
Hybrid Contract Checking via Symbolic Simplification

Dana N. Xu
INRIA Paris-Rocquencourt

na.xu@inria.fr

Abstract
Program errors are hard to detect or prove absent. Allowing pro-
grammers to write formal and precise specifications, especially in
the form of contracts, is a popular approach to program verifica-
tion and error discovery. We formalize and implement a hybrid
(static and dynamic) contract checker for a subset of OCaml.The
key technique is symbolic simplification, which makes integrating
static and dynamic contract checking easy and effective. Our tech-
nique statically checks contract satisfaction or blames the function
violating the contract. When a contract satisfaction is undecidable,
it leaves residual code for dynamic contract checking.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms functional language, verification, debugging

Keywords contract semantics, static, dynamic, hybrid, contract
checking, symbolic simplification

1. Introduction
Constructing reliable software is difficult. Formulating and check-
ing (statically or dynamically) logical assertions [2, 5, 15, 17, 36],
especially in the form of contracts [7, 12, 13, 29, 40], is onepopular
approach to error discovery. Static contract checking can catch all
contract violations but may raise false alarms and can only check
restricted properties; dynamic checking can check more expressive
properties but consumes run-time cycles and only checks thepaths
actually executed, and so is not complete. Consider an OCamlpro-
gram augmented with a contract declaration:

(* val f1 : (int -> int) -> int *)
contract f1 = ({x | x >= 0} -> {y | y >= 0})

-> {z | z >= 0}
let f1 g = (g 1) - 1
let f2 = f1 (fun x -> x - 1)

The contract off1 says thatf1 will return a non-negative num-
ber whenever it is applied to a function that returns a non-negative
number when given a non-negative number. Both a static checker
and a dynamic checker are able to report thatf1 fails its postcon-
dition: a static checker relies on the unsoundness of∀g : int →
int, (g 1) ≥ 0 ⇒ (g 1) − 1 ≥ 0 while a dynamic checker eval-
uates(((fun x -> x - 1) 1) - 1) to -1, which violates the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PEPM’12, January 23–24, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1118-2/12/01. . . $10.00

contract{z | z >= 0}. However, a dynamic checker cannot tell
that the argument(fun x -> x - 1) fails f1’s precondition be-
cause there is no witness at run-time, while a static checkercan re-
port this contract violation because∀x : int, x ≥ 0 ⇒ x− 1 ≥ 0
does not hold. On the other hand, a static checker usually gives
three outcomes: (a) definitely no bug; (b) definitely a bug; (c) pos-
sibly a bug. Here, a bug refers to a contract violation. As static and
dynamic checking can be complementary, we may want to invoke
a dynamic checker when the outcome is (c). This ensures that no
contract violations can escape while maintaining expressiveness.

Following the formalization in [40], but this time for a strict
language, we first give a denotational semantics for contract satis-
faction, i.e., we define what it means for an expressione to satisfy
its contractt (written e ∈ t) without knowing how to check it.
Next, we define a wrapper⊲ that takese andt and produces a term
e ⊲ t with contract checks inserted at appropriate places ine. If a
contract check is violated, a special constructorBADl signals the
violation where the labell precisely captures the function at fault.
All we have to do is to check the reachability ofBADl in the term
e ⊲ t. We symbolically simplify the terme ⊲ t, aiming to simplify
BADs away. If someBAD constructors remain, we either report it as
a compile-time error or leave the residual code for dynamic check-
ing. We make the following contributions:

• We clarify the relationship between static contract checking and
dynamic contract checking (§2). A new observation is that, af-
ter static checking, we should prune away some more unreach-
able code before going to dynamic checking. Such unreachable
code, however, is essential during static checking. We showthe
correctness of this pruning (§6) with the telescoping property
studied (but not used for such purpose) in [7, 40].

• We definee ∈ t ande⊲t and prove a theorem “e⊲t is crash-free
⇐⇒ e ∈ t” (§4). “Crash-free” meansBAD is not reachable un-
der any context. Such a formalization is tricky and its correct-
ness proof is non-trivial. We rework the proofs from [41] fora
strict language.

• We design a novel SL machine that augments symbolic sim-
plification with contextual information synthesis for checking
the reachability ofBAD statically (§5). The checking is auto-
matic andmodularand we prove its soundness. Moreover, the
SL machine producesresidualcode for dynamic checking.

• We design alogicizationtechnique that transforms expressions
to logical formulae. The key contribution is to deal with non-
total terms (§5).

