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Abstract

Modern ML-style type inference relies on an extension of first-order
unification to efficiently deal with type generalization. However, ML-like
type systems, and especially OCaml also allows type abbreviations, in-
cluding recursive and deconstructive type abbreviations. We show how
first-order unification can be extended to efficiently deal with type abbre-
viations and remain compatible with type inference.

Both deconstructive type abbreviations, which constrain their argu-
ments to be of a certain shape, and projective type abbreviations, which
just returns one of their argument, must is expanded eargerly, while purely
constructive type abbreviations, which do not examine their parameters
and construct a new type structure from their parameters, can be ex-
panded lazily. General type abbreviations that mix both may be decom-
posed into a destructive part destructive part, which must be expanded
eagerly and a constructive part which can still be expanded lazily.

Recursive type abbreviations are solved by encoding them into non-
recursive type abbreviations that expand to recursive types.
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1 Introduction

Modern ML-style type inference relies on an extension of first-order unification
to efficiently deal with type generalization. However, ML-like type systems, and
especially OCaml also allows type abbreviations. In particular, OCaml allows
deconstructive type abbreviations, which uses only subterms of their parameters
in their expansion.

A semantically correct and trivial treatment of type abbreviations is to first
expand while as a preliminary step. However, this defeats the original purpose
of abbreviations, which is to improve not only writing of input types but also
and especially reading of inferred types. That is, we wish to keep user-provided
abbreviations as long as possible. Besides, type abbreviations may also improve
efficiency of type inference by concisely representing some common patterns.
This, however, requires to work with type abbreviations and expand them lazily,
on demand while preserving sharing of expanded forms.

This is particularly crucial in OCaml for object types whose expanded forms
can sometimes be quite large (more than an order of magnitude). Currently,
OCaml already performs lazy expansion, but does not in an optimal way, and
its approach has not been formalized.

We show how to efficiently extend first-order unification to deal with type
abbreviations. Type abbreviations are kept in inferred types, but choice of
which form—abbreviated or expanded—to show, or rather which strategy to
use when printing types is left to the user.

Both deconstructive type abbreviations, which constrain their arguments to
be of a certain shape, and projective type abbreviations, which just returns
one of their argument, must is expanded eargerly, while purely constructive
type abbreviations, which do not examine their parameters and construct a
new type structure from their parameters, can be expanded lazily. General
type abbreviations that mix both may be decomposed into a destructive part
destructive part, which must be expanded eagerly and a constructive part which
can still be expanded lazily.

Recursive type abbreviations are solved by encoding them into non-recursive
type abbreviations that expand to recursive types.

2 Type abbreviations in ML

A basic type abbreviation could be of the form:

type var = string * int

This allows to write var instead of string * int just for conciseness, to avoid
mistakes, or to be more readable. While abbreviations are introduced by the
user in his programs,

let string_of_var (x : var) = (fst x) ^ string_of_int (snd x)

the user also expect the inferred type be printed with abbreviations:
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unfreeze : var -> string

This requires that type inference keeps track of abbreviations, even when they
must be expanded during type checking to check the compatibility with ex-
panded forms. That is, the user expects to see types as abbreviations—where
they where originally abbreviations and not otherwise. In particular, every pair
string * int should be abbreviated as var. For example, when writing

let adult (name : string, age) = age > 18

the user would be surprised (and unhappy) if the inferred type were var -> bool

instead of string * int -> bool.
That is, the user does not expect type inference to use abbreviation in the

reserve way for contracting all types that could be printed as abbreviations (even
if this could sometimes be useful in some very specific cases).

Odd usage of regular type abbreviations Type abbreviations may also
be used in less usual ways to carry extra information along phantom parameters,
i.e., parameters that do not appear in the expanded form, as in:

type ’a str = string

let one : int str = "1"

As these parameters are ignore, they are not decomposable and cannot be source
of a clash:

let f : bool str = "false"

Indeed, one of type int str and f of type bool str are compatible types since
they both expand to string.

Somewhat similarly, they may also be used a marker to make a type look
different while it is not—the type abbreviation marker will vanish when in con-
flict.

type ’a special = ’a

let one : int special = 1

let r = one + 2

Although, the type int special of one looks as a special kind of an int, it is
nothing else but int.

Destructive type abbreviations More interestingly, we may define abbre-
viations whose type parameters are constrained¿:

type ’a elem = ’b constraint ’a = ’b list

That is, ’a elem requires ’a to be of the from b list and is then equal to ’b.
The above definition is intuitively equivalent to the follow definition (illegal in
OCaml):

type (’a list) elem = ’a
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It allows to write:

let cons (h : ’a elem) (t : ’a) : ’a = h :: t

Notice than while type abbreviations have been available in OCaml for about two
decades, they have never be formalized and typechecking them still raises issue
in corner cases—typechecking the above expression erroneously loops in OCaml
(version 4.09). Arguments of deconstructive type abbreviations may themselves
be deconstructive, indeed:

let cons_elem (x : ’a elem elem) (t : ’a) : ’a = [x] :: t

Deconstructive abbreviations may still be constructive at the same time:

type ’a swap = ’c * ’b where ’a = ’b * ’c

let swap (x, y : ’a) : ’a swap = y, x

Examples with objects

Type abbreviations and modules

3 ML-style type inference

3.1 Constraints generation

3.2 Constraints resolution

3.3 Unification in plain ML

4 Type abbreviations

4.1 Notations

Given a relation R, we write R∗ for the reflexive transitive closure of R and
R∞ for the saturation of R, i.e., the relation defined by

x R∞ y ⇐⇒ x R∗ y ∧ ∀z,¬(y R z)

We write R1 ;R2 for the composition of relations R2 ◦ R1 in inverse order.

4.2 Types

We write α or β for type variables and F for type constructors, which may be
primitive type constructors or type abbreviations. Primitive type constructors
are such as int, bool, etc., or parameterized such as list, ∗, →, etc. Types may
also be recursive. Recursive types are defined with the construction µ(α) τ and
require τ to be productive, i.e., equal to a term of the form Fσ̄ where F is a
primitive type constructor.

τ, σ ::= α | Fτ̄ | µ(α) τ
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We call primitive types those without type abbreviations. The equality on
primitive types is that on iso-recursive types.

Unfolding

µ(α) τ = τ [α← µ(α) τ ]

Coinduction
τ productive τ1 = τ [α← τ1] τ2 = τ [α← τ2]

τ1 = τ2

Type equality also coincide with equality of their representation as infinite reg-
ular trees. It can be check by equality of automaton, or more efficiently by the
unification algorithm.

Small types are types of depth at most 1, i.e., with type variables or a type
constructor (which may be a type abbreviation) applied to a type variable.

We write V for be the set of type variables We write ftv(τ) for the set of
type variables occurring in τ . Type constructors come with a fix arity, so that
all occurrences of F have the same number of arguments.

4.3 Ground types

Ground types are regular trees built out of type constructors and respecting
their arities. That is, they do not contain type variables.

4.4 Type abbreviations

A type abbreviation is a constructor F that comes with a pair written Fᾱ . σF
where ᾱ is a tuple of disjoint type variables such that ftv(σF) ⊆ ᾱ.

