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Abstract
Program errors are hard to detect or prove absent. Allowing pro-
grammers to write formal and precise specifications, especially in
the form of contracts, is one popular approach to program veri-
fication and error discovery. We formalize and implement a hy-
brid contract checker for a subset of OCaml. The key technique
we use is symbolic simplification, which makes integrating static
and dynamic contract checking easy and effective. Our technique
statically verifies that a function satisfies its contract or blames the
function violating the contract. When a contract satisfaction is un-
decidable, it leaves residual code for dynamic contract checking.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms symbolic simplification, functional language,
verification, debugging

Keywords contract semantics, static, dynamic, hybrid, contract
checking

1. Introduction
Constructing reliable software is difficult even with functional lan-
guages. Formulating and checking (statically or dynamically) log-
ical assertions [2, 5, 16, 18, 37], especially in the form of con-
tracts [7, 13, 14, 30, 41], is one popular approach to error discovery.
Static contract checking can catch all contract violations but may
give false alarm and can only check restricted properties; dynamic
checking can check more expressive properties but consumes run-
time cycles and only checks the actual executed paths, thus is not
complete. Static and dynamic checking can be complementary. In
this paper, we formalize hybrid (i.e. static followed by dynamic)
contract checking for a subset of OCaml. Thus, no (potential) con-
tract violations can escape and yet expressive properties can be ex-
pressed.

Consider an OCaml program augmented with a contract decla-
ration:

(* val f1 : int -> int -> int *)
contract f1 = ({x | x >= 0} -> {y | y >= 0})

-> {z | z >= 0}
let f1 g = (g 1) - 1
let f2 = f1 (fun x -> x - 1)

[Copyright notice will appear here once ’preprint’ option is removed.]

The contract off1 says that iff1 takes a function that returns a
non-negative number when given a non-negative number, the func-
tion f1 itself returns a non-negative number. Both a static checker
and a dynamic checker are able to report thatf1 fails its postcon-
dition: the static checker relies on the invalidity of∀g : int →
int, (g 1) ≥ 0 ⇒ (g 1) − 1 ≥ 0 while the dynamic checker
evaluates(((fun x -> x - 1) 1) - 1) to -1, which violates
the contract{z | z >= 0}. However, a dynamic checker cannot
tell that the argument(fun x -> x - 1) fails f1’s precondition
because there is no witness at run-time, while a static checker can
report this contract violation becausex − 1 ≥ 0 does not hold for
all x of int to satisfy the postcondition{y | y ≥ 0}. On the other
hand, a static checker usually gives three outcomes: (a) definitely
no bug; (b) definitely a bug; (c) possibly a bug. Here, a bug refers
to a contract violation. If we get many alarms (c), it may take us
a lot of time to check which one is a real bug and which one is a
false alarm. We may want to invoke a dynamic checker when the
outcome is (c).

Following the formalization in [41], but this time for a strict
language. We first give a denotational semantics to contract satis-
faction. That is to define what it means by an expressione satisfies
its contractt (written e ∈ t) without knowing its implementation.
Next, we define a wrapper⊲ that takes an expressione and its con-
tract t and produces a terme ⊲ t such that contract checks are in-
serted at appropriate places ine. If a contract check is violated, a
special constructorBADl signals the violation. As the terme ⊲ t is
a term in the same language ase, all we have to do is to check the
reachability ofBADl. If a BAD is reachable, we know a contract is
violated and the labell precisely captures the function at fault. We
symbolically simplify the terme ⊲ t aiming to simplifyBADs away.
In case there is anyBAD left, we either report it as a compile-time
error or leave the residual code for dynamic checking. We make the
following contributions:

• We clarify the relationship between static contract checking and
dynamic contract checking (§2). A new observation is that, af-
ter static checking, we should prune away some more unreach-
able code before go on dynamic checking. Such unreachable
code however is essential during static checking. We prove the
correctness of this pruning (§6) with the telescoping property
studied (but not used for such purpose) in [7, 41].

• We definee ∈ t ande⊲t and prove a theorem “e⊲t is crash-free
⇐⇒ e ∈ t” (§4). The “crash-free” means “BAD is not reachable
under all contexts”. Such a formalization is tricky and its cor-
rectness proof is non-trivial. We re-do the kind of proofs in [42]
for a strict language.

• We design a novel SL machine that augments symbolic sim-
plification with contextual information synthesis for checking
the reachability ofBAD statically (§5). The difficulty lies in the
reasoning about non-total terms. The checking is automatic and
modularand we prove is soundness. Moreover, the SL machine
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producesresidualcode for dynamic checking. We compare our
framework with other approaches in§7.

• We design alogicizationtechnique that transforms expressions
to logical formulae, inspired by [19, 20] and axiomatization
of functions that interactive theorem provers perform before
calling SMT sovlers. However, we have to deal with non-total
terms and that is the key contribution of thelogicization(§5).

2. Overview
Assertions [18] state logical properties of an execution state at arbi-
trary points in a program; contracts specify agreements concerning
the values that flow across a boundary between distinct parts of a
program (modules, procedures, functions, classes). If an agreement
is violated, contract checking is supposed to precisely blame the
function at fault. Contracts were first introduced to be checked at
run-time [13, 30]. To performdynamic contract checking(DCC), a
function must be called to be checked. For example:

contract inc = {x | x > 0} -> {y | y > 0}
let inc = fun v -> v + 1
let t1 = inc 0

A dynamic checker wraps theinc in t1 with its contracttinc:

let t1 = (inc
BAD

l

⊲⊳
BADl

′

tinc) 0

wherel is (2, 5, “inc”) indicating the source location whereinc is
defined (row:2,col:5) andl′ is (3, 10, “t1”) indicating the location
of the call site with caller’s name. This wrappedt1 expands to:

(λx1. let y = inc (let x = x1 in

if x > 0 then x else BAD(3,10,“t1”))

in if y > 0 then y else BAD(2,5,“inc”) ) 0

In the upper box, the argument ofinc is guarded by the check
x > 0; in the lower box, the result ofinc is guarded by the check
y > 0. If a check succeeds, the original term is returned; otherwise,
the special constructorBAD is reached and a blame is raised. In this
case,t1 callsinc with 0, which failsinc’s precondition. Running
the above wrapped code, we getBAD(3,10,“t1”), which precisely
blamest1.

The DCC algorithm is like this. Given a functionf and a
contractt, to check that the calleef and its caller agree on the
contractt dynamically, a checker wraps each call tof with its
contract:

f
BAD

f

⊲⊳
BAD?

t

which behaves the same asf except that (a) iff disobeyst, it
blamesf , signaled byBADf ; (b) if the context usesf in a way not
permitted byt, it blames the caller off , signaled byBAD? where
“?” is filled with a caller name and the call site location.

Later, [7, 41] give formal declarative semantics for contract
satisfaction that not only allow us to prove the correctness of DCC
w.r.t. this semantics, but also to check contracts statically.

The essence ofstatic contract checking(SCC) is:

splitting
BAD

f

⊲⊳
BAD?

into half:e ⊲ t = e
BAD

f

⊲⊳
UNR?

t ande ⊳ t = e
UNR

f

⊲⊳
BAD?

t.

The⊲ (“ensures”) and the⊳ (“requires”) are dual to each other. The
special constructorUNR (pronounced “unreachable”), does not raise
a blame, but stops an execution. (One, who is familiar withassert
andassume, can think of (if p then e else BAD) as (assert p; e)
and (if p then e else UNR) as (assume p; e).)