2. Overview
Assertions [17] state logical properties of an execution state at arbi-
trary points in a program; contracts specify agreements concerning
the values that flow across a boundary between distinct partsof
a program (modules, procedures, functions, classes). If anagree-
ment is violated, contract checking is supposed to provide precise

blaming of the function at fault. Contracts [29] and higher-order
contracts [12] were to be checked at run-time when they were first
introduced. To performdynamic contract checking(DCC), a func-
tion must be called to be checked. For example:

contract inc = {x | x > 0} -> {y | y > 0}
let inc = fun v -> v + 1
let h1 = inc 0

A dynamic checker wraps theinc in h1 with its contracttinc (a
shorthand for the contract ofinc):

let h1 = (inc
BAD

l

⊲⊳
BADl

′

tinc) 0

wherel is (2, 5, “inc”) the (row,col) source location whereinc is
defined andl′ is (3, 10, “h1”) the source location of the call site
with caller’s name. This wrappedh1 expands to:

(λx1. let y = inc (let x = x1 in

if x > 0 then x else BAD(3,10,“h1”))

in if y > 0 then y else BAD(2,5,“inc”)) 0

In the upper box, the argument ofinc is guarded by the check
x > 0; in the lower box, the result ofinc is guarded by the check
y > 0. If a check succeeds, the original term is returned, otherwise,
the special constructorBAD is reached and blame is raised. In this
case,h1 callsinc with 0, which failsinc’s precondition. Running
the above wrapped code, we getBAD(3,10,“h1”), which blamesh1.

With the DCC algorithm, given a functionf and a contractt,
to check that the calleef and its caller agree on the contractt
dynamically, a checker wraps each call tof with its contract:

f
BAD

f

⊲⊳
BAD?

t

, which behaves the same asf except that (a) iff disobeyst, it
blamesf , signaled byBADf ; (b) if the context usesf in a way not
permitted byt, it blames the caller off , signaled byBAD? where
“?” is filled with a caller name and the call site.

Later, [7, 40] give formal declarative semantics for contract
satisfaction that not only allow us to prove the correctnessof DCC
against this semantics, but also to check contracts statically.

The essence ofstatic contract checking(SCC) is:

splitting
BAD

f

⊲⊳
BAD?

into two halves:e ⊲ t = e
BAD

f

⊲⊳
UNR?

t ande ⊳ t = e
UNR

f

⊲⊳
BAD?

t.

The ⊲ (“ensures”) and the⊳ (“requires”) are dual to each other.
The special constructorUNR (“unreachable”), does not raise blame,
but stops execution. (Those who are familiar withassert and
assume can think of (if p then e else BAD) as (assert p; e)
and (if p then e else UNR) as (assume p; e).)

SCC is modular and is performed at the definition site of each
function. For example,(λv.v + 1) ⊲ tinc expands to:

λx1. let y = (λv.v + 1)
(let x = x1 in if x > 0 then x else UNR?) in

if y > 0 then y else BAD(2,5,“inc”)

At the definition site of a function,f = e, we assumef ’s
precondition and assert its postcondition. If allBADs in e ⊲ t are
not reachable, we knowf satisfies its contractt. One way to check
reachability ofBAD is to symbolically simplify the fragment. In the
above case, inliningx gives:

λx1. let y =(λv.v + 1) (if x1 > 0 then x1 else UNR?) in

if y > 0 then y else BAD(2,5,“inc”)

In this paper, besides symbolic simplification, we collect contextual
information in logical formula form and consult an SMT solver to
check the reachability ofBAD. An SMT solver usually deals with
formulae in first-order logic (FOL). In this section, we present
formulae in higher-order logic while§5 gives the details of the
generation of formulae in FOL. For the two subexpressions ofthe
RHS ofy, we have:

λv.v + 1 ∃x2, (∀v, x2(v) = v + 1)

if x1 > 0 then x1 else UNR
? ∃x3, (x1 > 0 ⇒ x3 = x1)∧

(not(x1 > 0) ⇒ false)

One can think of the existentially quantifiedx2 (andx3) as de-
noting the expression itself. For the RHS ofy, we have:

∀y,∃x2, (∀v, x2(v) = v + 1) ∧ (∃x3, (x1 > 0 ⇒ x3 = x1)
∧(not(x1 > 0) ⇒ false) ∧ y = x2(x3)) [Q1]

We check the validity of a formula collected from the path to
BAD(2,5,“inc”), i.e., ∀x1,Q1 ⇒ y > 0, by consulting an SMT
solver. Since it is valid, we know that theBAD(2,5,“inc”) is not
reachable, thusinc satisfies its contract.

