Hybrid Contract Checking vi

Dana N.

INRIA Paris-Ro

a Symbolic Simplification

Xu

cquencourt

na.xu@inria.fr

Abstract

Program errors are hard to detect or prove absent. Allowing pro-
grammers to write formal and precise specifications, especially in
the form of contracts, is a popular approach to program verifica-
tion and error discovery. We formalize and implement a hybrid
(static and dynamic) contract checker for a subset of OCaml. The
key technique is symbolic simplification, which makes integrating
static and dynamic contract checking easy and effective. Our tech-
nigue statically checks contract satisfaction or blames the function
violating the contract. When a contract satisfaction is undecidable,
it leaves residual code for dynamic contract checking.

Categories and Subject Descriptors D.3 [Softwarg: Program-
ming Languages

General Terms functional language, verification, debugging

Keywords contract semantics, static, dynamic, hybrid, contract
checking, symbolic simplification

1. Introduction

Constructing reliable software is difficult. Formulating and check-
ing (statically or dynamically) logical assertions [2, 5, 15, 17, 36],
especially in the form of contracts [7, 12, 13, 29, 40], is one popular
approach to error discovery. Static contract checking can catch all
contract violations but may raise false alarms and can only check

restricted properties; dynamic checking can check more expressive
properties but consumes run-time cycles and only checks the paths

actually executed, and so is not complete. Consider an OCaml pro-
gram augmented with a contract declaration:

(* val f1 : (int -> int) -> int %)
contract f1 = ({x | x >= 0} > {y | y >= 0})
> {z | z >= 0}

let f1 g=(g 1) - 1
let f2 = f1 (fun x -> x - 1)

The contract off1 says thatf1 will return a non-negative num-
ber whenever it is applied to a function that returns a non-negative
number when given a non-negative number. Both a static checker
and a dynamic checker are able to report thafails its postcon-
dition: a static checker relies on the unsoundnesggof int —

int, (g 1) > 0= (g 1) — 1 > 0 while a dynamic checker eval-
uates(((fun x -> x - 1) 1) - 1) to -1, which violates the

Permission to make digital or hard copies of all or part of this work for personal
classroom use is granted without fee provided that copies are not made outbstrib
for profit or commercial advantage and that copies bear this notice and the fubiritati
on the first page. To copy otherwise, to republish, to post on servers or ttritedes

to lists, requires prior specific permission and/or a fee.

PEPM’12, January 23-24, 2012, Philadelphia, PA, USA.

Copyright(©) 2012 ACM 978-1-4503-1118-2/12/01. .. $10.00

contract{z | z >= 0}. However, a dynamic checker cannot tell
that the argumen¢fun x -> x - 1) fails £1's precondition be-
cause there is no witness at run-time, while a static checker can re-
port this contract violation because : int,z > 0=z —-1>0
does not hold. On the other hand, a static checker usually gives
three outcomes: (a) definitely no bug; (b) definitely a bug; (c) pos-
sibly a bug. Here, a bug refers to a contract violation. As static and
dynamic checking can be complementary, we may want to invoke
a dynamic checker when the outcome is (c). This ensures that no
contract violations can escape while maintaining expressiveness.
Following the formalization in [40], but this time for a strict
language, we first give a denotational semantics for contract satis-
faction, i.e., we define what it means for an expressitm satisfy
its contractt (written e € t) without knowing how to check it.
Next, we define a wrapperthat takes and¢ and produces a term
e > t with contract checks inserted at appropriate places ifa
contract check is violated, a special constru@sb’ signals the
violation where the labdl precisely captures the function at fault.
All we have to do is to check the reachability RD’ in the term
e > t. We symbolically simplify the terne > ¢, aiming to simplify
BADs away. If someBAD constructors remain, we either report it as
a compile-time error or leave the residual code for dynamic check-
ing. We make the following contributions:

¢ We clarify the relationship between static contract checking and
dynamic contract checking?). A new observation is that, af-
ter static checking, we should prune away some more unreach-
able code before going to dynamic checking. Such unreachable
code, however, is essential during static checking. We show the
correctness of this pruning®) with the telescoping property
studied (but not used for such purpose) in [7, 40].

We definee € t ander-t and prove a theorenets¢ is crash-free
<= e € t"(§4). “Crash-free” meanBAD is not reachable un-
der any context. Such a formalization is tricky and its correct-
ness proof is non-trivial. We rework the proofs from [41] for a
strict language.

We design a novel SL machine that augments symbolic sim-
plification with contextual information synthesis for checking
the reachability ofBAD statically §5). The checking is auto-
matic andmodularand we prove its soundness. Moreover, the
SL machine produceagsidualcode for dynamic checking.

¢ We design dogicizationtechnique that transforms expressions
to logical formulae. The key contribution is to deal with non-
total terms §5).

2. Overview

Assertions [17] state logical properties of an execution state at arbi-
trary points in a program; contracts specify agreements concerning
the values that flow across a boundary between distinct parts of
a program (modules, procedures, functions, classes). If am-agre

ment is violated, contract checking is supposed to provide precise

blaming of the function at fault. Contracts [29] and higher-order

In this paper, besides symbolic simplification, we collect contextual

contracts [12] were to be checked at run-time when they were first information in logical formula form and consult an SMT solver to

introduced. To perforndynamic contract checking®CC), a func-
tion must be called to be checked. For example:

contract inc = {x | x > 0} > {y | y > 0}
let inc = fun v -> v + 1
let hi inc O

A dynamic checker wraps thiac in hi with its contractti, (a
shorthand for the contract akc):

A Ban!
let hil = (inc pq tipc) O
Bap!’

wherel is (2, 5, “inc”) the (row,col) source location whetec is
defined and’ is (3, 10, “h1”) the source location of the call site
with caller's name. This wrappad expands to:
(Az1. lety = inc: (letz =z in
if 2 > 0 then z else BAD(10:“B1"))

In the upper box, the argument afic is guarded by the check

x > 0; in the lower box, the result afnc is guarded by the check

y > 0. If a check succeeds, the original term is returned, otherwise,
the special construct@®AD is reached and blame is raised. In this
casehl callsinc with 0, which failsinc’s precondition. Running

the above wrapped code, we gabp®% ‘1" which blames1.
With the DCC algorithm, given a functiofi and a contract,

to check that the calleg¢ and its caller agree on the contréct

dynamically, a checker wraps each callftavith its contract:

BADf
-
, Which behaves the same @isexcept that (a) iff disobeyst, it
blamesf, signaled byBAD?; (b) if the context useg in a way not
permitted byt, it blames the caller of, signaled byBAD’ where
“7"is filled with a caller name and the call site.

Later, [7, 40] give formal declarative semantics for contract
satisfaction that not only allow us to prove the correctness of DCC
against this semantics, but also to check contracts statically.

The essence dftatic contract checkingSCC) is:

agan BADf . BADf
splitting g into two halvese>t =e q

BAD* UNR*

tande<t e t

e =e .

st

The > (“ensures”) and thes (“requires”) are dual to each other.
The special construct@R (“unreachable”), does not raise blame,
but stops execution. (Those who are familiar withsert and
assume can think of f p then e else BAD) as @ssert p; e)
and @f p then e else UNR) as @ssume p; €).)

