
PType System: A Featherweight
Parallelizability Detector

Dana N. Xu1, Siau-Cheng Khoo1, and Zhenjiang Hu2,3

1School of Computing,
National University of Singapore
{xun,khoosc}@comp.nus.edu.sg

2University of Tokyo,
3PRESTO 21, Japan Science and Technology Corporation

hu@mist.i.u-tokyo.ac.jp

Abstract. Parallel programming is becoming an important cornerstone
of general computing. In addition, type systems have significant impact
on program analysis. In this paper, we demonstrate an automated type-
based system that soundly detects parallelizability of sequential func-
tional programs. Our type inference system discovers the parallelizability
property of a sequential program in a modular fashion, by exploring a
ring structure among the program’s operators. It handles self-recursive
functions with accumulating parameters, as well as a class of non-linear
mutual-recursive functions. Programs whose types are inferred to be par-
allelizable can be automatically transformed to parallel code in a mutu-
morphic form – a succint model for parallel computation. Transforming
into such a form is an important step towards constructing efficient data
parallel programs.

1 Introduction

Many computational or data-intensive applications require performance level
attainable only on parallel architectures. As multiprocessor systems have become
increasingly available and their price/performance ratio continues to improve,
interest has grown in parallel programming. While sequential programming is
already a challenging task for programmers, parallel programming is much harder
as there are many more issues to consider, including available parallelism, task
distribution, communication overheads, and debugging. A desirable approach
for parallel program development is to start with a sequential program, test and
debug the sequential program and then systematically transform the program
to its parallel counterpart.

In the functional programming community, functions are usually defined re-
cursively, and it is an open problem whether a general and formal method exists
to parallelize any sequential recursive definition. One practically useful approach
is the skeletal approach [20, 9], where two restrictions have been imposed on func-
tion definitions:

W.-N. Chin (Ed.): APLAS 2004, LNCS 3302, pp. 197–212, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

198 D.N. Xu, S.-C. Khoo, and Z. Hu

1. The operators used in the higher order functions should satisfy the associa-
tive property.

2. Programs should be expressed in some restrictive recursive forms captured
by the higher order functions such as map, reduce, scan, etc.

In this paper, we propose a parallelizability detection methodology that alle-
viates these restrictions. Specifically, we demonstrate a system, called Paralleliz-
able Type System (PType system in short), in which parallelizability of sequential
recursive code can be detected through automatic program analysis. By paral-
lelizability, we mean that there exists a parallel code with time complexity that
is of order O(log m / m) faster than its sequential counterpart, where m is the
size of the input data.

To alleviate the first restriction, we introduce a type inference system that
discovers the extended-ring property of the set of operators used in a program.
We show that this property ensures parallelization of a program. Through our
system, users need not know how associative operators are combined to enable
parallelization. This separation of concern will greatly facilitate parallelization
process.

To remove the second restriction, our system accepts any first-order func-
tional programs with strict semantics. If a program passes the type checking
phase, it can be automatically converted to parallel codes. Otherwise, the pro-
gram will remain as it is.

For example, consider the following polynomial function definition:

poly [a] c = a
poly (a : x) c = a + c × (poly x c)

In the skeletal approach, we have to introduce a (non-intuitive) combining
operator comb2 (which is associative). Thus, the revised definition of poly is:

poly xs c = fst (polytup xs c)
polytup [a] c = (a, c)
polytup (a : x) c = (a, c) ‘comb2‘ (polytup x c)
where comb2 (p1, u1) (p2, u2) = (p1 + p2 ∗ u1, u2 ∗ u1)

As this revised definition matches the following skeleton, parallelization is
thus guaranteed.

poly xs c = fst (reduce comb2 (map (\ x → (x , c)) xs))

On the other hand, our PType system can detect that the sequential definition
of poly is parallelizable. It infers that the expression (a + c × (poly x c)) has the
type R[+,×]. This implies that + and × in R[+,×] exhibit an extended-ring property .
The corresponding parallel code for poly is as follows.

poly [a] c = a
poly (xl ++ xr) c = poly xl c + (prod xl c) × (poly xr c)
prod [a] c = c
prod (xl ++ xr) c = (prod xl c) × (prod xr c)

PType System: A Featherweight Parallelizability Detector 199

An algorithm that automatically transforms a well-PTyped sequential pro-
gram to an efficient homomorphism, a desired parallel computation model [21],
can be found in [23].

In our implementation, the system handles first-order functional programs. It
is able to parallelize a wide class of recursively-defined functions with accumulat-
ing parameters and with non-linear recursion. For clarity of the presentation, we
first illustrate the system without these two features in Section 4.1 and discuss
them separately in Section 4.2.

The main technical contributions of this work are as follows:

1. We propose an extended ring property of operators used in sequential pro-
grams, which guarantees the parallelizability of these programs. This frees
programmers from the burden of finding a skeleton form.

2. We propose a novel and featherweight type inference system for detecting
parallelizability of sequential programs in a modular fashion. We believe this
is the first work on capturing parallelism in a type inference context.

