Static Contract Checking for Haskell

Dana N. Xu
INRIA France
Work done at University of Cambridge
Joint work with

Simon Peyton Jones
Koen Claessen
Microsoft Research Cambridge Chalmers University of Technology

Program Errors Give Headache!

> Module UserPgm where
> f : : [Int] -> Int
> $\mathrm{f} x \mathrm{~s}=$ head $\mathrm{xs} \times \max \mathbf{0}$
> :
> ... f [] ...

Module Prelude where
head : : [a] -> a
head (x:xs) $=x$
head [] = error "empty list"
Glasgow Haskell Compiler (GHC) gives at run-time Exception: Prelude.head: empty list

From Types to Contracts

head (x:xs) $=x$
Type
head :: [Int] -> Int
... (head 1)...
Bug!

```
not :: Bool -> Bool
not True = False
not False = True
null :: [a] -> Bool
null [] = True
null (x:xs) = False
```

head $\in\{x s$ | not (null xs) \} $->\{r \mid$ True $\}$
.. (head []) ...
Contract
(original Haskell boolean expression)

What we want?

Contract

Haskell Program

Glasgow Haskell Compiler (GHC)

Contract Checking

head $\in\{x s$ | not (null xs) \} $\rightarrow>\{r \mid$ True $\}$
head ($\mathrm{x}: \mathrm{xs}^{\prime}$) $=\mathrm{x}$
f xs = head xs `max` 0
Warning: f [] calls head which may fail head's precondition!
f_ok xs = if null xs then 0 else head xs `max` 0

No more warnings from the compiler!

Satisfying a Predicate Contract

Arbitrary boolean-valued Haskell expression

$e \in\{x \mid p\}$ if (1) $p[e / x]$ gives True and
 (2) e is crash-free.

Recursive function, higher-order function, partial function can be called!

Expressiveness of the Specification Language

```
data T = T1 Bool | T2 Int | T3 T T
```

```
sumT :: T -> Int
sumT \in {x | noT1 x} -> {r | True}
sumT (T2 a) = a
sumT (T3 t1 t2) = sumT t1 + sumT t2
```

noT1 :: T -> Bool
noT1 (T1 _) = False
not1 (T2 _) = True
noT1 (T3 t1 t2) = noT1 t1 \&\& noT1 t2

Expressiveness of the Specification Language

```
sumT :: T -> Int
sumT \in {x | noT1 x} -> {r | True}
sumT (T2 a) = a
sumT (T3 t1 t2) = sumT t1 + sumT t2
```

rmT1 : : T -> T
rmT1 $\in\{x \mid$ True $\}->\{r \mid n o T 1 r\}$
rmT1 (T1 a) $\quad=\quad$ if a then $T 21$ else T2 0
rmT1 (T2 a) $=T 2$ a
rmT1 (T3 t1 t2) $=T 3$ (rmT1 t1) (rmT1 t2)

For all crash-free $t:$: T, sumT (rmT1 t) will not crash.

Higher Order Functions

```
all :: (a -> Bool) -> [a] -> Bool
all f [] = True
all f (x:xs) = f x && all f xs
filter :: (a -> Bool) -> [a] -> [a]
filter \in {f | True} -> {xs | True} -> {r | all f r}
filter f [] = []
filter f (x:xs') = case (f x) of
                                True -> x : filter f xs'
                                False -> filter f xs'
```


Contracts for Higher-order Function's Parameter

```
f1 :: (Int -> Int) -> Int
f1 \in ({x | True} -> {y | y >= 0}) -> {r | r >= 0}
f1 g = (g 1) - 1
f2 :: {r | True}
f2 = f1 (\x -> x - 1)
```

Error: fl^{\prime} s postcondition fails when (g 1) >= 0 holds
(g 1) - $1>=0$ does not hold
Error: f2 calls f1 which fails f1's precondition
[Findler\&Felleisen:ICFP’02, Blume\&McAllester:ICFP'04]

