
Deriving Pre-conditions for Array Bound Check

Elimination

Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

School of Computing
National University of Singapore

{chinwn,khoosc,xuna}@comp.nus.edu.sg

Abstract. We present a high-level approach to array bound check op-
timization that is neither hampered by recursive functions, nor disabled
by the presence of partially redundant checks. Our approach combines a
forward analysis to infer precise contextual constraint at designated pro-
gram points, and a backward method for deriving a safety pre-condition
for each bound check. Both analyses are formulated with the help of a
practical constraint solver based on Presburger formulae; resulting in an
accurate and fully automatable optimization. The derived pre-conditions
are also used to guide bound check specialization, for the purpose of elim-
inating partially redundant checks.

1 Introduction

Array bound check optimization has been extensively investigated over the last
three decades [24, 12, 5, 17, 7, 8, 15], with renewed interests as recently as
[3, 27, 23]. While successful bound check elimination can bring about measur-
able gains in performance, the importance of bound check optimization goes
beyond these direct gains. In safety-oriented languages, such as Ada or Java, all
bound violation must be faithfully reported through precise exception handling
mechanism. With this, the presence of bound checks could potentially interfere
with other program analyses. For example, data-flow based analysis must take
into account potential loss in control flow should array bound violation occurs.

In this paper, we provide fresh insights into the problem of array bound
check elimination, with the goal of coming up with a much more precise inter-
procedural optimization.

Let us first review the key problem of identifying bound checks for elimina-
tion. In general, under a given context, a check can be classified as either:

– unsafe;
– totally redundant;
– partially redundant.

A check is classified as unsafe if either a bound violation is expected to
occur, or its safety condition is unknown. As a result, we cannot eliminate such
a check. A check is classified as totally redundant if it can be proven that no

O. Danvy and A. Filinski (Eds.): PADO-II, LNCS 2053, pp. 2–24, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Deriving Pre-conditions for Array Bound Check Elimination 3

bound violation will occur1. Lastly, a check is said to be partially redundant
if we can identify a pre-condition that could ensure that the check becomes
redundant.

Note that the classification of a check depends upon a given context. Specif-
ically, a partially redundant check under a given context can become totally
redundant when the context becomes “stronger”. (Contexts are expressed as
predicate.)

To illustrate these three types of checks, consider the following two functions,
expressed in a first-order functional language.

newsub(arr, i, j) = if (0 ≤ i ≤ j) then L1@H 1@sub(arr , i) else − 1
last(arr) = let v = length(arr) in L2@H 2@sub(arr , v)

Arrays used in this paper are assumed to start at index 0, and can be ac-
cessed by primitive functions, such as sub. Furthermore, we annotate each array
access sub call by some check labels, e.g. L1,H 1, to identify the low and high
bound checks respectively. The first function, newsub, accesses the element of
an array after performing a test on its index parameter i . For the access of
sub(arr , i) to be safe, both a low bound check L1 = i ≥ 0 and a high bound
check H 1 = i < length(arr) must be satisfied.

Under the context 0 ≤ i ≤ j of the if -branch, we can prove that L1 is
totally redundant, but the same cannot be said about H 1. In fact, the H 1 check
is partially redundant, and could be made redundant under appropriate pre-
conditions, for e.g. j < length(arr).

The second function is meant to access the last element of a given ar-
ray but it contains a bug. While the index of our array ranges from 0 to
length(arr) − 1, this function used an index outside of this range. Hence, its
upper bound check H 2 = v < length(arr) is unsafe as it contradicts with the
assertion v = length(arr) from the let statement.

Totally and partially redundant checks are traditionally identified by two
separate techniques. As a matter of fact, forward data flow analysis[1, 15] which
determines available expressions has been primarily used to identify totally re-
dundant checks. An expression (or check) e is said to be available at program
point p if some expression in an equivalence class of e has been computed on
every path from entry to p, and the constituent of e has not been redefined in
the control flow graph (CFG). Using this information, the computation of an
expression (or check) e at point p is redundant if e is available at that point.

Partially redundant checks are more difficult to handle. Traditionally, a back-
ward dataflow analysis [8] is used to determine the anticipatability of expressions.
An expression (or check) e is anticipatable at program point p if e is computed
on every path from p to the exit of the CFG before any of its constituents are
redefined. By hoisting an anticipatable expression to its safe earliest program
point, selected checks can be made totally redundant. Historically, hoisting of
anticipatable check is deemed as crucial for eliminating checks from loop-based
1 This includes the possibility that the check can be safely executed or it can be
avoided.

4 Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

programs. Unfortunately, hoisting of checks causes bound errors to be flagged at
an earlier program point, creating problems for precise exception handling.

In this paper, we propose a new approach to eliminating array bound checks.
Our approach begins with a forward contextual-constraint analysis that syn-
thesize contexts for checks in a program. This is then followed by a backward
derivation of weakest pre-conditions needed for checks to be eliminated.

For the example given above, our method determines that the lower bound
check L1 in the function newsub is totally redundant; the upper bound check
H 2 in the function last is unsafe. Furthermore, the upper bound check H 1 of
newsub is determined to be partially redundant; the derived pre-condition being:

pre(H 1) ≡ (i ≤ −1) ∨ (j < i ∧ 0 ≤ i) ∨ (i < length(arr))

To overcome the problem arising from hoisting of partially-redundant checks,
we propose to use program specialization to selectively enforce contexts that are
strong enough for eliminating partially redundant checks. We note that such spe-
cialization technique is also advocated by [18] in their bound check optimization
of Java programs.

Our new approach is built on top of an earlier work on sized-type inference[4],
where we are able to automatically infer input/output size relation and also de-
termine invariants for parameters of recursive functions over the sizes of data
structures used. The inference is performed accurately and efficiently with the
help of a constraint-solver on Presburger form[22]. The presence of sized type
greatly enhances inter-procedural analysis of contextual constraints, which are
crucial for identifying both unsafe and totally redundant checks. More impor-
tantly, accurate contextual constraint also helps in the derivation of safety pre-
conditions for partially-redundant checks. With the derived pre-condition, we
can provide specialized code to selectively eliminate partially-redundant checks
based on the available contexts. The specialization process can be further tuned
to provide a range of time/space tradeoff.

Our main contributions are:

1. To the best of our knowledge, we are the first to handle partially redundant
checks through the backward derivation of safety pre-condition after contex-
tual constraint has been gathered in a separate forward phase. This gives
very accurate result for eliminating partially-redundant checks.

2. We deal directly with recursive functions, and the invariant synthesis is per-
formed only once for each recursive function, instead of for every occurrence
of checks within the function. Except for [26, 23] whose methods are re-
stricted to totally redundant checks, almost all previous work for bounds
check elimination deal with only loop-based programs.

3. We design a simple yet elegant approach to derive the weakest pre-condition
(with respect to a given contextual constraint) for check elimination from
the context of the check and the synthesized invariant. Our approach works
seamlessly across recursive procedures.