The outline of the paper is as follows. In the next section, we describe the syn-
tax of the language used, and the background of our work. Section 3 provides our
account of the parallelizability property. The discovery of parallelizability using
a type system is described in Section 4. We illustrate the working of the PType
system through examples in Section 5. Section 6 describes our implementation.
Finally, we discuss the related work and conclude the paper in Section 7.

2 Background

The PType system operates on a first-order typed functional language with
strict semantics. The syntax of our source language is given in Figure 1. To
aid the type inference, programmers are required to provide as annotatations
properties of user-defined binary operators used in a program. Such require-
ments are typical for achieving reduction-style parallelism. For example, the
system-defined annotation #(Int , [+,×], [0, 1]) is needed for the function defini-
tion poly. The annotation tells the system that, for all integers, operators + and
× satisfy the extended-ring property with 0 and 1 as their respective identi-
ties.

Function definitions in this paper are written in Haskell syntax [15]. For the
remainder of the paper, we shall discuss detection of parallelism for recursive
functions of the form

f(a : x) = E[〈ti〉mi=1, 〈q x〉, 〈f x〉]

where f is inductively defined on a list and E [] denotes an expression context with
three groups of holes, denoted by 〈 〉. The context itself contains no occurrence of
references to a, x and f . 〈ti〉mi=1 is a group of m terms, each of which is allowed to
contain occurrences of a, but not those of references to (f x). The 〈q x 〉 denotes

200 D.N. Xu, S.-C. Khoo, and Z. Hu

τ ∈ Typ Types n ∈ Cons Constants
c ∈ Con Data Constructors v ∈ Var Variables

⊕ ∈ Op Binary Primitive Operators
γ ∈ Ann Annotations

γ ::= #(τ, [⊕1, . . . ,⊕n], [ι⊕1 , . . . , ι⊕n])
e, t ∈ Exp Expressions

e, t ::= n | v | c e1 . . . en | e1 ⊕ e2 | if e0 then e1 else e2

| f e1 . . . en | let v = e1 in e2

p ∈ Pat Patterns σ ∈ Prog Programs
p ::= v | c v1 . . . vn σ ::= γ∗

i , (fi p1 . . . pn = e)∗ ∀ i. i ≥ 1
where f1 is the main function.

Fig. 1. Syntax of the source language

an application of a parallelizable auxiliary function.1 Lastly, 〈f x 〉 is the self-
recursive call.

For example, given the function definition

f1 (a : x) = if a > 0 then length x + f1 x else 1 + f1 x

we have

f1 (a : x) = E [〈a > 0, 1〉, 〈length x 〉, 〈f x 〉]
where E [〈t1, t2〉, 〈t3〉, 〈t4〉] = if t1 then t3 + t4 else t2 + t4

As our analysis focuses on the syntactic expressions consisting of recursive
calls, all variables directly or indirectly referencing an expression consisting of
recursive call(s) need to be traced. We call such variables references to a recursive
call, which is formally defined below:

Definition 1 (Reference to a Recursive Call). A variable v is a reference
to a recursive call if the evaluation of v leads to an invocation of that call.

Consider the following two function definitions:

f2 (a : x) = let v2 = 1 + f2 x in a + v2

f3 (a : x) = let v3 = 1 + f3 x in let u = 2 + v3 in a + u,

Variable v2 is a reference to the recursive call (f2 x) as it names an expression
which encloses a recursive call. In f3, variables u and v3 are references to the
recursive call (f3 x). Variable u indirectly references the recursive call since it
contains v3.

For ease of the presentation, we focus our attention on recursive function
definitions that are linear self-recursive (and discuss the handling of non-linear

1 It is possible to consider applications of multiple parallelizable auxiliary functions
in an expression, as in 〈qj x 〉nj=1. These functions are examples of mutumorphism
[14]. Their calls can be tupled to obtain a single (q x) via the technique described
in [4, 13].

PType System: A Featherweight Parallelizability Detector 201

and mutually recursive functions in Section 4.2.) Furthermore, we do not con-
sider functions with self-recursive calls occurring in the test of a conditional.
Parallelization of such functions requires these functions to be annotated with
a special (constraint) form of the extended-ring property [6], which are not de-
scribed in this paper.

Context Preservation. Our parallelization process is inspired from a program
restructuring technique known as context preservation [8]. We briefly describe
the technique here.

Consider the polynomial function definition again. Context preservation is
performed primarily on the recursive equation of poly:

poly (a : x) c = a + c × (poly x c)

A contextual function (or context , for short) will extract away the recursive
subterm of the RHS of this equation. It can be written as λ (•) . α + β × (•).
Here, the symbol • denotes a recursive subterm containing an occurrence of
a self-recursive call, while α and β denote subterms that do not contain any
recursive call. Such a context is said to be context preserving modulo replication
(or context preserving, in short) if after composing the context with itself, we
can obtain (by transformation) a resulting context that has the same form as the
original context. Context preservation guarantees that the underlying function
can be parallelized.

Theorem 1 (Context Preservation Theorem [8, 14]). Given is a recur-
sive function f of the form f (a : x) = e where expression e consists of recursive
call(s). If e is context preserved, then f can be parallelized.

