Static Contract Checking for Haskell

Dana N. Xu

INRIA France

Work done at University of Cambridge

Joint work with

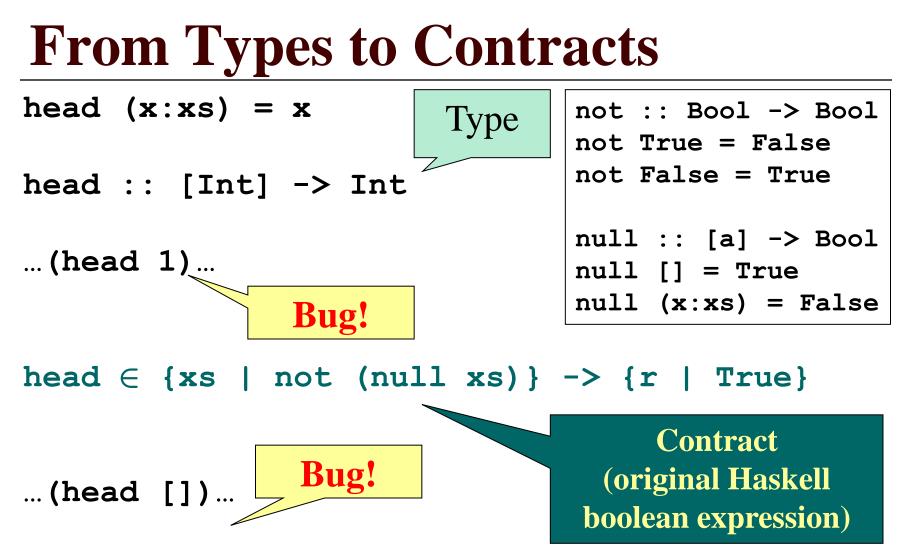
Simon Peyton Jones Koen Claessen Microsoft Research Cambridge Chalmers University of Technology

Program Errors Give Headache!

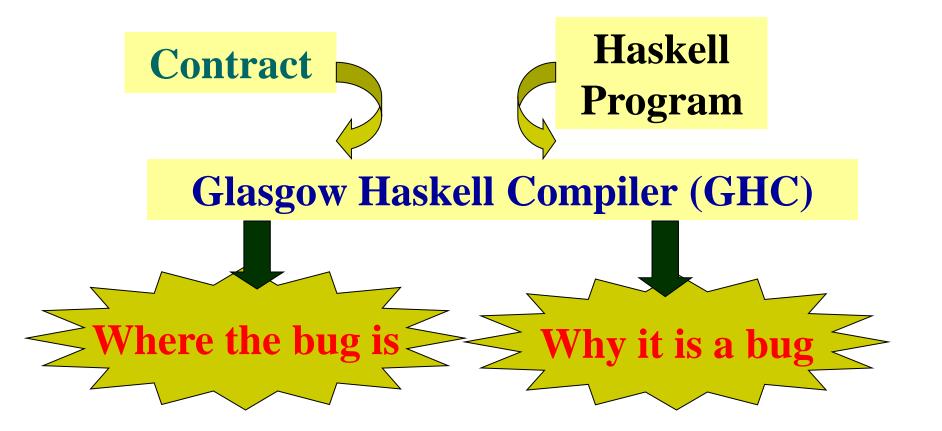
```
Module UserPgm where
f :: [Int] -> Int
f xs = head xs `max` 0
:
... f [] ...
Module Prelude where
head :: [a] -> a
head (x:xs) = x
head [] = error "empty list"
```

Glasgow Haskell Compiler (GHC) gives at run-time

Exception: Prelude.head: empty list



What we want?



Contract Checking

head $\in \{xs \mid not (null xs)\} \rightarrow \{r \mid True\}$ head (x:xs') = x

f xs = head xs `max` 0

Warning: f [] calls head which may fail head's precondition!

No more warnings from the compiler!

Satisfying a Predicate Contract

Arbitrary boolean-valued Haskell expression

 $e \in \{x \mid p\}$ if (1) p[e/x] gives True and

(2) e is crash-free.

Recursive function, higher-order function, partial function can be called!

Expressiveness of the Specification Language

data T = T1 Bool | T2 Int | T3 T T

sumT :: T -> Int
sumT $\in \{x \mid noT1 \mid x\} \rightarrow \{r \mid True\}$ sumT (T2 a) = a
sumT (T3 t1 t2) = sumT t1 + sumT t2

noT1 :: T -> Bool noT1 (T1 _) = False noT1 (T2 _) = True noT1 (T3 t1 t2) = noT1 t1 && noT1 t2

Expressiveness of the Specification Language

sumT :: T -> Int sumT \in {x | noT1 x} -> {r | True} sumT (T2 a) = a

```
sumT (T3 t1 t2) = sumT t1 + sumT t2
```

```
rmT1 :: T -> T
rmT1 \in \{x \mid True\} \rightarrow \{r \mid noT1 r\}
rmT1 (T1 a) = if a then T2 1 else T2 0
rmT1 (T2 a) = T2 a
rmT1 (T3 t1 t2) = T3 (rmT1 t1) (rmT1 t2)
```

For all crash-free t::T, sumT (rmT1 t) will not crash.