SCC is modular and is performed at the definition site of each
function. For examplegAv.v + 1) > ¢4, €xpands to:

Azi. lety = (Aww+1)
(let x = x; in if z > 0 then x else UNR') in

if y > 0 then y else BAD(25 “InC”)

At the definition site of a functionf = e, we assumef’s
precondition and assert its postcondition. IfBdDs ine > ¢ are
not reachable, we know satisfies its contragt One way to check
reachability ofBAD is to symbolically simplify the fragment. In the
above case, inlining gives:

Azi. lety =(Av.v 4 1) (if 1 > 0 then z; else UNR') in
if y > 0 then y else BAD(%% “11¢")

check the reachability a§AD. An SMT solver usually deals with
formulae in first-order logic (FOL). In this section, we present
formulae in higher-order logic whil§5 gives the details of the
generation of formulae in FOL. For the two subexpressions of the
RHS ofy, we have:

v+ 1
if 1 > 0 then x; else UNR’

| Fxo, (Yo, 22(v) =v +1)
dxs, (1‘1 >0=x3 = 1‘1)/\
(not(z1 > 0) = false)
One can think of the existentially quantifie (and z3) as de-
noting the expression itself. For the RHSyfwe have:
Yy, za, Vv, z2(v) = v+ 1) A (Fz3, (1 > 0= 23 = 1)
A(not(xz1 > 0) = false) Ay = z2(x3)) [Q1]
We check the validity of a formula collected from the path to
BAD(*® 10" e, Vz;,Q1l = y > 0, by consulting an SMT
solver. Since it is valid, we know that tHEaD(%:% “18¢") s not
reachable, thusnc satisfies its contract.
Consider the functiofil and its contract¢4 in §1. Sof1>t5q
is (Ag.(g 1) — 1) > t£4, which expands to:
Azi. let z=(Ag.(g1)—1)
(Az2. let y=1z1 (letz =x2 in
if z > 0 then z else BAD(> /1)) in
if y > 0 then y else UNR') in
if z > 0 then z else BAD(*:>"*/17)

After applying some conventional simplification rules, we have:

R1: Azj. letz= lety=x11lin
if y > 0 theny — 1 else UNR’

if z > 0 then z else BAD(*5f17)

We see that the inne@aD*% “/1") has been simplified away, be-
causer = o = 1 and (£ 1 > 0 then 1 else BAD*% /1)) s
simplified to 1. As we cannot prowéry,Vz, (Jy,y = z1 1A (y >
0= z=y—1)) = z > 0, the otheBAD*>"/1") remains. We
can either report this potential contract violation at compile-time or
leave this residual code R1 for DCC to achieve hybrid checking.
Hybrid contract checkindHCC) performs SCC first and runs
theresidualcode as in DCC. In SCG1 > t£1 checks whethef1
satisfies its postcondition by assuming its precondition holds. At
each call site of 1, we wrap the function withi. For example:

contract £3 = {v | v >= 0}
let £f3 = f1 zut

where zut is a difficult function for an SMT solver andut’s
contract is{x | true}. Supposezut < {z | true} = zut, we
then have the term3 > t¢3 to be:

((f1<tgq) zut)>{v | v > 0}

which requires £3 to satisfy £1's precondition and assumetst
satisfies its postcondition because > t¢1 has been checked.
During SCCa top-level function is never inlinetlVe do not have

to know its detailed implementation at its call site as it has been
guarded by its contract witli < ¢. Thef3 > t£3 expands to:

letv =
let z = f1
(Az2.lety = zut (letxz ==z in
if 2 > 0 then z else UNR(™10:"17)) ip
if y > 0 theny else BAD(7'1O’“f3”)) in
if z > 0 then z else UNR(710:4f17)
inif v > 0 then v else BAD(710:%fs”)

As « is dual tor, the RHS ofwv is actually a copy of the earlier
f1 > t¢q but swapping theAD andUNR and substitutinge; with
zut. We now know the source location of the call site £of
and its caller's name, theNR’ becomesBAD("'1**f3") and the
BAD(">“1") becomewNR("1%:“f17) _ At definition site where the
caller is unknown, we use the locationtdf, i.e., (4, 5, “f1”). Once
its caller is known, we us€7,10, “f1”). It is easy to get source
location so we do not elaborate it further.

As an SMT solver saysalid for Vv.(3z.z > 0 Av = 2) =
v > 0, thef3 > t¢3 can be simplified to (say R2):

let z= f1 (Az2. lety =zut (letz =2 in
if x > O thenx
else UNR("10:"17)) ip
if y > 0 then y else BAD(T1%°/37)) ip
if z > 0 then z else UNR(10"A17)

leaving oneBAD. We can either report this potential contract viola-
tion at compile-time or continue a DCC. For SCC, we have checked
fip>tgq, butfor DCC, to invoket1>t¢4, we must use the residual
code R1. However, theiR clauses are useful for SCC, but redun-
dant for DCC. We can remov@&Rs with a simplification rule:

[rmUNR]

(We shall explain why it is valid to apply this rule evereif may
diverge or crash i§6. Intuitively, UNR is indeed unreachable and
eo has been checked before this program point.) Applying the rule
[rmUNR] to R1 and R2 and, simplifying a bit, we get:
fif = Az1. let z=(lety=(x11)iny— 1) in
if z > 0 then z else BAD(%5f17)
3= f1f (Az2.lety = zut zo in
if y > 0 then y else BAD("10:"/3™)

(if e then e; else UNR) = e

respectively, which is theesidualcode being run. We show i§6
that HCC blames a functiofy iff DCC blamesf;.

Summary Given a definitionf = e and a contract, to check that

e satisfiest (writtene € t), we perform these steps. (1) Construct
e > t. (2) Simplify e > ¢t as much as possible td, consulting an
SMT solver when necessary. (3) If BaD is in ¢’, then there is no
contract violation, while if there is 8AD in ¢’, we give error (or
warning) message for a definite (or potential) bug at compile-time.
(4) For a functionf not satisfying its contract, create its residual
code ft by simplifying ¢’ with the rule [rmUNR], and run the
program with eaclf being replaced by#.

3. Thelanguage

T € Type constructors

@, f € Variables K € Data constructors

pgm == defr,...,defn Program
T := int | bool | 7T | 1 — ™ Types
t € Contracts
t = {z|p} predicate contract
| z:iti—t dependent function contract
| (z: t1,t2) dependent tuple contract
| Any polymorphicAny contract
def € Deﬁn_i}:ions
def == type'aT = K of ;
| contract f =t
| letfZ =e top-level function
| let rec f @ =e top-level recursive function
a,e,p € Expressions
a,e,p = n\r|ac\/\(QUT).e\eufg|K€>
| match eo with alt
alt = K (z*,...,z]") — e Alternatives
r := BAD' | UNR! Blames
l = (n1,n2,String) Label
_>
val == n|z|r|Kwval|Xz").e Values
tv = nl|z|Ktv
tval == tv]| AzT).e Trivial values

Figure 1. Syntax of the language M

assume all expressions, contexts, and contracts are well-typed and
use the type information (presented as a superscript,c&.gr,t™)
whenever necessary. Type-checking material is in [39].

The two contract exceptions (also called blans) andung!
are adapted from [40]. They are for internal usage, and are not
visible to programmers. The labg&lcaptures source location and
function name, which are useful for error reporting as well as for
the examination of the correctness of blaming. But we may omit
the labell when it is not the focus of the discussion.

It is possible for programmers to write:

let head xs match xs with
[1 -> raise Error

x::1 > x

The language presented in this paper, named M, is pure and strict,

and is a subset of OCaml with parametric polymorphism.