For function poly, let its context be denoted by λ (•) . α1 + β1 × (•)). We
compose this context with its renamed copy, (λ(•) . α2 + β2 × (•)), and sim-
plify the composition through a sequence of transformation steps:

(λ (•) . α1 + β1 × (•)) ◦ (λ(•) . α2 + β2 × (•))
= λ (•) . α1 + β1 × (α2 + β2 × (•)) — function composition
= λ (•) . α1 + (β1 × α2 + β1 × (β2 × (•))) — × is distributive over +
= λ (•) . (α1 + β1 × α2) + (β1 × β2) × (•) — +, × being associative
= λ (•) . α + β × (•)

where α = α1 + β1 × α2 and β = β1 × β2

Since the simplified form matches the original context, poly is context preserv-
ing. However, this transformation process, which is informally described in [5], is
more expensive than our type-based approach. Moreover, context preservation
checking is not modular, and thus lack of reusability.

3 Parallelizability

Given that context preservation leads to parallelizability, we focus on detecting
context preservation of sequential programs, but in a modular fashion. Our first
technical contribution is to introduce an extended ring property of the operators
which guarantees automatic detection of context preservation.

202 D.N. Xu, S.-C. Khoo, and Z. Hu

sv ∈ S−Values
sv ::= bv | if ζa then ζb else bv
bv ::= • | (ζ1 ⊕1 . . . ⊕n−1 ζn ⊕n •)

where [⊕1, . . . ,⊕n] possesses the
extended-ring property

ζ ∈ C−Exp
ζ ::= C[a, (q x)]

where C is an arbitrary expression
context not involving references to •

Fig. 2. Skeletal Values

Definition 2. Let S = [⊕1, . . . ,⊕n] be a sequence of n binary operators. We say
that S possesses the extended-ring property iff 2

1. all operators are associative;
2. each operator ⊕ has an identity, ι⊕, such that ∀ v : ι⊕ ⊕ v = v ⊕ ι⊕ = v;
3. ⊕j is distributive over ⊕i ∀ 1 ≤ i < j ≤ n.

As an example, in the non-negative integer domain, operators max , + and ×,
in that order form an extended ring. Their identities are 0, 0 and 1 respectively.

We now describe a set of “skeletons” (of expressions) which are constructed
using a sequence of binary operators with the extended-ring property. We will
show that expressions expressible in this “skeletal” form are guaranteed to be
context preserving. We call them skeletal values (or s-values, in short). These
are defined in Figure 2. We use • to denote a self-recursive call in a function
definition.

An s-value of the form (ζ1 ⊕1 . . . ⊕n−1 ζn ⊕n •)3 is said to be composed di-
rectly by the sequence of operators [⊕1, . . . , ⊕n] with the extended-ring property.
An s-value of the form if ζ0 then ζ1 else bv is said to be in conditional form.
Its self-recursive call occurs only in its alternate branch.

The following lemma states that all s-values are context preserving. Conse-
quently, any expression that can be normalized to an s-value can be parallelized.

Lemma 1 (S-Values Are Context Preserved). Given a recursive part
of a function definition f (a : x) = e, if e is an s-value, then e can be context
preserved.

The proof is done by a case analysis on the syntax of s-values. Details can be
found in [23].

It is worth-mentioning that s-values cover a wide class of recursive function
definitions that are parallelizable. In the remainder of the paper, we will provide
many practical sequential programs that can be expressed in, or normalized to
an s-value, and thus be directly parallelized.

2 We can also extend this property to include semi-associative operators and their cor-
responding left or right identities. Such extension enables more sequential programs
to be parallelized.

3 By default, it is equivalent to (ζ1 ⊕1 (· · · ⊕n−1 (ζn ⊕n •) . . .)).

PType System: A Featherweight Parallelizability Detector 203

4 PType System

The main focus of the PType system is a type-inference system that enables dis-
covery of parallelizability of sequential programs. Operationally, the type system
aims to deduce the extended-ring property of a sequential program in a modular
fashion. To this end, it associates each sub-expression in a recursive function
definition with a type term from the type language PType.

ρ ∈ PType

ρ ::= ψ | φ
ψ ∈ NType

ψ ::= N
φ ∈ RType

φ ::= RS

where S is a sequence of operators

Fig. 3. PType Expressions

The set of PType terms are defined in Figure 3. It comprises two categories:
NType and RType. We write [[ρ]] to denote the semantics of PType ρ. Thus,

[[N]] = C−Exp,

where C−Exp is defined in Figure 2.
Given that S = [op1, . . . , opn] with the extended-ring property, we have:

[[RS]] = {e | e �∗ e′ ∧ e′ is an s-value ∧ e′ is composable by operators in S},

where �∗ represents a normalization process that we have defined to obtain
s-values. The core set of rules for the normalization process is in [23].

Since expressions of type RS (for some S) can be normalized to an s-value,
any expression containing a self-recursive call but could not be translated to an
s-value is considered ill-typed in our PType system.