4. We support inter-procedural optimization through backward propagation of
a function’s pre-condition to its callers to become a check.

Deriving Pre-conditions for Array Bound Check Elimination 5

5. We introduce three forms of bound check specialization: polyvariant for max-
imal specialization, monovariant for minimal code duplication, and duovari-
ant specialization for a space/time tradeoff. While the idea of using context-
based program specialization [16, 6] is not new, our work is novel in its use
of pre-condition for guiding effective specialization.

Section 2 gives an overview of our method by introducing sized types and the
main steps towards bound check specialization. Section 3 formalizes the context
synthesis as a forward analysis method. It also illustrates how invariants on
recursive functions can be synthesized, so as to provide informative contexts for
recursive functions. Section 4 describes the key steps for classifying checks, and
the inter-procedural mechanism for deriving pre-conditions for each partially
redundant check. Section 5 shows how the derived pre-conditions can be used to
guide bounds check specialization; while Section 6 shows that the cost of analysis
is within acceptable limit. Related work is compared in Section 7, before we
discuss some future directions of research in the Section 8.

x ∈ Var 〈Variables〉 a ∈ Arr 〈Array Names〉
f ∈ Fname 〈Function Names〉 n ∈ Int 〈Integer Constants〉
L ∈ Label 〈Labels for checks〉
p ∈ Prim 〈Primitives〉

p ::= + | − | ∗ | / | > | = | ! = | < | >= |
<= | not | or | and | length | newArr

κ ∈ Call 〈Calls〉
κ ::= L@κ | f (x1, . . . , xn) | sub(a, x) | update(a, x1, x2)

e ∈ Exp 〈Expressions〉
e ::= x | n | p (x1, . . . , xn) | κ | if e0 then e1 else e2 | let x = e1 in e2

d ∈ Def 〈Function Definition〉
d ::= f (x1, . . . , xn) = e

Fig. 1. The Language Syntax

2 Overview

We apply our technique to first-order typed functional language with strict se-
mantics. Recursive functions in the language are confined to self-recursion. Cur-
rently, mutual recursion are encoded into self-recursion by appropriate tagging of
input and output. The language is defined in Fig. 1. Note that the language syn-
tax includes check labels (also called labels for brevity) that identify bound checks
(ie., array bound checks or checks that originated from these bound checks).
Check labels appears syntactically at calls to functions/operations that involve
bound checks. However,We do not label self-recursive calls, as we provide slightly

6 Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

different treatment to recursive function definitions (as explained in Section 3.2).
Lastly, check labels are automatically inserted into programs by our analysis.

We restrict the arguments to a function to be just variables. This simplifies
presentation, without loss of generality.

Sized Type = (AnnType, F)

Annotated Type Expressions:
v ∈ V 〈Size Variables〉 t ∈ TVar 〈Type Variables〉
σ ∈ AnnType 〈Annotated Types〉

σ ::= ∀ t . σ | τ | τ → τ
τ ∈ Basic 〈Basic Type〉

τ ::= t | (τ1, .., τn) | Arrv τ | Intv | Boolv

Presburger Formulae:
n ∈ Z 〈Integer constants〉 v ∈ V 〈Variable〉
φ ∈ F 〈Presburger Formulae〉

φ ::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬ φ | ∃ v . φ | ∀ v . φ
b ∈ BExp 〈Boolean Expression〉

b ::= True | False | a1 = a2 | a1 �= a2 | a1 < a2

| a1 > a2 | a1 ≤ a2 | a1 ≥ a2

a ∈ AExp 〈Arithmetic Expression〉
a ::= n | v | n ∗ a | a1 + a2 | − a

Fig. 2. Syntax of Sized Types

We only consider well-typed programs. We enhance the type system with the
notion of sized types, which captures the size information about the underlying
expressions/values. For a function, sized type reveals size relationships amongst
the parameters and results of that function. The syntax of sized type is depicted
in Fig. 2. It is a pair containing an annotated type and a Presburger formula.
An annotated type expression augments an ordinary type expression with size
variables; the relationship among these variables are expressed in the associated
formula. In this paper, we consider only three basic types: Arrays, integers, and
booleans. The annotated type for arrays is Arrv τ , where v captures the array
size; for integers, it is Intv , where v captures the integer value; for booleans, it
is Boolv , where v can be either 0 or 1, representing the values False and True
respectively. Occasionally, we omit writing size variables in the annotated type
when these variables are unconstrained.

A sample program for our language is shown in Fig. 3. This program contains
four functions that implement binary search. The main function bsearch takes
an array and a key in order to search for an element in the array. If found, the

Deriving Pre-conditions for Array Bound Check Elimination 7

getmid :: (Arra Int, Intl , Inth) → (Intm , Int)
Size a ≥ 0 ∧ 2m ≤ l + h ∧ l + h ≤ 1 + 2m

getmid(arr , lo,hi) = let m = (lo + hi)/2
in let x = L3@H 3@sub arr m in (m, x)

cmp :: (Inti , Intj) → Intr

Size (i < j ∧ r = −1) ∨ (i = j ∧ r = 0) ∨ (i > j ∧ r = 1)
cmp(k , x) = if k < x then − 1 else if k = x then 0 else 1
look :: (Arra Int, Intl , Inth , Int) → Intr

Size (a ≥ 0) ∧ ((l ≤ h) ∨ (l > h ∧ r = −1))
Inv a� = a ∧ l ≤ h, l� ∧ h� ≤ h ∧

2 + 2l + 2h� ≤ h + 3l� ∧ l + 2h� < h + 2l�

look(arr , lo,hi , key) =
if (lo <= hi) then

let (m, x) = L4@H 4@getmid(arr , lo,hi)
in let t = cmp(key , x)

in if t < 0 then look(arr , lo,m − 1, key)
else if (t == 0) then m else look(arr , m + 1, hi , key)

else − 1
bsearch :: (Arra Int, Int) → Int

Size (a ≥ 0)
bsearch(arr , key) = let v = length(arr) in L5@H 5@look(arr , 0, v − 1, key)

Fig. 3. Binary Search Program

corresponding array index is returned, otherwise − 1 is returned. The recursive
invocation of binary search is carried out by the function look .

2.1 Use of Sized Types

Sized type of a function captures the relationship between sizes of the func-
tion’s input and output. For instance, the annotated type for function cmp is
(Inti , Intj) → Intr , where i , j are the respective input values, and r is its
output. The size constraint (identified by the keyword Size) states three possi-
ble outputs for calling cmp, depending on whether the argument k is less than,
equal to, or greater than the argument x .