Various Examples

```
zip :: [a] -> [b] -> [(a,b)]
zip \in {xs | True} -> {ys | sameLen xs ys}
-> {rs | sameLen rs xs }
\begin{tabular}{ll} 
sameLen [] [] & \(=\) True \\
sameLen (x:xs) (y:ys) & \(=\) sameLen \(x s\) ys \\
sameLen _ & \\
& \(=\) False
\end{tabular}
```

f91 : : Int -> Int

f91 $n=$ case ($n<=100$) of
True -> f91 (f91 (n + 11))
False -> n - 10

Noteting

$$
\begin{aligned}
& (==>) \text { True } x=x \\
& (==>) \text { False } x=\text { True }
\end{aligned}
$$

```
sorted [] = True
sorted (x:[]) = True
sorted (x:y:xs) = x <= y && sorted (y : xs)
insert :: Int -> [Int] -> [Int]
insert }\in{i||True} -> {xs | sorted xs} -> {r | sorted r}
merge :: [Int] }->\mathrm{ [Int] }->> [Int
merge }\in{xs | sorted xs}->{ys | sorted ys}->{r | sorted r
bubbleHelper :: [Int] -> ([Int], Bool)
bubbleHelper }\in{xs | True
                                -> {r | not (snd r) ==> sorted (fst r)}
insertsort, mergesort, bubblesort \(\in\{x s\) | True \(\}\)
                                -> {r | sorted r}
```

AVL Tree
(\&\&) True $\mathrm{x}=\mathrm{x}$
(\&\&) False x = False

```
balanced :: AVL -> Bool
balanced L = True
balanced (N t u) = balanced t && balanced u &&
                abs (depth t - depth u) <= 1
data AVL = L | N Int AVL AVL
insert, delete :: AVL -> Int -> AVL
insert \in {x | balanced x} -> {y | True} ->
    {r | notLeaf r && balanced r &&
    0<= depth r - depth x &&
                        depth r - depth x <= 1 }
delete \in {x | balanced x} -> {y | True} ->
    {r | balanced r && 0<= depth x - depth r &&
        depth x - depth r <= 1}
```


Functions without Contracts

```
data T = T1 Bool | T2 Int | T3 T T
noT1 :: T -> Bool
noT1 (T1 _) = False
noT1 (T2 _) = True
noT1 (T3 t1 t2) = noT1 t1 && noT1 t2
(&&) True x = x
(&&) False x = False
```

No abstraction is more compact than the function definition itself!

Lots of Questions

ㅁ What does "crash" mean?
ㅁ What is "a contract"?
\square What does it mean to "satisfy a contract"?
\square How can we verify that a function does satisfy a contract?
\square What if the contract itself diverges? Or crashes?

What is the Language?

- Programmer sees Haskell
\square Translated (by GHC) into Core language
- Lambda calculus
- Plus algebraic data types, and case expressions
- BAD and UNR are (exceptional) values
- Standard reduction semantics $e_{1} \rightarrow e_{2}$

$$
\begin{aligned}
& a, e, p::=n|v| \lambda(x:: \tau) . e\left|e_{1} e_{2}\right| K \vec{e} \\
& \mid \quad \text { case } e_{0} \text { of alt } \text { alt }_{1} \ldots \text { alt } t_{n}|\operatorname{BAD}| \text { UNR } \\
& \text { alt } \quad::=p t \rightarrow e \\
& p t \quad::=K \overrightarrow{(x:: \tau)} \mid \text { DEFAULT }
\end{aligned}
$$

Two Exceptional Values

- BAD is an expression that crashes.
error : : String -> a error s $=\mathrm{BAD}$
head (x:xs) $=x$
head [] = BAD

```
div x y =
    case y == 0 of
    True -> error "divide by zero"
    False -> x / Y
head (x:xs) = x
```

- UNR (short for "unreachable") is an expression that gets stuck. This is not a crash, although execution comes to a halt without delivering a result. (identifiable infinite loop)

Crashing

Definition (Crash).
A closed term e crashes iff $e \rightarrow$ BAD

Definition (Crash-free Expression)
An expression e is crash-free iff
$\forall \mathbf{C}$. $\mathbf{B A D} \not \notin \mathrm{s}^{\mathrm{C}}, \vdash \mathrm{C}[[\mathrm{e}]]::(), \mathbf{C}[[\mathrm{e}]] \nrightarrow{ }^{*} \mathbf{B A D}$
Non-termination is not a crash
(i.e. partial correctness).

Crash-free Examples

Crash-free?

(1,BAD)
(1, True) YES
$\backslash x->x$ YES
\x -> if $x>0$ then x else (BAD, x)
\x $->$ if $x^{*} x>=0$ then $x+1$ else BAD
(1, True)

NO
YES
NO
Hmm.. YES

Lemma: For all closed e, e is syntactically safe $\Rightarrow \quad e$ is crash-free.