As an illustration, the RHS of the self-recursive equation of the following
function definition has ptype R[max ,+,×].

f6 (a : x) = 5 ‘max‘ (a + 2 × (f6 x)),

Note that in the definition of [[RS]], the expression e ′ is said to be composable,
rather than to be composed directly, by a set of operators. There are two reasons
for saying that:

1. e ′ need not simply be an s-value of bv category; it can also include condi-
tionals and local abstractions, but its set of operators must be limited to
S .

2. As operators in S have identities, we allow e ′ to contain just a subset of
operators in S . We can always extend e ′ to contain all operators in S using
their respective identities.

The last point implies that the RType semantics enjoys the following subset
relation:

Lemma 2. Given two sequences of operators S1 and S2, both with the extended-
ring property, if S1 is a subsequence of S2, then [[RS1]] ⊆ [[RS2]].

204 D.N. Xu, S.-C. Khoo, and Z. Hu

The above lemma leads to the following subtyping relation:

Definition 3 (Subtyping of RType). Given two sequences of operators S1 and
S2, both with the extended-ring property, we say RS1 is a subtype of RS2 , de-
noted by RS1 <: RS2 , if and only if S1 S2 (where “S1 S2” means “S1 is a
subsequence of S2”).

A type assumption Γ binds program variables to their PTypes. A judgment
of the PType has the form

Γ �κ e :: ρ

This states that the expression e has PType ρ assuming that any free variable
in it has PType given by Γ and κ is an expression that may occur in e. κ is either
a self-recursive call or a reference to such a call. It represents the currently active
reference (the detail can be seen in the type-checking rule for let.) Before type
checking the RHS of a recursive definition of f , we initialize κ to be the term
(f x). In Γ , we also assign PType N to the recursive parameters of f .

Finally, given a recursive equation of f defined by f (a : x) = e, the expression
e is said to be well-PTyped if there is some PType ρ such that Γ �(f x) e :: ρ,
where Γ assigns both a and x to N . Otherwise, it is said to be ill-PTyped.

4.1 PType Checking

The PType of a function f is defined as the PType of the RHS of its recursive
equation. Figure 4 lists the core set of type-checking rules.

Both constants and variables not referencing any recursive call are given
NType, as shown in the rules (var-N) and (con). Use of a variable has type
RType if it is the currently active reference, namely κ. The self-recursive call
(f x) will also be given an RType. We note that any use of inactive references
are ill-PType, as there is no corresponding rule for it.

Rule (op) handles a binary operation in which a recursive function call occurs
in its right operand. The operation yields a RType if the right operand has RType,
and the operator under investigation is part of the sequence S . The case in which
the recursive call occurs in its left operand is symmetrical, and thus omitted.

In the rule (if), a conditional expression is of NType if both its branches are
of NType. On the other hand, it is of RType if one of its branches is of RType.
When both branches are of RType, the conditional will be of RType provided both
branches can be coerced to the same type RS . These constraints are expressed by
the relation � if, defined by (if-merge), while the coercion is defined via a type
subsumption (sub). For example, consider the following function definition:

#(Int , [+,×], [0, 1])
f7 [a] = a
f7 (a : x) = if a > 5 then a + f7 x else a × f7 x

Under the type assumption Γ = {a :: N , x :: N }, the types for each of the
branches are R[+] and R[×]. By the rules (if-merge) and (sub), the type of the
conditional becomes R[+,×].

PType System: A Featherweight Parallelizability Detector 205

v �= κ

Γ ∪ {v :: N} �κ v :: N
(var− N)

v = κ

Γ ∪ {v :: RS} �κ v :: RS
(var− R)

Γ �κ n :: N
(con)

Γ �(f x) (f x) :: RS (rec)

Γ �κ e1 :: N Γ �κ e2 :: ρ (ρ = N) ∨ (ρ = RS ∧ ⊕ ∈ S)

Γ �κ (e1 ⊕ e2) :: ρ
(op)

Γ �κ e0 :: N Γ �κ e1 :: ρ1 Γ �κ e2 :: ρ2 � if (ρ, ρ1, ρ2)

Γ �κ (if e0 then e1else e2) :: ρ
(if)

Γ �κ e1 :: N Γ ∪ {v :: N} �κ e2 :: ρ

Γ �κ (let v = e1 in e2) :: ρ
(let− N)

Γ �κ e1 :: RS Γ ∪ {v :: RS} �v e2 :: RS

Γ �κ (let v = e1 in e2) :: RS
(let− R)

Γ �κ e :: N g �∈ FV (κ)

Γ �κ (g e) :: N
(g)

Γ �κ e : ρ ρ <: ρ′

Γ �κ e :: ρ′ (sub)

� if(ρ, ρ, ρ) � if(RS , N, RS) � if(RS , RS , N)
(if− merge)

Fig. 4. Type-Checking Rules

There are two rules for the let-expression. Rule let-N applies to an expression
with no recursive-call references in e1. Thus, the resulting type depends on the
type of e2. Rule let-R applies to an expression with recursive-call references
occurring in e1 and the local variable v is used in the expression e2.