We write F1 ≺ F2 when F1 is a base type constructor or F1 is a type abbre-
viation F1ᾱ . σF1

and F2 does not appear in σF1
.

We assume that ≺ is a strict partial ordering, i.e., irreflexive and transitive.
We call definitional-ordering any total ordering that extends ≺.

Type abbreviations define rewriting rules Fᾱ . σF, which can be applied
in any context. This defines a rewriting system −., which is terminating on
finite terms, as well as on syntactic terms. That is, if a regular tree is defined
syntactically with the µ(α) τ notation, then rewriting τ with −. eliminates all
type abbreviations in τ . Hence, the fact that syntactic terms represent regular
trees does not raise any problem regarding the expansion of type abbreviations,
if we perform then on the finite syntactic representation and preserve sharing,
i.e., do not perform unfolding.

We write Oτ the full expansion of τ , i.e., the type τ ′ such that τ −.∞ τ ′.
This also defines an equality =E on ground types obtained by expanding all

type abbreviations and testing usual equality on the resulting canonical forms,
that is:

τ1 =E τ2 ⇐⇒ Oτ1 = Oτ2

where simple equality is equality without equations but in the presence of re-
cursive types, as usual.

We define the set of free type variables ftv(τ) that appear syntactically in
τ , as usual, but also the set of type variables remaining after expansion ftv∇(τ)
equal to ftv(Oτ).
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Phantom and decomposable parameters In particular, type abbrevia-
tions allow to define phantom type parameters: A position i in an abbreviation
Fᾱ . σF is phantom if αi /∈ ftv∇(σ).

A phantom occurrence is an occurrence in a term whose path contains a
phantom position. We can compute ftv∇(τ) without computing Oτ just by
not following phantom positions of type constructors. Therefore, we can also
compute phantom positions of type constructors, in definitional ordering.

A position i in F is decomposable if Fτ̄ = Fτ̄ ′ implies τi = τi
′. A phantom

occurrence is actually decomposable when it is not phantom. We write ↓F the
set of decomposable positions of F.

Head expansion Consider a type abbreviation Fᾱ . σF. The expansion OσF
may be a variable or a type constructor.

If OσF is a type variable β, it must be some αi of ᾱ: we write ∨̇F = i and
say that the type abbreviation F (or Fᾱ) is degenerate. Otherwise, OσF must
be of the form Gτ̄ where G a primitive constructor: we write ∨̇F = G and say
that F is productive. Notice that when Fᾱ is degenerate, all its arguments but
one are phantom. We extend ∨̇ to be the identity function on primitive type
constructors.

We can compute ∨̇F without expanding σF by searching in σF for the topmost
occurrence of a symbol G that is productive and not in at a phantom path. Then,
∨̇F is equal to G if G is primitive or ∨̇G otherwise.

When F is productive, the topmost constructor of σF is a type constructor
F1 and we write F m F1.

If ∨̇F = G, then F m∞ G. We actually have a chain

F = F0 m F1 m . . .Fn = G

whose length n is called the rank of F and written rank F.
The rank can be inductively defined, without computing the chain: taking

0 for the rank of a primitive type constructor, we then have rank F = 1 + rankG
when F m G. The rank is only defined for productive type abbreviations.

Notice that the relation m can be represented by a forest where roots are
exactly primitive type constructors, and all constructors in a given tree have
the same head-constructor—the root of the tree. When F1 and F2 are in the
same forest, we write F1 ∨ F2 the smallest G such that F1 m∗ G and F2 m∗ G.
We say that a set of type constructors S is connected if for any pair of type
constructors F and G in S, there is a path subset Fi

i∈1..n in S such that

F = F0 m F1 m . . .Fn = G

Compatibility Head expansion may also be used to check whether two type
constructors F and G are compatible. Ideally, we wish F ./ G to tell that two
terms σ and σ′ with top constructors F and G cannot be unified. Hence, the
definition:

F ./∞ G ⇐⇒ ∃ᾱβ̄ · Fᾱ .
= Gβ̄ ≡ false
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This cannot in general be computed from information coming from F and G
independently, and instead need to be computed for every pair (F,G). In par-
ticular, tabulating the results so that ./ can be checked in constant time would
require space proportional to the square of the number of symbols.

In fact, we need not an exact computation of ./, just an approximation that
contains the minimal relation ./0 defined as the restriction of 6= to primitive
type constructors. This allows earlier detection of clashes—without further
expansions—and might speed up when unification is more expected to fail than
succeed.

That is, we need a relation ./ such that ./0 ⊆ ./ ⊆ ./∞. A (good) possible
choice is

F ./1 G ⇐⇒ ∨̇F = F0 ∧ ∨̇G = G0 ∧ F0 ./0 G0

which can be computed efficiently, as it only requires the precomputation of ∨̇
for every type constructor.

4.5 Recursive definitions of type abbreviations

We wish to also allow recursive type abbreviations (Fi(ᾱ) = σi)
i∈I where Fj

may appear in σi. We request however that all occurrences of Fj be applied to
the same tuple of variables ᾱ. This ensures that recursion is regular. We may
further assume that there is no j such that Fj ≺ Fi for all i 6= j. Otherwise, Fi

could be defined prior to others.
Let (βi)

i∈I be a collection of fresh type variables. Let σ̂i
i∈I be σi where each

occurrence of Fᾱi has been replaced by βi.
We defined the collection of intermediate non recursive type abbreviations

(F̂i(ᾱβ̄) = σ̂i)
i∈I .

We then redefined Fi(ᾱ) . µ((βj = F̂j(ᾱ, β̄))j∈J)βi for each i in I, which are

all independent, as they only depend on previously defined collection (F̂i)
i∈I .

We have used here a general form of recursive types µ(αi = σi)σ that gener-
alizes µ(α)σ—but does not add any difficulty: it stands for the type φσ where
φ is the principal solution of the equations αi = σi, that is if I is 1..n and φ0
is the identity, then φ = φn where φi+i = [αi 7→ µ(αi)φσi] ◦ φ. However, the
syntactic form µ((βi = σi)

i∈I)σ is more compact and we may keep as a possible
syntactic form.

If we only introduce F̂i’s symbols by expansion of Fi’s, then we establish
the invariant that for any occurrence of F̂i(σ̄, τ̄), the term τj is always E-equal

to F̂j(σ̄, τ̄). This invariant is preserved by all transformations that preserve

E-equality. Besides, when this invariant holds, we also have F̂i(σ̄, τ̄) = Fiσ̄.

That is, we can see F̂i(σ̄, τ̄) as a version of Fiσ̄—instrumented to enable lazy
expansion of recursive occurrences. In particular, we may always read back Fiσ̄
form F̂i(σ̄, τ̄), which will just loose expanded forms, and thus re-expand them
again.

Example The most common case is a single recursively defined type abbrevi-
ation Fα . H(α,Fα). One may think of H as (or being replaced by) a very large
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term, which you wish to allocate lazily.
Following, the instructions above, we define an auxiliary abbreviation F̂(α, β) .

H(α, β) and redefine F . µ(β) F̂(α, β). Therefore, when Fτ must be expanded
in two steps, this will proceed in two steps: it first expands to the recursive
terms µ(β) F̂(τ, β), which in turn can be expanded to µ(β)H(τ, β), as expected.
Notice in particular that this enforces sharing between this expansion of Fτ of
of its recursive instances withing τ . Compare this with the naive expansion if
we had not used the auxiliary form:

Fτ −. H(α,Fτ) −. H(α,H(α,Fτ) −. . . .