Higher Order Functions

```
all :: (a -> Bool) -> [a] -> Bool
all f [] = True
all f (I = True
all f (I = True
all f (I = I = I = I)
filter f (I = I = I)
filter f (I = I = I)
filter f (I = I = I = I)
filter f (I = I = I)
filter f (I = I = I)
filter f (I = I = I)
```

Contracts for Higher-order Function's Parameter

```
f1 :: (Int -> Int) -> Int
```

```
f1 \in ({x | True} -> {y | y >= 0}) -> {r | r >= 0}
f1 g = (g 1) - 1
```

```
f2 :: {r | True}
```

```
f2 = f1 (|x -> x - 1|)
```

```
Error: f1's postcondition fails
  when (g 1) >= 0 holds
        (g 1) - 1 >= 0 does not hold
Error: f2 calls f1
  which fails f1's precondition
```

[Findler&Felleisen:ICFP'02, Blume&McAllester:ICFP'04]

Various Examples

zip :: [a] -> [b] -> [(a,b)]
zip ∈ {xs | True} -> {ys | sameLen xs ys}
 -> {rs | sameLen rs xs }

sameLen [] [] = True
sameLen (x:xs) (y:ys) = sameLen xs ys
sameLen ____ = False

f91 :: Int -> Int f91 $\in \{n \mid True\} \rightarrow \{r \mid (n \le 100 \&\& r == 91) \ || r == n - 10\}$ f91 n = case (n <= 100) of True -> f91 (f91 (n + 11)) False -> n - 10

Sorting

(==>) True x = x (==>) False x = True

```
sorted [] = True
sorted (x:[]) = True
sorted (x:y:xs) = x \le y \& \&  sorted (y : xs)
insert :: Int -> [Int] -> [Int]
insert \in {i | True} -> {xs | sorted xs} -> {r | sorted r}
merge :: [Int] -> [Int] -> [Int]
merge \in \{xs \mid sorted xs\} \rightarrow \{ys \mid sorted ys\} \rightarrow \{r \mid sorted r\}
bubbleHelper :: [Int] -> ([Int], Bool)
bubbleHelper \in \{xs \mid True\}
               \rightarrow {r | not (snd r) ==> sorted (fst r)}
insertsort, mergesort, bubblesort \in \{xs \mid True\}
                                        \rightarrow {r | sorted r}
```

AVL Tree

(&&) True x = x(&&) False x = False

```
balanced :: AVL -> Bool
balanced L = True
balanced (N t u) = balanced t && balanced u &&
abs (depth t - depth u) <= 1</pre>
```

```
data AVL = L | N Int AVL AVL

insert, delete :: AVL -> Int -> AVL

insert \in {x | balanced x} -> {y | True} ->

{r | notLeaf r && balanced r &&

0 <= depth r - depth x &&

depth r - depth x <= 1 }
```

```
delete \in \{x \mid balanced x\} \rightarrow \{y \mid True\} \rightarrow
{r | balanced r && 0 <= depth x - depth r &&
depth x - depth r <= 1}
```

Functions without Contracts

data T = T1 Bool | T2 Int | T3 T T

noT1 :: T -> Bool noT1 (T1 _) = False noT1 (T2 _) = True noT1 (T3 t1 t2) = noT1 t1 && noT1 t2
(&&) True x = x

(&&) False x = False

No abstraction is more compact than the function definition itself!

Lots of Questions

- □ What does "crash" mean?
- □ What is "a contract"?
- □ What does it mean to "satisfy a contract"?
- How can we verify that a function does satisfy a contract?
- What if the contract itself diverges? Or crashes?

It's time to get precise...

What is the Language?

- Programmer sees Haskell
- Translated (by GHC) into Core language
 - Lambda calculus
 - Plus algebraic data types, and case expressions
 - BAD and UNR are (exceptional) values
 - Standard reduction semantics $e_1 \rightarrow e_2$

$$\begin{array}{ll} a, e, p ::= n \mid v \mid \lambda(x :: \tau).e \mid e_1 \mid e_2 \mid K \overrightarrow{e} \\ \mid & \text{case } e_0 \text{ of } alt_1 \dots alt_n \mid \text{BAD} \mid \text{UNR} \\ alt & ::= pt \xrightarrow{\rightarrow e} \\ pt & ::= K \overrightarrow{(x :: \tau)} \mid \text{DEFAULT} \end{array}$$

Two Excontional	Voluor
Two Exceptional	VALUES Real Haskell
- DAD is an amproprian that a	Program
\square BAD is an expression that c	rasnes.
error :: String -> a	
error s = BAD	div x y =
	case y == 0 of
	True -> error "divide by zero"
head $(x:xs) = x$	False -> x / y
head [] = BAD	head $(x:xs) = x$

UNR (short for "unreachable") is an expression that gets stuck. This is *not* a crash, although execution comes to a halt without delivering a result. (identifiable infinite loop)

Crashing

Definition (Crash).