Note that in the rule (let-R), the deductive operator has changed from �κ

to �v . This means that in e2, v is the sole active reference to the recursive
function. Thus, the following two expressions will fail the PType check: In the
first expression, the recursive call is non-linear; in the second expression, the use
of v is non-linear.4

let v = f x in f x let v = f x in let u = v in v

In rule (g), the application of an auxiliary function g is of NType if its argu-
ment e is of NType too. Otherwise, such an application may not be effectively
parallelized [10], and the application will be deemed ill-PTyped.

The soundness of our type-checking rules is shown by relating the rules to a
set of normalization rules defining �, as shown in [23]. The main results are
listed below; we refer the reader to [23] for detail.

Theorem 2 (Progress). If Γ �κ e :: RS , then either e is an s-value or e � e ′.

4 Conversion of these simple non-linear expressions to their linear counterparts can be
trivially done via pre-processing. We omit the detail here.

206 D.N. Xu, S.-C. Khoo, and Z. Hu

Theorem 3 (Preservation). If e :: RS and e � e ′, then e ′ :: RS .

Furthermore, in [23], we define a PType inference algorithm which is both
sound and complete with respect to our PType checking rules. Our algorithm
adopts the idea of the type reconstruction algorithm WUL as described in [17].

4.2 Enhancement of the PType System
In this section, we show that the PType system can be enhanced to cover broader
classes of parallelizable codes. These enhancements have been included in our
implementation [23].

Multiple Recursion Parameters. When a function f has multiple recursion
parameters, we require f to recurse over all its recursion parameters at the same
frequency . That is, f is of the following form:

f [a1] . . . [an] = Ctx [a1, . . . , an]
f (a1 : x1) . . . (an : xn) = . . . (f x1 . . . xn) . . .

where Ctx [] is an arbitrary context, and the expression . . . (f x1 . . . xn) . . . states
that any self-recursive call in the equation should be of the form (f x1 . . . xn).

Example: Polynomial Addition. The following definition of polyadd satisfies this
requirement, and its PType is R[++].

#(List Float , [++], [Nil])
polyadd [] [] = []
polyadd [] ys = ys
polyadd xs [] = xs
polyadd (a : x) (b : y) = [(a + b)] ++ polyadd x y

For clarity, we use −→x to denote x1 . . . xn . To handle multiple recursion param-
eters, we replace all occurrences of (f x) with (f −→x) in the type checking rules,
and include {a1 :: N , . . . , an :: N , x1 :: N , . . . , xn :: N } to Γ before type checking the
RHS of the equation.

Accumulating Parameters. When a function f has accumulating parameters,
we shall verify the well-PTypedness of each of these parameters individually be-
fore type-checking f ’s body. If any one of the accumulating parameters is found
to be ill-typed, we conclude that the function f is ill-typed too. Thus, given a
function definition of the form

f (a1 : x1) . . . (an : xn) p1 . . . pn = . . . (f −→x e1 . . . ei . . . en) . . . ,

where p1 . . . pn are accumulating parameters, the type checking proceeds as fol-
lows:

∀ i ∈ {1, . . . , n} : Γ ∪ {ai :: N, xi :: N, pi :: N}i ∈ {1,...,n} �pi C[[e]]pi :: ρi

Γ ∪ {ai :: N, xi :: N, pi :: N}i ∈ {1,...,n} �(f −→x) e :: RS

The context derivation function C takes an expression e and an accumulating
parameter pi as inputs and returns an expression which is the context of the
accumulating parameter pi . Its definition is available in Figure 5.

PType System: A Featherweight Parallelizability Detector 207

C :: Exp → Var → (Exp, Bool)
C[[n]]pi = (n, True)
C[[v]]pi = (v , True)
C[[f −→x e0 . . . ei . . . en]]pi = (ei , False)
C[[g e0 . . . en]]pi = (g e0 . . . en , True)
C[[e1 ⊕ e2]]pi = let (e ′

1, b1) = C[[e1]]pi

(e ′
2, b2) = C[[e2]]pi

in case (b1, b2) of
(True, True) → (e1 ⊕ e2, True)
(True, False) → (e ′

2, False)
(False, True) → (e ′

1, False)
(False, False) → error

C[[if e0 then e1 else e2]]pi = let (e ′
1, b1) = C[[e1]]pi

(e ′
2, b2) = C[[e2]]pi

in case (b1, b2) of
(True, True) → (if e0 then e1 else e2, True)
(True, False) → (e ′

2, False)
(False, True) → (e ′

1, False)
(False, False) → (if e0 then e ′

1 else e ′
2, False)

C[[let v = e1 in e2]]pi = let (e ′
1, b1) = C[[e1]]pi

in if b1 then let (e ′
2, b2) = C[[e2]]pi

in if b2 then (let v = e1 in e2, True)
else (let v = e ′

1 in e ′
2, False)

else (e ′
1, False)

Fig. 5. Definition of Context-Derivation Function C

Example: Bracket Matching Problem. This is a language recognition problem
which determines whether the brackets ′(′ and ′)′ occurring in a given string
can be matched correctly. This problem has a straightforward linear sequential
algorithm, in which the string is examined from left to right. A counter is ini-
tialized to 0, and is increased/decreased whenever an opening/closing bracket is
encountered. The following definition is taken from [14].