The intermediate abbreviation still allows to do this, but this would require
“explicit” unfolding of µ(β) F̂(α, β), as this is not needed during unification.

Notice that the abbreviation Fα . µ(β) F̂(α, β) is a non recursive type abbre-

viation, as F does not occur in µ(β) F̂(α, β), but an abbreviation to a recursive
type, which is perfectly fine.

For a single recursive type abbreviation, we could have directly defined
Fα −. µ(β)H(α, β), without the helper type abbreviation F̂, as there is not
recursively defined abbreviation to delay the expansion of. Hence, the benefit of
helper type abbreviations really appears with multiple recursively defined type
abbreviations.

Consider F1α −. H1(α,F2α) and F2α −. H2(α,F1α). The encoding becomes

F̂1(α, β1, β2) −. H1(α, β2)

F̂2(α, β1, β2) −. H2(α, β1)

F1α −. µ(β1 = F̂1(α, β1, β2), β2 = F̂2(α, β1, β2))β1
F2α −. µ(β1 = F̂1(α, β1, β2), β2 = F̂2(α, β1, β2))β2

where

µ(β1 = F̂1(α, β1, β2), β2 = F̂2(α, β1, β2))β1 = µ(β1) F̂1(α, β1, µ(β2) F̂2(α, β1, β2))

µ(β1 = F̂1(α, β1, β2), β2 = F̂2(α, β1, β2))β2 = µ(β2) F̂2(α, µ(β1) F̂1(α, β1, β2), β2)

For example, head-expanding F1(τ) leads to µ(β1) F̂1(α, β1, µ(β2) F̂2(α, β1, β2))

which again head-expands into µ(β1)H1(α, β1, µ(β2) F̂2(α, β1, β2)) while leaving

µ(β2) F̂2(α, β1, β2) unexpanded.

Relaxed, regular recursive definitions We requested all occurrences of Fj

to be applied to the same tuple of variables, which ensure that recursions are
regular. This condition could can be relaxed, by allowing some of the parameters
to be instantiated by closed types.

For instance Fα = G2(α,Fα,FG0) is regular, as it can be encoded as:

F̂(α, β) = G2(α,Fα, β) Fα = F̂(α, µ(β) F̂(G0, β, β))

By contrast Fα = G2(α,F(G1α)) is not regular.
Since those recursive schemas are rare and can still be encoded (manually),

while the general case is involved and may be computationally costly, we do not
include them in the formalization.
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4.6 Deconstructive type abbreviations

Type abbreviation definitions may also deconstruct their argument, such as in
F(G(α)) . α, or more generally, type abbreviations of the form F(σ̄) = σF where
to be well-formed free type variable of σ0 should also appear in a decomposable
occurrence of σ̄.

However, this generalization will be better explained once we understood the
simpler cases of constructive type abbreviations, which can be categorized into
degenerate or productive type abbreviations, while by contrast deconstructive
type abbreviations mixes both concepts.

Hence, we will only consider them later in §7.

5 Multi-equations

5.1 Constraints and multi-equations

The grammar of constraints is

C ::= true | false | m | ∃α · C | C ∧ C

The existential quantification takes priority over conjunction of multiequations,
i.e., ∃α · C ∧ C stands for ∃α · (C ∧ C). Conjunction of multiequations if com-
mutative and associative.

Letter m stands for multiequations m. Multiequations are non multisets of
terms We write

.
= for the union of multiequations. That is, we write τ1

.
= τ2

.
=

. . . τn for multiequations.
The semantics of a constraint C is given by the set [[C]] of is solutions, i.e.,

the ground substitutions, mapping variables to ground types, satisfy all the
constraints simultaneously, or equivalently by the judgment φ ` C.

φ ` true
φ ` C1 φ ` C2

φ ` C1 ∧ C2

φ, α 7→ τ ` C0

φ ` ∃α · C
∀σ1, σ2 ∈ m,φσ1 =E φσ2

φ ` m

where type equality =E is that of the equational theory.
A constraint C1 implies a constraint C2 and we write C1 ` C2 if any solution

of C1 is also a solution of C2, i.e., [[C1]] ⊆ [[C2]]. Two constraints C1 and C2

are equivalent and we write C1 ≡ C2 they imply one another. We also write
C1 V C2 when we wish to orientate the equivalence for rewriting purposes.

5.2 Canonical forms for constraints

We may freely reorganize constraint by treating the conjunction of constraints ∧
as associative commutative with true as neutral element and false as absorbing
element, which indeed preserves the semantics. Besides, we implicitly use the
extrusion of existential bindings:

ExAnd
α#C

(∃α · C0) ∧ C ≡ ∃α · (C0 ∧ C)

10



The side condition α#C2 means that α /∈ ftv(C) where ftv(C) is defined in
the obvious way. Equivalences ≡ (or rewriting rules V) can be applied in any
context:

Context-Ex
C1 V C2

∃α · C1 V ∃α · C2

Context-And
C1 V C2

C1 ∧ C V C2 ∧ C

This allows to put constraints in canonical form ∃ᾱ ·
∧i∈I

mi, i.e., a conjunction
of multiequations preceded by existential quantification, or one of the trivial
constraint true or false.

In the following, we implicitly maintain such canonical forms after every
rewriting step. In particular, existential quantifiers are automatically extruded
and rewriting may be aborted to return false as soon as a subconstraint is
equivalent to false.

5.3 Multiequations and views

A multiequation is a multiset of terms. A substitution is a solution of a multi-
equation if it equates all terms of the multiequation, as indicated above in §5.1.

We introduce additional structure to multiequations by grouping terms into
views. Hence, views are themselves multisets of terms. We write ν for views.
We distinguish two kinds of views: a productive view 〈ν〉 contains productive
terms that whose head-constructors form a connected set; a degenerate view
[ν] contains terms that all head expands to some variable. We write τ

.
= ν for

adding term τ to the view ν.
A multiequation becomes a multiset of both isolated terms (as before) and

views. Views, i.e., the partitioning of the multiequation into views, can always
be dropped, leaving the multiequation as just a plain multiset of terms. In
particular, a solution of a multiequation with views is just a solution of the
multiequation ignoring views.

We still write
.
= for union both within view and within multiequations.

5.4 Unification without deconstructive abbreviations

We describe how to solve multisets of multiequations. We will initially establish
and maintain the following invariants:

• A multiequation has a unique (possibly empty) degenerate view [ν] such
that [ν]

.
= m ≡ m. That is, the variable head expansions of terms in

productive are already in m.

• A multiequation may have zero or several productive views. We maintain
a global invariant all terms in a productive view are equivalent, i.e., for a
whole system of constraint:

〈τ .
= τ0

.
= ν〉 .= m ∧ C ≡ 〈τ .

= ν〉 .= m ∧ C
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This equivalence is not however used to simplify constraints (from left to
right), as τ0 is kept in the view both for efficiency reasons and for better
presentation of the solutions of the multiequation.

