PType System : A Featherweight Parallelizability Detector

Dana N. Xu*
National University of Singapore joint work with

Siau-Cheng Khoo
National University of Singapore

Zhenjiang Hu

University of Tokyo

[^0]
Motivation

. Sequential programming is hard.
. Parallel programming is much, much harder.
. Multiprocessor systems have become increasingly available.

- Our approach (a good compromise)
- Infer parallelizability of sequential functions via type system
. Parallelizability : if F_{s} is parallelizable, then
$\exists F_{p} \cdot \operatorname{runtime}\left(F_{p}\right) / \operatorname{runtime}\left(F_{s}\right)=O(\log m / m)$
where
F_{s} - a sequential function.
F_{p} - parallel counterpart of F_{s}.
m - size of the input data.

Existing Parallelization Approach - Using Skeletons

Skeleton functions: map, reduce, scan, etc

Code of the form
$\mathrm{f} \mathrm{xs}=\operatorname{map} \mathrm{g} \mathrm{xs}$
can be parallelized as
f [] = []
$f[a]=g$ a
f ($\mathrm{x}++\mathrm{y}$) = $\mathrm{f} \mathrm{x}++\mathrm{f} \mathrm{y}$

Code of the form
$\mathrm{f} \mathrm{xs}=$ reduce op e xs
can be parallelized as
f [] = e
f $[\mathrm{a}]=\mathrm{a}$
f ($x++y$) = f x 'op' $f y$
Note: op must be associative!

Skeletons - Example

User's Sequential Definition:

```
f1 [] = 0
f1 (a:x) = (g a) + f1 x
```

Rewrite it with skeleton:

```
f1 xs = reduce (+) O (map g xs)
```

Parallel code generated:

```
f1 [] = 0
f1 [a] = g a
f1 (x ++ y) = f1 x + f1 y
```


Life is not always that simple

User's Sequential Definition:
poly [a] c = a
poly (a:x) c = a + c * (poly x c)
Example: $p(x)=2 x^{2}+3 x+1$
$p(5)=2(25)+3(5)+1=66$
poly $[1,3,2] 5=1+5 *(3+5 *(2))=66$
Not obvious how to use skeletons.
Thinking hard in bathtub

Eureka Step! - invent an associative operator comb2

$$
\operatorname{comb} 2(\mathrm{p} 1, \mathrm{u} 1)(\mathrm{p} 2, \mathrm{u} 2)=\left(\mathrm{p} 1+\mathrm{p} 2^{*} \mathrm{u} 1, \mathrm{u} 1^{*} \mathrm{u} 2\right)
$$

```
\(p(x)=2 x^{2}+3 x+1\)
        comb2
        / 1
    \((1,5) \quad\) comb2
\begin{tabular}{cc}
\(/\) & \(\backslash\) \\
\((3,5)\) & \((2,5)\)
\end{tabular}
```

$$
\begin{aligned}
& \operatorname{comb2}(1,5)(\operatorname{comb} 2(3,5)(2,5)) \\
& \quad=\operatorname{comb2}(1,5)(3+2 * 5,5 * 5) \\
& =(1+(3+2 * 5) * 5,5 * 5 * 5) \\
& \operatorname{comb2}(\operatorname{comb2}(1,5)(3,5))(2,5) \\
& \quad=\operatorname{comb2}(1+3 * 5,5 * 5)(2,5) \\
& =(1+3 * 5+2 * 5 * 5,5 * 5 * 5)
\end{aligned}
$$

Rewrite to:

```
poly xs c = fst (polytup xs c)
polytup [a] c = (a,c)
polytup (a:x) c = (a,c) 'comb2' (polytup x c)
```


Eureka Step - Cont.

Rewrite it with skeleton:

```
poly xs c = fst (reduce comb2 (map (\x -> (x,c)) xs))
```

Parallel code generated:

```
poly [a] c = a
poly (xl ++ xr) c = poly xl c + (prod xl c)*(poly xr c)
```

prod [a] c = c
prod (xl ++ xr) c = (prod xl c)*(prod xr c)

This talk: Let's use type inference to replace the eureka step.