#(Bool , [∧], [True])
#(Int , [+, ∗], [0, 1])
sbp x = sbp′ x 0
sbp′ [] c = c == 0
sbp′ (a : x) c = if (a ==′ (′) then sbp′ x (1 + c)

else if (a ==′)′) then c > 0 ∧ sbp′ x ((−1) + c) else sbp′ x c

Two annotations are needed to type-check this program. The annotation for
operators of Bool is meant for type checking the function sbp′, and that for
operators of Int is for type checking the context of the accumulating parameter
c. The context is computed as follows:

C[[RHS of sbp′]]c = if (a ==′ (′)then 1 + c
else if (a ==′)′)then (−1) + c else c

The PType inferred are : sbp :: N , c :: R[+] and sbp′ :: R[∧]. Note that, when we
type check the function body of sbp′, the PType of c is set to N .

208 D.N. Xu, S.-C. Khoo, and Z. Hu

Non-linear Mutual Recursion. We extend the PType system to cover a sub-
set of non-linear recursive functions with an additional requirement that the
binary operators must be commutative. This additional requirement is typical
for research in the parallelization of non-linear recursive functions.

To parallelize a set of non-linear mutual recursive functions, we group these
functions into a tuple and type-check them together. Thus, we extend κ in �κ

to become a set of mutual-recursive calls.
Consider the following mutually defined recursive functions:

fi (a : x) = ei ∀ i ∈ {1, . . . ,m}
where ∀ i ∈ {1, . . . ,m} : ei = pi1 ⊕ (pi2 ⊗ f1 x) ⊕ . . . ⊕ (pim ⊗ fm x)

∀ j ∈ {1, . . . ,m} : pij = gij a (qj x)

Here, functions gij are arbitrary functions (i.e., arbitrary contexts) involving
a and (qj x), ∀i , j ∈ {1, . . . ,m}. Before type checking, we group the function def-
initions into a tuple: (f1, . . . , fm) = (e1, . . . , em). For all j ∈ {1, . . . ,m}, type check
ej with rules defined in Figure 4, together with the (op-RR) rule and type check
the tuple (e1, . . . , em) using the (nonlinear) rule.

S = ⊕ : S′ (length S) ≤ 2 ⊕ is commutative
Γ �{(f1 x),...,(fm x)} e1 :: RS Γ �{(f1 x),...,(fm x)} e2 :: RS

Γ �{(f1 x),...,(fm x)} (e1 ⊕ e2) :: RS
(op− RR)

Γ �{(f1 x),...,(fm x)} ej :: RS ∀ j ∈ {1, . . . , m}
Γ �{(f1 x),...,(fm x)} (e1, . . . , em) :: RS

(nonlinear)

Example: Fibonacci. For the following non-linear recursive definition of the Fi-
bonacci function,

lfib [] = 1 lfib′ [] = 0
lfib (a : x) = lfib x + lfib′ x lfib′ (a : x) = lfib x

we sketch below the type checking process:

Γ ∪ {a :: N , x :: N } �{(lfib x),(lfib′ x)} (lfib x + lfib′ x) :: R[+]

Γ ∪ {a :: N , x :: N } �{(lfib x),(lfib′ x)} (lfib x) :: R[]

�{(lfib x),(lfib′ x)} (lfib x) :: R[+] — since R[] <: R[+]

Γ ∪ {a :: N , x :: N } �{(lfib x),(lfib′ x)} ((lfib x + lfib′ x), (lfib x)) :: R[+]

Hence, both lfib and lfib′ have type R[+].
For functions which are defined with both non-linear recursion and accumu-

lating parameters, we first transform them into their linear recursive counterpart
such that the accumulating parameters and the recursion arguments can be pro-
cessed in a synchronized manner [7]. If this succeeds, the transformed functions
will be amenable to parallelization.

5 Examples

In this section, we show some interesting well-PTyped sequential programs by
giving their PType.

PType System: A Featherweight Parallelizability Detector 209

The mss Problem. Consider a sequential program that finds the maximum
segment sum (mss) of a list.

#(Int , [max , +], [0, 0])
mis [a] = a mss [a] = a
mis (a : x) = a ‘max ‘ (a + mis x) mss (a : x) = (a ‘max ‘ (a + mis x)) ‘max ‘ mss x

In the definition of function mss, function mis is called with the recursion
argument x . This implies that an effective parallelization of mss requires mis
to be parallelizable as well. Thus, we type check the definition of mis before
that of mss. The PType inferred for both definitions are: mis :: R[max ,+] and
mss :: R[max] respectively.

Lists and Skeletons. We show that components of the traditional skeletons
such as scan, map, and reduce, can be viewed as parallelizable components in our
PType system. Consequently, programs constructed via these skeletons can be
parallelized by our system.