SCC is modular and performed at definition site of each func-
tion. For example,(λv.v + 1) ⊲ tinc expands to:

λx1. let y = (λv.v + 1)
(let x = x1 in if x > 0 then x else UNR?) in

if y > 0 then y else BAD(2,5,“inc”)

At the definition site of a function,f = e, we assumef ’s
precondition holds and assert its postcondition. If allBADs in e ⊲ t
are not reachable, we knowf satisfies its contractt. One way to
check reachability ofBAD is to symbolically simplify the fragment.
In the above case, inliningx, we get:

λx1. let y =(λv.v + 1) (if x1 > 0 then x1 else UNR
?) in

if y > 0 then y else BAD(2,5,“inc”)

Unlike [39] in a lazy setting, we cannot apply beta-reduction in a
strict language if an argument is not a value as it may not preserve
the semantics. In this paper, besides symbolic simplification, we
collect contextual information in logical formula form and consult
an SMT solver to check the reachability ofBAD. An SMT solver
usually deals with formulae in first order logic (FOL),§5 gives the
details of the generation of formulae in FOL. As an overview, we
present formulae in higher order logic (HOL). For the two subex-
pressions of the RHS ofy, we have:

λv.v + 1 ∃x2, (∀v, x2(v) = v + 1)

if x1 > 0 then x1 else UNR
? ∃x3, (x1 > 0 ⇒ x3 = x1)∨

(not(x1 > 0) ⇒ false)

One can think of the existentially quantifiedx2 (andx3) denoting
the expression itself. For the RHS ofy, we have logical formula:

∀y, ∃x2, (∀v, x2(v) = v + 1) ∧ (∃x3, (x1 > 0 ⇒ x3 = x1)
∧(not(x1 > 0) ⇒ false) ∧ y = x2(x3)) [Q1]

We check the validity of∀x1,Q1 ⇒ y > 0 by consulting an SMT
solver. As∀x1,Q1⇒ y > 0 is valid, we know theBAD(2,5,“inc”)

is not reachable, thusinc satisfies its contract.
Consider the functionf1 and its contracttf1 in §1. Sof1 ⊲ tf1

is (λg.(g 1)− 1) ⊲ ({x | x ≥ 0} → {y | y ≥ 0}) → {z | z ≥ 0},
which expands to:

λx1. let z = (λg.(g 1)− 1)
(λx2. let y = x1 ( let x = x2 in

if x ≥ 0 then x

else BAD(4,5,“f1”)) in
if y ≥ 0 then y else UNR?) in

if z ≥ 0 then z else BAD(4,5,“f1”)

After applying some conventional simplification rules, we have:

R1 : λx1. let z = let y = x1 1 in
if y ≥ 0 then y − 1 else UNR?

if z ≥ 0 then z else BAD(4,5,“f1”)

We see that the innerBAD(4,5,“f1”) has been simplified away, be-
causex = x2 = 1 and (if 1 ≥ 0 then 1 else BAD(4,5,“f1”)) is
simplified to 1. As we cannot prove∀x1, ∀z, (∃y, y = x1 1∧ (y ≥
0 ⇒ z = y − 1)) ⇒ z ≥ 0 to be valid, the otherBAD(4,5,“f1”)

remains. We can either report this potential contract violation at
compile-time or leave this residual code R1 for DCC to achieve
hybrid checking.

Hybrid contract checking(HCC) performs SCC first and runs
theresidualcode as in DCC. In SCC,f1 ⊲ tf1 checks whetherf1
satisfies its postcondition by assuming its precondition holds. At
each call site off1, we wrap the function with⊳. For example:

contract f3 = {v | v >= 0}
let f3 = f1 zut
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wherezut is a difficult function for an SMT solver andzut’s
contract is{x | true}. Sayzut ⊳ {x | true} = zut, we then
have the termf3 ⊲ tf3 to be:

((f1 ⊳ tf1) zut) ⊲ {v | v > 0}

which requiresf3 to satisfyf1’s precondition and assumesf1
satisfies its postcondition becausef1 ⊲ tf1 has been checked.
During SCC,a top-level function is never inlined. We do not have
to know its detailed implementation at its call site as it has been
guarded by its contract withf ⊳ t. Thef3 ⊲ tf3 expands to:

let v = let z = f1
(λx2.let y = zut (let x = x2 in

if x ≥ 0 then x

else UNR(7,10,“f1”)) in

if y ≥ 0 then y else BAD(7,10,“f3”)) in

if z ≥ 0 then z else UNR(7,10,“f1”)

if v ≥ 0 then v else BAD(7,10,“f3”)

As ⊳ is dual to⊲, the RHS ofv is actually a copy of the earlier
f1 ⊲ tf1 but swapping theBAD andUNR and substitutingx1 with
zut. We now know the source location of the call site off1
and its caller’s name, theUNR? becomesBAD(7,10,“f3”) and the
BAD(4,5,“f1”) becomesUNR(7,10,“f1”). At definition site where the
caller is unknown, we use the location off1, i.e.(4, 5, “f1”). Once
its caller is known, we use(7, 10, “f1”). It is easy to get source
location, which is for the sake of error message reporting. So we
do not elaborate the source location further.

As an SMT solver saysvalid for ∀v.(∃z.z ≥ 0 ∧ v = z) ⇒
v ≥ 0, thef3 ⊲ tf3 can be simplified to (say R2):

let z = f1
(λx2. let y = zut (let x = x2 in

if x > 0 then x

else UNR(7,10,“f1”)) in

if y ≥ 0 then y else BAD(7,10,“f3”)) in

if z ≥ 0 then z else UNR(7,10,“f1”)

OneBAD remains. We can either report this potential contract viola-
tion at compile-time or continue a DCC. For SCC, we have checked
f1⊲ tf1, but for DCC, to invokef1⊲ tf1, we must use the residual
code R1. However, theUNR clauses are useful for SCC, but redun-
dant for DCC. We can removeUNRs with a simplification rule:

(if e0 then e1 else UNR) =⇒ e1 [rmUNR]

(We shall explain why it is valid to apply this rule even ife0 may
diverge or crash in§6. Intuitively, UNR is indeed unreachable and
e0 has been checked before this program point.) Applying the rule
[rmUNR] to R1 and R2 and simplify a bit, we get:

f1♯ = λx1. let z = (let y = (x1 1) in y − 1) in

if z ≥ 0 then z else BAD(4,5,“f1”)

f2♯ = f1♯ (λx2.let y = zut x2 in

if y ≥ 0 then y else BAD(7,10,“f3”))

respectively, which is theresidualcode being run. We show in§6
that HCC blames a functionfi iff DCC blamesfi.

Summary Given a definitionf = e and a contractt, to checke
satisfiest (written e ∈ t), we perform these steps. (1) Construct
e ⊲ t. (2) Simplify e ⊲ t as much as possible toe′, consulting an
SMT solver when necessary. (3) If noBAD is in e′, then there is no
contract violation; if there is aBAD in e′ but no function call ine′,
then it is definitely a bug and report it at compile-time; if there is
a BAD and function call(s) ine′, then it is a potential bug. (4) For
each functionf , create its residual codef♯ by simplifying e′ with
the rule[rmUNR], and run the program with eachf being replaced
by f♯.

3. The language
The language presented in this paper, named M, is pure and strict,
a subset of OCaml, including parametric polymorphism.

3.1 Syntax

x, f ∈ Variables
T ∈ Type constructors
K ∈ Data constructors

pgm ::= def1 , . . . , defn Program

τ ::= int | bool | −→τ T | τ1 → τ2 Types

t ∈ Contracts
t ::= {x | p} predicate contract

| x : t1 → t2 dependent function contract
| (x : t1, t2) dependent tuple contract
| Any polymorphicAnycontract

def ∈ Definitions

def ::= type
−→
′α T =

−−−−−→
K of −→τ

| contract f = t
| let f −→x = e top-level function
| let rec f −→x = e top-level recursive function

a, e, p ∈ Exp Expressions
a, e, p ::= n integers

| r blame
| x | λ(xτ ).e | e1 e2

| match e0 with
−→
alt pattern-matching

| K −→e constructor

alt ::= K (xτ1
1 , . . . , xτn

n ) → e Alternatives

r ::= BADl | UNRl Blames
l ::= (n1, n2, String) Label

val ::= n | x | r | K
−→
val | λ(xτ ).e Values

tv ::= n | x | K
−→
tv

tval ::= tv | λ(xτ ).e Trivial values

Figure 1: Syntax of the language M

Figure 1 gives the syntax of language M. A program contains
a set of data type declarations, contract declarations and function
definitions. Expressions include variables, lambda abstractions, ap-
plications, constructors andmatch-expressions. Base types such as
int andbool are data types with no parameter. We have top-level
let rec, but for the ease of presentation, we omit locallet rec.
(It is possible to allow locallet rec by either assuming that a
local recursive function is given a contract or using contract in-
ference [22] to infer its contract. Even if [22] is not modular, it is
good enough to infer a contract for a local function.) Pairs are a
special case of constructed terms, i.e.(e1, e2) is Pair (e1, e2) with
type (’a,’b) product = Pair of ’a * ’b. A local let-
expressionlet x = e1 in e2 is a syntactic sugar for(λx.e2) e1.
An if-expressionif e0 then e1 else e2 is syntactic sugar for
match e0 with {true→ e1; false → e2}.