What is a Contract

 (related to [Findler:ICFP02,Blume:ICFP04,Hinze:FLOPS06,Flanagan:POPL06])```
t \in Contract
t ::= {x | p} Predicate Contract
 | x:t t }->\mp@subsup{t}{2}{}\mathrm{ Dependent Function Contract
 | (th, th) Tuple Contract
 I Any Polymorphic Any Contract
```

Full version: $x^{\prime}:\{x \mid x>0\}->\{r \mid r>x\}$ Short hand: $\{x \mid x>0\}->\{r \mid r>x\}$ $k:(\{x \mid x>0\}->\{y \mid y>0\})->\{r \mid r>k 5\}$

## Questions on $\mathbf{e} \in \mathbf{t}$

```
\(3 \in\{x \mid x>0\}\)
\(5 \in\{x \mid\) True \(\}\)
```



# What exactly does it mean to say that 

## e "satisfies" contract t?



## Contract Satisfaction

(related to [Findler:ICFP02,Blume:ICFP04,Hinze:FLOPS06])
Given $\vdash \mathrm{e}:: \tau$ and $\vdash_{\mathrm{c}} \mathrm{t}:: \tau$, we define $\mathbf{e} \in \mathbf{t}$ as follows:

$$
\mathbf{e} \in\{\mathbf{x} \mid \mathbf{p}\} \quad \Leftrightarrow \quad \begin{array}{r}
\mathbf{e} \uparrow \text { or } \\
\mathbf{p} \text { (e is crash-free and } \\
\mathbf{p}[\mathbf{e}] \boldsymbol{f}^{*}\{\mathbf{B A D}, \text { False }\}
\end{array}
$$

$\mathbf{e} \in \mathbf{x}: \mathbf{t}_{\mathbf{1}} \rightarrow \mathbf{t}_{\mathbf{2}} \quad \Leftrightarrow \quad \mathbf{e} \uparrow$ or $\left(\mathbf{e} \rightarrow^{*} \lambda \mathbf{x} . \mathbf{e}^{\prime}\right.$ and
[A2]
$\mathbf{e} \in\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right) \quad \Leftrightarrow \quad \mathbf{e} \uparrow$ or $\left(\mathbf{e} \rightarrow{ }^{*}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)\right.$ and

$$
\left.\mathbf{e}_{1} \in \mathbf{t}_{1} \text { and } \mathbf{e}_{2} \in \mathbf{t}_{2}\right)
$$

$\mathbf{e} \in$ Any $\quad \Leftrightarrow \quad$ True
[A3]
[A4]
e $\uparrow$ means e diverges or $\mathbf{e} \rightarrow$ * UNR

## Only Crash-free Expression Satisfies a Predicate Contract

| $\mathbf{e} \in\{\mathbf{x} \mid \mathbf{p}\}$ | $\Leftrightarrow$ | $\mathbf{e} \uparrow$ or $\left(\mathbf{e}\right.$ is crash-free and $\mathbf{p}[\mathbf{e} / \mathbf{x}] \not^{*}\{\mathbf{B A D}$, False $\}$ |
| :--- | :--- | :--- |
| $\mathbf{e} \in \mathbf{x}: \mathbf{t}_{\mathbf{1}} \rightarrow \mathbf{t}_{\mathbf{2}}$ | $\Leftrightarrow$ | $\mathbf{e} \uparrow$ or $\left(\mathbf{e} \rightarrow^{*} \lambda \mathbf{x} . \mathbf{e}^{\prime}\right.$ and $\left.\forall \mathbf{e}_{1} \in \mathbf{t}_{1} \cdot\left(\mathbf{e} \mathbf{e}_{1}\right) \in \mathbf{t}_{2}\left[\mathbf{e}_{1} / \mathbf{x}\right]\right)$ |
| $\mathbf{e} \in\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right)$ | $\Leftrightarrow$ | $\mathbf{e} \uparrow$ or $\left(\mathbf{e} \rightarrow^{*}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)\right.$ and $\mathbf{e}_{1} \in \mathbf{t}_{1}$ and $\left.\mathbf{e}_{2} \in \mathbf{t}_{2}\right)$ |
| $\mathbf{e} \in$ Any | $\Leftrightarrow$ | True |

## YBS or NO?

| (True, 2) | $\in\{x \mid($ snd $x)>0\}$ | YES |