Even more importantly, through sized-type inference [4], we can synthesize,
for a recursive function, an invariant that describes changes in size of input argu-
ments of the function during its nested recursive-call invocations. For example,
an accurate invariant relationship between the (first three) argument sizes of any
nested recursive calls to look , a�, l�, h�, and the (first three) parameter sizes of
the initial first call to look , namely a, l , h, has been captured as the following
Presburger formula :

inv(look) = a� = a ∧ l ≤ h, l� ∧ h� ≤ h ∧
2 + 2l + 2h� ≤ h + 3l� ∧ l + 2h� < h + 2l�

8 Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

This invariant tells us that, in the successive recursive invocations of look , the
size of the first argument remains unchanged. Also, the values of the argument
lo (l�) in the successive calls never get smaller than its initial value l , while those
of hi (h�) never get bigger than the initial value h. For example, if the first call
to look is look(2, 10), we know that successive recursive calls look(lo, hi) will
satisfy the relationship lo ≥ 2 ∧ hi ≤ 10. Terminology-wise, we call the initial
set of arguments/size variables (eg., a, l , and h) the initial arguments/sizes,
and that of an arbitrarily nested recursive call (eg., a�, l�, and h�) the recursive
arguments/sizes.

+ :: (Inti , Intj) → Intk

Size k = i + j
− :: (Inti , Intj) → Intk

Size k = i − j
= :: (Inti , Intj) → Boolb

Size (0 ≤ b ≤ 1) ∧ ((i = j ∧ b = 1) ∨ (i �= j ∧ b = 0))
sub :: ((Arra τ), Inti) → τ

Size a ≥ 0
Req L : i ≥ 0 ; H : i < a

update :: ((Arra τ), Inti , τ) → ()
Size a ≥ 0
Req L : i ≥ 0 ; H : i < a

length :: (Arra τ) → Inti

Size a ≥ 0 ∧ a = i
newArr :: (Inti , τ) → Arra τ

Size (i ≥ 0 ∧ a = i)

Fig. 4. Sized Types of Some Primitives

Fig. 4 depicts the sized types of a collection of primitive functions used in the
rest of this paper. For array-access operations (sub and update), we also include
their respective pre-conditions, which must be satisfied for the operations to be
safe. These pre-conditions are identified by the keyword Req.

Once the sized types of related functions have been inferred, we proceed to
handle bound check optimization. The process works in a bottom-up fashion,
starting with functions at the bottom of the call hierarchy. We list the steps
involved below. Throughout the rest of the paper, we use the binary search
program depicted in Fig. 3 as the running example.

Step 1 Forward contextual-constraint analysis.
Step 2 Backward pre-condition derivation.
Step 3 Bound check specialization.

These steps are described in details in the following sections.

3 Context Synthesis

We begin by determining the context within which a check occurs. Contextual
information is described in Presburger form. It is called contextual constraint,

Deriving Pre-conditions for Array Bound Check Elimination 9

and is gathered by traversing the syntax tree of the function body, beginning
from the root of the tree to a check-labelled call. Constraints gathered during
traversal include constraint for selecting a branch (of if-expression), assertion
about the sizes of local variables, and post-conditions of function calls.

C :: Exp → Env → F → (AnnType × P((Label, F)) × F)
where Env = Var → AnnType × F

C [[x]] Γ ψ = let (τ, φ) = Γ [[x]] in (τ, ∅, φ)
C [[n]] Γ ψ = let v = newVar in (Intv , ∅, (v = n))
C [[f (x1, . . . , xn)]] Γ ψ = let ((τ1, . . . , τn) → τ, φf) = α (Γ [[f]])

X = ∪n
i=1 {fv(τi)}

(τ ′
i , φi) = Γ [[xi]] ∀ i ∈ {1, . . . ,n}

φ = ∃ X . φf ∧ (∧n
i=1 (φi ∧ (eq τ ′

i τi)))
in (τ, ∅, φ)

〈Treatment of primitive operations is the same as that of function application.〉

C [[L@e]] Γ ψ = let (τ, β, φ) = C [[e]] Γ ψ
in (τ, {(L, FΓ ,ψ)} ∪ β, φ)

C [[if e0 then e1 else e2]] Γ ψ =
let (Boolv , β0, φ) = C [[e0]] Γ ψ

(τ1, β1, φ1) = C [[e1]] Γ (ψ ∧ φ ∧ (v = 1))
(τ2, β2, φ2) = C [[e2]] Γ (ψ ∧ φ ∧ (v = 0))
τ3 = α (τ1)
Y = { v } ∪ fv(τ1) ∪ fv(τ2)
φ3 = ∃ Y . φ ∧ (((eq τ1 τ3) ∧ (v = 1) ∧ φ1)

∨ ((eq τ2 τ3) ∧ (v = 0) ∧ φ2))
in (τ3, β0 ∪ β1 ∪ β2, φ3)

C [[let x = e1 in e2]] Γ ψ =
let (τ1, β1, φ1) = C [[e1]] Γ ψ

(τ, β, φ) = C [[e2]] Γ [x :: (τ1, φ1)] ψ
Y = fv(τ1)
φ2 = ∃ Y . (φ1 ∧ φ)

in (τ, β1 ∪ β, φ2)

Fig. 5. Definition of the Context-Derivation Function C

Forward analysis C is employed to synthesize contextual constraints. This is
depicted in Fig. 5. We first explain how this is done for non-recursive function,
and describe the recursive case in the following section.

C operates on expressions. It takes in a sized-type environment Γ which binds
the program variables, primitives, and user-defined functions to their respective
sized types. It produces a triple consisting of: the annotated type of the subject
expression, a set of bindings between call labels appearing in the expression and
their contextual constraints, and the size constraint of the subject expression.

10 Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

During the traversal of the syntax tree, C updates Γ with sized types of locally
defined variables. It also maintains a constraint ψ that captures the context of
the subject expression. Initially, ψ is set to the value True. When a branch of
an if -expression is chosen, the constraint leading to this decision is captured in
ψ. When a labelled call is encountered, its contextual constraint is derived by
combining (via conjunction) ψ with related constraints kept in the environment
ρ. The result is expressed as FΓ ,ψ. Formally, it is defined as follows:

FΓ ,ψ = ∧ (∪i ≥ 0 Φi) where
Φ0 = {ψ}
Φi+1 = { φ | ∃ x , τ . Γ [[x]] = (τ, φ) ; fv(φ) ∩ fv(Φi) �= ∅ ; φ �∈ ∪j ≤ i Φj }

As the environment Γ is finite, computation of FΓ ,φ always terminates.
Notation-wise, in Fig. 5, function newVar returns a new variable. Function α

performs renaming of size variables (like α-conversion). It is overloaded so that
it can take in either an annotated type or a sized type (which is a pair). It con-
sistently renames all size variables occurring in its argument. Lastly, operation
eq τ1 τ2 produces a conjunction that equates the corresponding size variables
of two annotated types. For instance, (eq Intv Intw) produces the constraint
(v = w). Lastly, Γ [x :: (τ, φ)] denotes updating of the environment Γ by a
new binding of x to a sized type (τ, φ).