Consider the functionf1 and its contracttf1 in §1. Sof1 ⊲ tf1
is (λg.(g 1) − 1) ⊲ tf1, which expands to:

λx1. let z = (λg.(g 1)− 1)
(λx2. let y = x1 (let x = x2 in

if x ≥ 0 then x else BAD(4,5,“f1”)) in
if y ≥ 0 then y else UNR?) in

if z ≥ 0 then z else BAD(4,5,“f1”)

After applying some conventional simplification rules, we have:

R1 : λx1. let z = let y = x1 1 in
if y ≥ 0 then y − 1 else UNR?

if z ≥ 0 then z else BAD(4,5,“f1”)

We see that the innerBAD(4,5,“f1”) has been simplified away, be-
causex = x2 = 1 and (if 1 ≥ 0 then 1 else BAD(4,5,“f1”)) is
simplified to 1. As we cannot prove∀x1,∀z, (∃y, y = x1 1∧ (y ≥
0 ⇒ z = y − 1)) ⇒ z ≥ 0, the otherBAD(4,5,“f1”) remains. We
can either report this potential contract violation at compile-time or
leave this residual code R1 for DCC to achieve hybrid checking.

Hybrid contract checking(HCC) performs SCC first and runs
theresidualcode as in DCC. In SCC,f1 ⊲ tf1 checks whetherf1
satisfies its postcondition by assuming its precondition holds. At
each call site off1, we wrap the function with⊳. For example:

contract f3 = {v | v >= 0}
let f3 = f1 zut

where zut is a difficult function for an SMT solver andzut’s
contract is{x | true}. Supposezut ⊳ {x | true} = zut, we
then have the termf3 ⊲ tf3 to be:

((f1 ⊳ tf1) zut) ⊲ {v | v > 0}

which requires f3 to satisfy f1’s precondition and assumesf1
satisfies its postcondition becausef1 ⊲ tf1 has been checked.
During SCC,a top-level function is never inlined. We do not have
to know its detailed implementation at its call site as it hasbeen
guarded by its contract withf ⊳ t. Thef3 ⊲ tf3 expands to:

let v =
let z = f1
(λx2.let y = zut (let x = x2 in

if x ≥ 0 then x else UNR(7,10,“f1”)) in

if y ≥ 0 then y else BAD(7,10,“f3”)) in

if z ≥ 0 then z else UNR(7,10,“f1”)

in if v ≥ 0 then v else BAD(7,10,“f3”)

As ⊳ is dual to⊲, the RHS ofv is actually a copy of the earlier
f1 ⊲ tf1 but swapping theBAD andUNR and substitutingx1 with
zut. We now know the source location of the call site off1
and its caller’s name, theUNR? becomesBAD(7,10,“f3”) and the
BAD(4,5,“f1”) becomesUNR(7,10,“f1”). At definition site where the
caller is unknown, we use the location off1, i.e.,(4, 5, “f1”). Once
its caller is known, we use(7, 10, “f1”). It is easy to get source
location so we do not elaborate it further.

As an SMT solver saysvalid for ∀v.(∃z.z ≥ 0 ∧ v = z) ⇒
v ≥ 0, thef3 ⊲ tf3 can be simplified to (say R2):

let z = f1 (λx2. let y = zut (let x = x2 in
if x > 0 then x

else UNR(7,10,“f1”)) in

if y ≥ 0 then y else BAD(7,10,“f3”)) in

if z ≥ 0 then z else UNR(7,10,“f1”)

leaving oneBAD. We can either report this potential contract viola-
tion at compile-time or continue a DCC. For SCC, we have checked
f1⊲ tf1, but for DCC, to invokef1⊲ tf1, we must use the residual
code R1. However, theUNR clauses are useful for SCC, but redun-
dant for DCC. We can removeUNRs with a simplification rule:

(if e0 then e1 else UNR) =⇒ e1 [rmUNR]

(We shall explain why it is valid to apply this rule even ife0 may
diverge or crash in§6. Intuitively, UNR is indeed unreachable and
e0 has been checked before this program point.) Applying the rule
[rmUNR] to R1 and R2 and, simplifying a bit, we get:

f1♯ = λx1. let z = (let y = (x1 1) in y − 1) in

if z ≥ 0 then z else BAD(4,5,“f1”)

f3♯ = f1♯ (λx2.let y = zut x2 in

if y ≥ 0 then y else BAD(7,10,“f3”))

respectively, which is theresidualcode being run. We show in§6
that HCC blames a functionfi iff DCC blamesfi.