A closed term e crashes iff $e \rightarrow^* BAD$

Definition (Crash-free Expression) *An expression e is crash-free* **iff** \forall **C. BAD** \notin_{s} **C**, \vdash **C**[[e]] :: (), **C**[[e]] $\not\rightarrow^{*}$ **BAD**

Non-termination is not a crash (i.e. partial correctness).

Crash-free Examples

	Crash-free?
(1, BAD)	NO
(1, True)	YES
\x -> x	YES
$x \rightarrow if x > 0$ then x else (BAD, x)	NO
$x \rightarrow if x x \ge 0$ then $x + 1$ else BAD	Hmm YES

Lemma: For all closed e, e is syntactically safe $\Rightarrow e$ is crash-free.

What is a Contract

(related to [Findler:ICFP02,Blume:ICFP04,Hinze:FLOPS06,Flanagan:POPL06])

$t \in Contract$	
t ::= {x p}	Predicate Contract
$ \mathbf{x}: \mathbf{t}_1 \rightarrow \mathbf{t}_2$	Dependent Function Contract
$ (t_1, t_2)$	Tuple Contract
Any	Polymorphic Any Contract

Full version: $x' : \{x \mid x > 0\} \rightarrow \{r \mid r > x'\}$ Short hand: $\{x \mid x > 0\} \rightarrow \{r \mid r > x\}$

 $k: (\{x \mid x > 0\} \rightarrow \{y \mid y > 0\}) \rightarrow \{r \mid r > k 5\}$

Questions on $e \in t$

 $3 \in \{x \mid x > 0\}$ $5 \in \{x \mid True\}$

What exactly does it mean to say that

e "satisfies" contract t?

$e \in t$

Contract Satisfaction

(related to [Findler:ICFP02,Blume:ICFP04,Hinze:FLOPS06])

Given $\vdash e :: \tau$ and $\vdash_c t :: \tau$, we define $e \in t$ as follows:

 $e \in \{x \mid p\} \Leftrightarrow e^{\uparrow} \text{ or } (e \text{ is } crash-free \text{ and} p[e/x] \not A^* \{BAD, False\}$ [A1]

$$e \in x: t_1 \to t_2 \quad \Leftrightarrow \quad e^{\uparrow} \text{ or } (e \to^* \lambda x. e^{\prime} \text{ and} \qquad [A2]$$
$$\forall e_1 \in t_1. (e e_1) \in t_2[e_1/x])$$

$$e \in (t_1, t_2) \quad \Leftrightarrow \quad e^{\uparrow} \text{ or } (e \rightarrow^* (e_1, e_2) \text{ and } [A3]$$
$$e_1 \in t_1 \text{ and } e_2 \in t_2)$$

 $e \in Any \quad \Leftrightarrow \quad True \qquad [A4]$ $e^{\uparrow} \text{ means e diverges or } e \to^{*} UNR$

Only Crash-free Expression Satisfies a Predicate Contract

$\mathbf{e} \in \{\mathbf{x} \mid \mathbf{p}\}$	\Leftrightarrow	e↑ or (e is crash-free and p[e/x] ≯*{BAD, False}
$e \in x: t_1 \rightarrow t_2$	\Leftrightarrow	e [↑] or (e $\rightarrow^* \lambda x.e'$ and $\forall e_1 \in t_1$. (e e_1) $\in t_2[e_1/x]$)
$\mathbf{e} \in (\mathbf{t}_1, \mathbf{t}_2)$	\Leftrightarrow	$e\uparrow$ or $(e \rightarrow^*(e_1,e_2)$ and $e_1 \in t_1$ and $e_2 \in t_2)$
$e \in \texttt{Any}$	\Leftrightarrow	True

		YES or NO?
(True, 2)	$\in \{\mathbf{x} \mid (\mathbf{snd} \mathbf{x}) > 0\}$	YES
(head [], 3)	$\in \{\mathbf{x} \mid (\text{snd } \mathbf{x}) > 0\}$	NO
\x-> x	$\in \{x \mid True\}$	YES
\x-> x	$\in \{x \mid loop\}$	YES
5	$\in \{\mathbf{x} \mid BAD\}$	NO
loop	$\in \{x \mid False\}$	YES
loop	$\in \{\mathbf{x} \mid BAD\}$	YES

