Probabilistic Contracts for Component-based Design

Dana N. Xu Gregor Gössler Alain Girault

INRIA, France

ATVA 2010

Probabilistic Contracts

System designers have to cope with multiple sources of uncertainty:

- Embedded and distributed systems usually encompass unreliable components.
- Behaviors of (black-box) components and the environment may be uncertain.
- Abstraction from complex deterministic behavior ("network access is available with $\mathrm{p}=95 \%$ ").

We want to describe properties such as:
"The probability that this component fails at this point of its behavior is
$\leq 0.1 \%$."
We introduce probabilistic contracts, which distinguish assumptions on how a component is used from guarantees on the component behavior.

Interactive Markov Chain (IMC)

Example: client - link - server.

An IMC is an LTS with action states/transitions and probabilistic states/transitions [Hermanns 2002].

IMC used to model component behaviors:

The IMC M_{ℓ} of the Link.

Probabilistic Contracts

A probabilistic contract is an IMC with probability intervals and a special \top state:

Contract C_{s} for Server

- action transitions leading to T are assumed not to be synchronized.
- action transitions not leading to \top are guaranteed to be offered.
- actions not labelling any transition at a state are guaranteed not to be offered.

Operations for Contract-based Design Flow

Essential operations:

- refinement and satisfaction;
- parallel composition $\left(C_{1} \|_{\mathcal{I}} C_{2}\right)$: E.g. $\mathcal{I}=\{a|d, b| e, c \mid f, g, u, v\}$

C2

- conjunction of contracts $\left(C_{1} \wedge C_{2}\right)$:

Additional definitions: bisimulation, reduction, projection

Contract Refinement

$$
\begin{aligned}
& C_{1} \leq C_{3} \\
& C_{2} \leq C_{3}
\end{aligned}
$$

Contract refinement for probabilistic states

[Jonsson and Larsen : LICS'91]

Contract Satisfaction

IMC M_{s}

Lifted IMC $\left\lfloor M_{s}\right\rfloor$

Contract Satisfaction

IMC M_{s}

Lifted IMC $\left\lfloor M_{s}\right\rfloor$

Definition (Contract satisfaction)

An IMC M satisfies a contract C (written $M \models C$) iff $\lfloor M\rfloor \leq C$.

That is to check: $s_{0} \leq t_{0}$
Contract C_{s} for Server

Contract Satisfaction

Definition (Models of contracts)

The set of models of a contract C (written $\mathcal{M}(C))$ is the set of IMCs that satisfy C : $\mathcal{M}(C)=\{M \mid M \models C\}$.

Definition (Semantical equivalence)

Contracts C_{1} and C_{2} are semantically equivalent (written $C_{1} \equiv C_{2}$) iff $\mathcal{M}\left(C_{1}\right)=\mathcal{M}\left(C_{2}\right)$.

Lemma (Refinement and model inclusion)
For all contracts C_{1} and C_{2}, if $C_{1} \leq C_{2}$, then $\mathcal{M}\left(C_{1}\right) \subseteq \mathcal{M}\left(C_{2}\right)$.

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T, the composed contract reaches T.

C_{1}

C_{2}

$$
C_{1} \|_{\mathcal{I}} C_{2} \text { where } \mathcal{I}=\{a \mid c, b, d\}
$$

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T, the composed contract reaches T.

C_{1}

$\rightarrow\left(s_{0}, t_{0}\right)$
$C_{1} \|{ }_{\mathcal{I}} C_{2}$ where $\mathcal{I}=\{a \mid c, b, d\}$

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T , the composed contract reaches T .

C_{1}

C_{2}

$$
C_{1} \|_{\mathcal{I}} C_{2} \text { where } \mathcal{I}=\{a \mid c, b, d\}
$$

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T, the composed contract reaches T.

C_{1}

$$
C_{1} \|_{\mathcal{I}} C_{2} \text { where } \mathcal{I}=\{a \mid c, b, d\}
$$

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T, the composed contract reaches T.

C_{1}

$$
C_{1} \|_{\mathcal{I}} C_{2} \text { where } \mathcal{I}=\{a \mid c, b, d\}
$$

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T, the composed contract reaches T.

C_{1}

C_{2}

$$
[0.2 * 0.7,0.5 * 0.9] \rightarrow\left(s_{5}, t_{2}\right)
$$

$$
[0.5 * 0.7,0.8 * 0.9],\left(s_{6}, t_{2}\right)
$$

$C_{1} \|{ }_{I} C_{2}$ where $\mathcal{I}=\{a \mid c, b, d\}$

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T, the composed contract reaches T.

$C_{1} \|{ }_{\mathcal{I}} C_{2}$ where $\mathcal{I}=\{a \mid c, b, d\}$

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T, the composed contract reaches T.

$C_{1} \|_{\mathcal{I}} C_{2}$ where $\mathcal{I}=\{a \mid c, b, d\}$

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T, the composed contract reaches T.

