
Extended Static Checking for Haskell

(ESC/Haskell)

Dana N. Xu
University of Cambridge

advised by Simon Peyton Jones

Microsoft Research, Cambridge

Module UserPgm where

f :: [Int]->Int
f xs = head xs `max` 0

:
… f [] …

Program Errors Give Headache!

Glasgow Haskell Compiler (GHC) gives at run-time

Exception: Prelude.head: empty list

Module Prelude where

head :: [a] -> a
head (x:xs) = x
head [] = error “empty list”

Preconditions
head xs @ requires { not (null xs) }
head (x:xs’) = x

f xs = head xs `max` 0

Warning: f [] calls head
which may fail head’s precondition!

f_ok xs = if null xs then 0
else head xs `max` 0

A precondition
(ordinary Haskell)

not :: Bool -> Bool
not True = False
not False = True

null :: [a] -> Bool
null [] = True
null (x:xs) = False

Postconditions
rev xs @ ensures { null $res ==> null xs }
rev [] = []
rev (x:xs’) = rev xs’ ++ [x]

… case (rev xs) of
[] -> head xs
(x:xs’) -> …

A postcondition
(ordinary Haskell)

(==>) :: Bool -> Bool -> Bool
(==>) True x = x
(==>) False x = True

Crash!

Expressiveness of

the Specification Language

data T = T1 Bool | T2 Int | T3 T T

sumT :: T -> Int
sumT x @ requires { noT1 x }
sumT (T2 a) = a
sumT (T3 t1 t2) = sumT t1 + sumT t2

noT1 :: T -> Bool
noT1 (T1 _) = False
noT1 (T2 _) = True
noT1 (T3 t1 t2) = noT1 t1 && noT1 t2

Expressiveness of

the Specification Language

sumT :: T -> Int
sumT x @ requires { noT1 x }
sumT (T2 a) = a
sumT (T3 t1 t2) = sumT t1 + sumT t2

rmT1 :: T -> T
rmT1 x @ ensures { noT1 $res }
rmT1 (T1 a) = if a then T2 1 else T2 0
rmT1 (T2 a) = T2 a
rmT1 (T3 t1 t2) = T3 (rmT1 t1) (rmT1 t2)

For all crash-free t::T, sumT (rmT1 t) will not crash.

Functions without Annotations
data T = T1 Bool | T2 Int | T3 T T

noT1 :: T -> Bool
noT1 (T1 _) = False
noT1 (T2 _) = True
noT1 (T3 t1 t2) = noT1 t1 && noT1 t2

(&&) True x = x
(&&) False x = False

No abstraction is more compact than

the function definition itself!

Higher Order Functions

all :: (a -> Bool) -> [a] -> Bool

all f [] = True

all f (x:xs) = f x && all f xs

filter p xs @ ensures { all p $res }

filter p [] = []

filter p (x:xs’) = case (p x) of

True -> x : filter p xs’

False -> filter p xs’

Various Examples
zip xs ys @ requires { sameLen xs ys}
zip xs ys @ ensures { sameLen $res xs }

sameLen [] [] = True
sameLen (x:xs) (y:ys) = sameLen xs ys
sameLen _ _ = False

f91 n @ requires { n <= 101 }
f91 n @ ensures { $res == 91 }
f91 n = case (n <= 100) of

True -> f91 (f91 (n + 11))
False -> n – 10

Sorting

sorted [] = True
sorted (x:[]) = True
sorted (x:y:xs) = x <= y && sorted (y : xs)

insert i xs @ ensures { sorted xs ==> sorted $res }
insertsort xs @ ensures { sorted $res }

merge xs ys @ ensures { sorted xs & sorted ys
==> sorted $res }

mergesort xs @ ensures { sorted $res }

bubbleHelper :: [Int] -> ([Int], Bool)
bubbleHelper xs @ ensures { not (snd $res) ==>

sorted (fst $res) }
bubblesort xs @ ensures { sorted $res }

What we can’t do
g1 x @ requires {True}
g1 x = case (prime x > square x) of

True -> x
False -> error “urk”

g2 xs ys =
case (rev (xs ++ ys) == rev ys ++ rev xs) of
True -> xs
False -> error “urk”

Hence, three possible outcomes:

(1) Definitely Safe (no crash, but may loop)

(2) Definite Bug (definitely crashes)

(3) Possible Bug

Crash!

Crash!

Language

Syntax

following Haskell’s

lazy semantics

Preprocessing

head (x:xs) = x head (x:xs) = x
head [] = BAD “head”

1. Filling in missing pattern matchings.

2. Type checking the pre/postconditions.

head xs @ requires { xs /= [] }
head :: [a] -> a
head (x:xs) = x

head :: Eq a => [a] -> a

Symbolic Pre/Post Checking

At the definition of each function f,

assuming the given precondition holds,

we check

1. No pattern matching failure

2. Precondition of all calls in the body of
f holds

3. Postcondition holds for f itself.

Given f x = e, f.pre and f.post

Theorem: if so, then given precondition of f holds:

1. No pattern matching failure

2. Precondition of all calls in the body of f holds

3. Postcondition holds for f itself

Goal: show fchk is crash-free!