3.1 Syntax

whereraise : Va. Exception — «. The Error has type
Exception, which is a built-in data type for exceptions. As we
do not havetry-with in language M (leaving it as future work), a

Figure 1 gives the syntax of language M. A program contains a set preprocessing step convetisise Error to Baphead,

of data type declarations, contract declarations and function defi-
nitions. Expressions include integersvariables, lambda abstrac-
tions, applications, constructors amdtch expressions. We have
top-levellet rec, but for the ease of presentation, we omit lo-
cal let rec. (It is possible to allow localet rec by either as-
suming that a local recursive function is given a contract or us-
ing contract inference [21] to infer its contract. Even if [21] is
not modular, it is enough to infer a contract for a local func-
tion.) Pairs are a special case of constructed terms. A beal
expressiorilet z = e; in ey is syntactic sugar fofAz.ez) e;.
An if expressionif ep then e; else ep iS syntactic sugar for
match ep with {true — e;;false — es}.

We assume all top-level functions are given a contract. Contract

We have four forms of contracts. Thein a predicate con-
tract {x | p} refers to a boolean expression in the same lan-
guage M. Dependent function contracts allow us to describe de-
pendency between input and output of a function. For example,
z:{y | y > 0} — {z | z > =z} says that, the input is greater
than 0 and the output is greater than the input. We can use a short-
hand{z | > 0} — {z | z > z} by assumingc scopes over
the RHS of—. The — is right associative. Similarly, dependent
tuple contracts allow us to describe dependency between two com-
ponents of a tuple. For example;: {y | y > 0},{z | z > z}) has
shorthand{z | x > 0}, {z | z > «}). ContractAny is a universal
contract that any expression satisfies. We support higher-order co
tracts,e.0.k: {z |z >0} > {y |y >z}) = {z| k5> =z}

checking is done after the type checking phase in a compiler so wefor a functionlet f g = g 2.

ContextsC = [o] [Ce|valC | K vl Ce
| matchC with alt
er — e let (rec) f=e€ A
el = Cle] [E-ctx] T e [E-top]
C[r] = r [E-exn] (Az.e)val — e[val/z] [E-beta]

—
match K val with { K2 —e;.}—eval/z] [E-match]

Figure 2. Semantics of the language M

3.2 Operational semantics

The semantics of our language is given by the reduction rules in
Figure 2. For a top-level function, we fetch its definition from the
evaluation environmenh, which maps a variable to its definition.
We adapt some basic definitions from [40]. Definition 1 defines

e€{z|p} <= et or(eiscrash-free and [A1]
ple/z] =™ true)
e€x:ti >t < el or(e—=" Azr.ez and [A2]
Yoal € t1, (ewval) € ta[val/z])
e € (x:t1,t2) <= et or(e—" (vali,valz) and [A3]
vali € t1 andvalsy € talvaly /x])
e € Any <= true [A4]

Figure 3. Contract Satisfactiore(e t)

Definition 6 (Total contract) A contractt is total (tl) iff
tis{z | p} andz.pistl (i.e., crash-free, terminating)

or tisz:ty — tp andty istl andVual € t1, ta[val/x] istl
or tis(z:t1,tz2)andty istl andVual € 1, ta[val/z] istl
or tisAny

Our definition of total contract is different from that in [7], but
close to the crash-free contract in [40] with an additional condition

the usual contextual equivalence. Two expressions are said to bethatAz.p is a terminating function. For example, contrget| = #

semantically equivalent if and only if under all (closing) contexts,
if one evaluates to a blame the other also evaluates to the same

7. The notation(C[e])°°°* meang[e] is closed and well-typed.

Definition 1 (Semantically Equivalent)Two expressions; andes
are semantically equivalent, namely =, e, iff VC, (C[e:])°°°%
fori =1,2,r € {BAD,UNR}, Clei] =" r < Cle2] =" r

We useBAD to signal that something has gone wrong in a
program, which can be a program failure or a contract violation.

Definition 2 (Crash) A closed terne crashesff e —* BAD.

Our framework only guaranteesartial correctness. A diverging
program does not crash.

Definition 3 (Diverges) A closed expressiandivergeswrittenet,
iff eithere —* UNR, or there is no valueal such thate —* val.

At compile-time, one decidable way to check the safety of a
program is to see whether the program is syntactically safe.

Definition 4 (Syntactic safety) A (possibly open) expressienis
syntactically safeff BAD ¢, e. Similarly, a context is syntacti-
cally safe iffBAD ¢ C.

The notatiorBAD ¢, e meansBAD does not syntactically appear
anywhere ine, similarly for BAD ¢, C. For example \z.z is
syntactically safe, whilez. (BAD, z) is not.

Definition 5 (Crash-free ExpressionA (possibly open) expression
e is crash-free iff ¥C, BAD ¢, C and(C[[e])P°°L = C[e] /4 BAD

The quantified context serves the usual role of a probe that
tries to provokee into crashing. A crash-free expression may not
be syntactically safe, e.g\x.if = * x > 0 then x + 1 else BAD.

Lemma 1 (Syntactically safe expression is crash-free)

e is syntactically safe = e is crash-free

For ease of presentation, when we do not give lalb@BAD or
UNR, we mearBAD or UNR for any I. Moreover, expressiorgAD’
andUNR! are closed expressions ever i§ not explicitly bound.

4. Contracts

Inspired by [40], we design a contract satisfaction and checking al-
gorithm for a strict language. As diverging contracts make dynamic
contract checking unsound (explainedsi.2) and we do hybrid
checking, we focus on total contracts.

[1} — {y | head z > y} is total in our framework becaugead =
does not crash for alt satisfying{z | = # [1}. Such a contract
is not total in [7] because a crashing functinead is called in a
predicate contract.

4.1 A semantics for contract satisfaction

We give the semantics of contracts by definingatisfieg” (e € t)
in Figure 3. Here are some consequences: (1) a divergent expres
sion satisfies any contract, hence all contracts are inhabited; (2)
only crash-free expressions satisfy a predicate contract; (3) any ex
pression satisfies contralaty; (4) BAD only satisfies contradiny.

One difference from [40] is that, we do not allgye/x] in [Al]
to diverge while [40] allows because they only do static checking.
We support dependent tuple contracts, that are not in [7, 40]. One
difference from [7] is that, they say that a crashing expression does
not satisfy any contract; we say that a crashing expression satisfies
the universal contradtny. Having a top ordering contradhy is
debated in [11]. We define a subcontract ordering as follows.

Definition 7 (Subcontract) For all closed contracts; andts, t:
is a subcontract of, writtent; < ¢, iff Ve, e € t1 = ¢ € t2

For example, we havéz | true} < Any, but not vice versa.
TheAny is like (but not the same a%)v, a. Consider:

contract fail = Any
let fail raise Error

In [7] and other refinement type checking framework [5, 24, 36],
they give function likefail a function contrac{z | false} —

{z | true} so that the preconditiofz | false} allows their
system to blame all the callers o&i1. Using a function contract
for a non-function type is somewhat ad hoc. More discussion on
the contractiny can be found in [39].