We assume all top-level functions are given a contract. Contract
checking is done after the type checking phase in a compiler so we
assume all expressions, contexts and contracts are well-typed and
use its type information (presented as a superscript, e.g.eτ or tτ )
whenever necessary. Type checking material is omitted, but can be
found in [40].

3 2011/10/20



The two contract exceptions (also called blames)BADl andUNRl

are adapted from [41]. They are for internal usage, not visible to
programmers. The labell contains information such as function
name and source location, which is useful for error reporting as
well as for examination of the correctness of blaming. But we may
omit the labell when it is not the focus of the discussion.

It is possible for programmers to write:

let head xs = match xs with
| [] -> raise Emptylist
| x::l -> x

whereraise : ∀α. Exception → α. TheException is a built-
in data type for exceptions andEmptylist has typeException.
As we do not havetry-with in language M (leaving it as future
work), a preprocessing convertsraise Emptylist to BADhead.

We have four forms of contracts. Thep in a predicate con-
tract {x | p} refers to a boolean expression in the same lan-
guage M. Dependent function contracts allow us to describe de-
pendency between input and output of a function. For example,
x : {y | y > 0} → {z | z > x} says that, the input is greater
than 0 and the output is greater than the input. We can use a short-
hand{x | x > 0} → {z | z > x} by assumingx scopes over
the RHS of→. The→ is right associative. Similarly, dependent
tuple contracts allow us to describe dependency between two com-
ponents of a tuple. For example,(x : {y | y > 0}, {z | z > x}) has
short hand({x | x > 0}, {z | z > x}). ContractAny is a universal
contract that any expression satisfies. We support higher order con-
tracts, e.g.k : ({x | x > 0} → {y | y > x}) → {z | k 5 > z} for
a functionlet f g = g 2.

3.2 Operational semantics

The semantics of our language is given by reduction rules in Fig-
ure 2. For a top-level function, we fetch its definition from the eval-
uation environment∆. We adapt some basic definitions from [41].
Definition 1 defines the usual contextual equivalence. Two expres-
sions are said to be semantically equivalent, if and only if under
all (closing) contexts, if one evaluates to a blamer, the other also
evaluates to the samer.

Definition 1 (Semantically Equivalent). Two expressionse1 and
e2 are semantically equivalent, namelye1 ≡s e2, iff for all closing
C, for all r, C[[e1]] →

∗ r ⇐⇒ C[[e2]] →
∗ r

let (rec) f = e ∈ ∆
f → e

[E-top]

(λx.e) val → e[val/x] [E-beta]

matchK
−→
val with

−−−−−−→
K −→x → e → e[

−−−→
val/x] [E-match]

e1 → e2
C[[e1]] → C[[e2]]

[E-ctx] C[[r]] → r [E-exn]

Contexts C ::= [[•]] | C e | val C | K
−→
val C −→e

| match C with
−→
alt

Figure 2: Semantics of the language M

We useBAD to signal that something has gone wrong in a
program, which can be a program failure or a contract violation.

Definition 2 (Crash). A closed terme crashesiff e →∗ BAD.

Our framework only guaranteespartial correctness. A diverging
program does not crash.

Definition 3 (Diverges). A closed expressione diverges, writtene↑,
iff eithere →∗ UNR, or there is no valueval such thate →∗ val.

At compile-time, one decidable way to check the safety of a
program is to see whether the program is syntactically safe.

Definition 4 (Syntactic safety). A (possibly-open) expressione is
syntactically safeiff BAD /∈s e. Similarly, a contextC is syntacti-
cally safe iffBAD /∈s C.

The notationBAD /∈s e meansBAD does not syntactically appear
anywhere ine, similarly for BAD /∈s C. For example,λx.x is
syntactically safe whileλx. (BAD, x) is not.

Definition 5 (Crash-free Expression). A (possibly-open) expres-
sione is crash-free iff :

∀C. BAD /∈s C and(C[[e]])bool ⇒ C[[e]] 6→∗

BAD

The notation(C[[e]])bool meansC[[e]] is closed and well-typed.
The quantified contextC serves the usual role of a probe that tries to
provokee into crashing. Note that a crash-free expression may not
be syntactically safe, e.g.λx.if x ∗ x ≥ 0 then x+ 1 else BAD.

Lemma 1 (Syntactically safe expression is crash-free).

e is syntactically safe ⇒ e is crash-free

For ease of presentation, when we do not give labell to BAD or
UNR, we meanBAD or UNR for any l. Moreover, expressionsBADl

andUNRl are closed expressions even ifl is not explicitly bound.

4. Contracts
Inspired by [41], we design contract satisfaction and checking al-
gorithm for a strict language. As diverging contracts make dynamic
contract checking unsound (explained in§4.3) and we do hybrid
checking, we focus on total contracts.

Definition 6 (Total contract). A contractt is total iff

t is {x | p} andλx.p is total (i.e. crash-free, terminating)
or t is x : t1 → t2 and t1 is total and

for all val1 ∈ t1, t2[val1/x] is total
or t is (x : t1, t2) and t1 is total and

for all val1 ∈ t1, t2[val1/x] is total
or t is Any

Our definition of total contract is different from that in [7], but
close to the crash-free contract in [41] with an additional condition
thatλx.p is a terminating function. For example, contract{x | x 6=
[]} → {y | head x > y} is total in our framework becausehead x
does not crash for allx satisfying{x | x 6= []}. Such a contract
is not total in [7] because a crashing functionhead is called in a
predicate contract.

4.1 A semantics for contract satisfaction

We give the semantics of contracts by defining “e satisfiest” (writ-
ten e ∈ t) in Figure 3 inspired by [7, 41]. Here are some con-
sequences: (1) a divergent expression satisfies any contract, hence
all contracts are inhabited; (2) only crash-free expression satisfies
a predicate contract; (3) any expression satisfies contractAny; (4)
BAD only satisfies contractAny.

One difference from [41] is that, we do not allowp[e/x] in [A1]
to diverge while [41] allows because they only do static checking.
We support dependent tuple contracts, that are not in [7, 41]. One
difference from [7] is that, they say that a crashing expression
does not satisfy any contract; we say that a crashing expression
satisfy the universal contractAny. Having a top ordering contract is
debated in [12] where a subcontract ordering is defined below.
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For a well-typed expressione, definee ∈ t thus:

e ∈ {x | p} ⇐⇒ e↑ or (e is crash-free and [A1]
p[e/x] →∗ true)

e ∈ x : t1 → t2 ⇐⇒ e↑ or (e →∗ λx.e2 and [A2]
∀val1 ∈ t1. (e val1) ∈ t2[val1/x])

e ∈ (x : t1, t2) ⇐⇒ e↑ or (e →∗ (val1, val2) [A3]
andval1 ∈ t1 andval2 ∈ t2[val1/x])

e ∈ Any ⇐⇒ true [A4]

Figure 3: Contract Satisfaction

Definition 7 (Subcontract). For all closed contractst1 and t2, t1
is a subcontract oft2, writtent1 ≦ t2, iff ∀e. e ∈ t1 ⇒ e ∈ t2

It is obvious thatAny is useful in a lazy language [41] as we
may want to ignore some subcomponents of a constructor. It is also
useful to have contractAny for a strict language. Consider:

contract fail = Any
let fail = raise Error

whereError has typeException. One can think ofAny as∀α.α.
In [7] and other refinement type checking framework [5, 25, 37],
they give function likefail a function contract{x | false} →
{x | true} so that the precondition{x | false} allows their
system to blame all the callers offail. This is somewhat ad hoc.
More discussion on the contractAny can be found in [40].

4.2 The wrappers

As mentioned in§2, the essence of contract checking is the two
wrappers⊲ and⊳, which are dual to each other (defined in Figure 4).
We omit the labels for⊲ and⊳ whose full versions are⊲l1l2 and⊳l1l2
respectively. The wrapped expressione

r1
⊲⊳
r2

t expands to a particular

expression, which behaves the same ase except that it raises blame
r1 if e does not obeyt and raiser2 if the wrapped term is used in a
way disobeyingt.

e ⊲ t = e
BAD

l1

⊲⊳
UNRl2

t e ⊳ t = e
UNR

l2

⊲⊳
BADl1

t

e
r1
⊲⊳
r2

{x | p} = let x = e in if p then x else r1 [P1]

e
r1
⊲⊳
r2

x : t1 → t2 = let y = e in [P2]

λx1.((y (x1
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])

e
r1
⊲⊳
r2

(x : t1, t2) = match e with [P3]

(x1, x2) → (x1
r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])

e
r1
⊲⊳
r2

Any = r2 [P4]

Figure 4: Contract checking with the wrappers

From [P1] to [P3], ife crashes, the wrapped term crashes; ife
diverges, the wrapped term diverges. Whenever anri is reached,
we know the propertyp does not evaluate totrue (as in [P1]).
Contents in Figure 3 and 4 are defined such that Theorem 1 holds.