Summary Given a definitionf = e and a contractt, to check that
e satisfiest (written e ∈ t), we perform these steps. (1) Construct
e ⊲ t. (2) Simplify e ⊲ t as much as possible toe′, consulting an
SMT solver when necessary. (3) If noBAD is in e′, then there is no
contract violation, while if there is aBAD in e′, we give error (or
warning) message for a definite (or potential) bug at compile-time.
(4) For a functionf not satisfying its contract, create its residual
code f♯ by simplifying e′ with the rule [rmUNR], and run the
program with eachf being replaced byf♯.

3. The language
The language presented in this paper, named M, is pure and strict,
and is a subset of OCaml with parametric polymorphism.

3.1 Syntax

Figure 1 gives the syntax of language M. A program contains a set
of data type declarations, contract declarations and function defi-
nitions. Expressions include integersn, variables, lambda abstrac-
tions, applications, constructors andmatch expressions. We have
top-level let rec, but for the ease of presentation, we omit lo-
cal let rec. (It is possible to allow locallet rec by either as-
suming that a local recursive function is given a contract orus-
ing contract inference [21] to infer its contract. Even if [21] is
not modular, it is enough to infer a contract for a local func-
tion.) Pairs are a special case of constructed terms. A locallet
expressionlet x = e1 in e2 is syntactic sugar for(λx.e2) e1.
An if expressionif e0 then e1 else e2 is syntactic sugar for
match e0 with {true → e1; false → e2}.

We assume all top-level functions are given a contract. Contract
checking is done after the type checking phase in a compiler so we

x, f ∈ Variables
T ∈ Type constructors
K ∈ Data constructors

pgm ::= def1 , . . . , defn Program

τ ::= int | bool | −→τ T | τ1 → τ2 Types

t ∈ Contracts
t ::= {x | p} predicate contract

| x : t1 → t2 dependent function contract
| (x : t1, t2) dependent tuple contract
| Any polymorphicAny contract

def ∈ Definitions

def ::= type
−→
′α T =

−−−−−→
K of −→τ

| contract f = t
| let f −→x = e top-level function
| let rec f −→x = e top-level recursive function

a, e, p ∈ Expressions

a, e, p ::= n | r | x | λ(xτ).e | e1 e2 | K −→e

| match e0 with
−→
alt

alt ::= K (xτ1
1 , . . . , xτn

n) → e Alternatives

r ::= BADl | UNRl Blames
l ::= (n1, n2, String) Label

val ::= n | x | r | K
−→
val | λ(xτ).e Values

tv ::= n | x | K
−→
tv

tval ::= tv | λ(xτ).e Trivial values

Figure 1. Syntax of the language M

assume all expressions, contexts, and contracts are well-typed and
use the type information (presented as a superscript, e.g.,eτ or tτ)
whenever necessary. Type-checking material is in [39].

The two contract exceptions (also called blames)BADl andUNRl

are adapted from [40]. They are for internal usage, and are not
visible to programmers. The labell captures source location and
function name, which are useful for error reporting as well as for
the examination of the correctness of blaming. But we may omit
the labell when it is not the focus of the discussion.

It is possible for programmers to write:

let head xs = match xs with
| [] -> raise Error
| x::l -> x

where raise : ∀α. Exception → α. The Error has type
Exception, which is a built-in data type for exceptions. As we
do not havetry-with in language M (leaving it as future work), a
preprocessing step convertsraise Error to BADhead.

We have four forms of contracts. Thep in a predicate con-
tract {x | p} refers to a boolean expression in the same lan-
guage M. Dependent function contracts allow us to describe de-
pendency between input and output of a function. For example,
x : {y | y > 0} → {z | z > x} says that, the input is greater
than 0 and the output is greater than the input. We can use a short-
hand{x | x > 0} → {z | z > x} by assumingx scopes over
the RHS of→. The→ is right associative. Similarly, dependent
tuple contracts allow us to describe dependency between twocom-
ponents of a tuple. For example,(x : {y | y > 0}, {z | z > x}) has
short hand({x | x > 0}, {z | z > x}). ContractAny is a universal
contract that any expression satisfies. We support higher-order con-
tracts, e.g.,k : ({x | x > 0} → {y | y > x}) → {z | k 5 > z}
for a functionlet f g = g 2.