All Expressions Satisfy Any

 $fst \in (\{x \mid True\}, Any) \rightarrow \{r \mid True\}$ fst (a,b) = aInlining may help, here a breaks down when the breaks down

g x = fst (x, BAD)

Inlining may help, but breaks down when function definition is big or recursive

		YES or NO?
5	\in Any	YES
BAD	\in Any	YES
(head [], 3)	\in (Any, {x x> 0})	YES
\x -> x	\in Any	YES
BAD	\in Any -> Any	NO
BAD	\in (Any, Any)	NO

All Contracts are Inhabited

$\mathbf{e} \in \{\mathbf{x} \mid \mathbf{p}\}$	\Leftrightarrow	e↑ or (e is crash-free and p[e/x] / *{BAD, False}
$e \in x: t_1 \rightarrow t_2$	\Leftrightarrow	e [↑] or (e $\rightarrow^* \lambda x.e$ ' and $\forall e_1 \in t_1$. (e e_1) $\in t_2[e_1/x]$)
$\mathbf{e} \in (\mathbf{t}_1, \mathbf{t}_2)$	\Leftrightarrow	$e\uparrow$ or $(e \rightarrow^*(e_1,e_2)$ and $e_1 \in t_1$ and $e_2 \in t_2)$
$e \in \texttt{Any}$	\Leftrightarrow	True

		YES or NO?
\x-> BAD	\in Any -> Any	YES
\x-> BAD	$\in \{x \mid True\} \rightarrow Any$	YES
\x-> BAD	$\in \{x \mid False\} \rightarrow \{r \mid True\}$	NO
	Blume&McAllester[JFP say YES	'06]

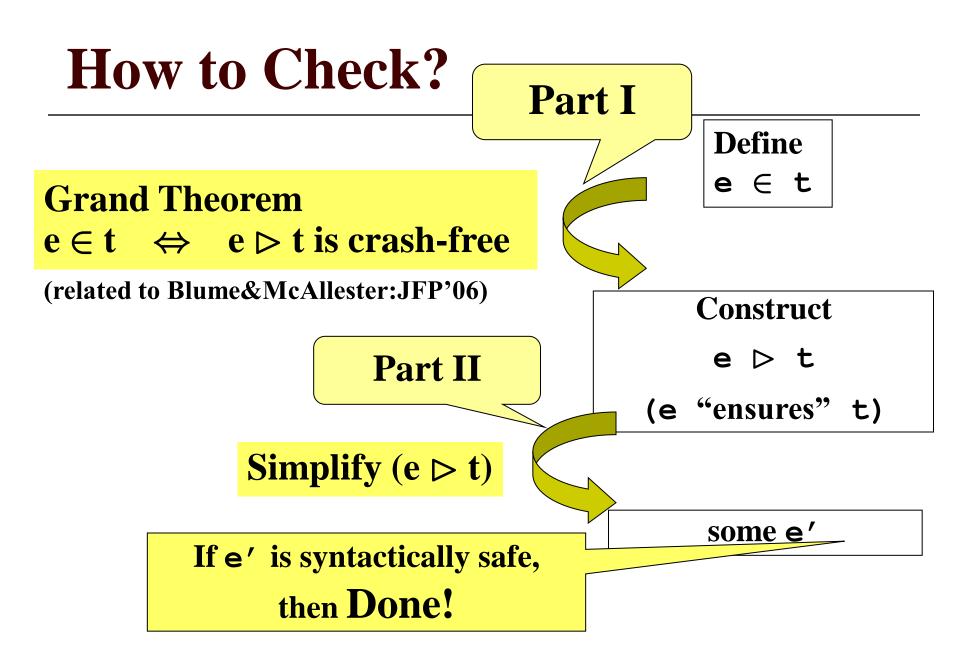
What to Check?

Does function *f* satisfy its contract *t* (written $f \in t$)?

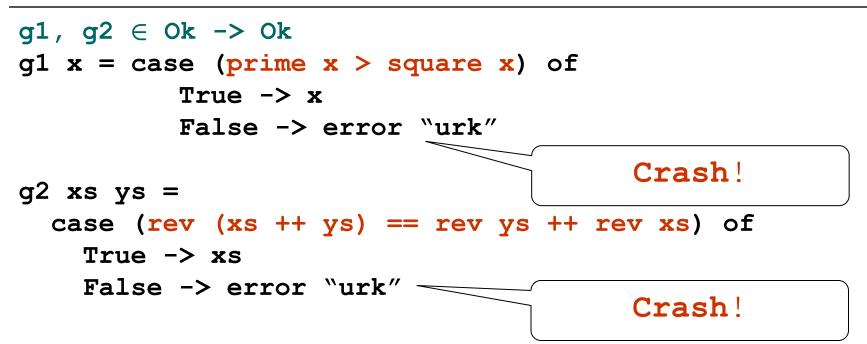
At the definition of each function f, Check $f \in t$ assuming all functions called in fsatisfy their contracts.