| :---: | :---: | :---: |
| (head [], 3) | $\in\{x \mid($ snd $x)>0\}$ | NO |
| \x-> x | $\in\{x \mid$ True $\}$ | YES |
| $\backslash \mathrm{x}->\mathrm{x}$ | $\in\{\mathrm{x}$ \| loop $\}$ | YES |
| 5 | $\in\{x$ \| BAD $\}$ | NO |
| loop | $\in\{x$ \| False $\}$ | YES |
| loop | $\in\{x$ \| BAD $\}$ | YES |

## All Expressions Satisfy Any

fst $\in(\{x$ | True $\}$, Any) $->\{r \mid$ True $\}$
fst $(a, b)=a$
$\mathrm{g} \mathbf{x}=\mathrm{fst}(\mathrm{x}, \mathrm{BAD})$

YES or NO?

| 5 | $\in$ Any | YES |
| :--- | :--- | :--- |
| BAD | $\in$ Any | YES |
| (head []$, 3)$ | $\in$ (Any, \{x $\mid x>0\})$ | YES |
| $\backslash x \rightarrow x$ | $\in$ Any | YES |
| BAD | $\in$ Any $\rightarrow$ Any | NO |
| BAD | $\in$ (Any, Any) | NO |

## All Contracts are Inhabited

| $\mathbf{e} \in\{\mathbf{x} \mid \mathbf{p}\}$ | $\Leftrightarrow$ | $\mathbf{e} \uparrow$ or $\left(\mathbf{e}\right.$ is crash-free and $\mathbf{p}[\mathbf{e} / \mathbf{x}] \not A^{*}\{\mathbf{B A D}$, False $\}$ |
| :--- | :--- | :--- |
| $\mathbf{e} \in \mathbf{x}: \mathbf{t}_{\mathbf{1}} \rightarrow \mathbf{t}_{\mathbf{2}}$ | $\Leftrightarrow$ | $\mathbf{e} \uparrow$ or $\left(\mathbf{e} \rightarrow^{*} \lambda \mathbf{x .} \mathbf{e}^{\prime}\right.$ and $\left.\forall \mathbf{e}_{\mathbf{1}} \in \mathbf{t}_{\mathbf{1}} .\left(\mathbf{e} \mathbf{e}_{1}\right) \in \mathbf{t}_{\mathbf{2}}\left[\mathbf{e}_{\mathbf{1}} / \mathbf{x}\right]\right)$ |
| $\mathbf{e} \in\left(\mathbf{t}_{\mathbf{1}}, \mathbf{t}_{\mathbf{2}}\right)$ | $\Leftrightarrow$ | $\mathbf{e} \uparrow$ or $\left(\mathbf{e} \rightarrow^{*}\left(\mathbf{e}_{1}, \mathbf{e}_{\mathbf{2}}\right)\right.$ and $\mathbf{e}_{\mathbf{1}} \in \mathbf{t}_{\mathbf{1}}$ and $\left.\mathbf{e}_{\mathbf{2}} \in \mathbf{t}_{\mathbf{2}}\right)$ |
| $\mathbf{e} \in$ Any | $\Leftrightarrow$ | True |


|  |  | YES or NO? |
| :--- | :--- | :--- |
| $\backslash x->$ BAD | $\in$ Any $\rightarrow$ Any | YES |
| $\backslash x->B A D$ | $\in\{x \mid$ True $\} \rightarrow$ Any | YES |
| $\backslash x->B A D$ | $\in\{x \mid$ False $\rightarrow>\{r \mid$ True $\}$ | NO |

Blume\&McAllester[JFP'06] say YES

## What to Check?

Does function $f$ satisfy its contract $t$ (written $f \in t$ )?

At the definition of each function $f$,
Check $f \in t$ assuming all functions called in $f$ satisfy their contracts.

## Goal: main $\in\{x \mid$ True $\}$

(main is crash-free, hence the program cannot crash)

## How to Check?

Grand Theorem $\mathbf{e} \in \mathbf{t} \quad \Leftrightarrow \quad \mathbf{e} \triangleright \mathbf{t}$ is crash-free (related to Blume\&McAllester:JFP'06)

## Part I

## Construct

 e $\triangleright t$(e "ensures" t)
Simplify (e $\triangleright$ t)
If $\mathrm{e}^{\prime}$ is syntactically safe, then Done!

## What we can't do?

g1, g2 $\in$ Ok -> Ok
g1 $\mathrm{x}=$ case (prime $\mathrm{x}>$ square x ) of