As an example, for the following function definition,

newsub :: (Arra Int, Inti , Intj) → Int
newsub(arr , i , j) = if 0 ≤ i ≤ j then L1@H 1@sub(arr , i) else − 1

C determines the context for the labelled call to be:

ctx (L1) = ctx (H 1) = a ≥ 0 ∧ 0 ≤ i ≤ j

3.1 Recursive-Call-Invariant Synthesis

Invariant synthesis is in general a hard problem for recursive function defini-
tions. Two pieces of invariant information are useful. First, invariant describ-
ing input/output size relation (ie., its sized type) of a recursive function can
be propagated across functions to achieve better context synthesis. Computing
such invariant is not always possible, however, as sometimes the precise relation
between input- and output-size is beyond Presburger formulation.

Second, recursive-call invariant captures the argument-size relationship be-
tween an initial call and an arbitrarily nested recursive call of the same function.
This relation is needed for synthesizing the contextual constraint of a labelled
call invoked at arbitrarily nested depth. Fortunately, such relation can often be
formulated precisely using Presburger formula.

Computation of recursive-call invariant proceeds as follows: We first compute
the constraint relating the parameter sizes of a function and the argument sizes
of all recursive calls textually occurring in the function body. Conceptually,

Deriving Pre-conditions for Array Bound Check Elimination 11

this constraint spells out the change in argument size during one unfolding of
the recursive call. It can be captured by a procedure similar to the context
computation C. For example, consider the function look defined in the binary
search program. We obtain the following constraint, which we call U :

U := [a, l , h] → [a�, l�, h�] : h ≥ l ∧
∃ (m . 2m ≤ h + l ∧ h + l ≤ 1 + 2m ∧
((l�= l ∧ h�= m − 1) ∨ (l�= m + 1 ∧ h�= h)))

The notation used here is adapted from literature work in Omega Calcula-
tor [22]. It specifies the constraint between two sets of variables: [a, l , h] and
[a�, l�, h�]. The former is the set of initial parameter sizes (they are called the
source), and the latter being the set of argument sizes of a recursive call (they
are called the target).

Next, we perform inductive computation to infer the change in argument
size resulting from arbitrary number of recursive-call unfolding. The result is
the recursive-call invariant. In the case of look , we have:

inv(look) = a� = a ∧ l ≤ h, l� ∧ h�≤ h ∧
2 + 2l + 2h� ≤ h + 3l� ∧ l + 2h� < h + 2l�

Several researchers, including the present authors, have proposed different
techniques for synthesizing invariants. As these techniques are complementary
in power and efficiency, we believe a collection of these techniques is needed to
do a decent job. This includes:
Polyhedra analysis. This is proposed and developed by Cousot and Halb-
wachs [5, 11, 10], as well as King and his co-workers [2, 14]. It is an abstract
interpretation approach to finding the input/output size relation through fixed-
point computation over linear constraint. Both convex-hull operation (to elim-
inate multiple disjuncts) and widening operation (to generalize a constraint by
dropping some conjuncts that cannot be subsumed by others in an ascending
chain of constraints) are used as generalization techniques to ensure termination
of the analysis. For recursive-call invariant computation, we modify this analysis
by ignoring the degenerated case of a recursive definition from our computation.
As an example, Fig. 6 illustrates a trace of such computation for the function
look with the aid of the Omega calculator.

In the above, lines begin with # are comments; lines end with ; are com-
mands to the Omega Calculator [13]; outputs from the Calculator are indented
rightward. (hull U) computes the convex hull of U (viewed as a relation) and
widen(U2,U3) generalizes U2 to yield a constraintW2 such that both U2 and U3

are instances of W2. (We refer the reader to the work of Halbwachs [9, 10] for
detail description of these two operations.) union signifies disjunction, compose
combines two constraints by matching (and eliminating) the target of the former
with the source of the latter. The second and third steps of the above trace above
are iterative computation of fixed-point computation. The last command checks
if a fixed-point is reached.
Transitive-closure operation. This is a fixed-point operation provided in
the Omega Calculator [22]. Given a linear constraint expressed in the form of

12 Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

First Approximation
U1 := hull U ;

U1 = [a, l ,h] → [a�, l�, h�] : a = a� ∧ l ≤ h, l� ∧ h� ≤ h ∧
l + 2h� < h + 2l� ∧ 2 + 2l + 2h� ≤ h + 3l� ∧
h + 2l� ≤ 3 + l + 2h� ∧ h + 4l� ≤ 4 + 2l + 3h�

Second Approximation
U2 := hull (U1 union (U1 compose U)) ;

U2 = [a, l ,h] → [a�, l�, h�] : a = a� ∧ l ≤ h, l� ∧ h� ≤ h ∧
h + 4l� ≤ 9 + l + 4h� ∧ l + 2h� < h + 2l� ∧
2 + 2l + 2h� ≤ h + 3l�

Third Approximation
U3 := hull (U2 union (U2 compose U)) ;

U3 = [a, l ,h] → [a�, l�, h�] : a = a� ∧ l ≤ h, l� ∧ h� ≤ h ∧
h + 8l� ≤ 21 + l + 8h� ∧ 2 + 2l + 2h� < h + 3l� ∧
l + 2h� ≤ h + 2l�

Apply Generalization by Widening
W2 := widen(U2,U3) ;

W2 = [a, l ,h] → [a�, l�, h�] : a = a� ∧ l ≤ h, l� ∧ h� ≤ h ∧
2 + 2l + 2h� ≤ h + 3l� ∧ l + 2h� < h + 2l�

Is the result a fixed point?
(W2 compose U) subset W2;

True

Fig. 6. A trace of Omega Calculation of Recursive-call Invariant

relation (such as U above), the transitive-closure operation aims to compute
its least fixed point. A least fixed-point of U is defined as

∨
i>0 (U

i), where
U 1 = U , and U i+1 = U i compose U . A “shortcoming” in this operation is
that it does not support generalization to give an approximate fixed point, if the
least fixed point cannot be found.
Generalized transitive closure. To overcome the limitation of Omega’s
transitive-closure operation, we introduced in [4] the concept of generalized tran-
sitive closure with selective generalization. Basically, it introduces generalizations
of size relation based on selective grouping and hulling of its various disjuncts.
While hulling aids in ensuring termination of fixed-point computation at the
expense of accuracy, selective grouping and hulling help maintain accuracy of
such computation.

3.2 Context Synthesis for Recursive Functions

For recursive functions, our analysis must derive the most informative contextual
constraint that is applicable to all recursive invocations of the function, including
the degenerated case. For a more accurate analysis, our method differentiates two
closely-related contexts: (a) The context of a labelled call encountered during
the first time the function call is invoked; ie., before any nested recursive call is

Deriving Pre-conditions for Array Bound Check Elimination 13

invoked. (b) The context of a labelled call encountered after some invocations of
nested recursive calls. The reason for this separation is because the latter context
is computed using the synthesized recursive-call invariant.

The contextual constraint of the first call is analyzed in the same way as that
for non-recursive function. For each label L of a recursive function f , the context
of the first call is:

ctxFst(L) = ctx (L) ∧ ctxSta(f)

where ctx (L) is the derived contextual constraint at program point L, and
ctxSta(f) denotes the default context that can be assumed at procedural en-
try of f . For function look , ctxSta(look) = a ≥ 0. (ie., the array must be of
non-negative length.)