Goal: main $\in \{x \mid True\}$

(main is *crash-free*, hence the program cannot crash)



What we can't do?



Hence, three possible outcomes: (1) Definitely Safe (no crash, but may loop) (2) Definite Bug (definitely crashes) (3) Possible Bug

Wrappers ▷ and ⊲ (▷ pronounced ensures <p

 $e \triangleright Any = UNR$

related to [Findler:ICFP02,Blume:JFP06,Hinze:FLOPS06]

Wrappers ▷ and ⊲ (▷ pronounced ensures <p

 $e \triangleleft Any = BAD$

related to [Findler:ICFP02,Blume:JFP06,Hinze:FLOPS06]

Example

head:: $[a] \rightarrow a$ head [] = BADhead (x:xs) = x

head \in { xs | not (null xs) } -> Ok

head \triangleright {xs | not (null xs)} -> Ok

= v. head ($v \triangleleft \{xs \mid not (null xs)\}$) \triangleright Ok

$e \triangleright Ok = e$

\v. head (case not (null v) of True -> v False -> UNR)

null :: [a] -> Bool
null [] = True
null (x:xs) = False
not :: Bool -> Bool
not True = False
not False = True

Now inline 'head'

So head [] fails with UNR, not BAD, blaming the caller

Higher-Order Function

f1 :: (Int -> Int) -> Int f1 \in ({x | True} -> {y | y >= 0}) -> {r | r >= 0} f1 g = (g 1) - 1

```
f2:: {r | True}
f2 = f1 (x \rightarrow x - 1)
```

Grand Theorem $e \in t \iff e \triangleright t$ is crash-free

 $e \triangleright \{x \mid p\} = case p[e/x] of$ True -> e False -> BAD

loop $\in \{x \mid False\}$ loop $\triangleright \{x \mid False\}$ = case False of {True -> loop; False -> BAD} = BAD, which is not crash-free BAD $\notin Ok \rightarrow Any$ BAD $\triangleright Ok \rightarrow Any$ = $\setminus v \rightarrow ((BAD (v \triangleleft Ok)) \triangleright Any$

= $v \rightarrow UNR$, which is crash-free

Grand Theorem $e \in t \iff e \triangleright t$ is crash-free
$e > \{x \mid p\} = e \cdot seq \cdot case p[e/x] of$
True -> e
False -> BAD
<pre>e_1 `seq` e_2 = case e_1 of {DEFAULT -> e_2}</pre>
$loop \in \{x \mid False\}$
$loop \triangleright \{x \mid False\}$
<pre>= loop `seq` case False of {}</pre>
= loop, which is crash-free
BAD \notin Ok -> Any BAD \triangleright Ok -> Any = BAD `seq` \v -> ((BAD (v <) Ok)) \triangleright Any = BAD, which is not crash-free

Contracts that Diverge

 $x \rightarrow BAD \in \{x \mid loop\} ? NO$

But $x \rightarrow BAD > \{x \mid loop\}$ crash-free = $x \rightarrow BAD$ `seq` case loop of

True $\rightarrow \x \rightarrow$ BAD

e ▷ {x | p} = e `seq` case fin p[e/x] of True -> e False -> BAD

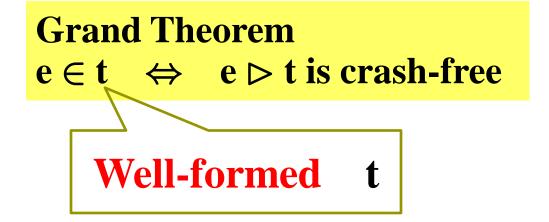
fin converts divergence to True

Contracts that Crash

Grand Theorem $e \in t \iff e \triangleright t$ is crash-free

- □ ... much trickier
 - (\Rightarrow) does not hold, (\Leftarrow) still holds
- Open Problem
 - Suppose fin converts BAD to False
 - Not sure if Grand Theorem holds because NO proof, and NO counter example either.

