
1

Static Contract Checking 

for Haskell

Dana N. Xu
INRIA France 

Work done at University of Cambridge

Joint work with

Simon Peyton Jones

Microsoft Research Cambridge

Koen Claessen

Chalmers University of Technology



2

Module UserPgm where

f :: [Int] -> Int
f xs = head xs `max` 0 

:
… f [] …

Program Errors Give Headache!

Glasgow Haskell Compiler (GHC) gives at run-time

Exception: Prelude.head: empty list

Module Prelude where

head :: [a] -> a
head (x:xs) = x
head [] = error “empty list”
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From Types to Contracts 
head (x:xs) = x

head :: [Int] -> Int

…(head 1)…

head 2 {xs | not (null xs)} -> {r | True}

…(head [])…

Bug!

Bug!
Contract

(original Haskell 

boolean expression)

Type not :: Bool -> Bool

not True = False

not False = True

null :: [a] -> Bool

null [] = True

null (x:xs) = False
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What we want?

Contract Haskell 

Program

Glasgow Haskell Compiler (GHC)

Where the bug is Why it is a bug
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Contract Checking
head 2 {xs | not (null xs)} -> {r | True}

head (x:xs’) = x

f xs = head xs `max` 0

Warning: f [] calls head

which may fail head’s precondition!

f_ok xs = if null xs then 0

else head xs `max` 0

No more warnings from the compiler!
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Satisfying a Predicate Contract

e 2 {x | p} if   (1)   p[e/x] gives True and

(2)  e is crash-free.

Arbitrary boolean-valued 

Haskell expression

Recursive function, 

higher-order function, 

partial function

can be called!
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Expressiveness of 

the Specification Language

data T = T1 Bool | T2 Int | T3 T T

sumT :: T -> Int 

sumT 2 {x | noT1 x} -> {r | True}

sumT (T2 a)     = a

sumT (T3 t1 t2) = sumT t1 + sumT t2

noT1 :: T -> Bool

noT1 (T1 _) = False

noT1 (T2 _) = True

noT1 (T3 t1 t2) = noT1 t1 && noT1 t2
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Expressiveness of 

the Specification Language

sumT :: T -> Int

sumT 2 {x | noT1 x} -> {r | True}

sumT (T2 a) = a

sumT (T3 t1 t2) = sumT t1 + sumT t2

rmT1 :: T -> T

rmT1 2 {x | True} -> {r | noT1 r}

rmT1 (T1 a) = if a then T2 1 else T2 0

rmT1 (T2 a) = T2 a

rmT1 (T3 t1 t2) = T3 (rmT1 t1) (rmT1 t2)

For all crash-free t::T,   sumT (rmT1 t) will not crash.
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Higher Order Functions

all :: (a -> Bool) -> [a] -> Bool

all f [] = True

all f (x:xs) = f x && all f xs

filter :: (a -> Bool) -> [a] -> [a]

filter 2 {f | True} -> {xs | True} -> {r | all f r}

filter f [] = []

filter f (x:xs’) = case (f x) of

True -> x : filter f xs’

False -> filter f xs’
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Contracts for Higher-order 

Function’s Parameter

f1 :: (Int -> Int) -> Int

f1 2 ({x | True} -> {y | y >= 0}) -> {r | r >= 0}

f1 g = (g 1) - 1

f2 :: {r | True}

f2 = f1 (\x -> x – 1)

Error: f1’s postcondition fails

when (g 1) >= 0 holds

(g 1) – 1 >= 0 does not hold

Error: f2 calls f1

which fails f1’s precondition

[Findler&Felleisen:ICFP’02, Blume&McAllester:ICFP’04]
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Various Examples
zip :: [a] -> [b] -> [(a,b)]

zip 2 {xs | True} -> {ys | sameLen xs ys}

-> {rs | sameLen rs xs }

sameLen [] []         = True

sameLen (x:xs) (y:ys) = sameLen xs ys

sameLen _ _           = False 

f91 :: Int -> Int

f91 2 {n | True} -> {r | (n<=100 && r==91)                                                                 
|| r==n-10}

f91 n = case (n <= 100) of

True -> f91 (f91 (n + 11))