Theorem 1 (Sound-and-completeness of contract checking). For
all closed expressioneτ , closed and total contracttτ ,

(e ⊲ t) is crash-free ⇐⇒ e ∈ t

The superscriptτ says bothe andt are well-typed and have the
same typeτ . The full proof of Theorem 1 is in [40]. Basically, we
re-do the kind of proofs in [42] but for a strict language. In practice,
we only need Theorem 2, i.e. one direction of There-om 1.

Theorem 2 (Soundness of contract checking). For all closed ex-
pressioneτ , closed and terminating contracttτ ,

(e ⊲ t) is crash-free ⇒ e ∈ t

Note that if t is terminating ande ⊲ t is crash-free, thent is
total. Unlike [13], which assumes there is no exception from a
contract itself, our contract checking algorithm helps programmers
to ensure it by detecting exceptions in contracts themselves. The
term t2[(v

r2
⊲⊳
r1

t1/x] in [P2] and [P3] says that, we wrap each

(function) callin a contractwith its contract so that, if there is any
contract violation in a contract, we report this error. For example:

contract f = k:({x | x > 0 } -> {y | y > 0 })
-> {z | k 0 > -1}

let f g = g 2
let t2 = f (fun x -> x)

a contract violation occurs in{z | k 0 > -1} because the call
k 0 fails k’s precondition{x | x > 0}. As addressed in [10], we
should blame the contract. We omit passing around the name of the
contract in this paper as our focus is to check the reachability of
BAD. Instead, we user1 to indicate that the label ofr1 is replaced
by the name of the contract. In [7], they use an ad hoc fix, i.e. using
UNR instead ofr1 in order to make their proof go through. Our
proof [40] is different from that in [7].

Givenf = e, wheree is open, and a (possibly open) contractt,
to checkΓ ⊢ e ∈ t whereΓ is an environment mapping a variable
to its contract, we checke[(fi ⊳ tfi)/fi] ⊲ t[(fi ⊳ tfi)/fi] where
fi are free variables ine (or t) and are in the domain ofΓ. Note
thatfi can also be a recursive callf andf ⊳ t in e[(f ⊳ t)/f ] ⊲ t is
like an induction hypothesis. Ase[(fi ⊳ tfi)/fi] ⊲ t[(fi ⊳ tfi)/fi]
is closed, we only have to reason close expressions and contracts,
similar to [41].

4.3 Terminating contracts

We wantp in {x | p} to be terminating becausea divergent contract
hides crashes. For example:

let rec loop x = loop x
contract fb = {x | loop x} -> {y | true}
let fb x = head []

fb ⊲ tfb is λx1.((λx.head [ ]) (if loop x1 then x1 else BAD)),
which diverges whenever applied because of theloop. However,
the functionfb is not crash-free.

We only have to prove termination of functions used in con-
tracts, not all the functions in a program. We can adapt ideas
in [4, 28, 36] to build an efficient automatic termination checker.

5. Static contract checking and residualization
Thanks to the ground-breaking higher order contract wrappers⊲⊳
(first introduced in [13]), which makes the analysis of higher order
program much easier. From Theorem 2, all we need is to show that
e ⊲ t is crash-free. That is to check the reachability ofBAD as each
BAD signals a contract violation. We can symbolically simplifye⊲ t
as much as possible toe′ and check occurrence ofBAD in e′.

We introduce an SL machine (Figure 5) which combines sym-
bolic simplificationand contextual information (ctx-info) synthesis
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〈H || n || S || L〉  〈〈H || n || S || L〉〉 [S-const]
〈H || r || S || L〉  〈〈H || r || S || L〉〉 [S-exn]

〈H[x 7→ tval] || x || S || L〉  〈〈H[x 7→ tval] || tval || S || L〉〉 [S-var1]
If x /∈ H, 〈H || x || S || L〉  〈〈H || x || S || L〉〉 [S-var2]

〈H || λxτ .e || S || L〉  〈H || e || (λx.•) :: S || L, ∀x : [[τ ]]〉 [S-lam]
〈H || e1 e2 || S || L〉  〈H || e1 || (• e2) :: S || L〉 [S-app]

〈H || match e0 with alts || S || L〉  〈H || e0 || (match • with alts) :: S || L〉 [S-match]
〈H ||K (a1, . . . , ei, . . . , en) || S || L〉  〈H || ei || (K (a1, . . . , •, . . . , en)]) :: S || L〉 [S-K]

if x 6∈ fv(e), 〈H || let x = e1 in e2 || (• e) :: S || L〉  〈H || let x = e1 in e2 e || S || L〉 [S-letL]

if fv(e) ∩ −→xi = ∅, 〈H ||
(match e0 with
−−−−−−−→
K −→x → ei)

|| (• e) :: S || L〉  〈H || match e0 with
−−−−−−−−→
K −→x → ei e || S || L〉 [S-matchL]

if x 6∈ fv(a), 〈H || val || (• (let x = e1 in e2)) :: S || L〉  〈H || let x = e1 in val e2 || S || L〉 [S-letR]
if fv(val) ∩ −→x = ∅,

〈H || val || (• (match e0 with
−−−−−−→
K −→x → e)) :: S || L〉  〈H || match e0 with

−−−−−−−−−−→
K −→x → val e || S || L〉 [S-matchR]

if fv(alts) ∩ −→x = ∅,

〈H ||
match e0 with
−−−−−−→
K −→x → e

|| (match • with alts) :: S || L〉  〈H ||
match e0 with
−−−−−−−−−−−−−−−−−−−→
K −→x → match e with alts

|| S || L〉
[S-match
-match]

if x 6∈ fv(alts),
〈H || let x = e1 in e2 || (match • with alts) :: S || L〉  〈H || let x = e1 in match e2 with alts || S || L〉 [S-match-let]

〈〈H || a || [ ] || L〉〉  a [R-done]
if (s 6= match e withK −→x → (•,S,L)), 〈〈H || r || s :: S || L〉〉  〈〈H || r || S || L〉〉 [R-r]

〈〈H || a || (λx.•) :: S || L〉〉  〈〈H || λx.a || S || L〉〉 [R-lam]

Rules below:a /∈ {BADl, UNRl} by default

〈〈H || a || (• e2) :: S || L〉〉  〈H || e2 || (a •) :: S || L〉 [R-fun]
〈〈H || tval || ((λx.a1) •) :: S || L〉〉  〈〈H[x 7→ tval] || a1 || S || L〉〉 [R-beta]

if a1 6= λx.a′ or a 6= tval, 〈〈H || a || (a1 •) :: S || L〉〉  〈〈H || a1 a || S || L〉〉 [R-app]
〈〈H || an || (K a1 . . . •) :: S || L〉〉  〈〈H ||K −→a || S || L〉〉 [R-K]

〈〈H || K −→a || (match • with {. . . ;K −→x → e; . . . }) :: S || L〉〉  〈H || let −−−→x = a in e || S || L〉 [R-K-match]

if exists(K −→x ) such thatL ⇒ (∃
−−−−→
x : [[τ ]], [[a]](K −→x )),

〈〈H || a || (match • with
−−−−−−→
K

−→
xτ → e) :: S || L〉〉  〈H || e || S || L, ∀

−−−−→
x : [[τ ]], [[a]](K −→x )〉 [R-s-match]

if for all (K −→x ) such thatL 6⇒ (∃
−−−−→
x : [[τ ]], [[a]](K −→x )),

〈〈H || a || (match • with
−−−−−−→
K

−→
xτ → e) :: S || L〉〉  

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈H || e || (match a withK
−→
xτ

→ (•,S,L)) :: [ ]
|| L, ∀

−−−−→
x : [[τ ]],

[[a]](K −→x )

〉 [R-s-save]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
〈〈H || a || (match a0 withK −→x → (•,S,L)) :: S ′ || L′〉〉  〈〈H || match a0 with

−−−−−−→
K −→x → a || S || L〉〉 [R-match]

for someS ′ andL′ anda can ber
〈〈H || a || (let xτ = • in e2) :: S || L〉〉  〈H || e2 || (let x = a in •) :: S || L, ∀x : [[τ ]], [[a]]x〉 [R-let-save]