Well-formed Contracts



t is Well-formed (WF) iff $t = \{x \mid p\}$ and p is crash-free or $t = x:t_1 \rightarrow t_2$ and t_1 is WF and $\forall e_1 \in t_1$, $t_2[e_1/x]$ is WF or $t = (t_1, t_2)$ and both t_1 and t_2 are WF or t = Any

Properties of \triangleright and \triangleleft

Key Lemma: For all closed, crash-free e, and closed t, $(e \lhd t) \in t$

Projections: (related to Findler&Blume:FLOPS'06) For all e and t, if $e \in t$, then

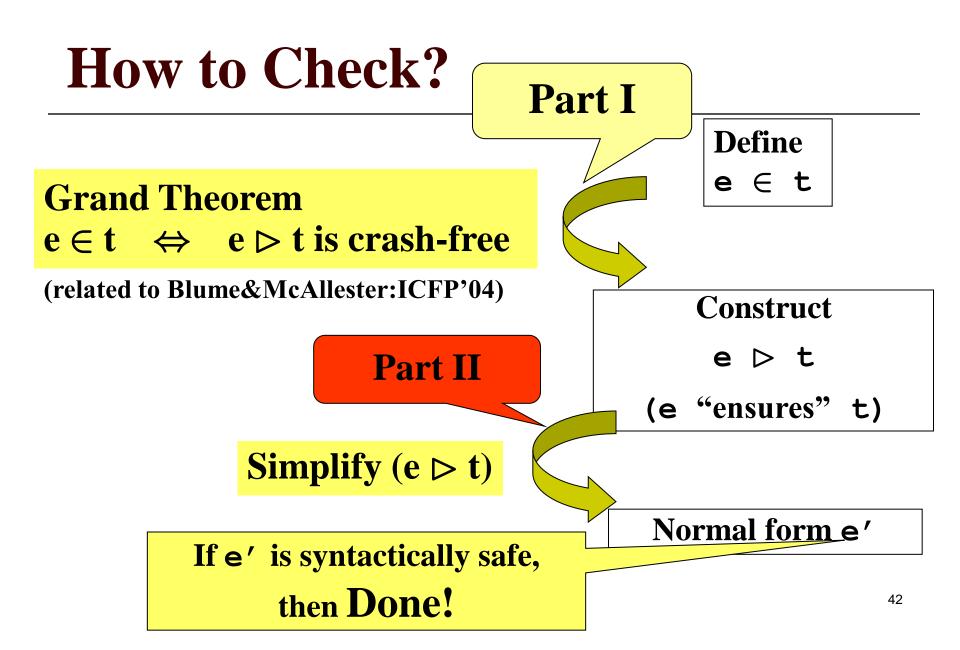
(a)
$$\mathbf{e} \preceq \mathbf{e} \triangleright \mathbf{t}$$

(b) $\mathbf{e} \triangleleft \mathbf{t} \preceq \mathbf{e}$

Definition (Crashes-More-Often): $e_1 \leq e_2$ iff for all $C, \vdash C[[e_i]] :: ()$ for i=1,2 and $C[[e_2]] \rightarrow^* BAD \Rightarrow C[[e_1]] \rightarrow^* BAD$

More Lemmas ③

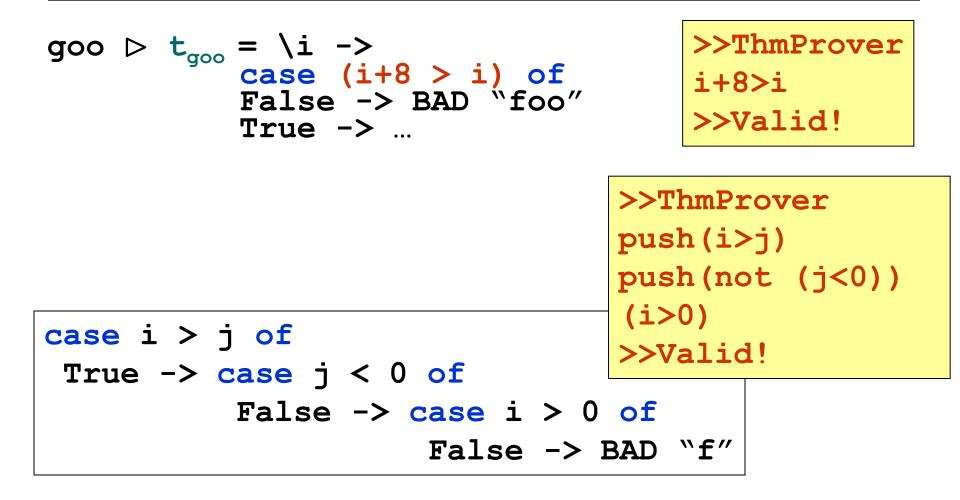
Lemma [Monotonicity of Satisfaction]: If $e_1 \in t$ and $e_1 \preceq e_2$, then $e_2 \in t$ Lemma [Congruence of \leq]: $e_1 \leq e_2 \Rightarrow \forall C. C[[e_1]] \leq C[[e_2]]$ Lemma [Idempotence of Projection]: \forall e, t. e \triangleright t \triangleright t \equiv e \triangleright t \forall e, t. e \lhd t \lhd t \equiv e \lhd t Lemma [A Projection Pair]: \forall e, t. e \triangleright t \triangleleft t \preceq e Lemma [A Closure Pair]: \forall e, t. e \leq e < t > t