Contexts C ::= [[•]] | C e | val C | K
−→
val C −→e

| match C with
−→
alt

e1 → e2
C[[e1]] → C[[e2]]

[E-ctx]
let (rec) f = e ∈ ∆

f → e
[E-top]

C[[r]] → r [E-exn] (λx.e) val → e[val/x] [E-beta]

match K
−→
val with {.., K −→x → e; ..} → e[

−−−→
val/x] [E-match]

Figure 2. Semantics of the language M

3.2 Operational semantics

The semantics of our language is given by the reduction rulesin
Figure 2. For a top-level function, we fetch its definition from the
evaluation environment∆, which maps a variable to its definition.
We adapt some basic definitions from [40]. Definition 1 defines
the usual contextual equivalence. Two expressions are saidto be
semantically equivalent if and only if under all (closing) contexts,
if one evaluates to a blamer, the other also evaluates to the same
r. The notation(C[[e]])bool meansC[[e]] is closed and well-typed.

Definition 1 (Semantically Equivalent). Two expressionse1 ande2
are semantically equivalent, namelye1 ≡s e2, iff ∀C, (C[[ei]])bool

for i = 1, 2, r ∈ {BAD, UNR}, C[[e1]] →
∗ r ⇐⇒ C[[e2]] →

∗ r

We useBAD to signal that something has gone wrong in a
program, which can be a program failure or a contract violation.

Definition 2 (Crash). A closed terme crashesiff e →∗ BAD.

Our framework only guaranteespartial correctness. A diverging
program does not crash.

Definition 3 (Diverges). A closed expressione diverges, writtene↑,
iff eithere →∗ UNR, or there is no valueval such thate →∗ val.

At compile-time, one decidable way to check the safety of a
program is to see whether the program is syntactically safe.

Definition 4 (Syntactic safety). A (possibly open) expressione is
syntactically safeiff BAD /∈s e. Similarly, a contextC is syntacti-
cally safe iffBAD /∈s C.

The notationBAD /∈s e meansBAD does not syntactically appear
anywhere ine, similarly for BAD /∈s C. For example,λx.x is
syntactically safe, whileλx. (BAD, x) is not.

Definition 5 (Crash-free Expression). A (possibly open) expression
e is crash-free iff :∀C, BAD /∈s C and(C[[e]])bool ⇒ C[[e]] 6→∗ BAD

The quantified contextC serves the usual role of a probe that
tries to provokee into crashing. A crash-free expression may not
be syntactically safe, e.g.,λx.if x ∗ x ≥ 0 then x+ 1 else BAD.

Lemma 1 (Syntactically safe expression is crash-free).

e is syntactically safe ⇒ e is crash-free

For ease of presentation, when we do not give labell to BAD or
UNR, we meanBAD or UNR for any l. Moreover, expressionsBADl

andUNRl are closed expressions even ifl is not explicitly bound.

4. Contracts
Inspired by [40], we design a contract satisfaction and checking al-
gorithm for a strict language. As diverging contracts make dynamic
contract checking unsound (explained in§4.2) and we do hybrid
checking, we focus on total contracts.

e ∈ {x | p} ⇐⇒ e↑ or (e is crash-free and [A1]
p[e/x] →∗ true)

e ∈ x : t1 → t2 ⇐⇒ e↑ or (e →∗ λx.e2 and [A2]

∀val ∈ t1, (e val) ∈ t2[val/x])
e ∈ (x : t1, t2) ⇐⇒ e↑ or (e →∗ (val1, val2) and [A3]

val1 ∈ t1 andval2 ∈ t2[val1/x])
e ∈ Any ⇐⇒ true [A4]

Figure 3. Contract Satisfaction (e ∈ t)

Definition 6 (Total contract). A contractt is total (tl) iff

t is {x | p} andλx.p is tl (i.e., crash-free, terminating)
or t is x : t1 → t2 andt1 is tl and∀val ∈ t1, t2[val/x] is tl
or t is (x : t1, t2) andt1 is tl and∀val ∈ t1, t2[val/x] is tl
or t is Any

Our definition of total contract is different from that in [7], but
close to the crash-free contract in [40] with an additional condition
thatλx.p is a terminating function. For example, contract{x | x 6=
[]} → {y | head x > y} is total in our framework becausehead x
does not crash for allx satisfying{x | x 6= []}. Such a contract
is not total in [7] because a crashing functionhead is called in a
predicate contract.

4.1 A semantics for contract satisfaction

We give the semantics of contracts by defining “e satisfiest” (e ∈ t)
in Figure 3. Here are some consequences: (1) a divergent expres-
sion satisfies any contract, hence all contracts are inhabited; (2)
only crash-free expressions satisfy a predicate contract;(3) any ex-
pression satisfies contractAny; (4) BAD only satisfies contractAny.