Figure 5: SL machine

(let x = e1 in e2) e =⇒ let x = e1 in e2 e [letL]

if fv(e) ∩ −→x = ∅, (match e0 with
−−−−−−−→
K −→x → ei) e =⇒ match e0 with

−−−−−−−−−−→
K −→x → (ei e) [matchL]

if x 6∈ fv(e), val (let x = e1 in e2) =⇒ let x = e1 in val e2 [letR]

if fv(val) /∈ −→x , val (match e0 with
−−−−−−→
K −→x → e) =⇒ match e0 with

−−−−−−−−−→
K −→x → val e [matchR]

if fv(alts) ∩ −→x = ∅,

match (match e0 with
−−−−−−→
K −→x → e) with alts =⇒ match eo with

−−−−−−−−−−−−−−−−−−−→
K −→x → match e with alts [match-match]

if x /∈ fv(alts), match (let x = e1 in e2) with alts =⇒ let x = e1 in match e2 with alts [match-let]

matchK a1 . . . an with {. . . ;K x1 . . . xn → e; . . . } =⇒ let x1 = a1 in . . . let xn = an in e [K-match]

Figure 6: Simplification Rules

with logical formulae. The novelty of our work is to combine them
in a way to achieveverification, blamingandresidualizationin one-

go. The SL machine takes an expressione and produces its seman-
tically equivalent and simplified version. A 4-tuple〈H || e || S || L〉
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is pronouncedsimplifyand a 4-tuple〈〈H || e || S || L〉〉 is pronounced
rebuildwhere

• H is an environment mapping variables to trivial values;

• e is the expression under simplification (or being rebuilt);

• S is a stack which embodies the simplification context, or
continuation that will consume a simplified expression;

• L is a logical store which contains the ctx-info in logical for-
mula form; its syntax is

L ::= ∅ | ∀x : τ,L | φ,L

whereφ is a predicate in Figure 7.

The job of the SL machine is to simplify an expression as much
as possible, consulting the logical store when necessary; when it
cannot simplify the expression further, it rebuilds the expression.

Theorem 3 (SL machine terminates). For all expressione, there
exists an expressiona such that〈∅ || e || [ ] || ∅〉 ∗ a.

Intuitively, SL machine behaves like CEK machine [15], but
rebuilds an expression anddoes not inline top-level functions. As
we do not have locallet rec in our language, only inline trivial
values and also call SMT solver Alt-ergo with an option “-stop
〈time-bound〉” or “-steps 〈bound〉” to make sure the SMT solver
terminates, there is no element causing non-termination.

Theorem 4 (Correctness of SL machine). For all expressione, if
〈∅ || e || [ ] || ∅〉 ∗ a, thene ≡s a.

The SL is designed in a way such that the simplifieda pre-
serves the semantics of the original expressione. The proof of
Theorem 4 (in [40]) uses the fact that, if there existse3 such that
〈H || e1 || S || L〉  ∗ 〈H || e3 || S || L〉 and〈H || e2 || S || L〉  ∗

〈H || e3 || S || L〉, thene1 ≡s e2. (See Definition 1 for≡s.)

Theorem 5(Soundness of static contract checking). For all closed
expressione, and closed and terminating contractt,

〈∅ || e ⊲ t || [ ] || ∅〉 ∗ e′ andBAD /∈s e′ ⇒ e ∈ t

Proof. By Theorem 4, Lemma 1 and Theorem 2.

5.1 The SL machine

In Figure 5, the constantn and blamer cannot be simplified further,
thus being rebuilt as shown in [S-const] and [S-exn] respectively.
One might ask why we rebuild rather than return a blame. There are
two reasons: (a) it gives more information for static error reporting,
i.e. we know conditions leading to a reachableBAD; (b) as we do
hybrid contract checking, we want to send the residual code with
undischarged blames to a dynamic checker.

As we perform symbolic simplification rather than evaluation
(as in CEK machine [15]), we only put a variable in the environ-
mentH if it denotes a trivial value. A variable denoting a top-level
function is not put inH. Variables inH are inlined by [S-var1]
while variables not inH are rebuilt by [S-var2].

Each element on the stack is called astack framewhere the hole
• in a stack frame refers to the expression under simplification or
being rebuilt. We usea to represent an expression that has been
simplified. the syntax of a stack frames in S is

s ::= [ ] | (• e) :: s | (e •) :: s | (λx.•) :: s | let x = • in e
| (match • with alt) :: s | let x = e in •

| (match e0 with
−−−−−−−−−−−−→
K −→x → (•,S,L)) :: s

The transitions [S-app], [S-match] and [S-K]implement the con-
text reduction in Figure 2. The transitions [S-letL], [S-matchL], [S-
letR], [S-matchR], [S-match-match], [S-match-let]implement the
conventional simplification rules in Figure 6. Here,−→x abbreviates

a sequence ofx1, . . . , xn. We uselet instead of lambda for easy
reading. Rules [letL] and [matchL] push the argument into the let-
body and match-body respectively. Rules [letR] and [matchR] push
the function into the let-body and match-body. The rules [match-
match] and [match-let] are to make an expression less nested. Rule
[K-match] allows us to simplify

match Some e with {Some x → 5; None → BAD}

(wheree is a crash-free expression, not a value) tolet x = e in 5
which is crash-free.

What doesrebuild do? If the stack is empty ([R-done]), which
indicates the end of the whole simplification process, we return the
expression. Otherwise, we examine the stackframe. By [E-exn], the
transition [R-r] rebuildsUNR (or BAD) with the rest of the stack.
After we finish simplifying one subexpression, we start to simplify
another subexpression (e.g. [R-fun]). When all subexpressionsare
simplified, we rebuild the expression (e.g. [R-lam] and [R-app]). If
current simplified expression is a trivial value and we have stack
frame lambda onS, we use [R-beta]; together with [S-var1], they
implement a beta-reduction [E-beta]. Bound variables are renamed
when necessary.

The logical storeL captures all the ctx-info up to the program
point being simplified. (We useif-expression to save space, but
refer tomatch-transitions.) Consider:

〈H ||
(λx. if x > 0 then (if x+ 1 > 0

then 5 else BAD)
else UNR)

|| [ ] || ∅〉

The [S-lam] puts∀x : int in L, which is initially empty:

〈H ||
(if x > 0 then
(if x+ 1 > 0
then 5 else BAD) else UNR)

|| (λx.•) :: [ ] || ∀x : int〉

The [S-match] starts to simplify the scrutineex > 0, which is being
rebuilt after a few trivial steps.

〈〈H || x > 0 ||
(if • then (if x+ 1 > 0

then 5 else BAD)
else UNR) :: (λx.•) :: [ ]

|| ∀x : int〉〉

Before applying the transition [R-s-save], we check whether
x > 0 or not(x > 0) is implied byL to see whether the transition
[R-s-match] can be applied. The transition [R-s-match] implements
[E-match], where the side condition “if∃(K −→x ), L ⇒ [[a]](K −→x )”
checks if there is any branchK −→x that matches the scrutineea.
But the current information inL is not enough to show the validity
of eitherx > 0 or not(x > 0). By [R-s-save], we convert this
scrutinee to logical formula with[[a]](K −→x ) (explained later) and
put it in L and simplify both branches. Note that we putx > 0 in
L for thetrue branch whilenot(x > 0) for thefalse branch.

[〈H ||
if x+ 1 > 0
then 5 else BAD

||
(if x > 0 then •)
:: (λx.•) :: [ ]

||
∀x : int,
x > 0

〉;

〈H || UNR || (if x > 0 else •) :: S || ∀x : int, not(x > 0)〉]

In thetrue branch, after a few steps, we rebuild the scrutinee
x + 1 > 0. In this case,∀x : int, x > 0 ⇒ x + 1 > 0 is valid.
By [R-s-match], we take thetrue branch, which is a constant5.
As both 5 andUNR cannot be simplified further, we rebuild them by
[S-const] and [S-unr] respectively and obtain:

[〈〈H || 5 ||
(if x > 0 then •)
:: (λx.•) :: [ ]

||
∀x : int, x > 0,
(x+ 1 > 0)

〉〉;

〈〈H || UNR ||
(if x > 0 else •)
:: (λx.•) :: [ ]

||
∀x : int,
not(x > 0)

〉〉]

By [R-match], we combine both simplified branches to rebuild
the match-expression:

〈〈H || if x > 0 then 5 else UNR || (λx.•) :: [ ] || ∀x : int〉〉
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We continue to rebuild the expression by [R-lam]:

〈〈H || λx. if x > 0 then 5 else UNR || [ ] || ∀x : int〉〉

and terminate (by [R-done]) with a syntactically safe expression:

λx. if x > 0 then 5 else UNR.