```
 True -> x
```

                            False -> error "urk"
    g2 xs ys $=$

## Crash!

case (rev (xs ++ ys) == rev ys ++ rev xs) of

```
 True -> xs
```

```
 False -> error "urk"
```



Hence, three possible outcomes:
(1) Definitely Safe (no crash, but may loop)
(2) Definite Bug (definitely crashes)
(3) Possible Bug

## Wrappers $\triangleright$ and $\triangleleft$

( $\triangleright$ pronounced ensures $\quad \triangleleft$ pronounced requires)
$e \triangleright\{x \mid p\}=$ case $p[e / x]$ of
True -> e
False -> BAD
e $\triangleright x: t_{1} \rightarrow t_{2}$
$=\lambda v .\left(e\left(v \triangleleft t_{1}\right)\right) \triangleright t_{2}\left[v \triangleleft t_{1} / x\right]$
$e \triangleright\left(t_{1}, t_{2}\right)=$ case $e$ of

$$
\left(e_{1}, e_{2}\right) \rightarrow\left(e_{1} \triangleright t_{1}, e_{2} \triangleright t_{2}\right)
$$

e $\triangleright$ Any $=$ UNR

$$
\begin{aligned}
& \text { Wrappers } \triangleright \text { and } \triangleleft \\
& \text { ( } \triangleright \text { pronounced ensures } \quad \triangleleft \text { pronounced requires) } \\
& e \triangleleft\{x \mid p\}=\text { case } p[e / x] \text { of } \\
& \text { True -> e } \\
& \text { False -> UNR } \\
& e \triangleleft x: t_{1} \rightarrow t_{2} \\
& =\lambda v .\left(e\left(v \triangleright t_{1}\right)\right) \triangleleft t_{2}\left[v \triangleright t_{1} / x\right] \\
& e \triangleleft\left(t_{1}, t_{2}\right)=\text { case } e \text { of } \\
& \left(e_{1}, e_{2}\right)->\left(e_{1} \triangleleft t_{1}, e_{2} \triangleleft t_{2}\right) \\
& \text { e } \triangleleft \mathrm{Any}=\mathrm{BAD}
\end{aligned}
$$

## Example

```
head:: [a] -> a
head [] = BAD
head (x:xs) = x
```

head $\in\{$ xs $\mid$ not (null xs) \} $->$ Ok
head $\triangleright\{x s$ | not (null xs) \} $\rightarrow>$ Ok
$=\backslash v . \operatorname{head}(v \nless\{x s \mid$ not (null xs) \}) $\triangleright O k$ $e D O k=e$
$=\backslash v . \operatorname{head}(v<\{x s \mid$ not (null $x s)\})$
$=\backslash v$. head (case not (null v) of True -> v False -> UNR)

## Iv. head (case not (null v) of True -> v False -> UNR)

Now inline 'not' and 'null'
$=\backslash \mathrm{v}$. head (case v of [] $\rightarrow$ UNR (pips) -> p)

Now inline 'head'

```
null :: [a] -> Bool
null [] = True
null (x:xs) = False
not :: Bool -> Bool
not True = False
not False = True
```

$=\ \mathrm{v}$. case v of

$$
\left[\begin{array}{ll}
{[\mathrm{p}: \mathrm{ps})} & ->\mathrm{p} \\
\hline
\end{array}\right.
$$

So head [] fails with UNR, not
BAD, blaming the caller

## Higher-Order Function

$$
\begin{aligned}
& \text { ff :: (Int -> Int) -> Int } \\
& \text { ff } \in(\{x \mid \operatorname{True}\}->\{y \mid y>=0\})->\{r \mid r>=0\} \\
& \mathrm{f} 1 \mathrm{~g}=(\mathrm{g} 1)-1 \\
& \text { ff:: \{r | True }\} \\
& \mathrm{f} 2=\mathrm{f} 1 \text { ( } \backslash \mathrm{x}->\mathrm{x}-1 \text { ) } \\
& \text { ff } \triangleright(\{x \mid \text { True }\}->\{y \mid y>=0\})->\{r \mid r>=0\} \\
& =\ldots \quad \triangleright \quad \triangleright \\
& =\lambda \mathrm{v}_{1} \text {. case }\left(\mathrm{v}_{1} 1\right)>=0 \text { of } \\
& \text { True -> case ( } \mathrm{v}_{1} 1 \text { ) - } 1>=0 \text { of } \\
& \text { True -> ( } \mathrm{v}_{1} 1 \text { ) -1 } \\
& \text { False -> BAD } \\
& \text { False -> UNR }
\end{aligned}
$$

## Grand Theorem

## $\mathbf{e} \in \mathbf{t} \Leftrightarrow \mathbf{e} \triangleright \mathbf{t}$ is crash-free

```
 e \triangleright {x | p} = case p[e/x] of
 True -> e
 False -> BAD
 loop \in{x | False}
 loop }D{x | False
 = case False of {True -> loop; False -> BAD}
 = BAD, which is not crash-free
 BAD & Ok -> Any
 BAD DOk -> Any
= \v -> ((BAD (v \triangleleft Ok)) D Any
= \v -> UNR, which is crash-free
```


## Grand Theorem

## $\mathbf{e} \in \mathbf{t} \Leftrightarrow \mathbf{e} \triangleright \mathbf{t}$ is crash-free