Simplification Rules

$$\begin{array}{cccc} (\lambda x.e_{1}) e_{2} & \Longrightarrow & e_{1}[e_{2}/x] \end{array} & (BETA) \\ (case e_{0} of \{K_{i} \ \vec{x_{i}} \rightarrow e_{i}\}) a & \Longrightarrow & case e_{0} of \{K_{i} \ \vec{x_{i}} \rightarrow (e_{i} \ a)\} & f_{V}(a) \cap \vec{x_{i}} = \emptyset & (CASEOUT) \\ case (case e_{0} of \{K_{i} \ \vec{x_{i}} \rightarrow e_{i}\}) of alts & \Longrightarrow & case e_{o} of \{K_{i} \ \vec{x_{i}} \rightarrow case \ e_{i} \ of alts\} & f_{V}(alts) \cap \vec{x_{i}} = \emptyset & (CASECASE) \\ case K_{j} \vec{e_{j}} of \{K_{i} \ \vec{x_{i}} \rightarrow e_{i}\} & \Longrightarrow & UNR \quad \forall i. K_{j} \neq K_{i} & (NOMATCH) \\ case e_{0} of \{K_{i} \ \vec{x_{i}} \rightarrow e_{i}; K_{j} \ \vec{x_{j}} \rightarrow UNR\} & \Longrightarrow & case \ e_{0} of \{K_{i} \ \vec{x_{i}} \rightarrow e_{i}\} & (UNREACHABLE) \\ case e_{0} of \{K_{i} \ \vec{x_{i}} \rightarrow e_{i}\} & \Longrightarrow & e_{1} & patterns \ are \ exhaustive \ and & for \ all \ i, f_{V}(e_{i}) \cap \vec{x_{i}} = \emptyset \ and \ e_{1} = e_{i} & (SAMEBRANCH) \\ case \ e_{0} of \{K_{i} \ \vec{x_{i}} \rightarrow e_{i}\} & \Longrightarrow & e_{0} & e_{0} \in \{BAD \ lbl, UNR\} & (STOP) \\ case \ K_{i} \ \vec{y_{i}} \ of \{K_{i} \ \vec{x_{i}} \rightarrow e_{i}\} & \Longrightarrow & e_{i}[y_{i}/x_{i}] & (MATCH) \\ case \ e_{0} of \{K_{i} \ \vec{x_{i}} \rightarrow e_{i}\} & \Longrightarrow & e_{i}[y_{i}/x_{i}] & (MATCH) \\ case \ e_{0} of \{K_{i} \ \vec{x_{i}} \rightarrow e_{i}\} & \Longrightarrow & case \ e_{0} \ of \{K_{i} \ \vec{x_{i}} \rightarrow \dots e_{i} \dots\} & (SCRUT) \\ \end{array}$$

Arithmetic via External Theorem Prover



Counter-Example Guided Unrolling

```
sumT :: T \rightarrow Int
 sumT \in \{x \mid noT1 \mid x \} \rightarrow \{r \mid True\}
 sumT (T2 a) = a
 sumT (T3 t1 t2) = sumT t1 + sumT t2
 After simplifying (sumT \triangleright t<sub>sumT</sub>), we may have:
case (noT1 x) of
True \rightarrow case x of
          T1 a \rightarrow BAD
          T2 a -> a
          T3 t1 t2 \rightarrow case (noT1 t1) of
                          False -> BAD
                           True -> case (noT1 t2) of
                                     False -> BAD
                                     True \rightarrow sumT t1 + sumT t2
                                                                       45
```

Step 1: Program Slicing – Focus on the BAD Paths

```
case (noT1 x) of
True -> case x of
T1 a -> BAD
T3 t1 t2 -> case (noT1 t1) of
False -> BAD
True -> case (noT1 t2) of
False -> BAD
```