Besides [R-s-save], another transition that saves ctx-info toL is
[R-let-save]. Consider an example:

λv. let y = v + 1 in if y > v then y else BAD

After a few simplification steps, we have:

〈〈H || v + 1 || (let y = • in if y > v
then y else BAD) :: (λv.•) :: [ ]

|| ∀v : int〉〉

The rule [R-let-save] saves the informationy = v + 1 to L, which
allows us to check the validity of the scrutineey > v later.

〈H ||
if y > v
then y
else BAD

||
(let y = v + 1 in •)
:: (λx.•) :: [ ]

||
∀v : int,
∀y : int,
y = v + 1

〉

Since∀v : int, ∀y : int, y = v + 1 ⇒ y > v is valid, by
[R-s-match], we only need to simplify thetrue branch:

〈H || y ||
(let y = v + 1 in •)
:: (λv.•) :: [ ]

||
∀v : int, ∀y : int,
y = v + 1, y > v

〉

which leads to the final resultλv. let y = v + 1 in y, which is
syntactically safe.

5.2 Logicization

x, s, i, f ∈ Identifier
file ::= decl1, . . . , decln

bty ::= int | bool | i | ’i |
−→
bty i Base type

lty ::= bty | ~ty -> bty Logic type
ty ::= α | (ty1, . . . , tyn) s Types

decl ::= type ~’i s

| logic~i : lty | axiom i : φ | goal i : φ
⊕ ::= + | − | ∗ | /
⊙t ::= = | < | ≤ | > | ≥
⊙p ::= -> | <-> | or | and
m ::= n | x | m1 ⊕ m2 | - m | f −→m Term

φ ::= true | false | f −→m Predicate
| m1 ⊙t m2 | φ1 ⊙p φ2 | not(φ)
| forall ~x : ty.φ | exists ~x : ty.φ

Figure 7: Syntax of logic declaration

We now explain the mysterious conversion[[.]]f , which we call
logicization. Figure 7 gives the abstract syntax of the logical for-
mula supported by an SMT solver named Alt-ergo [8], which is an
automatic theorem prover for polymorphic first order logic modulo
theories. It uses classical logic and assumes all types are inhabited.
First, Alt-ergo allows data type declaration e.g.

type ’a list = Nil | Cons of ’a * (’a list)

to be converted to Alt-ergo code withtype andlogic declarations:

type ’a list
logic nil : ’a list
logic cons : ’a , ’a list -> ’a list

As Alt-ergo supports only first order logic (FOL), arguments of a
logical function are a tuple, e.g.’a , ’a list. The type variable
’a is assumed universally quantified at top-level. The conversion
algorithm for an arbitrary user-defined data type is in Figure 8.

Moreover, we introduce a first order function type:

Data type in language M:
type

−→
’a s = K1 of

−→
t1 | · · · | Kn of

−→
tn

Corresponding alt-ergo code:type
−→
’a s

logic K1 :
−→
t1 ->

−→
’a s

:

logic Kn :
−→
tn ->

−→
’a s

Figure 8: Converting data type to Alt-ergo code

type (’a, ’b) arrow

which allows us to encode the function type in the language M to
Alt-ergo’s first order type where the’a and’b refer to a function’s
input type and output type respectively. We also introduce a logical
functionapply:

logic apply : (’a, ’b) arrow , ’a -> ’b

where encoding withapply is conventional [23]. Converting types
in the language M is straight forward (Figure 9).

[[τ1 . . . τn T ]] = [[τ1]] . . . [[τn]] T
[[τ1 → τ2]] = ([[τ1]], [[τ2]]) arrow

Figure 9: Converting higher order type to first order type

We now give an example to show what logicization can do.

(* val len : ’a list -> int *)
contract len = {x | true} -> {y | y >= 0}
let len s = match s with | [] -> 0

| x::u -> 1 + len u

(* val append : ’a list -> ’a list -> ’a list *)
contract append = {xs | true} -> {ys | true}

-> {len rs = len xs + len ys}
let append xs ys = match xs with
| [] -> ys
| x::u -> x :: append u ys

The functionlen computes the length of a list and the function
append appends two lists. Letea and ta stand for the definition
and contract ofappend respectively. Applying only simplification
rules (including reduction rules) toea ⊲ ta, we get (R3):

λv1.λv2.match v1 with
| [ ] → if len v2 = len v1 + len v2 then v2 else BAD

l1

| x :: u → if (len (x ::
(if len (append u v2) = len u+ len v2
then append u v2 else UNR))

= len v1 + len v2)
then x :: append u v2 else BAD

l2

The simplification approach in [39] and the model checking ap-
proach in [34] involve inlining top-level functions, while we do not.
Instead, we axiomatize top-level function definitions called in con-
tracts and lift expressions under checking to logic level and consult
an SMT solver. The chanllenge is to deal with non-total expres-
sions (e.g.BAD) in our source code. In the literature of convert-
ing functional code (in an interactive theorem prover) to SMT for-
mula [1, 6, 9, 29], they convert expression to a logical form directly.
In [1], given a non-recursive function definitionf = e, they first
η-expande to getf = λx1 . . . xn.e

′ wheree′ does not containλ;
if it is a recursive function, they assumee is in a particular form
such that all lambdas are at top-level and the function performing
an immediate case-analysis over one of its arguments. Then, they
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form ∀−→x , f(x1, . . . , xn) = [[e′]] where[[.]] converts an expression
to logical form. (On the other hand, [6] usesλ-lifting method:λ-
abstractions are translated from inside out, eachλ-abstraction is
replaced by a call to a newly defined functions. That is to form
∀−→x , fn(x1, . . . , xn) = [[e′]]; . . . ; ∀x1, f = f1(x1) .) This is fine
for converting total terms, e.g.[[5]] = 5 and [[x]] = x, etc., but
what are[[BAD]] and [[UNR]]? Our key idea is not to convert an ex-
pression directly to a corresponding logical term, but form equal-
ity with [[.]]f recursively (defined in Figure 10). The subscriptf
in [[e]]f denotes the expressione. Moreover, we perform neitherη-
expansion (which does not preserve semantics in the presence of
non-total terms) norλ-lifting, and yet we allow arbitrary forms of
recursive functions. We have such flexibility because we convertλ-
abstraction and partial application directly with the help ofapply.
(Note that our logicization[[.]]f can also produce HOL formula for
interactive proving by replacing(apply(f, x)) by (f(x)) and not
converting the types.) No logicization work in the literature (in-
cluding [6, 9, 29, 35]) deal with non-total terms. The work [6] uses
approaches in [9, 29] to deal with polymorphism while Alt-ergo
itself supports polymorphism.

Our framework can systematically generate Alt-ergo code, like
below, to show that thoseBADs in R3 are unreachable.

logic len: (’a list, int) arrow
logic append: (’a list,

(’a list,’a list) arrow) arrow

axiom len_def_1 : forall s:’a list. s = nil ->
apply(len,s) = 0
axiom len_def_2 : forall s:’a list. forall x:’a.
forall l:’a list. s = cons(x,l) ->
apply(len,s) = 1 + apply(len,l)

goal app_1 : forall v1,v2:’a list. v1 = nil ->
apply(len,v2) = apply(len,v1) + apply(len,v2)

goal app_2 : forall v1,v2,l:’a list.forall x:’a.
v1 = cons(x,l) ->
apply(len,apply(apply(append,l),v2))

= apply(len,l) + apply(len,v2) ->
(exists y:’a list. y = apply(apply(append,l),v2)
and apply(len,cons(x, y))

= apply(len,v1) + apply(len,v2))

To make an SMT solver’s life easier (i.e. multiple small axioms are
better than one big axiom), we have two axioms forlen, one for
each branch, which are self-explanatory. As a constructor is always
fully applied, we do not encode its application withapply. The->
(in axioms and goals) is a logical implication.

For example, the axiomlen_def_1, is generated by:

[[λs’a list. match s with {Nil → 0}]]len
= ∀s :’a list.[[match s with {Nil → 0}]](apply(len,s))
= ∀s :’a list. ∃x0 :’a list.[[s]]x0

∧
(x0 = nil -> [[0]](apply(len,s)))

= ∀s :’a list. ∃x0 :’a list. x0 = s ∧
(x0 = nil -> apply(len, s) = 0)

Let x0 bes, we get a more readable version (axiomlen_def_1).
An algorithm that partially eliminates redundant existentially quan-
tified variables can be found in [40].