One difference from [40] is that, we do not allowp[e/x] in [A1]
to diverge while [40] allows because they only do static checking.
We support dependent tuple contracts, that are not in [7, 40]. One
difference from [7] is that, they say that a crashing expression does
not satisfy any contract; we say that a crashing expression satisfies
the universal contractAny. Having a top ordering contractAny is
debated in [11]. We define a subcontract ordering as follows.

Definition 7 (Subcontract). For all closed contractst1 and t2, t1
is a subcontract oft2, writtent1 ≦ t2, iff ∀e, e ∈ t1 ⇒ e ∈ t2

For example, we have{x | true} ≦ Any, but not vice versa.
TheAny is like (but not the same as)∀α, α. Consider:

contract fail = Any
let fail = raise Error

In [7] and other refinement type checking framework [5, 24, 36],
they give function likefail a function contract{x | false} →
{x | true} so that the precondition{x | false} allows their
system to blame all the callers offail. Using a function contract
for a non-function type is somewhat ad hoc. More discussion on
the contractAny can be found in [39].

4.2 The wrappers

As mentioned in§2, the essence of contract checking is the two
wrappers⊲ and ⊳, which are dual to each other, whose full ver-
sions are⊲l1l2 and⊳l1l2 respectively. The wrapped expressione

r1
⊲⊳
r2

t

(defined in Figure 4) expands to a particular expression, which be-
haves the same ase except that it raises blamer1 if e does not obey
t and raisesr2 if the wrapped term is used in a way that violatest.

From [P1] to [P3], ife crashes, the wrapped term crashes; ife
diverges, the wrapped term diverges. Whenever anri is reached, we
know the propertyp does not evaluate totrue (as in [P1]). Rules
in Figure 3 and 4 are defined such that Theorem 1 holds.

e ⊲ t = e
BAD

l1

⊲⊳
UNRl2

t e ⊳ t = e
UNR

l2

⊲⊳
BADl1

t

e
r1
⊲⊳
r2

{x | p} = let x = e in if p then x else r1 [P1]

e
r1
⊲⊳
r2

x : t1 → t2 = let y = e in [P2]

λx1.((y (x1
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1

r2

⊲⊳
r1

t1)/x])

e
r1
⊲⊳
r2

(x : t1, t2) = match e with [P3]

(x1, x2) → (x1
r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1

r2

⊲⊳
r1

t1)/x])

e
r1
⊲⊳
r2

Any = r2 [P4]

Figure 4. Contract checking with the wrappers

Theorem 1 (Soundness of contract checking). For all closed ex-
pressionseτ and closed, terminating contractstτ ,

(e ⊲ t) is crash-free ⇒ e ∈ t

The superscriptτ says bothe and t are well-typed and have
the same typeτ . Note that ift is terminating ande ⊲ t is crash-free,
thent is total. See [39] for a full proof and a completeness theorem.
Basically, we rework the proofs in [41] for a strict language.

Unlike [12], which assumes there are no exceptions in contracts,
our checking algorithm detects contract exceptions incontracts.

The termt2[(x1

r2

⊲⊳
r1

t1/x] in [P2] and [P3] says that, each (function)

call in a contractis wrapped with its contract so that, if there is any
contract violation in a contract, we report this error. For example:

contract f = k:({x | x > 0 } -> {y | y > 0 })
-> {z | k 0 > -1}

let f g = g 2
let t2 = f (fun x -> x)

a contract violation occurs in{z | k 0 > -1} because the call
k 0 fails k’s precondition{x | x > 0}. Theri says that the label
of ri is updated:r1’s label is the call site ofx1 in t2 and the name
of the contract;r2’s label is the location of “x1 :” and the name
of x1. We leave the correctness proof of this label update as future
work. Our proof [39] is different from that in [7] and the proof in [7]
works because they use an ad hoc fix, i.e., usingUNR instead ofr1.

Terminating contracts We wantp in {x | p} to be terminating
becausea divergent contract hides crashes. For example:

let rec loop x = loop x
contract fb = {x | loop x} -> {y | true}
let fb x = head []

fb ⊲ tfb is λx1.((λx.head []) (if loop x1 then x1 else BAD)),
which diverges whenever applied because of theloop. However,
the functionfb is not crash-free.

We only have to prove termination of functions used in con-
tracts, not all the functions in a program. We can adapt ideas
in [4, 27, 35] to build an efficient automatic termination checker.

