Probabilistic Contracts for Component-based Design

Dana N. Xu Gregor Gössler Alain Girault

INRIA, France

ATVA 2010

D.N. Xu, G. Gössler, A. Girault (INRIA, France

Probabilistic contracts

Probabilistic Contracts

System designers have to cope with multiple sources of uncertainty:

- Embedded and distributed systems usually encompass unreliable components.
- Behaviors of (black-box) components and the environment may be uncertain.
- **Abstraction** from complex deterministic behavior ("network access is available with p=95%").

We want to describe properties such as: "The probability that this component fails at this point of its behavior is $\leq 0.1\%$."

We introduce **probabilistic contracts**, which distinguish **assumptions** on how a component is used from **guarantees** on the component behavior.

Interactive Markov Chain (IMC)

An IMC is an LTS with action states/transitions and probabilistic states/transitions [Hermanns 2002].

IMC used to model component behaviors:

Probabilistic Contracts

A probabilistic contract is an IMC with probability intervals and a special \top state:

Contract C_s for Server

- action transitions leading to ⊤ are assumed not to be synchronized.
- action transitions not leading to \top are **guaranteed** to be offered.
- actions not labelling any transition at a state are guaranteed not to be offered.

D.N. Xu, G. Gössler, A. Girault (INRIA, France

Operations for Contract-based Design Flow

Essential operations:

- refinement and satisfaction;
- parallel composition ($C_1 ||_{\mathcal{I}} C_2$): E.g. $\mathcal{I} = \{a | d, b | e, c | f, g, u, v\}$

• conjunction of contracts $(C_1 \land C_2)$:

Additional definitions: bisimulation, reduction, projection

Contract Refinement

Contract refinement for probabilistic states

Contract Satisfaction

Contract Satisfaction

Definition (Contract satisfaction)

An IMC *M* satisfies a contract *C* (written $M \models C$) iff $\lfloor M \rfloor \leq C$.

Contract C_s for Server

That is to check:

Contract Satisfaction

Definition (Models of contracts)

The set of models of a contract *C* (written $\mathcal{M}(C)$) is the set of IMCs that satisfy *C*: $\mathcal{M}(C) = \{M \mid M \models C\}$.

Definition (Semantical equivalence)

Contracts C_1 and C_2 are semantically equivalent (written $C_1 \equiv C_2$) iff $\mathcal{M}(C_1) = \mathcal{M}(C_2)$.

Lemma (Refinement and model inclusion)

For all contracts C_1 and C_2 , if $C_1 \leq C_2$, then $\mathcal{M}(C_1) \subseteq \mathcal{M}(C_2)$.

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches \top , the composed contract reaches \top .

$$C_1||_{\mathcal{I}}C_2$$
 where $\mathcal{I}=\{a|c, b, d\}$

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches \top , the composed contract reaches \top .

$$\longrightarrow$$
 (s_0, t_0)

$$C_1||_{\mathcal{I}}C_2$$
 where $\mathcal{I}=\{a|c, b, d\}$

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches \top , the composed contract reaches \top .

 $C_1||_{\mathcal{I}}C_2$ where $\mathcal{I}=\{a|c, b, d\}$

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches \top , the composed contract reaches \top .

 $C_1||_{\mathcal{I}}C_2$ where $\mathcal{I}=\{a|c, b, d\}$

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches \top , the composed contract reaches \top .

 $C_1||_{\mathcal{I}}C_2$ where $\mathcal{I}=\{a|c, b, d\}$

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches \top , the composed contract reaches \top .

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches \top , the composed contract reaches \top .

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches \top , the composed contract reaches \top .

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches \top , the composed contract reaches \top .

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches \top , the composed contract reaches \top .

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches \top , the composed contract reaches \top .

- A probabilistic transition has higher priority than an action transition.
- Interaction set \mathcal{I} : only transitions labeled with interactions in \mathcal{I} can occur.
- Synchronize two probabilistic transitions.
- If one contract reaches ⊤, the composed contract reaches ⊤.

D.N. Xu, G. Gössler, A. Girault (INRIA, France

Properties for Parallel Composition

Theorem (Congruence of refinement for $||_{\mathcal{I}}$) For all contracts C_1 , C_2 , C_3 , C_4 and interaction set \mathcal{I} , if $C_1 \leq C_2$ and $C_3 \leq C_4$, then $C_1||_{\mathcal{I}} C_3 \leq C_2||_{\mathcal{I}} C_4$.

Theorem (Independent implementability)

For all IMCs M, N, contracts C_1, C_2 , and interaction set \mathcal{I} , if $M \models C_1$ and $N \models C_2$, then $M ||_{\mathcal{I}} N \models C_1 ||_{\mathcal{I}} C_2$.

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

 $C_1 \wedge C_2$

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

$$C_1 \text{ with } A_1 = \{a, b, c\}$$
 $C_2 \text{ with } A_2 = \{a, b, d\}$

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches T, the conjunction behaves like the other contract.

- A probability transition has a higher priority than an action transition.
- Contracts must agree on common action transitions.
- Intersect probability intervals for two states that are similar.
- If one contract reaches ⊤, the conjunction behaves like the other contract.

Unambiguous Contracts

For conjunction, we require the contracts to be **unambiguous**.

Properties of Conjunction

Theorem (Soundness of conjunction)

For all unambiguous contracts C_1 and C_2 with alphabets A such that:

 $C_1 \wedge C_2 \leq C_i$ for i = 1, 2

Case Study

Requirment C_s on the server

Contract C_P of a processor

Contract C_T of a re-execution scheduler $\mathcal{I} = \{success, comp, fail, exe | exe', ok | ok', nok | nok' \}$

Case Study

Shortcuts: **exe** = exe|exe' **ok** = ok|ok' **nok** = nok|nok'

Case study: Refinement to Guarantee Reliability

• Collapse probabilistic transitions:

Refinement C_π ≤ C_S of reliability contract C_S gives constraint on p: (1 − p)² ≤ 0.001, that is, p ≥ 0.969.

Conclusion

- Developed a probabilistic contract framework for component-based design.
- Provide operations for bottom-up and top-down design: *refinement, parallel composition, and conjunction.*
- Proved the desired properties of these operations.
- Small case study to show its usefulness.

Future work directions:

- Implement the framework in a tool, e.g. CADP model-checker
- Work on larger case studies.
- Study *blaming* (statically and at run-time).