4.2 The wrappers

As mentioned in§2, the essence of contract checking is the two
wrappers> and <, which are dual to each other, whose full ver-

. . . T
sions are>;! and<;! respectively. The wrapped expressiog, ¢
T

2

(defined in Figure 4) expands to a particular expression, which be-
haves the same asxcept that it raises blame if e does not obey
t and raises if the wrapped term is used in a way that violates

From [P1] to [P3], ife crashes, the wrapped term crashes; if
diverges, the wrapped term diverges. Whenever; ésrreached, we
know the property does not evaluate torue (as in [P1]). Rules
in Figure 3 and 4 are defined such that Theorem 1 holds.

unrl2
edt=e€e pq t
Al

BapH
edt=e pq t
unrl2

era{z|p} = letz=cinif pthenzelser, [P1]
T2
e;é:c:t1—>t2:1ety:ein [P2]
)
T ™ r2
Az1((y (@1 pa 1)) pa tal(z1 pa t1) /2])
1 T2 T
e (z:t1,t2) = match e with [P3]
T2
r r r2
(w1, 22) = (21 l% t1, @2 pa ta[(21 pa t1) /)
2 T2 1
1 7
€ pq Any = 1o [P4]
T2

Figure 4. Contract checking with the wrappers

Theorem 1 (Soundness of contract checkingjor all closed ex-
pressiong:” and closed, terminating contracts,

(e>t)iscrash-free = ect

The superscript- says bothe and¢ are well-typed and have
the same type. Note that ift is terminating and > ¢ is crash-free,
thent is total. See [39] for a full proof and a completeness theorem.
Basically, we rework the proofs in [41] for a strict language.

Unlike [12], which assumes there are no exceptions in contracts,
our checking algorithm detects contract exceptiongadntracts

The termta (21 % t1/x]in[P2] and [P3] says that, each (function)
T1

callin a contractis wrapped with its contract so that, if there is any
contract violation in a contract, we report this error. For example:

contract £ =k:({x | x>0} >{yly>0D}
> {z | k0> -1}

let £ g=g 2

let t2 = £ (fun x -> x)

a contract violation occurs ifiz | k 0 > -1} because the call

k 0 failsk’s precondition{x | x > 0}. Ther; says that the label
of r; is updatedr;’s label is the call site of; in ¢ and the name

of the contracty.’s label is the location of; : and the name of

k. Correctness of blaming (i.e., the correct labelsigris not the
focus of this paper. However, our proof [39] is different from that
in [7] and the proof in [7] works because they use an ad hoc fix,
i.e., usingUNR instead ofr;.

Terminating contracts We wantp in {z | p} to be terminating
because divergent contract hides crashdsor example:

let rec loop x = loop x
contract fb = {x | loop x} -> {y | true}
let fb x = head []

fb> tgp IS Az1.((Az.head []) (if loop z1 then z1 else BAD)),
which diverges whenever applied because ofltbep. However,
the functionfb is not crash-free.

We only have to prove termination of functions used in con-
tracts, not all the functions in a program. We can adapt ideas
in [4, 27, 35] to build an efficient automatic termination checker.

5. Static contract checking and residualization

The Theorem 1 i84.2 says that, to check contract satisfaction, we
can check the reachability &AD in e > ¢ as eaclBAD signals a
contract violation. We introduce an SL machine (Figure 5) which
tries to simplify away th&ADs in an expression. The novelty of our
work is to combine symbolisimplificationand contextual informa-

tion (ctx-info) synthesis withogical store in order to achieveer-
ification, blamingandresidualizationin one-go. The SL machine
takes an expressianand produces its semantically equivalent and
simplified version. A 4-tupldH | e | S | £) is tosimplifye and a
4-tuple((H | e| S| L)) is torebuild e where

e 7{ is an environment mapping variables to trivial values;
¢ ¢ is the expression under simplification (or being rebuilt);

e S is a stack which embodies the simplification context, or
continuation that will consume a simplified expression;

e L is a logical store which contains the ctx-info in logical for-
mula form; its syntax is

Luo=0|Vz:7,L|¢L
whereg is a predicate in Figure 6.

The job of the SL machine is to simplify an expression as much
as possible, consulting the logical store when necessary; when it
cannot simplify the expression further, it rebuilds the expression.

5.1 The SL machine

In Figure 5, the constamtand blame- cannot be simplified further,
thus being rebuilt as shown in [S-const] and [S-exn] respectively.
One might ask why we rebuild rather than return a blame. There are
two reasons: (a) it gives more information for static error reporting,
i.e., we know conditions leading to a reachabBl®; (b) as we do
hybrid contract checking, we want to send the residual code with
undischarged blames to a dynamic checker.

As we perform symbolic simplification rather than evaluation
(as for the CEK machine [14]), we only put a variable in the
environment# if it denotes a trivial value. A variable denoting
a top-level function is not put ifti{. Variables in? are inlined by
[S-varl] while variables not ifi{ are rebuilt by [S-var2].

Each element on the stack is callestack frameavhere the hole
e in a stack frame refers to the expression under simplification or
being rebuilt. We use to represent an expression that has been
simplified. The syntax of is

Su=[]|(ee)::S|(ce)::S|(Az.0)::S|letz=eine
| (natch o withalt):: S| (letz=eine) =S

| (match ep with K 7 — (0,8,L)) = S

The transitions [S-app], [S-match] and [S-K] implement the con-
text reduction in Figure 2. The transitions [S-letL], [S-matchL],
[S-letR], [S-matchR], [S-m-match], [S-match-let] implement the
conventional simplification rules. Hera] abbreviates a sequence
of z1,...,x,. We uselet instead of lambda for easy reading.
Rules [S-letL] and [S-matchL] push the argument into the let-
body and match-body respectively; rules [S-letR] and [S-matchR]
push the function into the let-body and match-body. The rules
[S-m-match] and [S-match-let] are to make an expression less
nested. Rule [S-K-match] allows us to simplify an expression
like match Some e with {Some x — 5;None — BAD} to

let x = e in 5 which is crash-free.

What doesebuilddo? It unwinds the stack. If the stack is empty
([R-done])), indicating the end of the whole simplification process,
we return the expression. Otherwise, we examine the stack frame.
By [E-exn], the transition [R-r] rebuild8NR (or BAD) with the rest
of the stack. After we finish simplifying one subexpression, we
start to simplify the next subexpression (e.g., [R-fun]). When all
subexpressions are simplified, we rebuild the expression (e.g., [R-
lam] and [R-app]). If current simplified expression is a trivial value
and we have stack frame lambda 8nwe use [R-beta]; together
with [S-varl], they implement a beta-reduction [E-beta]. Bound
variables are renamed when necessary.

