A Work-Efficient Algorithm for Parallel Unordered Depth-First Search

Umut Acar
Carnegie Mellon University

Arthur Charguéraud
Inria & LRI Université Paris Sud, CNRS

Mike Rainey
Inria

Supercomputing 2015
High-performance graph traversal

• In a *graph traversal*, computation proceeds from one vertex to the next through the edges in the graph.

• Improved performance for graph traversal means improved performance for many other algorithms.

• The main challenge is coping with irregularity in graphs.

• In this work, we present a new algorithm
 • to perform fast traversal over large, in-memory directed graphs
 • using a (single, dedicated) multicore system
 • achieving:
 • analytical bounds showing work-efficiency and high-parallelism, and
 • an implementation that outperforms state-of-the-art codes (almost always)
Motivation

• Most of the recent attention in the research literature on graph traversal is paid to parallel BFS.

• Why parallel BFS but not parallel DFS?
 • Parallel DFS with strict ordering is known to be P-complete (i.e., hard to parallelize).

• However, loosely ordered, parallel DFS:
 • relaxes the strict DFS ordering slightly
 • achieves a high degree of parallelism
 • has many applications, e.g.,
 • reachability analysis & graph search
 • parallel garbage collection (Jones et al 2011), etc…
 • KLA graph-processing framework (Harshvardhan et al 2014)

• When feasible, Pseudo DFS is preferred because it is usually faster than the alternatives.
Pseudo DFS (PDFS)

- **Input:**
 - directed graph and ID of source vertex

- **Output:**
 - the set of vertices connected by a path to the source vertex
PDFS

visited

vertex ids

frontier

migrate

pop↑ push

pop↑ push

pop↑ push

pop↑ push
PDFS vs. PBFS

Synchronization

- PDFS is *asynchronous*:
 - Each core traverses independently from its frontier.

- PBFS is *level synchronous*:
 - Cores traverse the graph level by level, in lock step, synchronizing between every two levels.

Data locality

- DFS is preferred in parallel GC.
 - e.g., mark sweep

- Why?
 - DFS visits heap objects in the order in which objects were allocated.
The granularity-control challenge

• The key tradeoff is between:
 • the cost to pay for migrating some chunk of work, and
 • the benefit of parallelizing the migrated work

• Migrate too often, it’s too slow; too infrequently, it’s too slow.

• Granularity control is a particular challenge for PDFS because, when you migrate a piece of frontier, you have little information about how much work you’re giving away.
Example in favor of aggressively sharing work
Example against sharing work
Granularity control by batching vertices

• A batch is a small, fixed-capacity buffer that stores part of the frontier.

• In batching, each work-stealing queue stores pointers to batches of vertices.

• Idea: use batches to amortize the cost of migrating work.

• Previous state of the art for PDFS:
 • Batching PDFS (Cong et al 2008)
 • Parallel mark-sweep GC (Endo 1997 and Seibert 2010)

• No batching PDFS so far guarantees against worst-case behavior.
Our work

Central question:
Can we bring to PDFS the analytical and empirical rigor that has been applied to PBFS, but keep the benefits of a DFS-like traversal?

- We present a new PDFS algorithm.
- In a realistic cost model:
 - We show that our PDFS is *work efficient*:
 - Running time on a single core is the same as that of serial DFS, up to constant factors.
 - We show that our PDFS is highly parallel.
- In experiments on a machine with 40 cores, we show the following:
 - Our PDFS outperforms alternative algorithms across many of a varied set of input graphs.
 - Our PDFS can exploit data locality like sequential DFS.
Our solution to granularity control

- Migration of work is realized by message passing.
 - Each core regularly polls the status of a cell (in RAM).
 - When core C_1 requests work from C_2, C_1 writes its ID into the cell owned by C_2.
 - Each core owns a private frontier.

- Our granularity control technique: when receiving a query, a core shares its frontier only if one of the following two conditions is met:
 - The frontier is larger than some fixed constant, K.
 - The core has treated at least K edges already.

- The setting for K can be picked once based (solely) on the characteristics of the machine.
Why is our granularity-control technique effective?
Our PDFS algorithm

Tuning parameters:
- K: positive integer controlling the eagerness of work sharing
- D: positive integer controlling the frequency of polling

Each core does:
- if my frontier is empty
 - repeatedly query random cores until finding work
- else
 - handle an incoming request for work
 - process up to D edges:
 - for each edge ending at vertex v
 - if this core wins the race to claim v, push outgoing neighbors of v into the frontier
 - remove v from the frontier

To handle a work request, a core does:
- if frontier contains at least K edges or has at least two edges and has treated at least K edges since previously sending work:
 - transfer half of the local frontier to the frontier of the hungry core
 - notify the hungry core
Analytical bounds

Theorem 1
The number of migrations is $3m/K$.

Theorem 2
The total amount of work performed is linear in the size of the input graph.

Theorem 3
Each work query is matched by a response in $O(D + \log n)$ time.

Shows that each work migration is amortized over at least $K/3$ edges.

Shows that all polling and communication costs are well amortized.

Shows that the algorithm can achieve almost every opportunity for parallelism.
Our frontier data structure

- It is based on our previous work on a chunked-tree data structure.
- It's a sequence data structure storing weighted items.
- It can
 - push/pop in constant time
 - split in half according to the weights of the items in logarithmic time.
- In the PDFS frontier, a weight represents the outdegree of a vertex.
- It enables:
 - rapidly migrating large chunks of frontier on the fly
 - efficiently parallelizing high-outdegree vertices
Experimental results

higher = better

- 40 Xeon cores
 @ 2.4Ghz
- 1 TB RAM

- 40 Xeon cores
 @ 2.4Ghz
- 1 TB RAM
Related work

- PDFS
 - Batching PDFS (Cong et al 2008)
 - Parallel mark-sweep GC (Endo 1997 and Seibert 2010)
- PBFS
 - Work-efficient Parallel BFS (Leiserson & Schardl 2010)
 - Direction-optimizing BFS (Beamer et al 2012)
 - Ligra (Shun & Blelloch 2013)
- Hybrid PDFS/PBFS
 - KLA graph-processing framework (Harshvardhan et al 2014)
Summary

• We presented a new PDFS algorithm.

• Our results lift PDFS to a level of rigor similar to that of work-efficient PBFS.

• In our paper:
 • We show that PDFS exploits data locality as effectively as serial DFS.

• Our results show that PDFS performs well both in theory and practice.

• The results suggest that our PDFS may be useful as a component of other algorithms and graph-processing systems.