5. Static contract checking and residualization
The Theorem 1 in§4.2 says that, to check contract satisfaction, we
can check the reachability ofBAD in e ⊲ t as eachBAD signals a
contract violation. We introduce an SL machine (Figure 5) which
tries to simplify away theBADs in an expression. The novelty of our
work is to combine symbolicsimplificationand contextual informa-
tion (ctx-info) synthesis withlogical store in order to achievever-
ification, blamingand residualizationin one-go. The SL machine

takes an expressione and produces its semantically equivalent and
simplified version. A 4-tuple〈H || e || S || L〉 is to simplifye and a
4-tuple〈〈H || e || S || L〉〉 is to rebuild e where

• H is an environment mapping variables to trivial values;

• e is the expression under simplification (or being rebuilt);

• S is a stack which embodies the simplification context, or
continuation that will consume a simplified expression;

• L is a logical store which contains the ctx-info in logical for-
mula form; its syntax is

L ::= ∅ | ∀x : τ,L | φ,L

whereφ is a predicate in Figure 6.

The job of the SL machine is to simplify an expression as much
as possible, consulting the logical store when necessary; when it
cannot simplify the expression further, it rebuilds the expression.

5.1 The SL machine

In Figure 5, the constantn and blamer cannot be simplified further,
thus being rebuilt as shown in [S-const] and [S-exn] respectively.
One might ask why we rebuild rather than return a blame. Thereare
two reasons: (a) it gives more information for static error reporting,
i.e., we know conditions leading to a reachableBAD; (b) as we do
hybrid contract checking, we want to send the residual code with
undischarged blames to a dynamic checker.

As we perform symbolic simplification rather than evaluation
(as for the CEK machine [14]), we only put a variable in the
environmentH if it denotes a trivial value. A variable denoting
a top-level function is not put inH. Variables inH are inlined by
[S-var1] while variables not inH are rebuilt by [S-var2].

Each element on the stack is called astack framewhere the hole
• in a stack frame refers to the expression under simplification or
being rebuilt. We usea to represent an expression that has been
simplified. The syntax ofS is

S ::= [] | (• e) :: S | (e •) :: S | (λx.•) :: S | let x = • in e
| (match • with alt) :: S | (let x = e in •) :: S

| (match e0 with
−−−−−−−−−−−−→
K −→x → (•,S ,L)) :: S

The transitions [S-app], [S-match] and [S-K] implement thecon-
text reduction in Figure 2. The transitions [S-letL], [S-matchL],
[S-letR], [S-matchR], [S-m-match], [S-match-let] implement the
conventional simplification rules. Here,−→x abbreviates a sequence
of x1, . . . , xn. We uselet instead of lambda for easy reading.
Rules [S-letL] and [S-matchL] push the argument into the let-
body and match-body respectively; rules [S-letR] and [S-matchR]
push the function into the let-body and match-body. The rules
[S-m-match] and [S-match-let] are to make an expression less
nested. Rule [S-K-match] allows us to simplify an expression
like match Some e with {Some x → 5; None → BAD} to
let x = e in 5 which is crash-free.

What doesrebuilddo? It unwinds the stack. If the stack is empty
([R-done]), indicating the end of the whole simplification process,
we return the expression. Otherwise, we examine the stack frame.
By [E-exn], the transition [R-r] rebuildsUNR (or BAD) with the rest
of the stack. After we finish simplifying one subexpression,we
start to simplify the next subexpression (e.g., [R-fun]). When all
subexpressions are simplified, we rebuild the expression (e.g., [R-
lam] and [R-app]). If current simplified expression is a trivial value
and we have stack frame lambda onS , we use [R-beta]; together
with [S-var1], they implement a beta-reduction [E-beta]. Bound
variables are renamed when necessary.

The logical storeL captures all the ctx-info up to the program
point being simplified. (We useif expression to save space, but

〈H || n || S || L〉 〈〈H || n || S || L〉〉 [S-const]
〈H || r || S || L〉 〈〈H || r || S || L〉〉 [S-exn]

〈H[x 7→ tval] || x || S || L〉 〈〈H[x 7→ tval] || tval || S || L〉〉 [S-var1]
If x /∈ H, 〈H || x || S || L〉 〈〈H || x || S || L〉〉 [S-var2]

〈H || λxτ .e || S || L〉 〈H || e || (λx.•) :: S || L,∀x : [[τ]]〉 [S-lam]
〈H || e1 e2 || S || L〉 〈H || e1 || (• e2) :: S || L〉 [S-app]