HIn|S|L) ~ (H]|n|S|L) [S-const]
(H|r|SI1L) ~ (H|r|S|L) [S-exn]
(Hlz = tval] |z | S|L) ~ (H]z— tval]|tval | S| L)) [S-varl]
If o ¢ M, (H|z|S|L) ~ (H|z|S]|L) [S-var2]
(HlXxTe|S|L) ~ (Hle|(Az.e)::S|L,Ve:[7]) [S-lam]
(Hlevea| S|L) ~ (H|er|(oe2):: S|L) (S-app]
(H |match ep withalts|S| L) ~ (H]|eo| (match e withalts) :: S|L) [S-match]
. (H|K (a1,...,€i,-..,en) | S|L) ~~ (Hlei| (K (a1,...,0,...,en)]) : S| L) [S-K]
if x € fu(e), (H|letz=-e1ines|(oe)::S|L) ~ (7-[,|1et1::el inegeHS|E> [S-letL]
) N (match eg with =
if fole)nNz; =0, (H] F [(ee):S|L) ~ (H|matcheowith K @ —e;e|S|L) [S-matchlL]
if o & fo(a), (H|val|(e(letz=-e;ines)) =S|L) ~» (H|letz=e;invales |S|L) [S-letR]
if fo(val) N2 =0, I .
(H | val %o (matcheg with K 7 —€)) = S| L) ~ (H|matcheowith K Z — vale |S|L) [S-matchR]
if fu(alts) =0,
match eg with o ui It) .S | £> - <7—[| match eg with \| s | £> [S-m-match]
(#l K7 —e | (nateh thatts) K 7 — match e with alts
if z & fu(alts),
(H|let z =e; iney | (match e withalts):: S|L) ~» (H|letz =e; inmatches withalts|S|L) [S-match-let]
(Hlall]IL) ~ a [R-done]
if (s #matchewith K 7 — (,S,L)), (H|r]|s=S|L) ~ (H|r|S|L) [R-1]
................................. (Hla|(Av.e) 2 S[LY) ~ (H]|Iz.a|S|L) [R-lam]
Rules belown ¢ {BAD', UNR'} by default
"""""""""""""""""" (H[aT(oea) = S|L) ~ (H|ezl(ae)=S|L) [R-fun]
_ {(H | tval | (()\:C.al) o) :S|L) ~ (H[zw— tvdl]|ai|S]|L) [R-beta]
if a1 # Az.a’ ora # tval, (Hla|(a10)::S|L) ~~ (H]ara | S| Ly [R-app]
<<’H lan | (K ai...0):8|L) ~ (H|KT|S]|L) [R-K]
(H|K d|(natch @ with {...; K @ —e;...}) = S|L) ~ (H|letz=adine|S|L) [R-K-match]
if exists (K 2') such thatl = (3z : [r], [d] Il lad g =),
(H]a| (match o w1thK?—>e) sSIL)y o~ (HlelSILVz: 7], [a](x 7)) [R-s-match]
if for all (K @) such thatl # (3z : [7], [a]x).
% i
{(H]a| (match o with K AN e):S|L) ~ (H]e] (_I‘;a(t-':ljg?zsl;h ‘[K] i | [[Cav]]v(i J;’TL [R-s-save]
(H]a| (matchao with K @ — (,S,L£)) = S"| L") ~ (H|matchaowith K Z — a|S|L) [R-match]
for someS’ and£’ anda can ber
(Hla](Qetz™ =einez) = S|L) ~ (H|ez|(letx=aine)::S|L,Vz: [7],[a].) [R-let-save]

Figure 5. SL machine

checks if there is any brancki 7 that matches the scrutinee
But the current information it is not enough to show the validity
of eitherz > 0 or not(z > 0). By [R-s-save], we convert this
scrutinee to logical formula witfa] - =) (explained later) and
put it in £ and simplify both branches. Note that we put> 0 in

L for the true branch whilenot(z > 0) for thefalse branch.

The logical storeC captures all the ctx-info up to the program
point being simplified. (We uséf expression to save space, but
refer tomatch-transitions.) Consider:

A
o~ 111190
The [S-lam] puts/z : int in £, which is initially empty:
Al

The [S-match] starts to simplify the scrutinee> 0, which is being
rebuilt after a few trivial steps.

ifz > Othen (ifz+1>0
then 5 else BAD) else UNR

0 ifz+1>0 (1f:r>0theno) Va :int, |
{01 then 5 else BAD I s (Az.e) i [] ” x>0)
(D] UNR| (if x > O else o) 8|V : int, not(z > 0))]

ifz >O0then (ifx+1>0

then 5 else BAD) else UNR | (Aa.e) ::

[]]Vz : int)

In the true branch, after a few steps, we rebuild the scrutinee
z + 1 > 0.Inthis caseyz : int,z > 0 = x + 1 > 0is valid.
By [R-s-match], we take therue branch, which is a constast
As both 5 andJNR cannot be simplified further, we rebuild them by
[S-const] and [S-unr] respectively and obtain:

(if @ then (ifz+1>0
then 5 else BAD)
(Az.o) :: []
Before applying the transition [R-s-save], we check whether
x > 0 ornot(z > 0) is implied by L to see whether the transition
[R-s-match] can be applied. The transition [R-s-match] implements
[E-match], where the side condition H(K 2), £ = [a]x ="

(0lz>o0]
else UNR) ::

| Va : int))

1fﬂc>0theno) Vo :int,z >0, .
i (Az.e)] l (x+1>0) 0
(1f z>0elses) | Vx:int,

i (Az.e)] l not(z > 0))]

[o)s] ¢
(@] UNR|

r,s,i € Identifier
file == decl,...,decl,
ty == int|bool|’a] EJ S Types
lty == ty|ty >ty Logic type
decl = type as
| logici :lty|axiomi:¢|goali: ¢
& n= +[—]x]/
O = =< >]2
®p u= ->|<->|or|and
m u= nlxz|m ® mo|-m|z(m) Term
0] true | false | f 7t Predicate

mi Ot ma | $1 Op ¢2 | not()
forall T: ty.¢ | exists T: ty.¢

Figure 6. Syntax of logic declaration

By [R-match], we combine both simplified branches to rebuild
theif expression:

{(@]if x > Othenb else UNR | (Az.e) :: [||Vz : int))
We continue to rebuild the expression by [R-lam]:
(@] Az. if > 0 then 5 else UNR| []|V : int))
and terminate (by [R-done]) with a syntactically safe expression:
Azx. if z > 0 then 5 else UNR.

Besides [R-s-save], another transition that saves ctx-infbigo
[R-let-save]. We refer readers to [39] for more examples.

Theorem 2 (SL machine terminates)For all expressiore, there
exists an expressiansuch that(@ | e | []]0) ~* a.

Intuitively, SL machine behaves like CEK machine [14], but
rebuilds an expression ambes not inline top-level functionés
we do not have localet rec in our language, only inline trivial
values and also call SMT solver Alt-ergo with an option “-stop
(time-bound” or “-steps (boung” to make sure the SMT solver
terminates, there is no element causing non-termination.

Theorem 3 (Correctness of SL machineJor all expressiore, if
@]e][]]0) ~* a, thene = a.

The SL is designed in a way such that the simplifiegre-
serves the semantics of the original expressiohe proof of
Theorem 3 (in [39]) uses the fact that, if there existsuch that
Hler|STL) ~" (Hles|S|L)and(H |ea | S| L) ~"
(H|es| S| L) thener =, e2. (See Definition 1 foe=,.)

Theorem 4(Soundness of static contract checkingpr all closed
expressiore, and closed and terminating contraigt

@lest|[]]0) ~" ¢ andBAD ¢, ¢’

Proof. By Theorem 3, Lemma 1 and Theorem 1. O
For open expressions and open contracts, see [39].

= e€t

5.2 Logicization
We now explain the conversiof] s, which we calllogicization

Data type declaration in language M:
— — —
type ’a s = K of_}tl |-+ | Knof t,
Its alt-ergo code:type ’a s

%
logic K: t ->’as

Figure 7. Converting data type to Alt-ergo code

[r1...7a T
[[7'1—)7‘2] =

] .- [m] T
([71], [r2]) arrow

Figure 8. Converting OCaml types to logic type

type ’a list
logic nil
logic cons : ’a ,

’a list

’a list -> ’a list

As Alt-ergo supports only first-order logic (FOL), the arguments of
alogical function (e.gcons) are given as a tuple. The type variable
’a is assumed universally quantified at top-level. The conversion
algorithm for an arbitrary user-defined data type is in Figure 7.

A conventional way [22] to encode higher-order function to
FOL is to define a typerrow and a logical functiormpply:

type (’a, ’b) arrow
logic apply : (’a,

where the’a and ’b refer to a function’s input and output type
respectively. Converting types in the language M is easy (Figure 8).
Base typednt andbool are data types with no parameter.