False -> n – 10
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Sorting

sorted [] = True

sorted (x:[]) = True

sorted (x:y:xs) = x <= y && sorted (y : xs)

insert :: Int -> [Int] -> [Int]

insert 2 {i | True} -> {xs | sorted xs} -> {r | sorted r}

merge :: [Int] -> [Int] -> [Int]

merge 2 {xs | sorted xs}->{ys | sorted ys}->{r | sorted r}

bubbleHelper :: [Int] -> ([Int], Bool)

bubbleHelper 2 {xs | True} 

-> {r | not (snd r) ==> sorted (fst r)} 

insertsort, mergesort, bubblesort 2 {xs | True} 

-> {r | sorted r}

(==>) True x = x

(==>) False x = True



AVL Tree
balanced :: AVL -> Bool

balanced L = True

balanced (N t u) = balanced t && balanced u && 

abs (depth t - depth u) <= 1

data AVL = L | N Int AVL AVL 

insert, delete :: AVL -> Int -> AVL

insert 2 {x | balanced x} -> {y | True} -> 

{r | notLeaf r && balanced r     &&

0 <= depth r - depth x      &&

depth r - depth x <= 1  }

delete 2 {x | balanced x} -> {y | True} -> 

{r | balanced r && 0 <= depth x - depth r && 

depth x - depth r <= 1}

(&&) True x = x

(&&) False x = False
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Functions without Contracts
data T = T1 Bool | T2 Int | T3 T T

noT1 :: T -> Bool

noT1 (T1 _)     = False

noT1 (T2 _)     = True

noT1 (T3 t1 t2) = noT1 t1 && noT1 t2

(&&) True x  = x

(&&) False x = False

No abstraction is more compact than 

the function definition itself!



Lots of Questions

 What does “crash” mean?

 What is “a contract”?

 What does it mean to “satisfy a contract”?

 How can we verify that a function does 

satisfy a contract?

 What if the contract itself diverges? Or 

crashes?

It’s time to get precise...
15



What is the Language?

 Programmer sees Haskell

 Translated (by GHC) into Core language

 Lambda calculus

 Plus algebraic data types, and case expressions

 BAD and UNR are (exceptional) values

 Standard reduction semantics e1 ! e2

16
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Two Exceptional Values
 BAD is an expression that crashes.

error :: String -> a

error s = BAD

head (x:xs) = x

head [] = BAD

 UNR (short for “unreachable”) is an expression that gets 
stuck. This is not a crash, although execution comes to a 
halt without delivering a result. (identifiable infinite loop)

div x y = 

case y == 0 of

True -> error “divide by zero”

False -> x / y

head (x:xs) = x

Real Haskell 

Program



Crashing

Definition (Crash). 

A closed term e crashes iff e !* BAD

Definition (Crash-free Expression)

An expression e is crash-free iff

8 C. BAD 2s C, ` C[[e]] :: (), C[[e]]  !* BAD

Non-termination is not a crash 

(i.e. partial correctness).



Crash-free Examples

Lemma:  For all closed e, 

e is syntactically safe    ) e is crash-free.

Crash-free?

(1,BAD) NO

(1, True) YES

\x -> x YES

\x -> if x > 0 then x else (BAD, x) NO

\x -> if x*x >= 0 then x + 1 else BAD Hmm.. YES
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What is a Contract
(related to [Findler:ICFP02,Blume:ICFP04,Hinze:FLOPS06,Flanagan:POPL06]) 

Full version:  x’:{x | x >0} -> {r | r > x’}

Short hand:  {x | x > 0} -> {r | r > x}

k:({x | x > 0} -> {y | y > 0}) -> {r | r > k 5}

t 2 Contract

t ::= {x | p}    Predicate Contract

|  x:t1 ! t2 Dependent Function Contract

|  (t1, t2)    Tuple Contract

|  Any        Polymorphic Any Contract
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Questions on e 2 t
3 2 {x | x > 0}

5 2 {x | True}

(True, 2)    2 {x | (snd x) > 0}  ?

(head [], 3) 2 {x | (snd x) > 0} ? 

BAD 2 ?

? 2 {x | False}

? 2 {x | BAD}    

\x-> BAD     2 {x | False} -> {r | True} ?

\x-> BAD     2 {x | True} ->  ?