```
 e D{x | p} = e `seq` case p[e/x] of
 True -> e
 False -> BAD
e_1 `seq` e_2 = case e_1 of {DEFAULT -> e_2}
 loop \in{x | False}
 loop }D{x | False
 = loop `seq` case False of {...}
 = loop, which is crash-free
 BAD & Ok -> Any
 BAD DOk -> Any
 = BAD `seq` \v -> ((BAD (v \triangleleft Ok)) D Any
 = BAD, which is not crash-free
```


## Contracts that Diverge

$\backslash x->B A D \in\{x \mid$ loop $\}$ ? NO
But
$\backslash x->B A D \triangleright\{x \mid$ loop $\}$
$=\backslash x->B A D$ 'seq` case loop of
True -> \x -> BAD

False -> BAD

$$
\begin{aligned}
e \triangleright\{x \mid p\}=e \text { seq` } & \text { case fin } p[e / x] \text { of } \\
& \text { True } \rightarrow e \\
& \text { False } \rightarrow \text { BAD }
\end{aligned}
$$

fin converts divergence to True

## Contracts that Crash

## Grand Theorem

$\mathbf{e} \in \mathbf{t} \Leftrightarrow \mathbf{e} \triangleright \mathbf{t}$ is crash-free
ㅁ ... much trickier
■ $(\Rightarrow)$ does not hold, $(\Leftarrow)$ still holds
$\square$ Open Problem

- Suppose fin converts BAD to False
- Not sure if Grand Theorem holds because NO proof, and NO counter example either.


## Well-formed Contracts

## Grand Theorem

$\mathbf{e} \in \mathbf{t} \quad \Leftrightarrow \quad \mathbf{e} \triangleright \mathbf{t}$ is crash-free

## Well-formed t

t is Well-formed (WF) iff

$$
t=\{x \mid p\} \text { and } p \text { is crash-free }
$$

or $t=x: t_{1} \rightarrow t_{2}$ and $t_{1}$ is $W F$ and $\forall e_{1} \in t_{1}, t_{2}\left[e_{1} / x\right]$ is $W F$
or $t=\left(t_{1}, t_{2}\right)$ and both $t_{1}$ and $t_{2}$ are WF
or $\mathrm{t}=$ Any

## Properties of $\triangleright$ and $\triangleleft$

Key Lemma:
For all closed, crash-free $e$, and closed $t$,
$(e \triangleleft t) \in t$
Projections: (related to Findler\&Blume:FLOPS'06)
For all $e$ and $t$, if $e \in t$, then
(a) $\mathbf{e} \preceq \mathbf{e} \triangleright \mathbf{t}$
(b) $\mathbf{e} \triangleleft \mathbf{t} \preceq \mathbf{e}$

Definition (Crashes-More-Often):
$\mathbf{e}_{1} \preceq \mathbf{e}_{2}$ iff for all $C, \vdash C\left[\left[e_{i}\right]\right]::$ () for $i=1,2$ and $\mathrm{C}\left[\left[\mathrm{e}_{2}\right]\right] \rightarrow{ }^{*} \mathrm{BAD} \Rightarrow \mathrm{C}\left[\left[\mathrm{e}_{1}\right]\right] \rightarrow{ }^{*} \mathrm{BAD}$

## More Lemmas :

> Lemma [Monotonicity of Satisfaction ]:
> If $\mathrm{e}_{1} \in \mathbf{t}$ and $\mathrm{e}_{1} \preceq \mathrm{e}_{2}$, then $\mathrm{e}_{2} \in \mathbf{t}$
> Lemma [Congruence of $\preceq$ ]:
> $\mathrm{e}_{1} \preceq \mathrm{e}_{2} \Rightarrow \quad \forall \mathrm{C} . \mathrm{C}\left[\left[\mathrm{e}_{1}\right]\right] \preceq \mathbf{C}\left[\left[\mathrm{e}_{2}\right]\right]$
> Lemma [Idempotence of Projection]:
> $\forall \mathrm{e}, \mathrm{t} . \mathrm{e} \triangleright \mathrm{t} \triangleright \mathrm{t} \equiv \mathrm{e} \triangleright \mathrm{t}$