Our Approach

. Given f, a function at-a-time

- type check f to derive a parallelizable type

$$
\text { e.g. } R_{[+, *]} \text { ("Recursion of } \mathrm{f} \text { within }+ \text { and } * \text { ") for } \mathrm{f}
$$

. if this fails, do not parallelize f
. if OK, automatically transform f to a skeleton form and hence to parallel code.

Extended-Ring Property

Let $\mathrm{S}=\left[\oplus_{1}, \ldots, \oplus_{n}\right]$ be a sequence of n binary operators. We say that S possesses the extended-ring property iff

1. all operators are associative;
2. each operator \oplus has an identity, ι_{\oplus} such that

$$
\forall v: \iota_{\oplus} \oplus v=v \oplus \iota_{\oplus}=v
$$

3. \oplus_{j} is distributive over $\oplus_{i} \forall i, j: 1 \leq i<j \leq n$

Example: (Nat, $\left.\left[\max ,+,{ }^{*}\right],[0,0,1]\right)$ Yes

$$
\left(\operatorname{Int},\left[+,{ }^{*},{ }^{\wedge}\right],[0,1,1]\right) \quad \text { No }
$$

Language Syntax

First Order, Strict Functional Language.

$$
\begin{array}{rll}
e, t & \in & \text { Expressions } \\
e, t & ::= & n|v| c e_{1} \ldots e_{n}\left|e_{1} \oplus e_{2}\right| \text { if } e_{0} \text { then } e_{1} \text { else } e_{2} \\
& & \left|f e_{1} \ldots e_{n}\right| \text { let } v=e_{1} \text { in } e_{2} \\
p & \in & \text { Patterns } \\
p & ::= & v \mid c v_{1} \ldots v_{n} \\
\sigma & \in & \text { Programs } \\
\sigma & ::= & \gamma_{i}^{*},\left(f_{i} p_{1} \ldots p_{n}=e\right)^{*} \forall i . i \geq 1 \\
& \text { where } f_{1} \text { is the main function. } \\
& & \gamma \in \text { Annotations }(\text { Declarations for Library Operators }) \\
& & \gamma::=\#\left(\tau,\left[\oplus_{1}, \ldots, \oplus_{n}\right],\left[\iota_{\oplus_{1}}, \ldots, \iota_{\oplus_{n}}\right]\right)
\end{array}
$$

Skeleton Expressions Syntax

- - denotes a recursive call.
- \hat{e} is an expression e which does not contain \bullet.

$s v$	\in S-Values \subseteq Expressions
$s v \quad::=b v \mid$ if $\hat{e_{a}}$ then $\hat{e_{b}}$ else $b v$	
$b v \quad::=\widehat{\bullet} \mid\left(\hat{e_{1}} \oplus_{1} \ldots \oplus_{n-1} \hat{e_{n}} \oplus_{n} \bullet\right)$	

where $\left[\oplus_{1}, \ldots, \oplus_{n}\right]$ possesses the extended-ring property

Examples of S-Value

$$
\begin{aligned}
& f 1[a]=a \\
& f 1(a: x)=a+f 1 x \\
& f 2[a]=a \\
& f 2(a: x)=2 *(a+f 2 x) \\
& f 3[a]=a \\
& f 3(a: x)=(2 * a)+(2 * f 3 x) \\
& f 4[a]=a \\
& f 4(a: x)=(d o u b l e a+f 2 x)+(\text { Sumlist } x) * f 4 x
\end{aligned}
$$

Type Expression

$$
\begin{array}{lcccccc}
\rho & \in \text { PType } & \psi & \in \text { NType } & \phi & \in \text { RType } \\
\rho & ::=\psi \mid \phi \quad \psi \quad::=N & \phi & ::=R_{S} \\
& \text { where } S \text { is a sequence of operators }
\end{array}
$$

Example:

$$
\begin{aligned}
& \text { poly }[a] c=a \\
& \text { poly }(a: x) c=a+c *(p o l y x c)
\end{aligned}
$$

Both a and c have PType N.
Expression (a $+\mathrm{c} *(\mathrm{poly} \mathrm{x} \mathrm{c})$) has PType $R_{[+, *]}$.