Notice that variable terms are never put in views. Non variable terms are
introduced as such outside of a view, awaiting for being dispatched in either a
productive or degenerate view.

5.5 Simplification rules

Stutter

α
.
= α

.
= ν ≡V α

.
= ν

Merge

α
.
= [ν1]

.
= m1 ∧ α

.
= [ν2]

.
= m2 ≡V α

.
= [ν1

.
= ν2]

.
= m1

.
= m2

Dispatch-D
∨̇F = i

Fᾱ
.
= [ν]

.
= m ≡V [Fᾱ

.
= ν]

.
= αi

.
= m

Dispatch-P
∨̇F = G

Fτ̄
.
= m ≡V 〈Fτ̄〉 .= m

Trim
τ /∈ V α# τ1, τ2,m

F(τ̄1, τ, τ̄2)
.
= m ≡V ∃α · F(τ̄1, α, τ̄2)

.
= m ∧ α .

= τ

Trim-P
τ /∈ V α# τ1, τ2, ν,m

〈F(τ̄1, τ, τ̄2)
.
= ν〉 .= m ≡V ∃α · 〈F(τ̄1, α, τ̄2)

.
= ν〉 .= m ∧ α .

= τ

Decompose

〈Fᾱ .
= ν〉 .= 〈Fβ̄ .

= ν′〉 .= m ≡V 〈Fᾱ .
= Fβ̄

.
= ν

.
= ν′〉 .= m ∧ (αi

.
= βi)

i∈↓F

Clean

{Fᾱ .
= Fβ̄

.
= ν} .= m ≡V {Fᾱ .

= ν} .= m

Clash
F ./ G

〈Fᾱ .
= ν〉 .= 〈Gβ̄ .

= ν′〉 .= m ≡V false

Expand
Fβ̄ . Gτ̄

〈Fᾱ .
= ν〉 .= m ≡V ∃β̄ · 〈Gτ̄ .

= Fᾱ
.
= ν〉 .= m ∧i∈↓F αi

.
= βi

Rule Stutter removes duplicated variables. Rule Merge merges two multi-
equations that share a variable term.

Rules Dispatch-P and Dispatch-D place non-variable terms in views, accord-
ing to the degenerate vs. productive status of the head-symbol: for degenerate
terms, we also add αi in m, which amounts to fully expand F: this is needed
to enforce further merging that could otherwise remain unnoticed; this is also
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efficient as this kind of expansion does not allocate. By contrast, for productive
abbreviations (or primitive type constructors) we just move them unexpanded
in a productive view, letting expansion to be performed on demand.

Rule Trim allows to turn large terms into small ones, i.e., of high at most one.
This is done position by position, but could be performed more aggressively.
Trim-P is the same as Trim but operates within a productive view. This is
needed, as an expansion allocates a new (large) term directly inside a productive
view.

Rule Decompose applies when two productive views have a common head
constructor F: these views are merged and corresponding subterms are equated
along decomposable positions ↓F. To avoid duplication of terms, decomposed
terms should be small so that all subterms are variables.1

Rule Clean eliminates duplicates within a view. Braces mean that it applies
to both degenerate and productive views.

Rule Clash detects obvious clashes based on ./. A better (larger) relation
./ will detect clashes earlier, avoiding further expansions. However, the least
relation ./0 is sufficient to detect all clashes, since in the absence of clashes
expansion will be performed, as long as views do not share a common head-
symbol, eventually ending with primitive symbols, on which ./ is complete.

Rule Expand applies when a term 〈Fᾱ〉 appears in a productive view of a
multiequation and F is a type abbreviation Fβ̄ . Gτ . We then add (a fresh
copy of) Gτ to the view containing Fᾱ and add multiequations αi

.
= βi for all

decomposable positions i in F.

5.6 Invariants

We formalize the invariants that are maintained by the unification rules. These
subsume invariants informally described at the beginning of §5.4.

The invariants applies to a constraint ∃α · C in canonical form, i.e., C is a
conjunction of multiequations.

Invariant 1 If C contains [τ
.
= ν] = m, then τ is of the form Fσ̄ and ∨̇F = i.

Invariant 2 If C is [ν]
.
= m ∧ C0, then C ≡ m ∧ C0,

Rule Dispatch-D, which is the only one to add a term τ of the form Cσ̄ to the
degenerate view, preserve both invariants: it only applies when ∨̇C = i and
it inserts the expansion αi in m. Rule Merge, which merges two degenerate
views ν1 and ν2 preserves the invariant. Rule Clean relies on the invariant 2 to
preserve the equivalence.

Invariant 3 If C contains 〈ν〉 .= m, then m is nonempty and for all τ in m, τ
is of the form Fσ̄ and ∨̇ τ = G.

1Notice, that only productive constructors are decomposed. Degenerate type constructors
are decomposable along their non phantom position, but this will never be used. One could
think that we miss an opportunity for efficient simplification, but this is not the case be-
cause degenerate type constructors must be eagerly expanded anyway and their expansion—a
variable, is a quite efficient to compute and represent.

13



Invariant 4 If C is 〈ν .
= m〉 ∧ C0 and ν′ is a non-empty subset of ν then

C ≡ 〈ν′ .= m〉 ∧ C0.

Rule Dispatch-P is the only one that creates a new productive (singleton) view
〈τ〉 when τ is of the form Fσ̄ and ∨̇F is a constructor G, so F is productive and
the new view 〈τ〉 satisfies the invariant 4. That view also satisfies 3 since it
has no strict non-empty subview. Rule Expand increases a productive view. It
introduces a new term Gτ̄ in the productive view, which is productive, since it
is the expansion of a productive term Fβ̄. It therefore preserves the invariant 4;
it also preserves the invariant 3. Rule Decompose merges two productive views
of the same multiequation and preserves 3.

Invariant 5 The set of toplevel symbols of any productive view ν in C forms a
continuous subtree of the forest m. The root of this subtree, the type constructor
of smallest rank.

This invariant obviously holds for a singleton view 〈τ〉 as introduced by rule
Dispatch-P. It is maintained by Decompose, since we join two continuous
subtrees that share a node. Rule Expand extends the tree (towards the trunk)
with an immediate successor, which preserves continuity.

Rules Clean and Clash obviously preserve all five invariants.

Lemma 1 The unification rules preserve the semantics of constraints.

Proof: Rule Merge and Trim, Decompose, Class are standard.

Rule Dispatch leaves the raw multiequation unchanged. Rule Clean relies on the
invariant 2.

Finally, Expand is a combination of the addition of the immediate expansion of a
term along ., which preserves equality followed by Trim and Decompose, but it can
also be seen directly:

• Assume that φ is a solution of 〈Fᾱ .
= ν〉 .= m and Fβ . Gτ̄ .

• Let φ′ be φ[βi ← αi] (notice that βi’s are all distinct). Then φ′(Fβ̄) = φ′(Gτ̄),
we also have φ′(Fᾱ) = φ(Fβ̄) and therefore φ′(Fᾱ) = φ′(Gτ̄).

• Therefore φ′ is a solution of 〈Gτ̄ .
= Fᾱ

.
= ν〉 .= m ∧i∈↓F αi

.
= βi, that is, φ is

solution of ∃β̄ · 〈Gτ̄ .
= Fᾱ

.
= ν〉 .= m ∧i∈↓F αi

.
= βi.