> $\forall \mathrm{e}, \mathrm{t} . \mathrm{e} \triangleleft \mathrm{t} \triangleleft \mathrm{t} \equiv \mathrm{e} \triangleleft \mathrm{t}$
> Lemma [A Projection Pair]:
> $\forall \mathrm{e}, \mathrm{t}$. $\mathrm{e} \triangleright \mathrm{t} \triangleleft \mathrm{t} \preceq \mathrm{e}$
> Lemma [A Closure Pair]:
> $\forall \mathbf{e}, \mathbf{t} . \mathbf{e} \preceq \mathbf{e} \triangleleft \mathbf{t} \triangleright \mathbf{t}$

## How to Check?

## Grand Theorem

 $\mathbf{e} \in \mathbf{t} \Leftrightarrow \mathbf{e} \triangleright \mathbf{t}$ is crash-free (related to Blume\&McAllester:ICFP’04)
## Part I



## Construct

 $e \triangleright t$(e "ensures" $t$ )
Simplify $(\mathbf{e} \triangleright t)$
Normal form $\mathbf{e}^{\prime}$
If $e^{\prime}$ is syntactically safe, then Done!

## Simplification Rules

$$
\begin{align*}
& \left(\lambda x . e_{1}\right) e_{2} \Longrightarrow e_{1}\left[e_{2} / x\right] \\
& \text { (case } \left.e_{0} \text { of }\left\{K_{i} \overrightarrow{x_{i}} \rightarrow e_{i}\right\}\right) a \quad \text { case } e_{0} \text { of }\left\{K_{i} \overrightarrow{x_{i}} \rightarrow\left(e_{i} a\right)\right\} \quad f v(a) \cap \overrightarrow{x_{i}}=\emptyset \\
& \text { case (case } e_{0} \text { of }\left\{K_{i} \overrightarrow{x_{i}} \rightarrow e_{i}\right\} \text { ) of alts } \Rightarrow \text { case } e_{o} \text { of }\left\{K_{i} \overrightarrow{x_{i}} \rightarrow \text { case } e_{i} \text { of alts }\right\} \\
& f v(\text { alts }) \cap \overrightarrow{x_{i}}=\emptyset \\
& \text { case } K_{j} \vec{e}_{j} \text { of }\left\{K_{i} \overrightarrow{x_{i}} \rightarrow e_{i}\right\} \Rightarrow \operatorname{UNR} \forall i . K_{j} \neq K_{i} \\
& \text { case } e_{0} \text { of }\left\{K_{i} \overrightarrow{x_{i}} \rightarrow e_{i} ; K_{j} \overrightarrow{x_{j}} \rightarrow \text { UNR }\right\} \Rightarrow \text { case } e_{0} \text { of }\left\{K_{i} \overrightarrow{x_{i}} \rightarrow e_{i}\right\}  \tag{UnReachable}\\
& \text { case } e_{0} \text { of }\left\{K_{i} \overrightarrow{x_{i}} \rightarrow e_{i}\right\} \Rightarrow e_{1} \text { patterns are exhaustive and } \\
& \text { for all } i, f v\left(e_{i}\right) \cap \overrightarrow{x_{i}}=\emptyset \text { and } e_{1}=e_{i} \\
& \text { case } e_{0} \text { of }\left\{K_{i} \overrightarrow{x_{i}} \rightarrow e\right\} \quad \Rightarrow e_{0} \quad e_{0} \in\{\text { BAD } l b l, \text { UIIR }\} \\
& \text { case } K_{i} \overrightarrow{y_{i}} \text { of }\left\{K_{i} \overrightarrow{x_{i}} \rightarrow e_{i}\right\} \quad \Longrightarrow \quad e_{i}\left[y_{i} / x_{i}\right]
\end{align*}
$$

## Arithmetic via External Theorem Prover

goo $\triangleright t_{\text {goo }}=\backslash i->$<br>case (i+8 > i) of False -> BAD "foo" True -> ...

>>ThmProver $i+8>i$
>>Valid!

Case i > j of True -> case j < 0 of
>>ThmProver push (i>j) push (not (j<0)) (i>0)
>>Valid!
False -> case i > of
False -> BAD "f"

## Counter-Example Guided Unrolling