The Representative Function

All crashes in f are exposed in f#

No need to look inside OK calls

Simplifier

Expressive specification does not

increase the complication of checking

filter f xs @ ensures { all f $res }

filterchk f xs =

case xs of

[] -> True

(x:xs’) -> case (all f (filter f xs’)) of

True -> … all f (filter f xs’) …

Arithmetic

via External Theorem Prover

foo :: Int -> Int -> Int
foo i j @ requires { i > j }
foo# i j = case i > j of

False -> BAD “foo”
True -> …

goo i = foo (i+8) i

goochk i = case (i+8 > i) of
False -> BAD “foo”
True -> …

>>ThmProver
i+8>i
>>Valid!

case i > j of
True -> case j < 0 of

False -> case i > 0 of
False -> BAD “f”

>>ThmProver
push(i>j)
push(not (j<0))
(i>0)
>>Valid!

Counter-Example Guided Unrolling
sumT :: T -> Int
sumT x @ requires { noT1 x }
sumT (T2 a) = a
sumT (T3 t1 t2) = sumT t1 + sumT t2

After simplifying sumTchk, we may have:

case ((OK noT1) x) of
True -> case x of

T1 a -> BAD “sumT”
T2 a -> a
T3 t1 t2 -> case ((OK noT1) t1) of

False -> BAD “sumT”
True -> case ((OK noT1) t2) of

False -> BAD “sumT”
True -> (OK sumT) t1 +

(OK sumT) t2

Step 1:

Program Slicing – Focus on the BAD Paths

case ((OK noT1) x) of
True -> case x of

T1 a -> BAD “sumT”
T3 t1 t2 -> case ((OK noT1) t1) of

False -> BAD “sumT”
True -> case ((OK noT1) t2) of

False -> BAD “sumT”

Step 2: Unrolling

case (case x of
T1 a -> False
T2 a -> True
T3 t1 t2 -> (OK noT1) t1 &&

(OK noT1) t2)) of
True -> case x of

T1 a -> BAD “sumT”
T3 t1 t2 -> case ((OK noT1) t1) of

False -> BAD “sumT”
True -> case ((OK noT1) t2) of

False -> BAD “sumT”

(OK noT1) t1

(OK noT1) t2

((OK noT1) t1)

((OK noT1) t2)

Keeping Known Information
case (case (NoInline ((OK noT1) x)) of

True -> case x of
T1 a’ -> False
T2 a’ -> True
T3 t1’ t2’ -> (OK noT1) t1’ &&

(OK noT1) t2’)) of
True -> case x of

T1 a -> BAD “sumT”
T3 t1 t2 -> case ((OK noT1) t1) of

False -> BAD “sumT”
True -> case ((OK noT1) t2) of

False -> BAD “sumT”

(OK noT1) t1

(OK noT1) t2

((OK noT1) t1)

((OK noT1) t2)
case (NoInline ((OK noT1) t1)) of

True -> ...

case (NoInline ((OK noT1) t2)) of
True -> ...

Counter-Example Guided Unrolling

– The Algorithm

Tracing

Counter-Example Generation

f3chk xs z =
case xs of
[] -> 0
(x:y) -> case x > z of

True -> Inside “f2” <l2>
(Inside “f1” <l1> (BAD “f1”))

False -> …

Warning <l3>: f3 (x:y) z where x>z
calls f2
which calls f1
which may fail f1’s precondition!

f3 [] z = 0
f3 (x:xs) z = case x > z of

True -> f2 x z
False -> ...

f1 x z @ requires { x < z }
f2 x z = 1 + f1 x z

Contributions
� Checks each program in a modular fashion on a per function

basis. The checking is sound.

� Pre/postcondition annotations are in Haskell.
� Allow recursive function and higher-order function

� Unlike VC generation, we treat pre/postcondition as boolean-
valued functions and use symbolic simplification.
� Handle user-defined data types

� Better control of the verification process

� First time that Counter-Example Guided approach is applied
to unrolling.

� Produce a trace of calls that may lead to crash at compile-time.

� Our prototype works on small but significant examples
� Sorting: insertion-sort, merge-sort, bubble-sort

� Nested recursion

Future Work

� Allowing pre/post declaration for data types.

data A where

A1 :: Int -> A

A2 :: [Int] -> [Bool] -> A

A2 x y @ requires { length x == length y}

� Allowing pre/post declaration for parameters in higher-

order function.

map f xs @ requires {all f.pre xs}

map f [] = []

map f (x:xs’) = f x : map f xs’

� Allowing polymorphism and support full Haskell.