Type Judgement
 $$
\Gamma \vdash_{\kappa} e:: \rho
$$

Γ - binds program variables to their PTypes.
κ - is either a self-recursive call or a reference to such a call.
Example:

$$
\begin{aligned}
& \text { : } \\
& \text { f [a] = a } \\
& \text { f (a:x) }=\text { e } \\
& \text { where } e=\text { let } v=a+f x \\
& \text { in if (} a>0 \text {) then } V \\
& \text { else } 2 \text { * (f } x \text {) }
\end{aligned}
$$

$\Gamma \cup\{\mathrm{a}:: N, \mathrm{x}:: N\}$

$$
\vdash_{\{(\mathrm{fx}), \mathrm{v}\}}(\text { if }(\mathrm{a}>0) \text { then v else } 2 *(\mathrm{f} \mathrm{x})):: R_{[+, *]}
$$

Type Checking Rules - I

$$
\begin{align*}
& \frac{v \neq \kappa}{\Gamma \cup\{v:: N\} \vdash_{\kappa} v:: N} \quad(\operatorname{var}-\mathrm{N}) \quad \frac{v=\kappa}{\Gamma \cup\left\{v:: R_{S}\right\} \vdash_{\kappa} v:: R_{S}} \quad(\operatorname{var}-\mathrm{R}) \\
& \Gamma \vdash_{\kappa} n:: N \quad(\text { con }) \quad \overline{\Gamma \vdash_{(f x)}(f x):: R_{S}} \tag{rec}\\
& \frac{\Gamma \vdash_{\kappa} e_{1}:: N \quad \Gamma \vdash_{\kappa} e_{2}:: \rho(\rho=N) \vee\left(\rho=R_{S} \wedge \oplus \in S\right)}{\Gamma \vdash_{\kappa}\left(e_{1} \oplus e_{2}\right):: \rho} \\
& \frac{\Gamma \vdash_{\kappa} e:: N \quad g \notin F V(\kappa)}{\Gamma \vdash_{\kappa}(g e):: N} \quad(\operatorname{app}) \quad \frac{\Gamma \vdash_{\kappa} e: \rho \rho<: \rho^{\prime}}{\Gamma \vdash_{\kappa} e:: \rho^{\prime}}
\end{align*}
$$

Type Checking Rules - II

$$
\begin{equation*}
\frac{\Gamma \vdash_{\kappa} e_{1}:: N \quad \Gamma \cup\{v:: N\} \vdash_{\kappa} e_{2}:: \rho}{\Gamma \vdash_{\kappa}\left(\operatorname{let} v=e_{1} \operatorname{in} e_{2}\right):: \rho} \tag{let-N}
\end{equation*}
$$

$$
\frac{\Gamma \vdash_{\kappa} e_{1}:: R_{S} \quad \Gamma \cup\left\{v:: R_{S}\right\} \vdash_{v} e_{2}:: R_{S}}{\Gamma \vdash_{\kappa}\left(\operatorname{let} v=e_{1} \operatorname{in} e_{2}\right):: R_{S}}
$$

$$
\begin{equation*}
\frac{\Gamma \vdash_{\kappa} e_{0}:: N \quad \Gamma \vdash_{\kappa} e_{1}:: \rho_{1} \quad \Gamma \vdash_{\kappa} e_{2}:: \rho_{2} \quad \nabla \text { if }\left(\rho, \rho_{1}, \rho_{2}\right)}{\Gamma \vdash_{\kappa}\left(\text { if } e_{0} \text { then } e_{1} \text { else } e_{2}\right):: \rho} \tag{if}
\end{equation*}
$$

(if - merge)

Soundness of PType System

\rightsquigarrow : one step transformation of an expression.
s-value : skeleton form which can be mapped directly to parallel code.