Theorem 6 (Logicization for axioms). Given definitionf = eτ ,
∃f : τ, [[e]]f is valid.

Next, what query (i.e. goal) shall we make? All we want is
to check if the branch leading toBAD is reachable or not. So
our task is to examine the scrutinee of amatch-expression. For

⊕ ∈ [+,−, ∗, /] ⊙ ∈ [>,<,=]
[[.]]f : Expression → Formula

[[let (rec) f = e]]f = [[e]]f top-level defn

[[BADl]]f =

{

true for axioms
false for goals

[[UNRl]]f = false
[[x]]f = f = x
[[n]]f = f = n

[[eτ11 ⊕ eτ22 ]]f = ∃x1 : [[τ1]], ∃x2 : [[τ2]],
[[e1]]x1

∧ [[e2]]x2
∧ f = x1 ⊕ x2

[[eτ11 ⊙ eτ22 ]]f = ∃x1 : [[τ1]], [[e1]]x1
∧

∃x2 : [[τ2]], [[e2]]x2
∧

((x1 ⊙t x2 ∧ f = true)∨
(not(x1 ⊙t x2) ∧ f = false))

[[λxτ .e]]f = ∀x : [[τ ]], [[e]](apply(f,x))
[[let xτ = e1 in e2]]f = ∃x : [[τ ]], [[e1]]x ∧ [[e2]]f

[[eτ11 eτ22 ]]f = ∃x1 : [[τ1]], [[e1]]x1
∧

∃x2 : [[τ2]], [[e2]]x2
∧

f = apply(x1, x2)
[[K eτ11 . . . eτnn ]]f = ∃x1 : [[τ1]], [[e1]]x1

∧ · · · ∧
∃xn : [[τn]], [[en]]xn∧
f = K (y1, . . . , yn)

[[
match eτ00 with
−−−−−−→
K

−→
xτ → e

]]f =
∃x0 : [[τ0]], [[e0]]x0

∧

(
∧

−−−−−−−−−−−−−−−−−−−−→
∀
−−−→
x : [[τ ]], (x0 = K −→x ) ⇒ [[e]]f )

Figure 10: Convert expression to logical formula

example, in the goalapp_1, the ctx-info v1=nil is from the
pattern matchingmatch v1 with {[] -> ....}; the query is
apply(len,v2) = apply(len,v1) + apply(len,v2). The
goal app_1 states the ctx-infoL implies the scrutinee. We have
L = ∀v1 : ’a list, ∀v2 : ’a list, v1 = nil by [S-lam] and
[R-s-save]. The scrutinnee is[[len v2 = len v1 + len v2}]]true.
That is, we want to check whetherlen v2 = len v1 + len v2 is
equivalent totrue. Alt-ergo saysvalid for both goals. Thus, we
know bothBADl1 andBADl2 are not reachable.

Theorem 7 (Validity preservation: logicization for goals). For all
(possibly open) expressioneτ , ∃f : τ , if ∀fv(e) : τ, [[e]]f is valid
ande → e′ for somee′, then∀fv(e′) : τ, [[e′]]f is valid.

There are a few things to note about logicization.

Syntax abbreviation The Alt-ergo syntax
−−−−−−−−→
logic x : lty;

−−−−−−−−→
axiom ai : φi;

−−−−−−−−→
goal gj : φj

is semantically the same as∀
−−−→
x : lty,

−→
φi ⇒

−→
φj where

−→
φ means a

conjunction of a set of logical formulae.

Only functions called in contracts are converted to Alt-ergo ax-
ioms To check a function (sayappend) satisfies its contract, we
do not convert its definition to axioms. As the wrappers⊲, ⊳ have
inserted contract checking obligation appropriately such that func-
tion calls (including recursive calls) are guarded by their contracts.

Crashing functions called in contracts In Figure 10, there are
two conversions forBAD, true for axioms andfalse for goals. For
example, we may have:

contract g = {x | x /= []} -> {y | head x > y}

In this case, the contract ofg is total even if a partial functionhead
is called in the contract. The logicization ofhead gives:

logic head : (’a list, ’a) arrow
axiom head_def_1 : forall x:’a list. x=[] -> true
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axiom head_def_2 : forall x,l:’a list.forall y:’a.
x = cons(y,l) -> apply(head, x) = y

The key thing is that the axiomhead_def_1 is not afalse axiom,
it just does not give us any information, which is what we want.

Contracts that diverge Suppose divergent functionsloop and
nloop are used in a contract.

let rec loop x = loop x
let rec nloop x = not (nloop x)

Logicization gives:

logic loop : ’a -> ’a
axiom loop_def_1 : forall x:’a.
apply(loop, x) = apply(loop, x)

logic nloop : bool -> bool
axiom nloop_def_1 : forall x:bool.
apply(nloop, x) = not(apply(nloop, x))

Axiom loop_def_1 is same as statingtrue, which does not hurt.
But axiomnloop_def_1 is same as statingfalse, which we must
not allow. Fortunately, we only convert functions used in contracts
that can be proved terminating (in§4.3) to axioms. We will not
generate the axiomnloop_def_1.

BAD and UNR For goals, the[[e]]f collects ctx-infobefore a
scrutinee of amatch-expression, thus,[[BAD]]f = [[UNR]]f = false,
which implies everything. For example:

fun x -> let y = if x > 0 then x else UNR in
if y + 1 > 0 then y + 1 else BAD

The ctx-infoL beforey + 1 > 0 is ∀x : int, ∀y : int, (x > 0 ⇒
y = x) ∧ (not(x > 0) ⇒ false). So L ⇒ y + 1 > 0 is
∀x : int, ∀y : int, (x > 0 ⇒ y = x)∧ (not(x > 0) ⇒ false) ⇒
y+1 > 0, which is valid. It means, ifnot(x > 0) holds,y+1 > 0
will not be reached. Similar reasoning applies if we replace theUNR
by BAD in the above example.

5.3 Discussion and preliminary experiments

One might notice that SL machine simplifies terms under lambda
and the body ofmatch-expression while we do not have such ex-
ecution rules in Figure 2. As we rebuild blames and do not inline
recursive functions (i.e. no crashing and no looping during simpli-
fication), SL machine does not violate call-by-value execution.

One might worry that the rule [match-match] causes exponential
code explosion for static analysis (although no run-time overhead).
For example,h1 = if (if a then b else c) then d else e, where
a, b, c, d, e are expressions. At program pointd, the ctx-info is
(a ⇒ b)∧ (not(a) ⇒ c)1. Applying [match-match] toh1, we get:
h2 = if a then (if b then d else e) else (if c then d else e).
Thed is duplicated and the ctx-info for the firstd is a∧ b while for
the secondd is not(a) ∧ c. With [match-match], we send smaller
formula to an SMT solver (which is good for an SMT solver), but
we may communicate with the SMT solver more often. From our
current observation, it is quite often that thec is BAD or UNR, the SL
machine immediately rebuilds the blame with the rest of the stack,
and we get:if a then (if b then d else e) else c. Sod is not
duplicated and we have smaller formula for the SMT solver.

One advantage of the SL machine is to allow adding or remov-
ing a rule easily. In theinc example in§2, with rule [matchR], we
can simplify

(λv.v + 1) (if x1 > 0 then x1 else UNR
?)

1 To illustrate the idea with less cluttered form, we omit the conversion
notation[[.]]f for a, b, c, d, e.

to if x1 > 0 then (λv.v + 1) x1 else (λv.v + 1) UNR?. As the
variablex1 and the contract exceptionUNR? are values, performing
beta-reduction, we get:if x1 > 0 then x1 + 1 else UNR?. Now,
we have a logical formula (denoted by Q2):

∃y, (x1 > 0 ⇒ y = x1 + 1) ∧ (not(x1 > 0) ⇒ false) [Q2]

which is equivalent but smaller than the Q1 in§2.
We have implemented a prototype2 based on the source code

of ocamlc-3.12.1. Table 1 shows the results of preliminary experi-
ments, which are done on a PC running Ubuntu Linux with quad-
core 2.93GHz CPU and 3.2GB memory. We take some examples
from [27] and OCaml stdlib and time the static checking. The col-
umn Ann gives the LOC for contract annotations.