The contextual constraint for a labelled call encountered after subsequent
recursive invocations of f -calls can be computed using:

ctxRec(L) = inverse(ctx (L)) ∧ inv(f) ∧ ctxSta(f)

Note that we make use of the synthesized invariant of f , namely inv(f), while
the inverse operation (as defined in the Omega Calculator) is used to obtain a
mirror copy of ctx (L) that applies to the recursive sizes (instead of the initial
sizes).

Separate identification of contexts for both the first recursive call and sub-
sequent recursive calls is instrumental to obtaining more accurate contextual
constraints, which in turns induce more precise pre-condition for eliminating
recursive checks.

For the function look , the labels used are L4 and H 4. The context enclosing
the labelled call is found to be l ≤ h. Following the above procedure, we obtain
the following contextual constraints:

ctx (L4) = l ≤ h
ctxSta(look) = a ≥ 0
inverse(ctx (L4)) = l� ≤ h�

inv(look) = a = a� ∧ l ≤ h, l� ∧ h� ≤ h ∧
2 + 2l + 2h� ≤ h + 3l� ∧ l + 2h� < h + 2l�

ctxFst(L4) = l ≤ h ∧ a ≥ 0
ctxRec(L4) = a = a� ∧ l ≤ l� ≤ h� ≤ h ∧ 0 ≤ a ∧

2 + 2l + 2h� ≤ h + 3l� ∧ l + 2 h� < h + 2l�

4 Pre-condition Derivation

The synthesis of contexts and invariants is essentially a forward analysis that
gathers information about how values are computed and propagated and how
the conditions of if -branches are inherited. In contrast, the derivation of pre-
condition for check elimination is inherently a backward problem. Here, the flow
of information goes from callee to caller, with the goal of finding weakest possible

14 Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

pre-condition which ensures that the operation can be performed safely without
checking.

We propose a backward method for deriving safety pre-conditions. This
method considers each function in turn, starting from the lowest one in the
calling hierarchy. Our method attempts to derive the required pre-condition to
make each check redundant. Working backwards, each pre-condition that we de-
rive from a callee would be converted into a check for its caller. In this way,
we are able to derive the pre-condition for each check, including those that are
nested arbitrarily deep inside procedural calls. The main steps are summarized
here.

– Determine each check to see if it is either unsafe, totally redundant or par-
tially redundant.

– Derive a safety pre-condition for each partially redundant check. Checks from
recursive functions must take into account the recursive invocations.

– Amalgamate related checks together.
– To support inter-procedural propagation, convert each required pre-condition
of a function into a check at its call site based on the parameter instantiation.

To help describe our method, consider the following simple example:

p(arr , i , j) = if 0 ≤ i ≤ j then L6@H 6@sub(arr , i)+
L7@H 7@sub(arr , i − 1)

else − 1

This function is a minor modification of newsub. It takes an array and two
integers i and j , and returns the sum of elements at i and i − 1 if 0 ≤ i ≤ j ,
otherwise − 1 is returned. From the definition of this procedure, we can provide
the following sized type for p:

p :: (Arrm Int, Inti , Intj) → Intr

Sizem ≥ 0 ∧ ((0 ≤ i ≤ j) ∨ ((i < 0 ∨ (i > j ∧ i ≥ 0)) ∧ r = −1))

4.1 Check Classification

We classify each check as either totally redundant, partially redundant or unsafe.
Given a check chk(L) under a context ctx (L), we can capture the weakest pre-
condition, pre(L) that enables chk(L) to become redundant. The weakest pre-
condition is computed using:

pre(L) ≡ ¬ctx (L) ∨ chk(L)
This pre-condition should be simplified2 using the invariant context at proce-
dure entry, namely ctxSta(p), whose validity would be verified by our sized-
type system. If pre(L) ≡ True, we classify the check as totally redundant. If
pre(L) ≡ False (or unknown due to the limitation of Presburger solver), we

2 In Omega, the simplification can be done by a special operator, called gist .

Deriving Pre-conditions for Array Bound Check Elimination 15

classify the check as unsafe. Otherwise, the check is said to be partially redun-
dant.
Example : The four checks in p are:

chk(L6) = i ≥ 0 chk(H 6) =i < m
chk(L7) = i − 1 ≥ 0 chk(H 7) =i − 1 < m

Of these four checks, only the pre-condition of check at L6, namely pre(L6) ≡
¬ctx (L6) ∨ chk(L6) evaluates to True. Hence, chk(L6) is redundant, while the
other three checks are partially redundant. In this example, we use the following
contextual constraints:

ctx (L6) = ctx (L7) = ctx (H 6) = ctx (H 7)
ctx (L6) = ctxSta(p) ∧ (0 ≤ i ≤ j) and ctxSta(p) = m ≥ 0

4.2 Derivation of Pre-condition

The derivation of pre(L) is to a large extent dependent on ctx (L). A more infor-
mative ctx (L) could lead to a better pre(L). For a given contextual constraint
ctx (L), pre(L) can be computed by:

pre(L) ≡ ¬ctx (L) ∨ chk(L)
The following lemma characterizes pre(L) as the weakest pre-condition. We

omit the proof in this paper.

Lemma 1 The weakest pre-condition (pre) for the safe elimination of a check
(chk) in a given context (ctx) is pre ≡ ¬ctx ∨ chk .

Example : Using the above formulae, we can derive the following pre-conditions
for the three partially redundant checks:

pre(H 6) = (i ≤ −1) ∨ (j < i ∧ 0 ≤ i) ∨ (i < m)
pre(L7) = (i ≤ −1) ∨ (j < i ∧ 0 ≤ i) ∨ (i ≥ 1)
pre(H 7) = (i ≤ −1) ∨ (j < i ∧ 0 ≤ i) ∨ (i ≤ m)

Deriving pre-conditions for the elimination of checks from recursive pro-
cedure is more challenging. A key problem is that the check may be executed
repeatedly, and any derived pre-condition must ensure that the check is com-
pletely eliminated. One well-known technique for the elimination of checks from
loop-based program is the loop limit substitution method of [7]. Depending on
the direction of monotonicity, the check of either the first or last iteration of
the loop is used as a condition for the elimination of all checks. However, this
method is restricted to checks on monotonic parameters whose limits can be
precisely calculated.

We propose a more general method to handle recursive checks. For better
precision, our approach separates out the context of the initial recursive call
from the context of the subsequent recursive calls. The latter context may use
the invariant of recursive parameters from sized typing.