Theorem 1 (Progress) If $\Gamma \vdash_{\kappa} e:: R_{S}$, then either e is an
s-value or $e \rightsquigarrow \ldots \rightsquigarrow e^{\prime}$ where e^{\prime} is an s-value.
Theorem 2 (Preservation) If $e:: R_{S}$ and $e \rightsquigarrow e^{\prime}$, then $e^{\prime}:: R_{S}$.

Example 1 - The mss Problem

```
mis - maximum initial sum
mss - maximum segment sum
#(Int,[max,+],[0,0])
mis [a] = a
mis (a:x) = a 'max' (a + mis x)
mss [a] = a
mss (a:x) = (a 'max' (a + mis x)) 'max' mss x
mis :: }\mp@subsup{R}{[\operatorname{max},+]}{
mss :: }\mp@subsup{R}{[max]}{
```


Example 2 - Fractal Image Decompression

tr - applies a list of transformations to a pixel.
k - applies these transformations to a set of pixels.
\#(List, [++], [Nil])
\#(Set, [union], [Nil])
tr : : [a -> a] -> a -> [a]
tr [f] $\mathrm{p}=[\mathrm{f} p]$
$\operatorname{tr}(f: f s) p=[f p]++\operatorname{tr} f s p$
k :: [[a]] -> [a]
k [a] fs $=$ nodup (tr fs a)
$\mathrm{k}(\mathrm{a}: \mathrm{x}) \mathrm{fs}=\operatorname{nodup}(\mathrm{tr} \mathrm{fs} \mathrm{a})$ 'union' (k x)
tr $:: R_{[++]}$
$\mathrm{k}:: R_{\text {[union] }}$

Relationship with Skeletons

```
\(\operatorname{map} f[a]=\left[\begin{array}{ll}f & a\end{array}\right]\)
\(\operatorname{map} f(a: x)=[f a]++\operatorname{map} f x\)
reduce op e [a] = e 'op' a
reduce op e \((a: x)=a{ }^{\prime} \mathrm{op}^{\prime}\) reduce op e x
map :: \(R_{[++]}\)
reduce :: \(R_{[o p]}\)
```


Enhancements (done in the paper)

. Multiple Recursion Parameters

- can handle zip-like functions.
. Accumulating Parameters
- type-check parameters before type-check function body.
. Non-linear Mutual Recursion
- commutativity is required.

Conclusions

. Type system giving a novel insight into parallelizability.
. Modular : typecheck functions independently of callers.
. High level interface for programmers.

- Do not need to explicitly write parallel program
- Do not need to understand non-trivial concept
(eg. skeletons and type system).
- Only need to focus on extended ring property.
- A prototype system can be found at
http://loris-4.ddns.comp.nus.edu.sg/ ${ }^{\text {xun }}$

Parallelization

Multiple Recursion Parameters

```
#(List Float, [++],[Nil])
polyadd [] ys = ys
polyadd xs [] = xs
polyadd (a:x) (b:y) = [(a + b)] ++ polyadd x y
polyadd :: }\mp@subsup{R}{[++]}{
```


Accumulating Parameters

```
\#(Bool, [\&\&], [True])
    \#(Int, [+,*], [0, 1])
sbp \(\mathrm{x}=\mathrm{sbp}\) ' x 0
sbp' [] c = c==0
sbp' (a:x) c = if (a == '(')
    then sbp' \(\mathrm{x}(1+\mathrm{c})\)
    else if (a == ')')
        then ( \(c>0\) ) \&\& ( \(s b p\) ' \(x((-1)+c)\)
                        else sbp' x c
\(\mathcal{C} \llbracket\) RHS of \(\mathrm{sbp}^{\prime} \rrbracket_{c}=\)
if ( \(\mathrm{a}==\) ' (') then \(1+\mathrm{c}\)
                                else if ( \(\mathrm{a}==\) ')') then ( -1 ) \(+c\)
                        else c
                        c \(:: R_{[+]} \quad\) sbp \(:: N\) sbp' \(:: R_{[\& \&]}\)
```