$C_{1} \|{ }_{I} C_{2}$ where $\mathcal{I}=\{a \mid c, b, d\}$

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T, the composed contract reaches T.

$C_{1} \|{ }_{I} C_{2}$ where $\mathcal{I}=\{a \mid c, b, d\}$

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T, the composed contract reaches T.

$C_{1} \|_{\mathcal{I}} C_{2}$ where $\mathcal{I}=\{a \mid c, b, d\}$

Parallel Composition of contracts over two components

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches T, the composed contract reaches T.

$C_{1} \|{ }_{I} C_{2}$ where $\mathcal{I}=\{a \mid c, b, d\}$

Properties for Parallel Composition

Theorem (Congruence of refinement for $\|_{\mathcal{I}}$)
For all contracts $C_{1}, C_{2}, C_{3}, C_{4}$ and interaction set \mathcal{I}, if $C_{1} \leq C_{2}$ and $C_{3} \leq C_{4}$, then $C_{1}\left\|_{I} C_{3} \leq C_{2}\right\|_{I} C_{4}$.

Theorem (Independent implementability)
For all IMCs M, N, contracts C_{1}, C_{2}, and interaction set \mathcal{I}, if $M \models C_{1}$ and $N \models C_{2}$, then $M\left\|_{I} N \models C_{1}\right\|_{\mathcal{I}} C_{2}$.

Conjunction: composition of requirements over a same component

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

C_{1} with $A_{1}=\{a, b, c\} \quad C_{2}$ with $A_{2}=\{a, b, d\}$

Conjunction: composition of requirements over a same component

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

C_{1} with $A_{1}=\{a, b, c\}$
C_{2} with $A_{2}=\{a, b, d\}$

Conjunction: composition of requirements over a same component

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

C_{1} with $A_{1}=\{a, b, c\}$
C_{2} with $A_{2}=\{a, b, d\}$

$C_{1} \wedge C_{2}$

Conjunction: composition of requirements over a same component

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

C_{1} with $A_{1}=\{a, b, c\}$
C_{2} with $A_{2}=\{a, b, d\}$

$C_{1} \wedge C_{2}$

Conjunction: composition of requirements over a same component

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

C_{1} with $A_{1}=\{a, b, c\}$
C_{2} with $A_{2}=\{a, b, d\}$

$C_{1} \wedge C_{2}$

Conjunction: composition of requirements over a same component

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

C_{1} with $A_{1}=\{a, b, c\} \quad C_{2}$ with $A_{2}=\{a, b, d\}$

$C_{1} \wedge C_{2}$

Conjunction: composition of requirements over a same component

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

C_{1} with $A_{1}=\{a, b, c\} \quad C_{2}$ with $A_{2}=\{a, b, d\}$

$C_{1} \wedge C_{2}$

Conjunction: composition of requirements over a same component

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

C_{1} with $A_{1}=\{a, b, c\} \quad C_{2}$ with $A_{2}=\{a, b, d\}$

$C_{1} \wedge C_{2}$

Conjunction: composition of requirements over a same component

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

C_{1} with $A_{1}=\{a, b, c\} \quad C_{2}$ with $A_{2}=\{a, b, d\}$

$C_{1} \wedge C_{2}$

Conjunction: composition of requirements over a same component

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

C_{1} with $A_{1}=\{a, b, c\} \quad C_{2}$ with $A_{2}=\{a, b, d\}$

Unambiguous Contracts

For conjunction, we require the contracts to be unambiguous.

Ambiguous Contract

Properties of Conjunction

Theorem (Soundness of conjunction)
For all unambiguous contracts C_{1} and C_{2} with alphabets \mathcal{A} such that:

$$
C_{1} \wedge C_{2} \leq C_{i} \text { for } i=1,2
$$

Case Study

Requirment C_{s} on the server

Contract C_{P} of a processor

Contract C_{T} of a re-execution scheduler $\mathcal{I}=\left\{\right.$ success, comp, fail, exe \mid exe $^{\prime}$, ok $\mid o k^{\prime}$, nok \mid nok $\left.{ }^{\prime}\right\}$

Case Study

Shortcuts: $\mathbf{e x e}=$ exe \mid exe $\mathbf{e}^{\prime} \mathbf{o k}=o k \mid o k^{\prime}$ nok $=n o k \mid n o k^{\prime}$

Case study: Refinement to Guarantee Reliability

- Collapse probabilistic transitions:

$\mathcal{B}=\{$ success, comp, fail $\}$
- Refinement $\tilde{C_{\pi}} \leq C_{S}$ of reliability contract C_{S} gives constraint on $p:(1-p)^{2} \leq 0.001$, that is, $p \geq 0.969$.

Conclusion

- Developed a probabilistic contract framework for component-based design.
- Provide operations for bottom-up and top-down design: refinement, parallel composition, and conjunction.
- Proved the desired properties of these operations.
- Small case study to show its usefulness.

Future work directions:

- Implement the framework in a tool, e.g. CADP model-checker
- Work on larger case studies.
- Study blaming (statically and at run-time).