An extended-ring property for lists is: #(List , [++,map2], [Nil ,Nil]), where map2

is in turn defined as: y ‘map2‘ z = map (y++) z. Function map2 has the following
properties:

1. distributive over ++ : y ‘map2‘ (zl ++ zr) = y ‘map2‘ zl ++ y ‘map2‘ zr
2. semi-associative : x ‘map2‘ (y ‘map2‘ z) = (x ++ y) ‘map2‘ z

From the following recursive definition of the function scan, we can infer that
scan has type R[++,map2]:

#(List , [++,map2], [Nil ,Nil])
scan [a] = [[a]]
scan (a : x) = [[a]] ++ ([a] ‘map2‘ (scan x))

Similarly, we can apply this methodology to obtain the ptypes of map and
reduce.

Technical Indicators in Financial Analysis. Many technical indicators used
in technical analysis of financial market can be parallelized with our system.
Following is a program for computing exponential moving average [1]:

#(Indicator Price, [+,×], [0, 1])
ema (a : x) = (close a) : ema ′ (a : x) (close a)
ema ′ [] p = []
ema ′ (a : x) p = let r = (0.2 × (close a) + 0.8 × p) in [r] ++ ema ′ x r

The ema for the first day in a price history is just its closing price. At any other
day, the ema is computed by summing the weighted closing price of that day and
the weighted moving average of the previous day. The PType of the accumulating
parameter p is R[+,×] and that of the function ema ′ is R[++]. Finally, the PType
of the function ema is N .

Fractal Image Decompression. A fractal image may be encoded by a se-
ries of affine transformations (which are combinations of scalings, rotations and
translations) to the coordinate axes. The decompression problem has beencon-
sidered in [12]. Here, we look into the parallelization of two important functions
used in the decomposition process.

210 D.N. Xu, S.-C. Khoo, and Z. Hu

#(List , [++], [Nil])
#(Set , [union], [Nil])
tr :: [a → a] → a → [a] k :: [[a]] → [a]
tr [f] p = [f p] k [a] fs = nodup (tr fs a)
tr (f : fs) p = [f p] ++ tr fs p k (a : x) fs = nodup (tr fs a) ‘union‘ (k x)

Here, function tr applies a list of transformations to a pixel, and function
k applies these transformations to a set of pixels with the help of tr . Function
nodup generates a set by removing repeated occurrences of a value from a list.
Types of tr and k can be inferred to be R[++] and R[union] respectively.

6 Implementation

We have implemented a prototype of the PType system in Haskell 98 [15]. We
have also provided a web interface to the PType system. The URL is

http://loris-4.ddns.comp.nus.edu.sg/~xun.

We have tested our system with a set of non-trivial sequential programs
including applications such as matrix multiplication, inversion, and polynomial
multiplication, etc. Details of these programs can be found in the above URL as
well. The experiment was performed on a 2 GHz Pentium-4 CPU with 512 MB of
RAM. The total times taken to do PType inference for some of the applications
are shown in Table 1. In general, the time complexity of PType inference is
O(n) where n is the size of the sequential program. The parallel code generation
has time complexity of O(n2). The time complexity for executing the resulting
parallel code is typically O(log m) where m is the size of the input data.

Table 1. Parallelization Times for Some Sequential Programs

matrix matrix polynomial fractal image
multiplication inverse multiplication mss decompression

Lines of Code 50 65 16 10 22

Time (Sec) 0.026 0.04 0.007 0.007 0.04

7 Related Works and Conclusion

Generic program schemes, such as algorithmic skeletons, have been advocated for
use in structured parallel programming, both for imperative programs expressed
as first-order recurrences through a classic result of [22] and for functional pro-
grams via Bird’s homomorphism [20, 9]. However, most sequential specifications
fail to match up directly with these schemes. To overcome this shortcoming, there
have been calls to constructively transform programs to match these schemes.
But these proposals [19, 12] often require deep intuition and the support of
ad-hoc lemmas – making automation difficult. Another approach is to provide

PType System: A Featherweight Parallelizability Detector 211

more specialized schemes, either statically [18] or via a procedure [14], that can
be directly matched to a sequential specification.

On the imperative language (e.g. Fortran) front, there have been interests in
parallelization of reduction-style loops [10, 11]. By modeling loops via functions,
function-type values could be reduced (in parallel) via associative function com-
position. These propagated function-type values could only be efficiently com-
bined if they have a template closed under composition. This requirement is
similar to the need to find a common context under recursive call unfolding,
aka., context preservation, as described in [3]. Imperative loop corresponds to
tail recursion, and can be considered as a special case of the linear recursive form
that we have described here.

Type-based analysis has traditionally been used to support both program
safety and optimization. More recently, it has also been used to support program
transformations, such as useless variable elimination [16, 2]. However, these two
type systems are still based on the evaluation rules of the underlying language.

We have introduced a novel view to parallelization. To the best of our knowl-
edge, this is the first piece of work that brings together type systems and paral-
lelization. By bringing the two fields together, we hope to apply the formalism of
type theory to yet another important application domain. The marriage of type
systems and parallelization hinges on the idea of the extended-ring property.
Through the PType system, we have relaxed the restrictions which have usu-
ally been imposed on parallelization (eg., restriction on specific recursive form).
Furthermore, the system is able to handle recursively defined functions with
accumulating parameters.