\x-> x       2 {x | True} ?
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What exactly does it mean 
to say that

e “satisfies” contract t?

e 2 t
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Contract Satisfaction
(related to [Findler:ICFP02,Blume:ICFP04,Hinze:FLOPS06])

e" means e diverges or e !* UNR

e 2 {x | p}      , e" or (e is crash-free and                
p[e/x]!*{BAD, False}           [A1]

e2 x:t1! t2 , e" or (e !*¸x.e’ and [A2]

8 e1 2 t1. (e e1) 2 t2[e1/x])

e 2 (t1, t2)       , e" or (e !*(e1,e2) and [A3]

e1 2 t1 and e2 2 t2)

e 2 Any    , True                                                   [A4]

Given ` e ::  and `c t :: , we define e 2 t as follows:



Only Crash-free Expression 

Satisfies a Predicate Contract 
e 2 {x | p}      , e" or (e is crash-free and p[e/x]!*{BAD, False}           

e2 x:t1! t2 , e" or (e !*¸x.e’ and 8 e1 2 t1. (e e1) 2 t2[e1/x] )                

e 2 (t1, t2)       , e" or (e !*(e1,e2) and e1 2 t1 and e2 2 t2)

e 2 Any    , True

YES or NO?

(True, 2)    2 {x | (snd x) > 0} YES

(head [], 3) 2 {x | (snd x) > 0} NO

\x-> x       2 {x | True} YES

\x-> x       2 {x | loop} YES

5            2 {x | BAD} NO

loop 2 {x | False} YES

loop 2 {x | BAD} YES
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All Expressions Satisfy Any

fst 2 ({x | True}, Any) -> {r | True}

fst (a,b) = a

g x = fst (x, BAD)

YES or NO?

5 2 Any YES

BAD 2  Any YES

(head [], 3) 2 (Any, {x | x> 0}) YES

\x -> x      2 Any YES

BAD 2  Any -> Any NO

BAD 2 (Any, Any) NO

Inlining may help, but 
breaks down when function
definition is big or recursive



All Contracts are Inhabited
e 2 {x | p}      , e" or (e is crash-free and p[e/x]!*{BAD, False}           

e2 x:t1! t2 , e" or (e !*¸x.e’ and 8 e1 2 t1. (e e1) 2 t2[e1/x])                 

e 2 (t1, t2)       , e" or (e !*(e1,e2) and e1 2 t1 and e2 2 t2)

e 2 Any    , True

YES or NO?

\x-> BAD     2 Any ->  Any YES

\x-> BAD     2 {x | True} ->  Any YES

\x-> BAD     2 {x | False} -> {r | True} NO

Blume&McAllester[JFP’06]

say YES
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What to Check?

Does function f satisfy its contract t (written f2 t)?

At the definition of each function f,

Check f 2 t assuming all functions called in f 

satisfy their contracts.

Goal:  main 2 {x | True}

(main is crash-free, hence the program cannot crash)



How to Check?
Define

e 2 t

Construct

e B t 

(e “ensures” t)

Grand Theorem 
e 2 t    , e B t is crash-free  

(related to Blume&McAllester:JFP’06)

some e’

Simplify (e B t)

If e’ is syntactically safe,

then Done!

Part I

Part II
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What we can’t do?
g1, g2 2 Ok -> Ok

g1 x = case (prime x > square x) of

True -> x

False -> error “urk”

g2 xs ys = 

case (rev (xs ++ ys) == rev ys ++ rev xs) of

True -> xs

False -> error “urk”

Hence, three possible outcomes: 

(1) Definitely Safe (no crash, but may loop)

(2) Definite Bug (definitely crashes)

(3) Possible Bug

Crash!

Crash!
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Wrappers  B and  C
(B pronounced ensures C pronounced requires)

e B {x | p} = case p[e/x] of
True -> e

False -> BAD

e B  x:t1 ! t2
=  v. (e (vC t1)) B    t2[vCt1/x]

e B (t1, t2) = case e of

(e1, e2) -> (e1 B t1, e2 B t2)

e B Any = UNR

related to [Findler:ICFP02,Blume:JFP06,Hinze:FLOPS06]
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Wrappers  B and  C
(B pronounced ensures C pronounced requires)

e C {x | p} = case p[e/x] of
True -> e

False -> UNR

e C  x:t1 ! t2
=  v. (e (v B t1)) C    t2[v B t1/x]

e C (t1, t2) = case e of

(e1, e2) -> (e1 C t1, e2 C t2)

e C Any = BAD

related to [Findler:ICFP02,Blume:JFP06,Hinze:FLOPS06]