Table 1. Results of preliminary experiments
program total LOC Ann LOC Time (sec)
intro123, neg 23 4 0.08
McCarthy’s 91 4 1 0.02
ack, fhnhn 12 2 0.06
arith, sum, max 26 4 0.20
zipunzip 12 2 0.10
OCaml stdlib/list.ml 81 16 0.72

The preliminary result is promising: it checks a hundred lines of
code (LOC) in a few seconds. This paper focuses on the theory of
hybrid contract checking, we leave more optimization and rigorous
experimentation on tuning the strength of symbolic simplification
and the frequency of calling an SMT solver as future work.

6. Hybrid contract checking
We have explained with examples how SCC, DCC, HCC work
in §2. Programmers may choose to have SCC only, DCC only,
or HCC. In this section, we summarize their algorithm. Given a
programfi ∈ ti, fi = ei for 1 ≤ i ≤ n. Supposefi is the
current function under contract checking;fj is a function called
in fi (includingfi’s recursive call);sl is the SL machine;rmUNR
implements the rule[rmUNR] (mentioned earlier in§2).

(if e0 then e1 else UNR) =⇒ e1 [rmUNR]

We have:

[SCC] : sl(ei[(fj ⊳
fj
fi

tfj )/fj ] ⊲
fi
? t)

[DCC] : ei[(fj
BAD

fj

⊲⊳
BADfi

tfj )/fj ]

[HCC] : fi♯ = λ?.rmUNR(sl(ei[((fj♯ “fi”) ⊳
fj
fi

tfj )/fj ] ⊲
fi
? t))

In [HCC], the residual codefi♯’s parameter “?” waits for a caller’s
name. For example,if an STM solver cannot prove the goalapp_2
in §5.2 (although it can), recalling R3 in§5.2, the residual code
append♯ is:

λ?.λv1.λv2.match v1 with
| [ ] → v2;
| x :: l → if len (x :: append t v2) = len v1+len v2

then x :: append t v2 else BAD
l

which says that we only have to check postcondition for the second
branch. (If allBADs are simplified away during SCC, a residual code
of a function is its original definition.)

Lemma 2 (Telescoping property [7, 41]). For all expressione,
total contractt, blamesr1, r2, r3, r4, (e

r1
⊲⊳
r2

t)
r3
⊲⊳
r4

t = e
r1
⊲⊳
r4

t.

2 http://gallium.inria.fr/˜naxu/research/hcc.html
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Precondition of a function is checked at caller sites. Anfj♯ is
the simplifiedfj ⊲

fj
fi

tfj , inspecting [HCC], eachfj at caller sites

is replaced by(fj ⊲
fj
fi

tfj ) ⊳
fj
fi

tfj , which is(fj
BAD

fj

⊲⊳
UNRfi

tfj )
UNR

fj

⊲⊳
BADfi

tfj .

By the telescoping property, we have:

(fj
BAD

fj

⊲⊳
UNRfi

tfj )
UNR

fj

⊲⊳
BADfi

tfj = fj
BAD

fj

⊲⊳
BADfi

tfj [T1]

which is the same as in DCC. This shows that [HCC] blamesf if
and only if [DCC] blamesf .

Moreover, [T1] justifies the correctness of applying the rule
[rmUNR] because allUNRs are indeed unreachable asBADl is in-
voked beforeUNRl for the samel. That is, (if p then e1 else BADl)
is invoked before (if p then e else UNRl) for the samep, maybe
differente. So it is safe to apply the rule[rmUNR] even ifp diverges
or crashes because the samep in (if p then e1 else BAD) diverges
or crashes first. It is easy to see ift = {x | p}. If t = t1 → t2, then

(e
BAD

fj

⊲⊳
UNRfi

t1 → t2)
UNR

fj

⊲⊳
BADfi

t1 → t2 expands tolet y = e in

λv2.((λv1.(y (v1
UNR

fi

⊲⊳
BAD

fj

t1))
BAD

fj

⊲⊳
UNRfi

t2) (v2
BAD

fi

⊲⊳
UNR

fj

t1))
UNR

fj

⊲⊳
BADfi

t2

Focusing on theBADs andUNRs above⊲⊳, inspecting [P1] in Fig-
ure 4,BADfj is invoked beforeUNRfj andBADfi is invoked before
UNRfi . This holds inductively on the size oft [40].

7. Related work
Contract semantics were first formalized in [7, 12] for a strict
language and later in [41] for a lazy language. This paper adapt
and re-formalize some of their ideas on contract satisfaction and
contract checking. Detailed design deference is explained in§4.

Pre/post-condition specification using logical formulae [2, 16,
18, 35] allows programmers to existentially quantify over infinite
domains or express meta-properties that are not expressible in con-
tracts. However, such property cannot be converted to program
code for dynamic checking. As automatic static checking always
has its limitation, being able to convert some difficult checks to
dynamic checks is practical. Refinement types and contracts can
be enhanced in many ways like we did for types, e.g. subcon-
tract relation [12, 42], recursive contracts [7], polymorphic con-
tracts [3]. Contracts also enjoy interesting mathematical properties
[7, 12, 40, 41]. We like the idea of ghost refinement in [37] that
separates properties that can be converted to program code from
the meta-properties logical formulae.

One might recall the hybrid refinement type checking (HTC) [14,
25]. In theory, [17] shows that (picky/indy, i.e. our) contract check-
ing is able to give more blame than refinement type checking in
the presence of higher order dependent function contracts. That is
partly why [37] invents aKind checker to report ill-formed refine-
ment types. As discussed in§4.2, we checke ⊲ t to be crash-free
in one-go and do not have to checkt to be crash-free separately. In
practice, theH andL in the SL machine serve the similar purpose
as the typing environment in HTC. But the symbolic simplification
gives more flexibility such as teasing out the path sensitivity anal-
ysis with the rule [match-match], etc. We hope this work opens a
venue to compare HCC and HTC in practice, such as the kind of
properties we can verify, the speed of static checking, the size and
speed of the residual code generated, etc. Notably, VeriFast [21]
(for verifying C and Java code) suggests that symbolic execution is
faster than verification condition generation method [2, 16].

The work [24] mixes type checking and symbolic execution.
However, [24] requires programmers to place block annotations
{t t} for type checking and{s s} for symbolic execution while
our SL machine systematically simplifies subterms and consults

the logical store for checking at the appropriate program point.
The [24] does not generate residual code while we do. Moreover,
their symbolic expression is in linear arithmetics, which is more
restrictive than ours.

Our approach is different from [37], which extracts proofs of
refinement types from an SMT solver and injects them as terms in
the generated bytecode RDCIL (like proof carrying code) during
refinement type checking. It is for security purpose.

Some work [26, 27, 33, 34] suggest to convert program to
higher order recursive scheme (HORS), which generates (possibly
infinite) trees, and specify properties in a form of trivial automaton
and do model checking to know whether HORS satisfies its desired
property. Our approaches are completely different although we
both do reachability checking. They work on automaton while
we work on program directly. Our approach ismodular (no top-
level function is inlined) while theirs is not. They deal with local
let rec (i.e. invariant inference) while we do not, but we could
infer local contract with method in [22] or inline the local let
rec function for a fixed number of times. They deal with protocol
checking while we do not unless a protocol checking problem can
be converted to checking the reachability ofBAD. SL machine (in
§5) can be used for any problem that checks the reachability ofBAD
in general.

The contextual information synthesis and conversion of expres-
sion to logical formula is inspired by the use of the application•
in [19, 20], which makes conversion of higher order functions eas-
ier. But we use the technique in different contexts.

Many papers on program verification [2, 11, 16, 31, 32, 38]
focus on memory leak, array bound checks, etc. and few handle
higher order functions and recursive predicates. Our work focus on
more advanced properties and blame precisely functions at fault.
Contract checking in the imperative world is lead by [11], which
statically checks contract satisfaction at bytecode CIL level and run
dynamic checking separately. Residualization has not been done
in [11]. We may adapt some ideas in [21] to extend our framework
for program with side effects.

8. Conclusion
We have formalized a contract framework for a pure strict higher
order subset of OCaml. We propose a natural integration of static
contract checking and dynamic contract checking. With SL ma-
chine, our approach gives precise blame at both compile-time and
run-time in the presence of higher order functions. In near fu-
ture, besides rigorous experimentation and case-studies, we plan
to add user-defined exceptions; allow side-effects in program and
hidden side-effects in contracts; do contract or invariant inference
as [11, 22, 31] are inspiring.
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