We now give an example to show what logicization can do.

’b) arrow , ’a -> ’b

(x val len : ’a list -> int *)
contract len = {x | true} -> {y | y >= 0}
let len s = match s with | [] -> 0
| x:tu ->1 + lenu

(* val append : ’a list -> ’a list -> ’a list *)
contract append = {xs | true} -> {ys | true}

-> {len rs = len xs + len ys}
let append xs ys = match xs with

I 1 ->ys

| x::u -> x :: append u ys

The functionlen computes the length of a list and the function
append appends two lists. Leta andta stand for the definition
and contract okppend respectively. Applying only simplification
rules (including reduction rules) & > ta, we get (R3):

Av1.\vg.match v1 with
|[] — if len vy = lenwv; + len v, then vy else BAD!!
|z :u— if (len (z =

(if len (append u v2) = lenu + len vy

then append u v2 else UNR))

= lenwv; + lenvs)
then z :: append u vy else BAD'2
The simplification approach in [38] and the model-checking ap-

proach in [33] involve inlining top-level functions, while we do
not. Instead, we axiomatize the top-level function definitions that

Figure 6 gives the abstract syntax of the logical formula supported were called in contracts and lift expressions under checking to logic

by an SMT solver named Alt-ergo [8], which is an automatic
theorem prover for polymorphic first-order logic modulo theories.

level and consult an SMT solver. The challenge is to deal with
non-total expressions (e.®AD) in our source code. In the liter-

It uses classical logic and assumes all types are inhabited. First,ature about converting functional code (in an interactive theorem

Alt-ergo allows us to represent data type declaration, e.g.,
type ’a list = Nil | Cons of ’a * (’a list)
in Alt-ergo code withtype andlogic declarations:

prover) to SMT formulae [1, 6, 9, 28], expressions are converted
to a logical form directly. In [1], given a non-recursive function
definition f = e, they firstn-expande to getf = Az1...xzn.¢
wheree’ does not contain; if it is a recursive function, they as-

sumee is in a particular form such that all lambdas are at top-level

and the function performs an immediate case-analysis over one of

its arguments. Then, they forfiz’, f (1, ...,z,) = [¢'] where

[.] converts an expression to logical form. (On the other hand, [6]
usesh-lifting method: A-abstractions are translated from inside out,
where each\-abstraction is replaced by a call to a newly defined
functions, So/ @, fo(z1,...,2n) = [€'];...; Va1, f = fi(21))
This is fine for converting total terms, e.§5] = 5 and[z] = =,
etc., but what ar¢BAD] and [UNR]? Our key idea is not to convert
an expression directly to a corresponding logical term, but form
equality with[.]s recursively (defined in Figure 9). The subscript
fin [e]s denotes the expressien Moreover, we perform neither

n-expansion (which does not preserve semantics in the presence of

non-total terms) noA-lifting, and yet we allow arbitrary forms of
recursive functions. We have such flexibility because we convert
abstraction and partial application directly with the helgpply.
(Note that our logicizatiof.] y can also produce higher-order logic
formula for interactive proving by replacinGapply(f,z)) with
(f(z)) and not converting the types.) No logicization work in the
literature (including [6, 9, 28, 34]) deal with non-total terms. The
work [6] uses approaches in [9, 28] to deal with polymorphism
while Alt-ergo itself supports polymorphism.

Our framework can systematically generate Alt-ergo code, like
below, to show that thosgADs in R3 are unreachable.

(’a list, int) arrow
(’a list,
(’a list,’a list) arrow) arrow

logic len:
logic append:

axiom len_def_1 : forall s:’a list. nil ->
apply(len,s) = 0

axiom len_def_2 : forall s:’a list. forall x:’a.
forall 1:’a list. s = cons(x,1) —>

apply(len,s) = 1 + apply(len,l)

s =

goal app_1 : forall vi1,v2:’a list. vl = nil ->
apply(len,v2) = apply(len,vl) + apply(len,v2)

goal app_2 : forall vi1,v2,1:’a list.forall x:’a.
vl = cons(x,1) ->
apply(len,apply(apply (append,l1l),v2))
= apply(len,l) + apply(len,v2) ->
(exists y:’a list. y = apply(apply(append,l),v2)
and apply(len,cons(x, y))
= apply(len,vl) + apply(len,v2))

To make an SMT solver's life easier (i.e., multiple small axioms are
better than one big axiom), we have two axioms ¥en, one for

® € [+, —%,/] ©€ > <=
Jy Expression — Formula
[let (rec) f=e];y = [e]s top-leveldefn
1 _ true for axioms
[BADT], = { false for goals
[NR']; = false
[z]; = f==
[n]y = f=n
[el* ®ex?]ly = 3xi:[m], 3ze : [2],

le]zy Afea]ay A f =31 @ 22
Jz1 : 1], [ei]e A

31’2 . |IT2]], ﬂeg]]zz/\

((z1 @t T2 A f = true)V
(not(z1 ©¢ z2) A f = false))
Va @ 7], [[e]](apply(f,x))

3z : [7], [ex]e A [e2]y

Jz1 : 1], [er]e A

o : [[7‘2]], ﬂeg]]z2/\

f = apply(z1,22)

Jz1 : [[7‘1]], ﬂeﬂ]zl A A

Jxy, ¢ |I7_n]]7 ﬂen,ﬂxn,A
f:K(y1a7y’ﬂ)

xo : [10], [eo]wo A

(AVz: [, (w0 = K 7) = [e])

Figure 9. Convert expression to logical formula

[e* © e’y

[Az7.€e]y
[Let 27 = €1 ines]s
[e1" e2*]s

[K el ..

.6;”]]/‘

match el with

K7 Iy

r —e

Next, what query (i.e., goal) shall we make? All we want is to
check if the branch leading ®AD is reachable or not. So our task
is to examine the scrutinee ofmatch expression. For example,
the goalapp_1 states that the ctx-infe1=nil, which is from the
pattern matchingatch vi with {[] — ... }, implies the scrutinee.
By [S-lam] and [R-s-save], we hav@ = Vv; : ’a list, Vv :

’a list, v nil. The scrutinee ijlen vo = len vy +
len v2}]true. That is, we want to check wheth@en v, =
len v; + len w2 iS equivalent totrue. Alt-ergo saysvalid for
both goals. Thus, we know boBAD'! andBAD'? are not reachable.

Theorem 6 (Logicization for goals: validity preservation}or all
(possibly open) expressief, for all fu(e), 3f : 7, if [e] s is valid
ande — ¢’ for somee’, then[e'] s is valid.

More details on design choices are in [39]. Here, we highlight
a few. (1) Only functions called in contracts are converted to Alt-
ergo axioms. (2) In Figure 9, there are two conversionssfdy,
true for axioms. This is for generating a harmless axiome

each branch, which are self-explanatory. As a constructor is alwaysfor the crashing branch of a partial function called in contracts.

fully applied, we do not encode its application witbply. The->
(in axioms and goals) is a logical implication.
For example, the axiormen_def_1, is generated by:

[As’® 135t natch swith {Nil — 0}]1ep
Vs:’a list.[match s with {Nil — 0}]
Vs:’a list. dxo :’a list.[s]ee A

(zo =nil -> Hoﬂ(apply(len,s)))
Vs :’a list. dzg:’a list.zg =s A
(zo =nil -> apply(len, s) = 0)

(apply(len,s))

Lettingxo bes, we get a more readable version (axiben_def _1).
An algorithm that partially eliminates redundant existentially quan-
tified variables can be found in [39].