```
sumT :: T -> Int
sumT \in {x | noT1 x } -> {r | True}
sumT (T2 a) = a
sumT (T3 t1 t2) = sumT t1 + sumT t2
After simplifying (sumT \triangleright t tsumT), we may have:
case (noT1 x) of
True -> case x of
 T1 a -> BAD
 T2 a -> a
 T3 t1 t2 -> case (noT1 t1) of
 False -> BAD
 True -> case (noT1 t2) of
 False -> BAD
 True -> sumT t1 + sumT t2
```


## Step 1: Program Slicing - Focus on the BAD Paths

```
case (noT1 x) of
True -> case x of
 T1 a -> BAD
 T3 t1 t2 -> case (noT1 t1) of
 False -> BAD
 True -> case (noT1 t2) of
 False -> BAD
```


## Step 2: Unrolling

```
case (case x of
 T1 a -> False
 T2 a -> True
 T3 t1 t2 -> noT1 t1 && noT1 t2) of
True -> case x of
 T1 a -> BAD
 T3 t1 t2 -> case (noT1 t1) of
 False -> BAD
 True -> case (noT1 t2) of
 False -> BAD
```


## Counter-Example Guided Unrolling - The Algorithm

esch rhs $0=$ "Counter-example :" ++ report rhs
esch rhs $n=$
let $r h s^{\prime}=$ simplifier $r h s$

$$
b=\text { noBAD } r h s^{\prime}
$$

in case $b$ of

True $\rightarrow$ "No Bug."

False $\rightarrow$ let $s=$ slice $r h s^{\prime}$
in case noFunCall $s$ of
True $\rightarrow$ let $e g=$ oneEg $s$
in "Definite Bug :" ++ report eg
False $\rightarrow$ let $s^{\prime}=$ unrollCalls $s$
in esch $s^{\prime}(n-1)$

## Tracing

(Achieve the same goal as [Meunier, Findler, Felleisen:POPL06]

$$
\begin{aligned}
& \mathbf{g} \in \mathbf{t}_{\mathrm{g}} \\
& \mathrm{~g}=\ldots \\
& \mathbf{f} \in \mathbf{t}_{\mathrm{f}} \\
& \mathrm{f}=\ldots \mathrm{g} \ldots \\
& f \triangleright t_{f}=\ldots g \triangleleft t_{g} \ldots \\
& \text { case fin } \mathrm{p}[\mathrm{e} / \mathrm{x}] \text { of } \\
& \text { True }->e \\
& \text { False -> BAD "f" } \\
& (\mathrm{lg} \rightarrow \ldots \mathrm{~g} \ldots) \triangleright \mathrm{t}_{\mathrm{g}} \rightarrow \mathbf{t}_{\mathrm{f}}
\end{aligned}
$$

## Counter-Example Generation

$$
\begin{aligned}
& \mathrm{f} 1 \in \mathrm{x}: 0 \mathrm{ok}->\{\mathrm{x}<\mathrm{z}\}->0 \mathrm{O} \\
& \mathrm{f} 2 \mathrm{x} \mathrm{z}=1+\mathrm{f} 1 \mathrm{x} \mathrm{z}
\end{aligned}
$$

$\mathrm{f} 3 \triangleright \mathrm{Ok}=\backslash \mathrm{xs}->\backslash \mathrm{z}->$
case xs of
[] $->0$
(x:y) $->$ case $x>z$ of True -> Inside "f2" <12> (Inside "f1" <l1> (BAD "f1")) False -> ...

Warning <l3>: f3 (x:y) z where $x>z$ calls f2 which calls f1 which may fail f1's precondition!

## Conclusion

Contract


## Haskell Program

Glasgow Haskell Compiler (GHC)


## Summary

- Static contract checking is a fertile and under-researched area
- Distinctive features of our approach
- Full Haskell in contracts; absolutely crucial
- Declarative specification of "satisfies"
- Nice theory (with some very tricky corners)
- Static proofs
- Modular Checking
- Compiler as theorem prover


## Contract Synonym

contract Ok = \{x | True\}
contract NonNull $=\{x$ | not (null $x)\}$
head :: [Int] -> Int
head $\in$ NonNull -> Ok
head ( $x: x s$ ) $=x$

## Actual Syntax

\{-\# contract $O k=\{x \mid$ True $\}-\#\}$
$\{-\#$ contract NonNull $=\{x$ | not (null $x$ ) \} \#-\}
\{-\# contract head : : NonNull -> Ok \#-\}

## Recursion

$$
\begin{aligned}
& f \triangleright t \\
& =\backslash f->f \triangleright t->t \\
& =\ldots \\
& =(\ldots(f \triangleleft t) \ldots) \triangleright t
\end{aligned}
$$

Suppose $t=t 1->t \_2$
f $\triangleright \mathrm{t} 1$-> t 2
$=\backslash f->f \mid(t 1->t 2)->(t 1->t 2)$
= ...
$=(\ldots$ (f $\triangleleft \mathrm{t} 1->\mathrm{t} 2) \ldots$ )...) $\mathrm{t1}->\mathrm{t} 2$
$=\backslash v 2 .((\ldots(\backslash v 1 .((f(v 1 \triangleright t 1)) \quad \triangleleft t 2))(v 2 \triangleleft t 1) \quad ..) \triangleright t 2)$