Example

head  { xs | not (null xs) } -> Ok

head {xs | not (null xs)} -> Ok

= \v. head (v  {xs | not (null xs)})  Ok

e  Ok  = e

= \v. head (v  {xs | not (null xs)})

= \v. head (case not (null v) of
True -> v
False -> UNR)

head:: [a] -> a

head []     = BAD

head (x:xs) = x



\v. head (case not (null v) of
True -> v
False -> UNR)

null :: [a] -> Bool

null []     = True

null (x:xs) = False

not :: Bool -> Bool

not True  = False

not False = True

= \v. head (case v of
[] -> UNR
(p:ps) -> p)

Now inline ‘not’ and ‘null’

Now inline ‘head’

= \v. case v of
[]     -> UNR
(p:ps) -> p

So head [] fails 
with UNR, not 

BAD, blaming the 
caller



Higher-Order Function

f1 B ({x | True} -> {y | y >= 0}) -> {r | r >= 0}

= … B C B
=  v1. case (v1 1) >= 0 of

True -> case (v1 1) - 1 >= 0 of

True -> (v1 1) -1

False -> BAD

False -> UNR  

f1 :: (Int -> Int) -> Int

f1 2 ({x | True} -> {y | y >= 0}) -> {r | r >= 0}

f1 g = (g 1) - 1

f2:: {r | True}

f2 = f1 (\x -> x – 1)



e B {x | p} = case p[e/x] of
True -> e

False -> BAD

loop 2{x | False} 

loop B{x | False} 
= case False of {True -> loop; False -> BAD}

= BAD, which is not crash-free

BAD 2 Ok -> Any

BAD B Ok -> Any 
= \v -> ((BAD (v C Ok)) B Any

= \v -> UNR, which is crash-free

Grand Theorem 
e 2 t    , e B t is crash-free  





e B {x | p} = e `seq` case p[e/x] of
True -> e

False -> BAD

loop 2{x | False} 

loop B{x | False} 
= loop `seq` case False of {…}

= loop, which is crash-free

BAD 2 Ok -> Any

BAD B Ok -> Any 
= BAD `seq` \v -> ((BAD (v C Ok)) B Any

= BAD, which is not crash-free

Grand Theorem 
e 2 t    , e B t is crash-free  

e_1 `seq` e_2 = case e_1 of {DEFAULT -> e_2}





Contracts that Diverge

\x->BAD 2 {x | loop} ?  NO

But 

\x->BAD B {x | loop}

= \x->BAD `seq` case loop of

True -> \x -> BAD

False -> BAD

e B {x | p} = e `seq` case fin p[e/x] of

True -> e

False -> BAD

fin converts divergence to True

crash-free



Contracts that Crash

 … much trickier 

 ()) does not hold, (() still holds

 Open Problem

 Suppose fin converts BAD to False

 Not sure if Grand Theorem holds because

NO proof, and NO counter example either.
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Grand Theorem 
e 2 t    , e B t is crash-free  



Well-formed Contracts

Grand Theorem 
e 2 t    , e B t is crash-free  

Well-formed t

t is Well-formed (WF) iff
t = {x | p} and p is crash-free 

or t = x:t1 ! t2 and t1 is WF and 8e12 t1, t2[e1/x] is WF
or t = (t1, t2) and both t1 and t2 are WF
or t = Any
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Properties of B and C
Key Lemma:
For all closed, crash-free e, and closed t,
(e C t) 2 t

Projections:  (related to Findler&Blume:FLOPS’06)

For all e and t, if e 2 t, then 
(a) e ¹ e B t
(b) e C t ¹ e

Definition (Crashes-More-Often):
e1 ¹ e2 iff   for all C, ` C[[ei]] :: () for i=1,2 and

C[[e2]] !
* BAD ) C[[e1]] !