The converse is obvious.

6 Unification strategy

The unification rules are sound and can be applied in any order. We describe a
strategy to restrict the application of the rules that is both efficient and sufficient
to obtain normal forms. We do so in two steps: we first defined a collection
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(Dispatch-All)
4
== (Dispatch-P) ∪ (Dispatch-N)

(Trim-Dispatch)
4
== (Trim-P)

∞
; (Trim)

∞
; (Dispatch-All)

∞

(Decompose-Clean)
4
== (Clash) ∪

(
(Decompose) ; (Clean)

∞)
(Merge-Decompose)

4
== (Merge) ; (Stutter)

∞
; (Clean)

∞
;

(Decompose-Clean)
∞

(Expand-Decompose)
4
== (Expand)

†
; (Trim-Dispatch)

∞
;

(Decompose-Clean)
∞

Figure 1: Derived rules

of derived rules (Figure 1) that will be used instead of basic transformation
rules. Derived rules ensure further invariants, following a transformation rule
by further rules that restore some invariants broken by the first application. We
then define an algorithm that applies derived rule in a deterministic order.

Derived rules are defined in Figure 1.
Rule Dispatch-All is a helper rule to factor all forms of dispatch. Rule

Trim-Dispatch implicitly uses ExAnd to extrude existential quantifiers that
Trim introduced.

Rule Merge-Decompose applies to a conjunction of multiequations, but each
of the other rules applies to a single multiequation.

Rule Expand-Decompose uses Rule (Expand)
†

is a restriction of Rule Expand

that requires:

• the expanded term to be the representative of the view of highest rank

• the rest of the multiequation m to contain at least another view ν′

6.1 Invariants of composed rules

Invariant 6 (Strategy) The strategic rules maintain the additional invari-
ants:

• All terms are small.

• All constructed terms are in a productive or degenerate view.

• The top constructors of two productive views are disjoint.

• All terms in a productive view have different toplevel symbols.

The term of a productive view with the toplevel symbol of smallest rank is called
the representative.
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These invariants are preserved by each of the composed rules—often in an
obvious way. These invariants can be ensured on the input constraint as follows:

• Input multiequations have only single terms views (one could also drop
views that do not satisfy the invariants).

• Apply (Trim-Dispatch) to make all terms small and place then in the
appropriate views.

6.2 Algorithm

The algorithm Solve is defined as the following composition of rules:

(Solve)
4
==(

(Merge-Decompose)
∞

; (Expand-Decompose) ; (Merge-Decompose)
∞)∞

In words, the algorithm makes the system merged and decomposed as far as
possible; when no more merge, decomposition, nor clash can be performed, it
does a single expansion; it iterates until no more (restricted) expansion is pos-
sible, i.e., all multiequation have at most one productive view. It is important
to perform a single expansion because these may allocate new terms and may
be expansive. It is also important to select the terms of lowest rank in the view
of highest rank for expansion, as this is the one most likely to allow decom-
position after merging. Otherwise, expansion could uselessly expand all type
abbreviations away, which kills the purpose of this algorithm.

The algorithm Solve always terminate, with solved forms.

6.3 Termination

We show the termination of (Solve).
The weight |F| of a type constructor F of rank n is the polynomial Xn. The

weight |τ | of a term τ is defined as

|α| = 0 |Fτ̄ | = |F|+ 2 ∗ (Σi∈I |τi|)

In particular, the weight of a variable is null and the weight of a term is higher
that the weight of its subtrees plus the weight of the toplevel type constructor.

The weight of a productive view is the weight of its representative, i.e., the
term of the lowest rank.

The weight of a multiequation is the sum of the weights of its productive
views plus twice the size of terms that are not in a view.

The weight of the constraint is the sum of the weight of its multiequations.
The size of the constraint is sY +mZ where s is its weight and m is the number
of multiequations.

Rewriting rules reduce the size of C. More precisely, assuming that the
initial constrain satisfies the invariant 6, i.e., in particular, where all terms are
small:
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• Rules Stutter and Clean are auxiliary rules that cannot be applied for-
ever, and do not increase the size of C, but may not decrease it either.

• Rule Dispatch-All does not increase the weight of the multiequation as it
moves a term whose size count into a degenerate view where its size does
not count or a productive view where it counts less. (Currently, it does
not increase the number of multiequations, but it could.) Hence, this rule
can only be used after another rule that strictly decreases the weight of
C.

• Rule Trim-P and Trim both reduce the weight of the multiequation they
apply to, but also introduces new multiequations, which counts less.

• Rule Trim-Dispatch does not increase the size of the constraint. (It does
not necessarily decreases it, as all terms may already be small.) The rule
alone always terminates, as it does not create new type constructors while
it decreases the weight of terms and the number of terms not in a view.
Hence, this rule may be safely used after a rule that strictly decreases the
weight of multiequations.

• Rule Decompose-Clean decreases the size of the constraint. Rule Clash

does, indeed! Rule Decompose followed by Clean decreases the weight
of the system. Indeed, it replaces two views, with representatives F1ᾱ1

and F2ᾱ2, by a single view, with representative either F1ᾱ1 or F2ᾱ2. This
is regardless of whether F is one of F1 or F2. Simultaneously, the rule
may introduce new multiequations composed of just variables, i.e., of null
weight, hence the whole weight of the constraint decreases and so does its
size.

• Rule Merge-Decompose decreases the size of the constraint: mainly, Rule
Merge reduces the number of multiequations without increasing anything
else. Then, after cleaning steps, which leaves the size unchanged, it may
decrease the size of the constraint (Rule Decompose-Clean) or leave it
unchanged if this rule does not apply.

• Rule Expand-Decompose decreases the size of the constraint. Mainly,
Rule Expand decreases the weight of the system by replacing in a view a
representative of by another representative of lower rank, hence of smaller
size, while increasing the number of multiequations. Notice that the orig-
inal term is left in the view whose length increases, but it it will never
be used as the representative anymore. Rule (Trim-Dispatch)

∞
, does not

increase the size of the constraint. Rule Decompose-Clean if applicable
decreases the size of the constraint.

• Rule Solve uses three rules, Merge-Decompose, Expand-Decompose, and
Merge-Decompose, each of which decreases the size of the constraint.
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6.4 Efficiency of the strategy

By construction, the algorithm never performs an expansion (of a constructive
type abbreviation) when a decomposition is possible.

Decompositions are in general preferable, because they do not allocate new
terms, but on the opposite merges existing terms. Furthermore, when a multi-
equation is expanded, we also choose the view with highest rank hoping to be
able to merge it (and decompose it) with a view of a lower rank. This choice
ensures that the rank of the multiequation in its canonical form will be maximal,
i.e., as high as the rank in any other canonical form.

However, this does not ensure a minimal number of expansions. The choice
of the multiequation to expand is arbitrary among those that are candidate for
expansion.