16 Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

Using the recursive look function (whose parameters are non-monotonic) as
an example, we shall provide two separate checks for the first and subsequent
recursive calls, namely:

chkFst(L4) = 0 ≤ l + h and chkRec(L4) = 0 ≤ l� + h�

with their respective contexts:

ctxFst(L4) = a ≥ 0 ∧ l ≤ h
ctxRec(L4) = a ≥ 0 ∧ l� ≤ h� ∧ inv(look)
inv(look) = a = a� ∧ l ≤ l�, h ∧ h� ≤ h ∧

2 + 2l + 2h� ≤ h + 3l� ∧ l + 2h� < h + 2l�

We next derive the pre-conditions for the two checks separately, as follows:

preFst(L4) = ¬ctxFst(L4) ∨ chkFst(L4)
= (h < l) ∨ (0 ≤ l + h)

preRec(L4) = ¬ctxRec(L4) ∨ chkRec(L4)
= ∀ l�, h� . ¬(a ≥ 0 ∧ l� ≤ h� ∧ l ≤ h, l� ∧ h� ≤ h ∧
2 + 2l + 2h� ≤ h + 3l� ∧ l + 2h� < h + 2l�) ∨ (0 ≤ l� + h�)

= (h ≤ l) ∨ (0 ≤ l < h) ∨ (l = −1 ∧ h = 0)

Note that preRec is naturally expressed in terms of the recursive variables.
However, we must re-express each pre-condition in terms of the initial variables.
Hence, universal quantification was used to remove the recursive variables.

We can now combine the two pre-conditions together in order to obtain a
single safety pre-condition for the recursive check, as shown here:

pre(L4) = preFst(L4) ∧ preRec(L4) =(h < l) ∨ (0 ≤ l + h ∧ 0 ≤ l)

Through a similar derivation, the other check of H 4, based on the pre-
condition l + h < 2a from getMid , yields:

pre(H 4) = preFst(H 4) ∧ preRec(H 4) =(h < l) ∨ (h < a ∧ l + h < 2a)

The derived pre-conditions are very precise. Apart from ensuring that the
given recursive checks are safe, it also captures a condition on how the checks
may be avoided.

4.3 Amalgamating Related Checks

As some of the checks are closely related, it may be useful to amalgamate3 these
checks together. At the risk of missing out some opportunities for optimization,
the amalgamation of related checks serves two purposes, namely:

3 In general, any two checks can be amalgamated together. However, closely related
checks will have a higher probability of being satisfied at the same time. This can
help ensure amalgamation without loss of optimization.

Deriving Pre-conditions for Array Bound Check Elimination 17

– It can cut down the time taken for our analysis.
– It can reduce the number of specialization points, and hence the size of the
specialized code.

We propose a simple technique to identify related checks. Given two checks C1

and C2, we consider them to be related if either C1 ⇒ C2 or C2 ⇒ C1. For
example, checks H 6 and H 7 are related since chk(H 6) ⇒ chk(H 7). Because of
this similarity, we can combine the pre-conditions of these two checks, as follows:

pre(H 6,H 7) = pre(H 6) ∧ pre(H 7) = i ≤ −1 ∨ (j < i ∧ 0 ≤ i) ∨ i < m

The combined pre-condition can eliminate both checks simultaneously.

4.4 Inter-procedural Propagation of Checks

To support inter-procedural propagation of checks, each pre-condition for a par-
tially redundant check must first be converted into a new check at the call
site. After that, the process of classifying the check and deriving its safety pre-
condition is repeated.

Consider two functions:

f (v1, .., vn) = . . . L@sub(arr , i) . . .
g(w1, ..,wn) = . . . C@f (v ′1, .., v

′
n) . . .

Suppose that in f , we have managed to derive a non-trivial pre(L) that would
make chk(L) redundant. Then, at each call site of f , such as f (v ′1, .., v

′
n) in the

body of function g, we should convert the pre-condition of f into a new check at
the call site, as follows:

chk(C) = ∃ X . pre(L) ∧ subs(C)
subs(C) = ∧n

i=1 (eq τi τ ′i) where vi :: τi ; v ′i :: τ
′
i ; X = ∪n

i=1 fv(τi)

The pre-condition of f is converted into a check via a size parameter substi-
tution, subs(C).
Example : Consider a function q:

q :: (Arrn Int, Intk) → Ints

q(arr , k) = let r = random(); l = k + 1 in C8@C9@p(arr , r , l)

At the labelled call site, we have:

subs(C8) = subs(C9) and subs(C9) =(m = n) ∧ (j = l) ∧ (i = r)

We assume that the size variables assigned to the arguments of the p call are
n, r and l , respectively. Using our formula for converting the pre-condition of p
into a check at its call site, we obtain:

18 Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

chk(C8) = ∃ i , j . pre(L7) ∧ subs(C8)
= (r ≤ −1) ∨ (l < r ∧ 0 ≤ r) ∨ (r ≥ 1)

chk(C9) = ∃ i , j . pre(H 6,H 7) ∧ subs(C9)
= (r ≤ −1) ∨ (l < r ∧ 0 ≤ r) ∨ (r < n)

With this, we can propagate the check backwards across the procedure of q
by deriving the following two pre-conditions.

pre(C8) = ∀ r , l . ¬ (l = k + 1) ∨ ((r ≤ −1) ∨ (l < r ∧ 0 ≤ r) ∨ (r ≥ 1))
= k ≤ −2

pre(C9) = ∀ r , l . ¬ (l = k + 1) ∨ ((r ≤ −1) ∨ (l < r ∧ 0 ≤ r) ∨ (r < n))
= (k ≤ −2) ∨ (−1 ≤ k ≤ n − 2)

Note that since r and l are local variables; we must eliminate them from our
pre-condition by using universal quantification. Universal quantification ensures
that we get a new pre-condition that is safe for all values of r and l .

Inter-procedural propagation of checks applies to recursive functions without
exception.
Example : The pre-condition for look can be converted to checks at its call site
in bsearch, as follows:

chk(L5) = ∃ l , h. pre(L4) ∧ subs(L5)
= ∃ l , h. ((h < l) ∨ (0 ≤ l + h ∧ 0 ≤ l)) ∧ (l = 0 ∧ h = v − 1)
= (v ≤ 0) ∨ (1 ≤ v)

chk(H 5) = ∃ l , h. pre(H 4) ∧ subs(L5)
= ∃ l , h. ((h < l) ∨ (h < a ∧ l + h < 2a)) ∧ (l = 0 ∧ h = v − 1)
= (v ≤ 0) ∨ (v ≤ a, 2a)

subs(L5) = (l = 0) ∧ (h = v − 1)

From here, we can derive the safety pre-conditions for bsearch as shown
below.

pre(L5) = ¬ ctx (L5) ∨ chk(L5)
= ∀ v . ¬(v = a ∧ a ≥ 0) ∨ (v ≤ 0 ∨ 1 ≤ v)
= True

pre(H 5) = ¬ ctx (H 5) ∨ chk(H 5)
= ∀ v . ¬(v = a ∧ a ≥ 0) ∨ (v ≤ 0 ∨ v ≤ a, 2a)
= True

Through this inter-procedural propagation, we have successfully determined
that the recursive checks of look inside bsearch are totally redundant. Hence, all
bound checks for bsearch can be completely eliminated. This is done by providing
specialized versions of look and getmid (without bound checks) that would be
called from bsearch.