Example - Technical Indicators in Financial Analysis

```
#(Indicator Price, [+,*],[0,1])
ema (a:x)=(close a):ema' (a:x) (close a)
ema' [] p = []
ema' (a:x) p = let r = (0.2 * (close a) + 0.8 * p)
    in [r] ++ ema' x r
p :: R
ema' :: }\mp@subsup{R}{[++]}{
```


Non-linear Mutual Recursion

```
lfib [] = 1
lfib (a:x) = lfib \(x+1 f i b\) ( \(x\)
lfib' [] = 0
lfib' (a:x) = lfib x
```

Sketch of the type-checking process:

$$
\begin{array}{ll}
\Gamma \cup\{\mathrm{a}:: N, \mathrm{x}:: N\} & \vdash_{\left\{(\mathrm{lfib} \mathrm{x}),\left(\mathrm{lfib}^{\prime} \mathrm{x}\right)\right\}}\left(\operatorname{lfib} \mathrm{x}+\mathrm{lfib}^{\prime} \mathrm{x}\right):: R_{[+]} \\
\Gamma \cup\{\mathrm{a}:: N, \mathrm{x}:: N\} & \vdash_{\left\{(\mathrm{lfib} \mathrm{x}),\left(\mathrm{lfib}^{\prime} \mathrm{x}\right)\right\}}(\operatorname{lfib} \mathrm{x}):: R_{[]} \\
& \vdash_{\left\{(\mathrm{lfib} \mathrm{x}),\left(\mathrm{lfib}^{\prime} \mathrm{x}\right)\right\}}(\operatorname{lfib} \mathrm{x}):: R_{[+]} \text {since } R_{[]}<: R_{[+]} \\
\Gamma \cup\{\mathrm{a}:: N, \mathrm{x}:: N\} & \vdash_{\left\{(\mathrm{lfib} \mathrm{x}),\left(\mathrm{lfib}^{\prime} \mathrm{x}\right)\right\}}\left(\left(\mathrm{lfib} \mathrm{x}+\mathrm{lfib}^{\prime} \mathrm{x}\right),(\operatorname{lfib} \mathrm{x})\right):: R_{[+]}
\end{array}
$$

More on List

\#(List, [++, map2], [Nil, Nil])
y 'map2' $\mathrm{z}=\operatorname{map}(\backslash \mathrm{x} \rightarrow \mathrm{y}++\mathrm{x}$) z

1. map2 distributive over ++

$$
\mathrm{x} \text { 'map2' }(\mathrm{y}++\mathrm{z})=\mathrm{x}{ }^{\prime} \mathrm{map}^{\prime} \mathrm{y}++\mathrm{x} \text { 'map2' } \mathrm{z}
$$

2. $m a p 2$ is semi-associative (i.e. x op $(y \quad o p z)=(x \quad o p \prime y) ~ o p$ z)

$$
\mathrm{x} \text { 'map2' }\left(\mathrm{y}{ }^{\prime} \mathrm{map}^{\prime} \mathrm{z}\right)=(\mathrm{x}++\mathrm{y}){ }^{\prime} \mathrm{map}^{\prime} \mathrm{z}
$$

$\operatorname{scan}[a]=[[a]]$
$\operatorname{scan}(a: x)=[[a]++([a] \quad(m a p 2 '(s c a n ~ x))$
scan $:: R_{[++, \text {map } 2]}$

[^0]: * Now working at Computer Laboratory, University of Cambridge