* BAD
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More Lemmas 

Lemma [Monotonicity of Satisfaction ]:

If e1 2 t and e1 ¹ e2, then e22 t

Lemma [Congruence of ¹]:

e1 ¹ e2     ) 8 C. C[[e1]] ¹ C[[e2]]

Lemma [Idempotence of Projection]:

8 e, t.   e B t B t ≡ e B t 

8 e, t.   e C t C t ≡ eC t 

Lemma [A Projection Pair]:

8 e, t.  e B t C t ¹ e

Lemma [A Closure Pair]:

8 e, t.  e ¹ eC t B t 
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How to Check?
Define

e 2 t

Construct

e B t 

(e “ensures” t)

Grand Theorem 
e 2 t    , e B t is crash-free  

(related to Blume&McAllester:ICFP’04)

Normal form e’

Simplify (e B t)

If e’ is syntactically safe,

then Done!

Part I

Part II
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Simplification Rules



Arithmetic 

via External Theorem Prover

goo B tgoo = \i -> 
case (i+8 > i) of
False -> BAD “foo”
True -> …

>>ThmProver

i+8>i

>>Valid!

case i > j of 

True -> case j < 0 of

False -> case i > 0 of

False -> BAD “f”

>>ThmProver

push(i>j)

push(not (j<0))

(i>0)

>>Valid!
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Counter-Example Guided Unrolling
sumT :: T -> Int

sumT 2 {x | noT1 x } -> {r | True}

sumT (T2 a) = a

sumT (T3 t1 t2) = sumT t1 + sumT t2

After simplifying (sumT B tsumT) , we may have:

case (noT1 x) of

True -> case x of

T1 a -> BAD 

T2 a -> a

T3 t1 t2 -> case (noT1 t1) of

False -> BAD 

True -> case (noT1 t2) of

False -> BAD 

True -> sumT t1 + sumT t2                            
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Step 1:

Program Slicing – Focus on the BAD Paths

case (noT1 x) of

True -> case x of

T1 a -> BAD

T3 t1 t2 -> case (noT1 t1) of

False -> BAD 

True -> case (noT1 t2) of

False -> BAD 
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Step 2: Unrolling

case (case x of

T1 a -> False

T2 a -> True

T3 t1 t2 -> noT1 t1 && noT1 t2) of

True -> case x of

T1 a -> BAD 

T3 t1 t2 -> case (noT1 t1) of

False -> BAD 

True -> case (noT1 t2) of

False -> BAD
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Counter-Example Guided Unrolling 

– The Algorithm
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Tracing 
(Achieve the same goal as [Meunier, Findler, Felleisen:POPL06]

g 2 tg

g = …

f 2 tf

f = …g …

f B tf = …g C tg …

(\g ! …g …) B tg ! tf

Inside “g” lc (g C tg) 

case fin p[e/x] of

True  -> e

False -> BAD “f”
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Counter-Example Generation

f3 B Ok = \xs -> \z ->

case xs of

[] -> 0

(x:y) -> case x > z of

True -> Inside “f2” <l2>

(Inside “f1” <l1> (BAD “f1”))

False -> …

Warning <l3>: f3 (x:y) z where x>z

calls f2

which calls f1

which may fail f1’s precondition!

f3 [] z = 0

f3 (x:xs) z = case x > z of

True -> f2 x z

False -> ...

f1 2 x:Ok -> { x < z } -> Ok

f2 x z = 1 + f1 x z 
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Conclusion

Contract Haskell 

Program

Glasgow Haskell Compiler (GHC)

Where the bug is Why it is a bug



Summary

• Static contract checking is a fertile and under-researched 

area

• Distinctive features of our approach

– Full Haskell in contracts; absolutely crucial

– Declarative specification of “satisfies”

– Nice theory (with some very tricky corners)

– Static proofs

– Modular Checking

– Compiler as theorem prover
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Contract Synonym
contract Ok = {x | True}

contract NonNull = {x | not (null x)}

head :: [Int] -> Int

head 2 NonNull -> Ok

head (x:xs) = x

{-# contract Ok = {x | True} -#}

{-# contract NonNull = {x | not (null x)} #-}

{-# contract head :: NonNull -> Ok #-}

Actual Syntax



Recursion
f Bt
=\f->f B t->t

= …

=(… (f C t)…) B t  

Suppose t = t1 -> t_2

f B t1 -> t2
= \f->f B(t1 -> t2) -> (t1 -> t2)
= …

=(… (f C t1 -> t2)…) B t1 -> t2  

=\v2.((…(\v1.((f (v1 Bt1)) C t2)) (v2C t1) …) B t2)
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