Expanding a view ν1 in a multiequation m1 may perhaps be avoided by
another expansion that will induce merging of m1 with another multiequation
m2 that will contain a view ν2 that will be decomposable with ν1. For example,
consider

α1
.
= 〈ν1〉

.
= 〈ν2

.
= τ〉 ∧ α2

.
= 〈ν2〉

.
= ν1

.
= τ ∧ C

when the multiequation α1 cannot be decomposed, hence is a candidate for
expansion. Instead, an expansion in C might lead to a decomposition which in
turn will require merging α1 and α2, leading to a constraint of the form

α1
.
= α2

.
= 〈ν1

.
= τ〉 .= 〈ν1′〉〈ν1〉

.
= ν1

′ .= τ ∧ C ′

Now, we first decompose the two views containing τ leading to

α1
.
= α2

.
= 〈ν1

.
= τ

.
= ν2〉

.
= 〈ν1〉

.
= ν2 ∧ C ′′

which in turn allows to decompose the two remaining views ending up with a
multiequation with a single view—without doing any further expansion.

In summary, our strategy delays expansions until at least one is necessary,
and chooses an expansion that is promising, but does not ensure optimality in
the number of expansions performed.

6.5 Solved forms

The algorithm terminates with constrains in solved form, i.e., constraints C of
the form ∃β · ∧i∈Iνi where

• Any variable occurring in C (free or bound) belongs to a unique multi-
equation.

• Every multiequation νi has at most one productive view, hence is of the
form ᾱi

.
= 〈νi〉

.
= [νi

′] where νi and νi
′ may be empty and otherwise satisfy

the invariants 6 (in addition to invariants 1–4 of §5.6).

Indeed,
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• This follows from the fact that Merge does not apply.

• Since Expand does not apply, two views of the same multiequations cannot
be such that one contains a type abbreviation.

Since Decompose does not apply, two views of the same multiequations
cannot have the same head symbols.

Since Clash does not apply, then there cannot be two such views in a
multi-equations, i.e., there is be at most one productive view per multi-
equation.

7 Deconstructive type abbreviations

We now extend the algorithm to allow deconstructive type abbreviations. We
first consider a simple case in §7.1, relax it in §7.2, before we tackle the general
case in §??

7.1 A purely deconstructive type abbreviation

The simplest for of deconstructive type abbreviation is F(Gβ̄) = αi.
Notice that G may itself be a type abbreviation. Hence, we must assume

that G is at least decomposable in position i, otherwise αi is undetermined and
the type definition does not make sense.

Such an abbreviation is non-productive: since F(Gβ̄) expands to the type
variable βi, it should behave as βi; in particular F(Gβ̄)

.
= m should require

the merge of this multiequation with with the one βi belongs to. A simple
way to ensure this is to expand F(Gβ̄) eagerly: when a term Fα appears in a
multiequation m, we add βi to m with an additional constraint α

.
= Gβ̄. We

perform this when we dispatch Fα into the degenerate view:

Dispatch-Exp-D
F(Gβ̄) . βi

Fα
.
= [ν]

.
= m ≡V ∃β̄ · [Fα .

= ν]
.
= βi

.
= m ∧ α = Gβ̄

Rule Dispatch-Exp-D is a mix of Dispatch-N and Expand in the sense that,
when we meet Fα, we need to allocate some structure α

.
= Gβ̄ to force α to have

the requested shape and extract αi from it.

Lemma 2 Rule Dispatch-C is an equivalence.

Proof: Assume that φ is a solution of Fα
.
= [ν]

.
= m. The definition of the type

abbreviation of F(Gβ̄) . βi implies that φα is of the form F(Gτ) for some τ̄ . Let
φ′ be φ[βi ← τi]. By definition F(Gτ) is equal to τi. Therefore, φ′ is a solution of
[Fα

.
= ν]

.
= αi

.
= m∧α = Gβ̄. Hence, φ is a solution of ∃β̄ ·[Fα .

= ν]
.
= βi

.
= m∧β = Gβ̄.

The inverse direction is obvious.
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Rule Dispatch-Exp-D preserves invariant 2. To preserve invariant 1, we need to
define ∨̇ for type abbreviations such as F, replacing i by a sequence of projections
to access the variable βi from F(Gβ̄) in the definition of the type abbreviation2.
In our example, ∨̇F is 1 · i. In fact, we may also allow two parameters βi and
βj to be actually the same variable. Thus, ∨̇F is rather a set of paths than a
single path. Hence, we should write 1 · i ∈ ∨̇F or π ∈ ∨̇F when π stands for a
path.

Adding rule Dispatch-Exp-D to the definition of Dispatch-All, we preserve
properties of the unification algorithm. In particular, rule Dispatch-All does
not increase the weight of the constraint, although it may now increase the
number of multiequations.

Therefore, the (Solve) still terminates, with the same solved forms (but
more general degenerate views).

Solved forms Notice that a constraint such as α
.
= Fβ ∧ β .

= F0 looks in
solved form—but it is not! Indeed, Fβ carries the implicit constraint that β
must be of the form Gα0 which implies that the constraint Gα0

.
= F0 should

also hold—but it is unsolvable (equivalent to false).
Fortunately, solved forms satisfy the invariant 6 which requires non variable

terms to be either in degenerate views or productive views. Here, F must there-
fore have been moved to the degenerate view, which enforces its expansion and
will produce a clash between F0 and G.

Decomposable paths If G is unary, then F is decomposable and ↓F = {1}.
Otherwise, F is not decomposable—unless all arguments of G but one are phan-
tom. For instance, assume F is unary and G is binary and decomposable in both
directions. Then F(G(τ0, τ1)) = F(G(τ0, τ2)) but G(τ0, τ1) 6= G(τ0, τ2).

Thus, there are now positions that are neither decomposable nor phantom.
This is not a problem however, since degenerate type systems will never appear
in a productive view and need not be decomposed.

It may seem annoying that a position may be neither phantom nor decom-
posable. However, we should not consider positions but paths, which are a
generalization of positions.

We redefine ↓ to return a list of paths (starting from the root) instead of a
list of positions. That is, it is not immediate parameters that are decomposable
or phantom but paths rooted at F. Continuing with our example, we would
have ↓F is {1 · 1}, i.e., the path 1 · 1 is decomposable, while the occurrence 1 · 2
is phantom.

Generalization We can easily generalize the previous example with type ab-
breviations of the form F(Giᾱi)

i∈I . αij .

2In the general case, Gβ̄ could even be replaced by a term σ where βi also occurs deeper
inside σ.
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7.2 Mixed type abbreviations

Deconstructive type abbreviation pattern match on their argument to extract
some subterm. They need not return just one subterm, but instead may also
construct a new term by combining several subterms.

Consider for example F(G(α, β)) = G(β, α) where G is a primitive type con-
structor (or more generally a productive one, decomposable on both directions).
This abbreviation is both deconstructive and constructive. How should we treat
it? Here are a few hints:

• F is decomposable: if Fτ = Fτ ′ then τ and τ ′ must be of the form G(τ1, τ2)
and G(τ ′1, τ

′
2) and Fτ = G(τ2, τ1) and Fτ ′ = G(τ ′2, τ

′
1).

• Hence, it looks like we could treat F as productive.

• Still, we must be aware that α
.
= Fβ ∧ β .

= F0, which looks in canonical
form is actually not. Indeed, there is an implicit constraint that β must
be of the form G(τ1, τ2) and α

.
= τ1

• Hence, as with the previous example, we must eagerly expand F—but still
put it in a productive views.