Theorem 5 (Logicization for axioms) Given closed definition
f =¢", the logical fomuladf : , [e] 5 is valid.

(3) For goals, thee] s collects ctx-infobeforea scrutinee of a
match expression, thugBAD]; = [UNR]; = false, which implies
everything, which is what we want.

5.3 Discussion and preliminary experiments

One might notice that SL machine simplifies terms under lambda
and the body ofiatch expression while we do not have such ex-
ecution rules in Figure 2. As we rebuild blames and do not inline
recursive functions (i.e., no crashing and no looping during simpli-
fication), the SL machine does not violate call-by-value execution.
One might worry that the rule [S-m-match] causes exponen-
tial code explosion for static analysis (although no run-time over-
head). From our current observation, quite often the scrutinee is
if b then d else e wheree is BAD or UNR. As blames trigger
the SL machine to immediately rebuild the blame with the rest of
the stack, applying the rule [S-m-match], we do not have duplica-
tion but have a desired smaller formula for the SMT solver. We

have implemented a prototype based on the source code of ocamlc- Moreover, [T1] justifies the correctness of applying the rule
3.12.1. Table 1 shows the results of preliminary experiments, which [rmUNR] because alUNRs are indeed unreachable B&' is in-
are done on a PC running Ubuntu Linux with a quad-core 2.93GHz voked befor@NR! for the samé. Thatis, £ p then e; else BAD')
CPU and 3.2GB memory. We take some examples from [26] and is invoked beforei{f p then e else UNR') for the same, maybe
OCaml stdlib and time the static checking. The column Ann gives differente. So it is safe to apply the rulermUNR] even ifp diverges
the LOC count for contract annotations. One advantage of the SL or crashes. See [39] for more details.

Table 1. Results of preliminary experiments 7. Related work

program total LOC | Ann LOC | Time (sec) Contract semantics were first formalized for a strict language [7,
intro123, neg, mc91l 28 5 0.10 11] and later for a lazy language [40]. This paper adapts and re-
ack, fhnhn, zipunzip 25 4 0.16 formalizes some of their ideas on contract satisfaction and contract
arith, sum, max 26 4 0.20 checking. Detailed design difference is explaineg4n

OCaml stdlib/list.ml 81 16 0.72 Pre/post-condition specification using logical formulae [2, 15,

17, 34] allows programmers to existentially quantify over infi-
nite domains or express metaproperties that are not expressible in
contracts. We like the idea of ghost refinement [36], which sep-
arates properties that can be converted to program code from the
metaproperties expressed only as logical formulae. As there are al-
ways limits to automatic static checking, it is practical to convert
some difficult checks to dynamic checks. Unlike pre/post-condition
specification, refinement types and contracts allow us to study sub-
contract relations [11, 41], recursive contracts [7], and polytniarp
contracts [3]. Contracts also enjoy interesting mathematical prop-
erties [7, 11, 39, 40].

One might recall hybrid refinement type checking (HTC) [13,

machine is that it allows rules to be easily added or removed. This
paper focuses on the theory of hybrid contract checking. We leave
optimization and rigorous experimentation on tuning the strength
of symbolic simplification and the frequency of calling an SMT
solver as future work.

6. Hybrid contract checking

We have explained with examples how SCC, DCC, HCC work
in §2. Programmers may choose to have SCC only, DCC only,
or HCC. In this section, we summarize their algorithm. Given a

programf; € t;, fi = e; for 1 < ¢ < n. Supposef; is the
current function under contract checking; is a function called
in f; (including f;’s recursive call);s1 is the SL machinermUNR

implements the rulérmUNR] (mentioned earlier i§2).

(if eo then e; else UNR) = e; [rmUNR]

We have:
[SCCI: sie:l(f; <} tr,)/fi]v3 t)

pan’i

[DCCI: eil(f; > ty;)/ 1]
[HCC]: fit = A7.mUNR(s(es[((f54 “f7) <F ty,)/ 5100 1))

In [HCC], the residual codég;#’'s parameter “?” waits for a caller’s
name. For exampldf, an SMT solver cannot prove the gealp_2
in §5.2 (although it can), recalling R3 i§b.2, the residual code
appendf is:

A?. A \v1.\va.match v1 with

| []— w2

| x :: 1 — if len (z :: append t v2) = len v1+1len vy

then x :: append t v2 else BAD'

which says that we only have to check the postcondition for the

second branch. (If alBADs are simplified away during SCC, a
residual code of a function is its original definition.)
Lemma 2 (Telescoping property [7, 4Q])For all expressione,
total contractt, blamesr, ro, 73,74, (e ;2 t) ;2 t=e ;é t.

T2 T4 T4

Precondition of a function is checked at caller sites. Afis
the simplifiedf; D;Z ty,, inspecting [HCC], eaclf; at caller sites

el el

is replaced by f; b7 tf,) <}’ ts,, which is(f; D? t,) "% s,
By the telescoping property, we have: o B

ean’i e’ pap’J

; tr T t
(fs > f])mbﬁi 7 =1 g L,

which is the same as in DCC. This shows that [HCC] blarhés
and only if [DCC] blamesf.

(T1]

24]. In theory [16], (picky, i.e. our) contract checking is able to
give more blame than refinement type checking in the presence of
higher-order dependent function contracts. That is partly why [36]
invents a Kind checker to report ill-formed refinement types. As
discussed 4.2, we checle > ¢ for crash-freeness in one-go and
do not have to check t to be crash-free separately. In practice,
the H and £ in the SL machine serve a similar purpose as the
typing environment in HTC. But symbolic simplification gives
more flexibility in such ways as teasing out the path sensitivity
analysis with the rule [S-m-match], etc. We hope this work opens a
venue to compare HCC and HTC in practice. Notably, VeriFast [20]
(for verifying C and Java code) suggests that symbolic execution is
faster than the verification condition generation method [2, 15].

Khoo et al. [23] mix type checking and symbolic execution. Be-
sides they do not generate residual code, they require programmers
to place block annotationg; .} for type checking ands s} for
symbolic execution while our SL machine systematically simplifies
subterms and consults the logical store for checking at the appro-
priate program point. Moreover, their symbolic expression is given
in linear arithmetic, which is more restrictive than ours.

Our approach is different from [36], which extracts proofs of
refinement types from an SMT solver and injects them as terms in
the generated bytecode RDCIL (like proof carrying code) during
refinement type checking. Theirs has a security motivation.

Some work [25, 26, 32, 33] suggests converting programs to a
higher-order recursive scheme (HORS), which generates (pssib
infinite) trees, and specify properties in the form of a trivial au-
tomaton and do model checking to see whether HORS satisfies its
desired property. Our approach is completely different although we
both do reachability checking. They work on automata while we
work on programs directly. Our approachn®dularwhile theirs
is not. They deal with localet rec while we do not, but we
could infer local contract with method in [21] or inline the local
let rec function for a fixed number of times. They deal with pro-
tocol checking while we do not, except where a protocol checking
problem can be converted to checking the reachabiliBAof

The contextual information synthesis and conversion of expres-
sion to logical formula is inspired by the use of the applica#on
in [18, 19], which makes conversion of higher-order functions eas-
ier. But we use the technique in different contexts.