Step 2: Unrolling

```
case (case x of

T1 a \rightarrow False

T2 a \rightarrow True

T3 t1 t2 \rightarrow noT1 t1 \&\& noT1 t2) of

True -> case x of

T1 a \rightarrow BAD

T3 t1 t2 \rightarrow case (noT1 t1) of

False \rightarrow BAD

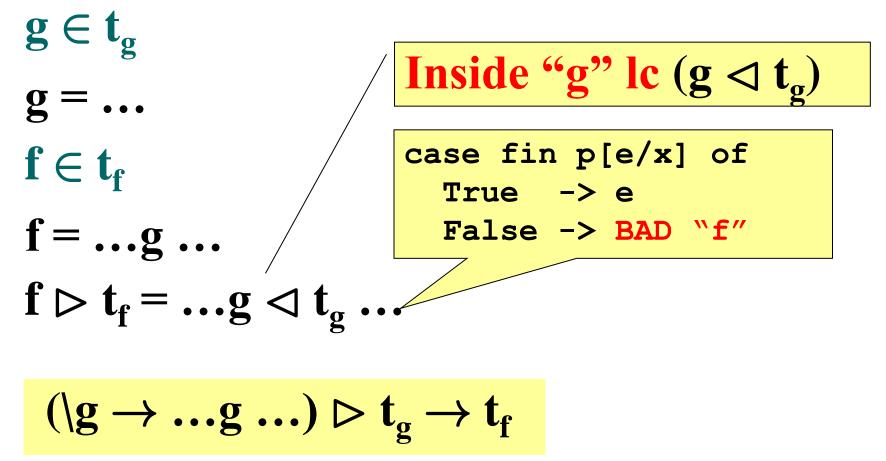
True \rightarrow Case (noT1 t2) of

False \rightarrow BAD
```

Counter-Example Guided Unrolling – The Algorithm

escH rhs 0 = "Counter-example :" ++ report rhsescH rhs n =let rhs' = simplifier rhsb = noBAD rhs'in case b of True \rightarrow "No Bug." False \rightarrow let s = slice rhs'in case noFunCall s of True \rightarrow let eg =oneEg sin "Definite Bug :" ++ report eg False \rightarrow let s' = unrollCalls sin escH s' (n-1)

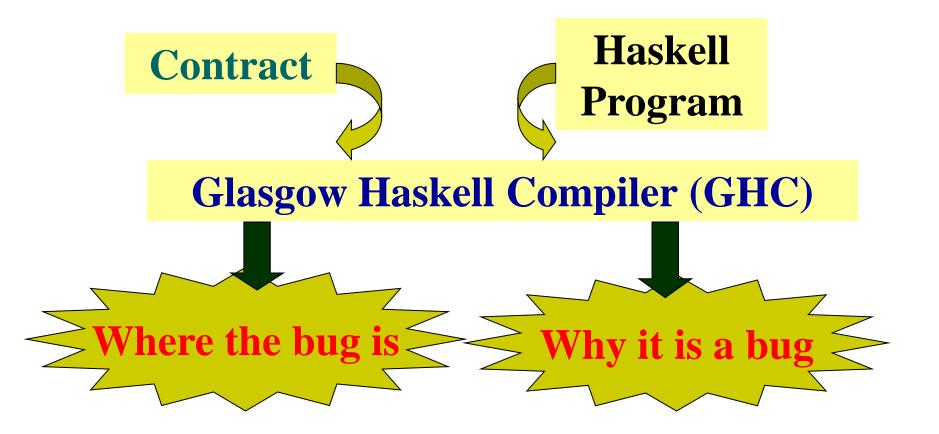
Tracing (Achieve the same goal as [Meunier, Findler, Felleisen:POPL06]



Counter-Example Generation

```
f3 [] z = 0
f1 \in x: Ok \rightarrow \{x < z\} \rightarrow Ok
                                        f3 (x:xs) z = case x > z of
f2 x z = 1 + f1 x z
                                                         True \rightarrow f2 x z
 f3 \triangleright Ok = \langle xs \rangle \langle z \rangle
                                                         False -> ...
  case xs of
  [] -> 0
  (x:y) \rightarrow case x > z of
              True -> Inside "f2'' < 12>
                            (Inside "f1" <11> (BAD "f1"))
              False -> ...
 Warning \langle 13 \rangle: f3 (x:y) z where x>z
                    calls f2
                    which calls f1
                    which may fail fl's precondition!
                                                                        50
```

Conclusion



- Static contract checking is a fertile and under-researched area
- Distinctive features of our approach
 - Full Haskell in contracts; absolutely crucial
 - Declarative specification of "satisfies"
 - Nice theory (with some very tricky corners)
 - Static proofs
 - Modular Checking
 - Compiler as theorem prover

Contract Synonym

contract Ok = {x | True}
contract NonNull = {x | not (null x)}

head :: [Int] \rightarrow Int head \in NonNull \rightarrow Ok head (x:xs) = x

Actual Syntax

{-# contract $Ok = \{x \mid True\} - \#\}$ {-# contract NonNull = {x | not (null x)} #-} {-# contract head :: NonNull -> Ok #-}

Recursion

f⊳t =\f->f ▷ t->t = ... =(... (f \triangleleft t)...) \triangleright t Suppose $t = t1 \rightarrow t2$ $f \triangleright t1 \rightarrow t2$ $= \int f > f > (t1 -> t2) -> (t1 -> t2)$ = ... $=(... (f \triangleleft t1 \rightarrow t2)...) \triangleright t1 \rightarrow t2$ =v2.((...(v1.((f (v1 > t1)) < t2)) (v2 < t1) ...) > t2))