This leads to the following dispatching rule:

Dispatch-Exp-P
F(Gβ̄) . σ

Fα
.
= m ≡V ∃β̄ · 〈σ .

= Fα〉 .= m ∧ α .
= G(β̄)

This rule decreases the size of the constraint (it decreases its weight while in-
creasing the number of multiequations, which counts less).

There (solve) still terminates, with the same normal forms. By construction,
we know that whenever Fα appears in a productive view of a constraint C, then
C ` ∃β̄ · α .

= Gβ holds, since such constrains are injected into the system when
F is initially placed into the productive view.

7.3 The general case

Let us now tackle the general case of an abbreviation F(τ) . σF.
We need a few restrictions for this definition to be well formed:

• F should be new, i.e., not occur in τ̄ nor in σF.

• All variables should be bound, i.e., ftv(σF) ⊆ ftv∇(τ̄)

• OσF should exist, i.e., deconstructive type constructors that occur in σF
should be applied to subterms of expected shapes.

There are several cases to consider:

• σF is a variable β; then, F is degenerate, as in §7.1
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Dispatch-Exp-D
F(τ̄) . σF i · π ∈ ∨̇F τi/π = β τ̄ 6⊆ V

Fᾱ
.
= [ν]

.
= m ≡V ∃ ftv(τ̄) · [Fᾱ .

= ν]
.
= β

.
= m ∧i∈I αi

.
= τi

Dispatch-Exp-P
F(τ̄) . σF ∨̇F = H τ̄ 6⊆ V

Fᾱ
.
= m ≡V ∃ ftv(τ̄) · 〈σF

.
= Fᾱ〉 .= m ∧i∈I αi

.
= τi

Figure 2: Derived rules for deconstructive abbreviations

• σF is of the form Gτ̄ and Gτ̄ −. β. This is quite similar to the previous
case.

• σF is of the form Gτ̄ and ∨̇G = H. Then F is productive.

• σF is of the form Gτ̄ and G is itself a deconstructive type abbreviation.
This is in fact, a particular case of previous ones: we just look at ∨̇G which
is the same as ∨̇F and tell us whether the type abbreviation is degenerate
or productive.

In all cases, we compute ∨̇F, directly by computing OσF directly, or indirectly
by looking at σF. Then

• if OσF is a variable, then ∨̇F is a path π (of the form i · π) and F is
degenerate;

• otherwise, ∨̇F is a (primitive) type constructor H and F is productive

This leads to two new dispatching rules Dispatch-Exp-D and Dispatch-Exp-P

defined on Figure 2. These rules are complementary and should not replace
the rules Dispatch-P and Dispatch-D. Even though the Dispatch-Exp versions
of the rules are semantically correct, the (grayed) side condition τ̄ 6⊆ V requires
that at least one of the τi’s is not a variable, so that the original rules do not
apply.

XXX [ Fix ↓F for rule Expand Dispatch-Exp-P ]

Degenerate type abbreviations For degenerate terms, we can actually see
Dispatch-D as Dispatch-Exp-D followed by some cleanup of useless variables.
Indeed, when τ̄ are all distinct type variables β̄, the difference is just the in-
troduction of auxiliary existential variables β̄ with multiequations ∧i∈Iαi

.
= βi,

which can then be removed, using the equivalence

∃β · C ∧ α .
= β V C (when β#C)

Productive type abbreviations: eager vs. lazy expansion The main
difference between deconstructive rules and non-deconstructive ones if for pro-
ductive terms: Rule Dispatch-Exp-P performs an eager expansion while Dispatch-P
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does not perform expansion, which will them be done on demand, lazily. Hence,
there is a discontinuity between the two rules.

We can in fact reduce this difference, by automatically splitting deconstruc-
tive type annotations as follows:

• Let β̄ be ftv(σF);

• Define F̂β̄ . σF where β̄;

• Redefine Fτ̄ . F̂β.

With this encoding, the dispatch rule for F becomes:

Dispatch-Exp-P’

F(τ̄) . F̂β̄ . σF ∨̇F = ∨̇ F̂ = H

Fᾱ
.
= m ≡V ∃ ftv(τ̄) · 〈F̂β̄ .

= Fᾱ〉 .= m ∧i∈I αi
.
= βi

The construction of σF is now delayed until F̂β̄ need to be expanded, as for non
destructive type abbreviations.

This could be automated or used manually to delay the constructive part of
deconstructive type abbreviations.

It can also be used to regain the continuity between the Dispatch-Exp-P and
Dispatch-P, so that the latter can be seen as a particular case of the former (up
to some details) when τ̄ is a tuple of disjoint variables: F becomes a pure alias

for F̂ which could (intuitively) be removed. This would lead to the rule:

Dispatch-P’
Fβ̄ . σF ∨̇F = H

Fᾱ
.
= m ≡V ∃β̄ · 〈Fᾱ〉 .= m ∧i∈I αi

.
= βi

where the conclusion is equivalent and could be simplified to 〈Fᾱ〉 .= m, which
then coincides with the conclusion of Rule Dispatch-P.

Soundness Rules Dispatch-Exp-D and Dispatch-Exp-D preserve the seman-
tics of constraints.

Termination Both rules decrease the size of the constraint. Notice that this
is different from the dispatching of non-deconstructive type abbreviations, which
did not decrease the size of constraint. The deconstructive version allocate new
terms, but this is coming and compensated by the expansion of the type abbre-
viation constructor, which as for regular expansions counts much more than the
terms it allocates. Therefore, after including these rules in Dispatch-All, Rule
Trim-Dispatch will still terminate when used alone and will never increase the
size of the constraint.

Therefore Rule Solve still terminates with the same solved forms.
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7.4 Further Encodings

We have seen that the constructive part of deconstructive type abbreviations
can be recovered by an helper type abbreviation.

Similarly, we could use helper type abbreviations for the deconstructive
parts. Consider F(τ̄) . σF. Let ᾱ be ftv(V τ) and (Fi(ᾱ) . τ)i∈I a sequence
of type abbreviations. We could then redefine F(Fiτ̄) . σF with just one level of
deconstruction.

This allows to limit the deconstruction of the arguments to their topmost
constructor during the dispatch and treat the rest of decomposition lazily—or
avoid it completely if the Fi’s are never mixed with some other type constructor.

Thanks to this encoding, we could also have limited the general case to type
abbreviations of the form F(Giᾱi)

i∈I . σF and solve others by encoding.

Alternative encodings According to the above schema, the deconstructive
type abbreviation F(G(G(α0, α2), α0)) . α0 would be encoded as

F̂(α0, α1, α2) . G(G(α0, α1), α2) F(F̂(α0, α1, α2)) . α0

where the deconstruction is done minimally delaying the allocation of the inter-
mediate structure to F̂.

Another possible encoding would be:

F̂(G(α0, α1)) . α0 F(G(β, α2)) . F̂β

to deconstruct the argument step by step.
The difference is interesting:

• The former uses an auxiliary constructive type abbreviation F̂ as an argu-
ment to the deconstructive one F to destruct “more at once”. However,
the expansion of F̂ will be performed lazily, only when F̂(α0, α1, α2) will
be mixed with some other non variable type.

So this may behave better when the expansion of F̂ is a large term.

