
This simplifies the meta-theory but at some significant cost,
since the evaluation must be delayed to never reduce in a
potentially inconsistent context. Our inconsistent coercions

10

largely coincide to—and was inspired by coercions in FC.
In return what Fcc offers in addition is the ability to choose
between coherent and incoherent coercion abstractions so that
coherent coercions could be expressed as such and thus not
freeze the evaluation and still bring more static guarantees to
the user. While Fcc treats coercions in the general case, FC
considers only a very specific case of equality constraints—
with additional restrictions—so that e.g. coherence of toplevel
coercions axioms can be checked automatically.

Coercions have also been used to eliminate function call
overhead from datatype constructors in [12]: the folding and
unfolding of datatype definitions are done using erasable
coercions, thus with no run-time effect or hidden cost while
preserving the semantics.

Recursive coercions have also been used to provide coercion
iterators over recursive structures [13]. However, the motiva-
tions are quite different and coercions are only used as a tool to
compile bounded quantification away into intersection types.

C. Extensions and variations
Higher-order types: We introduced Fcc as an extension

of System F, thus restricting ourselves to second-order poly-
morphism. We have verified that our approach extends with
higher-order types as in Fω .

Intersection types: It should also be possible to add in-
tersection types. (Our semantics already has them.). Following
the work of Wells [14] on branching types, it would then be
interesting to have intersection types as branching typings.

Existential types: We haven’t included existential types
in Fcc and just used their standard CPS encoding into uni-
versal types. Adding primitive existential types would also
be interesting but not immediate. This is not so surprising
as the combination of existential types with strong reduction
strategies is known to raise difficulties. A solution we have
started to investigate is to use a reduction strategy equivalent
to strong reduction but where only terms starting with a
constructor are substituted. This relates to existing calculi with
explicit substitutions and generalizes call-by-need calculi to
strong reduction.

Side effects: We have studied a calculus of coercions in
an ideal theoretical setting, but we do not foresee any problem
in applying this to a real programming language with impure
features such as side effects. We are not bound to a strong
reduction strategy, but on the opposite have all the freedom
to choose weak reduction strategies for term abstractions. In
the presence of side-effects, we would have a form of value-
restriction, allowing type and coercion abstractions only on
value forms. We do not expect this to raise new problems
with coercions—nor do we expect them to disappear!

From implicit to explicit non-reducible coercions: When
coercions are left implicit they must be inferred—as well as
coercion witnesses, which is obviously undecidable in the
general case. (Typechecking in Fη or in the most expressive
variant of F<: are already undecidable.) In practice, the user
should provide both of them explicitly—or at least provide
sufficient information so that they can be inferred. Hence, a
surface language would probably have explicit coercions—
just for typing purposes—and coercions should be dropped

after typechecking. Indeed, we do not describe how coercions
and, in particular, wedges can be reduced. In this setting, our
soundness result still applies—reduction will not introduce
erroneous programs—but it does not imply subject reduction:
it may happen that after reduction there is no way to redecorate
the residual program with explicit coercions to make it well-
typed. We believe that this is the price to pay for the generality
offered by our approach.

CONCLUSION

Generalizing the notion of type coercions to typing coer-
cions, we have proposed a type system where the distinction
between the computation and the typing aspects of terms have
been completely separated. It subsumes many features of exist-
ing type systems including subtyping, bounded quantification,
instance bounded quantification, and subtyping constraints.

The soundness of our calculus has been proved using the
step-indexed semantics technique which we have adapted to
work for calculi with strong reduction strategies.

As for coercions, several research directions remain to be
explored. Hopefully, new type system features such depen-
dent types could still be added. A surface language with
explicit coercions annotations is a prerequisite for decidable
type checking. Variations on constraints allowing closed-world
views as well as restrictions to recover subject reduction are
worth further investigation.

REFERENCES

[1] J. Cretin and D. Rémy, “On the power of coercion abstraction,” in
Proceedings of the annual symposium on Principles Of Programming
Languages, 2012.

[2] J. C. Mitchell, “Polymorphic type inference and containment,” Informa-
tion and Computation, vol. 2/3, no. 76, 1988.

[3] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov, “An extension of
system f with subtyping,” Information and Computation, vol. 109, no.
1/2, pp. 4–56, 1994.

[4] D. Le Botlan and D. Rémy, “Recasting MLF,” Information and Com-
putation, vol. 207, no. 6, 2009.

[5] J. Cretin and D. Rémy, “System f with coercion constraints,” Jan 2014,
avaliable at http://gallium.inria.fr/ remy/coercions.

[6] J. Cretin, “Erasable coercions: a unified approach to type systems,” Ph.D.
dissertation, Université Paris Diderot, Paris 7, 2014, to appear.

[7] R. Amadio and L. Cardelli, “Subtyping recursive types,” ACM TRANS-
ACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, vol. 15,
no. 4, pp. 575–631, 1993.

[8] J.-J. Lévy and L. Maranget, “Explicit substitutions and programming
languages,” in Foundations of Software Technology and Theoretical
Computer Science, ser. LNCS, 1999, vol. 1738, pp. 181–200.

[9] T. Blanc, J.-J. Lévy, and L. Maranget, “Sharing in the weak lambda-
calculus,” in Processes, Terms and Cycles: Steps on the Road to Infinity,
ser. LNCS, 2005, vol. 3838, pp. 70–87.

[10] M. Odersky, M. Sulzmann, and M. Wehr, “Type inference with con-
strained types,” Theory and Practice of Object Systems, vol. 5, no. 1,
pp. 35–55, 1999.

[11] F. Pottier, “Simplifying subtyping constraints,” in Proceedings of the
International Conference on Functional Programming, 1996.

[12] J. C. Vanderwaart, D. Dreyer, L. Petersen, K. Crary, R. Harper, and
P. Cheng, “Typed compilation of recursive datatypes,” in Workshop on
Types in Language Design and Implementation (TLDI), 2003.

[13] K. Crary, “Typed compilation of inclusive subtyping,” in Proceedings
of the International Conference on Functional Programming, 2000.

[14] J. B. Wells and C. Haack, “Branching types,” in Proc. of the European
Symposium On Programming Languages and Systems, 2002.

	Introduction
	The design of Fcc
	Language definition
	The syntax and semantics of terms
	Types, kinds, propositions, and coercions
	Typing judgments

	Properties
	Expressivity
	Encoding subtyping constraints
	Encoding GADTs

	Discussion
	Comparison with F-iota-param
	Comparison with other works
	Extensions and variations

	References