Deriving Pre-conditions for Array Bound Check Elimination 19

5 Bound Check Specialization

With the derived pre-condition for each partially redundant check, we can now
proceed to eliminate more bound checks by specializing each call site with re-
spect to its context. The apparatus for bound check specialization is essentially
the same as contextual specialization [6, 16] where each function call can be spe-
cialized with respect to its context of use. A novelty of our method is the use of
derived pre-condition to guide specialization. This approach is fully automatic
and can give better reuse of specialized code.

Suppose that we have a function f with N checks, that is used in one of its
parent function g as follows:

f (v1, .., vn) = tf Req {Pi}N
i=1

g(v1, .., vn) = . . . {Ci}N
i=1@f (v

′
1, .., v

′
n) . . .

Notation-wise, we write {Ci}N
i=1@f (v

′
1, .., v ′n) as the short form for C1@ . . .

@CN@ f (v ′1, .., v
′
n).

Suppose further that we have a context ctx (C), for the labelled call, which
may encompass a context that could be inherited from the specialization of g .
Let the set of pre-conditions whose checks could be made redundant be:

G = {Pi |i ∈ 1 . . .N ∧ ctx (C) ⇒ chk(Ci)}
For maximal bound check optimization, we should specialize each of the call

for f to a version that would maximize bound check elimination. In the above
example, our specialization would introduce fG , as follows:

g(v1, .., vn) = . . . fG(v ′1, .., v
′
n) . . .

fG(v1, .., vn) = S[tf] G where ctxSta(fG) = G ∧ ctxSta(f)

Note how the context G , which contains the maximum pre-conditions that
are satisfiable in ctx (C), is propagated inside the body of f by specializer S.
This specialization is commonly known as polyvariant specialization. It will gen-
erate a specialized version of the code for each unique set of checks that can
be eliminated. It can provide as many variants of the specialized codes as there
are distinguishable contexts. To minimize the number of variants used, the spe-
cialization process will proceed top-down from the main function, and generate
a specialized version only if it is required directly (or indirectly) by the main
function. Polyvariant specialization can help maximize the elimination of bound
checks. However, there is a potential explosion of code size, as the maximum
number of specialized variants for each function is 2N where N is the number
of partially redundant checks that exist. In practice, such code explosion seldom
occur, unless the function is heavily reused under different contexts.

If code size is a major issue (say for embedded systems), we could use either
monovariant specialization or duovariant specialization.

In monovariant specialization, we will need an analysis technique to help
identify the best common context, call it ctxMin(f), that is satisfied by all the
call sites. Let the set of call sites to f in a given program be:

20 Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

{{Cij}N
i=1@f (vj1, .., vjn)}M

j=1,

and their corresponding contexts be {ctx (Cj)}M
j=1. We define the best common

context of these call sites to be:
ctxMin(f) = {Pi |i ∈ 1..N , ∀j ∈ 1..M .ctx (Cj) ⇒ chk(Cij)}

With this most informative common context, we could now provide a least
specialized variant for f that could be used by all call sites in our program, as
follows:

fmin(v1, .., vn) = S[tf] ctxMin(f) where
ctxSta(fmin) = ctxMin(f) ∧ ctxSta(f)

For duovariant specialization, we shall generate a version of each function f
that is maximally specialized, namely:

fmax (v1, .., vn) = S[tf] ctxMax (f) where
ctxSta(fmax) = ctxMax (f) ∧ ctxSta(f)
ctxMax (f) = { Pi | i ∈ 1..N , ∃ j ∈ 1..M . ctx (Cj) ⇒ chk(Cij)}

This most specialized variant should be used whenever possible. With the
three variants of bound check specialization, we now have a spread of the clas-
sic space-time tradeoff. We hope to investigate the cost-effectiveness of these
alternatives in the near future.

6 Performance Analysis

In this section, we address the practicality of using constraint solving for im-
plementing both our forward analysis (essentially sized typing) and backward
analysis (for deriving pre-conditions).

Our experiments were performed with Omega Library 1.10, running on a
Sun System 450. We took our examples mostly from [26], with the exception of
sumarray from [27]. The reported time measurements are the average values out
of 50 runs. The first column reports the time taken by forward analysis (largely
for computing invariants), while the second column reports the time taken for
backward derivation of safety pre-condition.

The results shows that the time taken by the analyses required by array
bound checks optimization are largely acceptable. A slightly higher analysis time
was reported for hanoi , due largely to the more complex recursive invariant being
synthesized.

Our analysis determines that all checks in these examples are totally re-
dundant. Consequently, they are eliminated in the specialized codes. Gains in
run-time efficiency range between 8% (for “sumarray” program) and 56% (“ma-
trix mult” program), which is comparable to those found in the literature (such
as [26]).

Deriving Pre-conditions for Array Bound Check Elimination 21

Forward Backward

bcopy 0.03 0.21

binary search 0.54 0.07

bubble sort 0.05 0.31

dot product 0.03 0.21

hanoi 1.59 2.74

matrix mult 0.12 0.98

queens 0.19 0.53

sumarray 0.03 0.42

Fig. 7. Computation Time (in Secs) for Forward and Backward Analyses

7 Related Work

Traditionally, data flow analysis techniques have been employed to gather avail-
able information for the purpose of identifying redundant checks, and antici-
patable information for the purpose of hoisting partially redundant checks to a
more profitable location. The techniques employed have gradually increased in
sophistication, from the use of family of checks in [15], to the use of difference
constraints in [3]. While the efficiency of the techniques are not in question,
data flow analysis techniques are inadequate for handling checks from recursive
procedures, as deeper invariants are often required.

To handle checks from programs with more complex control flow, verification-
based methods have also been advocated by Suzuki and Ishihata [24], Necula and
Lee [19, 20] and Xu et al [27]; whilst Cousot and Halbwachs [5] have advocated
the use of abstract interpretation techniques. Whilst powerful, these methods
have so far been restricted to eliminating totally redundant checks.

It is interesting to note that the basic idea behind the backward derivation of
weakest pre-condition was already present in the inductive iteration method, pi-
oneered by Suzuki and Ishihata[24], and more recently improved by Xu et al [27].
However, the primary focus has been on finding totally redundant checks. Due
to this focus, the backward analysis technique proposed in [24] actually gathers
both pre-condition and contextual constraints together. Apart from missing out
on partially redundant checks, their approach is less accurate than forward meth-
ods (such as [5]) since information on local variables are often lost in backward
analysis.

Xi and Pfenning have advocated the use of dependent types for array bound
check elimination[26]. While it is possible to specify pre-conditions through de-
pendent types, they do not specially handle partially redundant checks. More-
over, the onus for supplying suitable dependent types rest squarely on the pro-
grammers.

Recently, Rugina and Rinard [23] proposed an analysis method to synthe-
size symbolic bounds for recursive functions. In their method, every variable is
expressed in terms of a lower and an upper symbolic bound. By assuming a
polynomial form for the symbolic bounds, their method is able to compute these

22 Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

bounds without using fix-point iteration. In some sense, this inductive approach
is similar to the proposal made in [25, 21], where size information is inductively
captured to analyze program termination property. Whilst the efficiency of the
inductive approach is not in question, we have yet to investigate the loss in
precision that come with fixing the expected target form.