Still, when the encoding is automated, the abbreviations F̂ in the output
result will have to be expanded away.

• The latter uses an auxiliary type abbreviation F̂ which as themselves De-
constructive as the result of the abbreviation F to deconstruct. The decon-
struction is done “incrementally”, but not lazily, i.e., since F̂ must itself be
destructed when dispatched, which happens at the very beginning before
the constraints is really solved, so there is no real gain.

8 Converting between types and canonical forms

8.1 Input types

Types constraints are usually introduced as a collection of simple equations of
the form

(σj
1
.
= σj

2)j∈J
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Types may be large types, which can always be turned into small types with
Trim, which can be applied before hand or on demand. Types, may also contain
µ((αi = τi)

i∈I) τ types, which can can be eliminated using the following rule:

Trim-Rec

µ(αi = τi) τ = m ≡V ∃αi
i∈I · τ = m ∧i∈I (αi = τi)

(If we count the µ(α) τ form as a constructor in the weight of term, then
Trim-Rec reduces the size of the system.)

8.2 Output types

A principal solution of a constraint C is a substitution φ of domain ftv(C) that
maps type variables to syntactic types such that solutions of C are exactly those
of the form φ′ ◦ φ when φ′ range over ground substitutions—up to expansion of
type abbreviations.

When C in canonical form ∃β̄ · ∧i∈1..nmi, a principal solution for C can be
computed inductively as follows:

• Take φ0 be the identity.

• Then, for i in 1..n:

– let ᾱi be νi ∩ V;

– if mi contains a productive view νi (which is then unique as m is

canonical), let τ̂i be any element of νi and let φ̂i be (ᾱi 7→ µ(α̂i)φi−1τ̂i),

where µ(β̄)σ stands for µ(β̂) (σ[β̄ ← β̂]) where β is an arbitrary ele-
ment of β̄;

– otherwise, let α̂i be any element of ᾱi and φi be (ᾱi 7→ α̂i);

– let φi be φ̂i ◦ φi−1.

• Return φn restricted outside of β̄.

Lemma 3 The solution φ is a principal solution.

Notice that types τ̂i may be chosen arbitrarily in the productive view for
each productive multiequation mi: all choices are semantically equivalent.

Still, some choices may be less arbitrary than others:

(repr) Pick the representative of νi for τ̂i. This is the most canonical choice:
the representative is unique; its is the least unfolded presentation that
sufficed to make all terms of the view agreed during constraint resolutions.

(all) Return all terms of the view: there head symbol form a tree for m: starting
from the leave, the next term may be obtain by a single expansion at the
root.
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(leaves) Return all the leaves of the view, when ordered by m, e.g., terms with
toplevel symbol of minimal ranks. (This would mean extending the syntax
of terms to allow printing terms with synonyms, which the current syntax
does not allow.

The interest of the (repr) strategy is to be canonical. However, it tends to loose
type abbreviations while the (leaves) strategy will always preserve them. The
(leaves) strategy may return multiple views, which then forces a choice again,
unless there is a single leave.

Degenerate type abbreviations Notice that all of these strategies ignore
degenerate type abbreviations, which will them never be used in output types.
One reason is that the expansion of a degenerate term is smaller that the term
itself. Another reason is that showing a degenerate term does not in general
prevent from also showing a productive term when the multi-equation is pro-
ductive.

8.3 Removing auxiliary type abbreviations

We have shown some encodings that use auxiliary type abbreviations. These
should be eliminated in output types.

Recursive type abbreviations Recursive type abbreviations uses non-recursive
helper type abbreviations Fi(ᾱ) . µ((βj = F̂j(ᾱ, β̄))j∈J)βi), but introduced in

such a way that we can always read back Fi(τ̄) from F̂i(τ̄ , σ̄) at anytime (an
invariant that we preserve during unification). This amounts to performing a
contraction. We can indeed, perform all such contractions on canonical forms
and eliminate all such helper type abbreviations before outputting terms.

Alternatively, helper type abbreviations can be retain in principal solutions
and only eliminated on the fly when show printing or converting terms.

Other auxiliary type abbreviations We have also proposed type abbrevia-
tions for the productive part of deconstructive type abbreviations. To eliminated
those, we need to expand them. This seems to be removing the purpose of in-
troducing them in the first place, but this is not quite the case: some of these
might have been introduced to solved intermediate constraints on existential
type variables and will not appear in the output solution, while we only need
to expand those appearing in the output types.

Scoped type annotations Scoped type annotations are similar, they must
be removed in the output, an[] d we can do so by forcing their expansion in the
constraint at anytime. In particular, we can deal with scoped type annotations
during resolution of the constraint if needed.
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8.4 Example

Here is an example that loops in OCaml (version 4.09)

type ’a f = ’b constraint ’a = ’b option

let _ = fun (x : (’a f) option) (y : ’a) -> (x = y)

That is, we have an abbreviation:

F(Gα) . α

where G, which stands for the option type, is a primitive type. Typechecking
the program produces the constraint C equal to α

.
= H(Fα).

This will be reduced as follows:

C
Split V ∃β · α .

= Hβ ∧ β .
= Fα

Dispatch-P V ∃β · α .
= 〈Hβ〉 ∧ β .

= Fα
Dispatch-Exp-D V ∃β · α .

= 〈Hβ〉 ∧ (∃β1 · β
.
= [Fα]

.
= β1 ∧ α

.
= Hβ1)

Merge V ∃ββ1 · α
.
= 〈Hβ〉 .= Hβ1 ∧ β

.
= β1

.
= [Fα]

Dispatch-P V ∃ββ1 · α
.
= 〈Hβ〉 .= 〈Hβ1〉 ∧ β

.
= β1

.
= [Fα]

Decompose V ∃ββ1 · α
.
= 〈Hβ .

= Hβ1〉 ∧ β
.
= β1

.
= [Fα] ∧ β .

= β1
Merge V ∃ββ1 · α

.
= 〈Hβ .

= Hβ1〉 ∧ β
.
= β1

.
= β1

.
= [Fα]

Clean-P V ∃ββ1 · α
.
= 〈Hβ〉 ∧ β .

= β1
.
= β1

.
= [Fα]

Stutter V ∃ββ1 · α
.
= 〈Hβ〉 ∧ β .

= β1
.
= [Fα]

The solution φ, is defined as follows:

φ0 = id
φ1 = (α 7→ µ(α)Hβ) ◦ φ0 = (α 7→ Hβ)
φ2 = (β, β1 7→ β) ◦ φ1 = (β1 7→ β, α 7→ Hβ)
φ = φ2 \ {β, β1} = (α 7→ Hβ)

That is φ is equal to α 7→ Hβ. As noticed earlier, F does not appear in the
output type since it is degenerate. We may still verify that φ solves the input
constraint, indeed:

φα = Hβ =E H(F(Hβ)) = φ(H(Fα))

8.5 Computing free variables

In section 4.2, we defined the set ftv(τ) of syntactic free variables, computed
as usual. We also defined the set ftv∇(τ) of semantic free variables as ftv(Oτ),
which can still be computed on τ without fully expanding τ .

For this purpose, we only need to expand (the) deconstructive (part of) type
abbreviations—if only to check that the constraints are satisfied. Then, we can
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