With the help of the PType inferenced, we develop an algorithm that can au-
tomatically generates parallel code from a well-PTyped sequential program. Due
to space limitation, the derivation detail and its correctness proof are omitted.

All the above benefits are obtained without the need for users to know the de-
tail mechanisms behind the parallelization process. Through a clean and simple
interface, the system frees the user from the burden of performing normaliza-
tion (which is required in [8]) and parallelizability checking (which is required
in [14]). Users only need to provide the extended-ring property of the binary
operators used in the programs. Indeed, we have provided a web interface to the
system, through which users can parallelize their programs, or test run many of
the non-trivial programs which are available at our website.

References

1. S. Anand, W.N. Chin, and S.C. Khoo. Charting patterns on price history. In ACM
SIGPLAN International Conference on Functional Programming, pages 134–145.
ACM Press, June 2001.

2. S. Berardi. Pruning simply-typed lambda-terms. Journal of Logic and Computa-
tion, 6(5):663–681, 1996.

3. W. N. Chin. Synthesizing parallel lemma. In Proc of a JSPS Seminar on Parallel
Programming Systems, World Scientific Publishing, pages 201–217, Tokyo, Japan,
May 1992.

212 D.N. Xu, S.-C. Khoo, and Z. Hu

4. W. N. Chin. Towards an automated tupling strategy. In Proc. Conference on Par-
tial Evaluation and Program Manipulation, pages 119–132, Copenhagen, Denmark,
June 1993.

5. W.N. Chin, J. Darlington, and Y. Guo. Parallelizing conditional recurrences. In
2nd Annual EuroPar Conference, Lyon, France, (LNCS 1123) Berlin Heidelberg
New York: Springer, August 1996.

6. W.N. Chin, S.C Khoo, Z. Hu, and M. Takeichi. Deriving parallel codes via in-
variants. In International Static Analysis Symposium (SAS2000), Santa Barbara,
California, June 2000. LNCS 1824, Springer Verlag.

7. W.N. Chin, S.C. Khoo, and T.W. Lee. Synchronisation analyses to stop tupling.
In European Symposium on Programming (LNCS 1381), pages 75–89, March 1998.

8. W.N. Chin, A. Takano, and Z. Hu. Parallelization via context preservation. In
IEEE Intl Conference on Computer Languages, Chicago, U.S.A., May 1998. IEEE
CS Press. http://www.comp.nus.edu.sg/~chinwn/iccl98.ps.

9. M. Cole. Parallel programming with list homomorphisms. Parallel Processing
Letters, 5(2), 1995.

10. A.L. Fischer and A.M. Ghuloum. Parallelizing complex scans and reductions. In
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 135–136, Orlando, Florida, ACM Press, 1994.

11. A.M. Ghuloum and A.L. Fischer. Flattening and parallelizing irregular appli-
cations, recurrent loop nests. In 3rd ACM Principles and Practice of Parallel
Programming, pages 58–67, Santa Barbara, California, ACM Press, 1995.

12. Z.N. Grant-Duff and P. Harrison. Parallelism via homomorphism. Parallel Pro-
cessing Letters, 6(2):279–295, 1996.

13. Z. Hu, H. Iwasaki, and M. Takeichi. Tupling calculation eliminates multiple data
traversals. In ACM SIGPLAN International Conference on Functional Program-
ming, pages 164–175, Amsterdam, The Netherlands, June 1997. ACM Press.

14. Z. Hu, M. Takeichi, and W.N. Chin. Parallelization in calculational forms. In
25th Annual ACM Symposium on Principles of Programming Languages, pages
316–328, San Diego, California, January 1998. ACM Press.

15. S. P. Jones, J. Hughes, and et al. Report on the programming language Haskell
98, a non-strict, purely functional language.

16. N. Kobayashi. Type-based useless variable elimination. In ACM Workshop on Par-
tial Evaluation and Semantics-Based Program Manipulation, pages 84–93, Boston,
Massachusett, January 2000.

17. F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer
Verlag, 1999.

18. S.S. Pinter and R.Y. Pinter. Program optimization and parallelization using
idioms. In ACM Principles of Programming Languages, pages 79–92, Orlando,
Florida, ACM Press, 1991.

19. P. Roe. Parallel Programming using Functional Languages (Report CSC 91/R3).
PhD thesis, University of Glasgow, 1991.

20. D. Skillicorn. Architecture-independent parallel computation. IEEE Computer,
23(12):38–50, December 1990.

21. D. Skillicorn. Foundations of parallel programming. In Cambridge International
Series on Parallel Computation:6, 1994.

22. H.S. Stone. Parallel tridiagonal equation solvers. ACM Transactions on Mathe-
matical Software, 1(4):287–307, 1975.

23. N. Xu. A type-based approach to parallelization. MSc thesis, School of
Computing, National University of Singapore http://www-appn.comp.nus.edu.sg/
˜esubmit/search/index.html, July 2003.

	Introduction
	Background
	Parallelizability
	PType System
	PType Checking
	Enhancement of the PType System

	Examples
	Implementation
	Related Works and Conclusion