8 Conclusion and Future Work

Through a novel combination of both forward technique to compute contex-
tual constraint, and backward method to derive weakest pre-conditions, we
now have a comprehensive method for handling both totally redundant and
partially redundant checks. Both analysis methods are built on top of a Pres-
burger constraint solver that has been shown to be both accurate and practically
efficient[22]. Our new approach is noteworthy in its superior handling of partially
redundant checks.

There are several promising directions for future research. They deal largely
with how the precision of optimization and efficiency of analysis method could
be further improved.

Firstly, our contextual constraint analysis presently inherits its constraints
largely from conditional branches. We can further improve its accuracy by prop-
agating prior bounds checks in accordance with the flow of control. For this
to work properly, we must be able to identify the weakest pre-conditions for
each function that could be asserted as post-condition, after each call has been
successfully executed. As bound errors could be caught by exception handling,
the extent of check propagation would be limited to the scope where the bound
errors are uncaught.

Secondly, not all partially redundant checks could be eliminated by its caller’s
context. Under this scenario, it may be profitable to insert speculative tests
that could capitalize on the possibility that safety pre-condition are present
at runtime. Whilst the idea of inserting speculative runtime test is simple to
implement, two important issues that need to be investigated are (i) what test
to insert, and (ii) where and when will it be profitable to insert the selected test.
Specifically, we may strip out the avoidance condition from the speculative test,
and restricts such runtime tests4 to only recursive checks.

Lastly, the efficiency of our method should be carefully investigated. The cost-
benefit tradeoff of check amalgamation and bound check specialization would
need to be carefully studied in order to come up with a practically useful strategy.
Also, the sophistication (and cost) of our approach is affected by the type of
constraints that is supported. Whilst Presburger formulae have been found to
be both precise and efficient, it may still be useful to explore other types of
constraint domains.

4 The insertion of speculative tests may look similar to check hoisting. The key different
is that no exception is raised if speculative test fails.

Deriving Pre-conditions for Array Bound Check Elimination 23

9 Acknowledgment

We would like to thank the anonymous referees for their valuable comments. This
work has been supported by the research grants RP3982693 and RP3991623.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[2] F. Benoy and A. King. Inferring argument size relationships with CLP(R). In
Logic Programming Synthesis and Transformation, Springer-Verlag, August 1997.

[3] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating array bounds checks
on demand. In ACM SIGPLAN Conf. on Programming Language Design and
Implementation, pages 321–333, 2000.

[4] W.N. Chin and S.C. Khoo. Calculating sized types. In 2000 ACM Workshop
on Partial Evaluation and Semantics-Based Program Manipulation, pages 62–72,
Boston, Massachusetts, United States, January 2000.

[5] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Symposium on Principles of Programming Languages,
pages 84–96. ACM Press, 1978.

[6] F. Fioravanti, A. Pettorossi, and M. Proietti. Rules and stratigies for contex-
tual specialization of constraint logic programs. Electronic Notes in Theoretical
Computer Science, 30(2), 1990.

[7] R. Gupta. A fresh look at optimizing array bound checking. In ACM SIGPLAN
Conf. on Program Lang. Design and Impl., pages 272–282, New York, June 1990.

[8] R. Gupta. Optimizing array bound checks using flow analysis. ACM Letters
Program Lang. Syst., 2(1-4):135–150, Mar-Dec 1994.

[9] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Pub., 1993.

[10] N. Halbwachs. About synchronous programming and abstract interpretation.
Science of Computer Programming, Special Issue on SAS’94, 31(1), May 1998.

[11] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157–185,
1997.

[12] W. H. Harrison. Compiler analysis for the value ranges for variables. IEEE TOSE,
SE-3(3):243–250, May 1977.

[13] P. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The
Omega Library Version 1.1.0 Interface Guide. Technical report, University of
Maryland, College Park, November 1996.
http://www.cs.umd.edu/projects/omega.

[14] A. King, K. Shen, and F. Benoy. Lower-bound time-complexity analysis of logic
programs. In Jan Maluszynski, editor, International Symposium on Logic Pro-
gramming, pages 261 – 276. MIT Press, November 1997.

[15] P Kolte and M Wolfe. Elimination of redundant array subscript range checks. In
ACM Conference on Programming Language Design and Implementation, pages
270–278. ACM Press, June 1995.

[16] L. Lafave and J. Gallagher. Constraint-based partial evaluation of rewriting-
based functional logic programs. In Program Synthesis and Transformation, LOP-
STR’97, pages 70–82, LNCS 1463, 1997.

24 Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu

[17] V. Markstein, J. Cooke, and P. Markstein. Optimization of range checking. In
ACM SIGPLAN Symp. on Compiler Construction, pages 114–119, June 1982.

[18] S.P. Midkiff, J.E. Moreira, and M. Snir. Optimizing bounds checking in Java
programs. IBM Systems Journal, 37(3):409–453, 1998.

[19] G. Necula. Proof-carrying code. In ACM Principles of Programming Languages,
pages 106–119, 1997.

[20] G Necula and P. Lee. The design and implementation of a certifying compiler. In
ACM SIGPLAN Conf. on Programming Language Design and Implementation,
pages 333–344, 1998.

[21] L. Plumer. Termination proofs for logic programs. In Lecture Notes in Artificial
Intelligence, volume 446. Springer Verlag, 1990.

[22] W. Pugh. The Omega Test: A fast practical integer programming algorithm for
dependence analysis. Communications of ACM, 8:102–114, 1992.

[23] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indices, and
accessed memory regions. In ACM SIGPLAN Conf. on Programming Language
Design and Implementation, pages 182–195. ACM Press, June 2000.

[24] N. Suzuki and K. Ishihata. Implementation of array bound checker. In ACM
Principles of Programming Languages, pages 132–143, 1977.

[25] J.D. Ullman and A. Van Gelder. Efficient tests for top-down termination of logical
rules. Journal of ACM, 35(2):345–373, 1988.

[26] H. Xi and F. Pfenning. Eliminating array bound checking through dependent
types. In ACM Conference on Programming Language Design and Implementa-
tion, pages 249–257. ACM Press, June 1998.

[27] Z. Xu, B.P. Miller, and T. Reps. Safety checking of machine code. In ACM
SIGPLAN Conf. on Programming Language Design and Implementation, pages
70–82. ACM Press, June 2000.

	Introduction
	Overview
	Use of Sized Types

	Context Synthesis
	Recursive-Call-Invariant Synthesis
	Context Synthesis for Recursive Functions

	Pre-condition Derivation
	Check Classification
	Derivation of Pre-condition
	Amalgamating Related Checks
	Inter-procedural Propagation of Checks

	Bound Check Specialization
	Performance Analysis
	Related Work
	Conclusion and Future Work
	Acknowledgment