Many papers on program verification [2, 10, 15, 30, 31, 37] [16] M. Greenberg, B. C. Pierce, and S. Weirich. Contractsemadnifest.
focus on memory leaks, array bound checks, etc. and a few handle In POPL: the ACM SIGPLAN-SIGACT symp. on Prin. of Prog. Lang.
higher-order functions and recursive predicates. Our work fegus pages 353-364, 2010.
on more advanced properties and precise blaming of functions at[17] C. A. R. Hoare. An axiomatic basis for computer programming.
fault. Contract checking in the imperative world is lead by [10], Commun. ACM12:576-580, October 1969.
which statically checks contract satisfaction at the bytecode CIL [18] K. Honda and N. Yoshida. A compositional logic for polymbic
level and runs dynamic checking separately. Residualization has higher-order functions. IPPDP: the ACM SIGPLAN intl. conf. on
not been done in [10]. We may adapt some ideas in [20] to extend Prin. and practice of Decl. Progpages 191-202, 2004.

our framework for program with side effects.

8. Conclusion
We have formalized a contract framework for a pure, strict, highe

order subset of OCaml. We propose a natural integration of static
contract checking and dynamic contract checking. With the SL

machine, our approach gives precise blame at both compile-tim
and run-time in the presence of higher-order functions. In the near
future, besides rigorous experimentation and case-studies, we pla
to add user-defined exceptions, allow side effects in program and
hidden side effects in contracts, do contract or invariant inference.

Acknowledgments
I would like to thank Xavier Leroy, Francois Pottier, Nicolas Pouil-

lard, Martin Berger, Simon Peyton Jones, Michael Greenberg, and

the anonymous reviewers for their comments.

References

[1] N. Ayache and J.-C. Filliatre. Combining the Coq proofistsst
with first-order decision procedures. Unpublished, 200BLWttp:
//www.lri.fr/~filliatr/publis/coq-dp.ps.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pesgming
system: An overviewCASSISLNCS 3362, 2004.

[3] J. F. Belo, M. Greenberg, A. Igarashi, and B. C. Piercelyorphic
contracts. IlESOR pages 18-37, 2011.

[4] A. M. Ben-Amram and C. S. Lee. Program termination analysis
polynomial time. ACM Trans. Program. Lang. Sys9:5:1-5:37,
January 2007.

[5] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and&feis.
Refinement types for secure implementatioA&M Trans. Program.
Lang. Syst.33:8:1-8:45, February 2011.

[6] J. C. Blanchette, S.&me, and L. C. Paulson. Extending Sledgeham-
mer with SMT solvers. IlCADE, pages 116-130, 2011.

[7] M. Blume and D. A. McAllester. Sound and complete models of
contracts.J. Funct. Program.16(4-5):375-414, 2006.

[8] S. Conchon, E. Contejean, and J. Kanig. Ergo : a theorawvepifor
polymorphic first-order logic modulo theories. Unpublish2606.
URL http://ergo.lri.fr/papers/ergo.ps.

[9] J.-F. Couchot and S. Lescuyer. Handling polymorphismutomated
deduction. INCADE, pages 263-278, 2007.

[10] M. Fahndrich and F. Logozzo. Static contract checking withralost
interpretation. InFoVeOOS: the Intl. Conf. on Formal Verf. of OO
Software pages 10-30, 2010.

[11] R. B. Findler and M. Blume. Contracts as pairs of projtsi. In
Functional and Logic Prog.pages 226—241, 2006.

[12] R. B. Findler and M. Felleisen. Contracts for highedarfunctions.
In ICFP: the ACM SIGPLAN Intl. Conf. on Fnl. Pragpages 48-59,
2002.

[13] C. Flanagan. Hybrid type checking. ROPL: the ACM SIGPLAN-
SIGACT symp. on Prin. of Prog. Langages 245-256, 2006.

[14] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. T¢seerce of
compiling with continuations. 1®LDI: the ACM SIGPLAN conf. on
Prog. Lang. Design and Implpages 237-247. ACM, 1993.

[15] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,B. Saxe, and
R. Stata. Extended static checking for JavaPLbI, pages 234-245,
2002.

[19] K. Honda, M. Berger, and N. Yoshida. Descriptive anctige com-
pleteness of logics for higher-order functionsl@ALP: the Intl. Col-
log. on Autamata, Lang. and Progages 360-371, 2006.

[- [20] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Rekxj and

F. Piessens. VeriFast: A powerful, sound, predictable Vasfier for
C and Java. INASA Formal Methodpages 41-55, 2011.

e[21] R. Jhala, R. Majumdar, and A. Rybalchenko. HMC: Verifyifunc-

tional programs using abstract interpreters CHV: the intl. conf. on
Comp. Aided Verfpages 262-274, 2011.

r-t22] M. Kerber. How to prove higher order theorems in first oridgic. In

IJCAI, pages 137-142, 1991.

[23] Y. P. Khoo, B.-Y. E. Chang, and J. S. Foster. Mixing typeecking
and symbolic execution. IRLDI: the ACM SIGPLAN conf. on Prog.
Lang. Design and Implpages 436—447, 2010.

[24] K. Knowles and C. Flanagan. Hybrid type checkingCM Trans.
Program. Lang. Syst32:6:1-6:34, February 2010.

[25] N. Kobayashi. Types and higher-order recursion schdoreserifica-
tion of higher-order programs. IROPL, pages 416-428, 2009.

[26] N. Kobayashi, R. Sato, and H. Unno. Predicate abstmatnd cegar
for higher-order model checking. PLDI, pages 222-233, 2011.

[27] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change
principle for program termination. IROPL, pages 81-92, 2001.

[28] K. R. M. Leino and P. Rmmer. A polymorphic intermediate veri-
fication language: Design and logical encoding. TRCAS: the Intl.
Conf. on Tools and Algo. for the Construction and Anls. of.Syages
312-327, 2010.

[29] B. Meyer. Eiffel: the language Prentice-Hall, 1992.

[30] M. Might. Logic-flow analysis of higher-order programt POPL:
the ACM SIGPLAN-SIGACT symp. on Prin. of Prog. Lamages
185-198, 2007.

[31] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorpimsnd sepa-
ration in Hoare type theory. If/CFP, pages 62—73, 2006.

[32] C.-H. L. Ong. On model-checking trees generated by highéer
recursion schemes. 1hICS: IEEE Symp. on Logic in Computer
Sciencepages 81-90, 2006.

[33] C.-H. L. Ong and S. J. Ramsay. Verifying higher-orderdiional
programs with pattern-matching algebraic data type®O®L, pages
587-598, 2011.

[34] Y. Régis-Gianas and F. Pottier. A hoare logic for call-by-vaiuec-
tional programs. IMPC, pages 305-335, 2008.

[35] D. Sereni and N. D. Jones. Termination analysis of higitder func-
tional programs. Irproceedings of the 3rd Asian Symp. on Program.
Lang. and Systems (APLAPages 281-297, 2005.

[36] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargagad,J. Yang.
Secure distributed programming with value-dependent type€FP,
pages 15-27, 2011.

[37] H. Xi and F. Pfenning. Dependent types in practical pangming.
In POPL: the ACM SIGPLAN-SIGACT symp. on Prin. of Prog. Lang.
pages 214-227, 1999.

[38] D. N. Xu. Extended static checking for Haskell. froceedings of the
ACM SIGPLAN workshop on Haskgtlages 48-59, 2006.

[39] D. N. Xu. Hybrid contract checking via symbolic simpliftaan.
INRIA technical report RR-7794, 2011.

[40] D. N. Xu, S. Peyton Jones, and K. Claessen. Static contteecking
for Haskell. INPOPL, pages 41-52, 2009.

[41] N. Xu. Static Contract Checking for Haskefh.D. thesis, Aug. 2008.