〈H || match e0 with alts || S || L〉 〈H || e0 || (match • with alts) :: S || L〉 [S-match]
〈H || K (a1, . . . , ei, . . . , en) || S || L〉 〈H || ei || (K (a1, . . . , •, . . . , en)]) :: S || L〉 [S-K]

if x 6∈ fv(e), 〈H || let x = e1 in e2 || (• e) :: S || L〉 〈H || let x = e1 in e2 e || S || L〉 [S-letL]

if fv(e) ∩ −→xi = ∅, 〈H ||
(match e0 with
−−−−−−−→
K −→x → ei)

|| (• e) :: S || L〉 〈H || match e0 with
−−−−−−−−→
K −→x → ei e || S || L〉 [S-matchL]

if x 6∈ fv(a), 〈H || val || (• (let x = e1 in e2)) :: S || L〉 〈H || let x = e1 in val e2 || S || L〉 [S-letR]
if fv(val) ∩ −→x = ∅,

〈H || val || (• (match e0 with
−−−−−−→
K −→x → e)) :: S || L〉 〈H || match e0 with

−−−−−−−−−−→
K −→x → val e || S || L〉 [S-matchR]

if fv(alts) ∩ −→x = ∅,

〈H ||
match e0 with
−−−−−−→
K −→x → e

|| (match • with alts) :: S || L〉 〈H ||
match e0 with
−−−−−−−−−−−−−−−−−−−→
K −→x → match e with alts

|| S || L〉 [S-m-match]

if x 6∈ fv(alts),
〈H || let x = e1 in e2 || (match • with alts) :: S || L〉 〈H || let x = e1 in match e2 with alts || S || L〉 [S-match-let]

〈〈H || a || [] || L〉〉 a [R-done]
if (s 6= match e with K −→x → (•,S ,L)), 〈〈H || r || s :: S || L〉〉 〈〈H || r || S || L〉〉 [R-r]

〈〈H || a || (λx.•) :: S || L〉〉 〈〈H || λx.a || S || L〉〉 [R-lam]

Rules below:a /∈ {BADl, UNRl} by default

〈〈H || a || (• e2) :: S || L〉〉 〈H || e2 || (a •) :: S || L〉 [R-fun]
〈〈H || tval || ((λx.a1) •) :: S || L〉〉 〈〈H[x 7→ tval] || a1 || S || L〉〉 [R-beta]

if a1 6= λx.a′ or a 6= tval, 〈〈H || a || (a1 •) :: S || L〉〉 〈〈H || a1 a || S || L〉〉 [R-app]
〈〈H || an || (K a1 . . . •) :: S || L〉〉 〈〈H || K −→a || S || L〉〉 [R-K]

〈〈H || K −→a || (match • with {. . . ;K −→x → e; . . . }) :: S || L〉〉 〈H || let −−−→x = a in e || S || L〉 [R-K-match]

if exists(K −→x) such thatL ⇒ (∃
−−−−→
x : [[τ]], [[a]](K −→x)),

〈〈H || a || (match • with
−−−−−−→
K

−→
xτ → e) :: S || L〉〉 〈H || e || S || L,∀

−−−−→
x : [[τ]], [[a]](K −→x)〉 [R-s-match]

if for all (K −→x) such thatL 6⇒ (∃
−−−−→
x : [[τ]], [[a]](K −→x)),

〈〈H || a || (match • with
−−−−−−→
K

−→
xτ → e) :: S || L〉〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈H || e || (match a with K
−→
xτ

→ (•,S ,L)) :: []
|| L,∀

−−−−→
x : [[τ]],

[[a]](K −→x)

〉 [R-s-save]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
〈〈H || a || (match a0 withK −→x → (•,S ,L)) :: S ′ || L′〉〉 〈〈H || match a0 with

−−−−−−→
K −→x → a || S || L〉〉 [R-match]

for someS ′ andL′ anda can ber
〈〈H || a || (let xτ = • in e2) :: S || L〉〉 〈H || e2 || (let x = a in •) :: S || L,∀x : [[τ]], [[a]]x〉 [R-let-save]

Figure 5. SL machine

refer tomatch-transitions.) Consider:

〈∅ ||
λx. if x > 0 then (if x+ 1 > 0

then 5 else BAD) else UNR
|| [] || ∅〉

The [S-lam] puts∀x : int in L, which is initially empty:

〈∅ ||
if x > 0 then (if x+ 1 > 0
then 5 else BAD) else UNR

|| (λx.•) :: [] || ∀x : int〉

The [S-match] starts to simplify the scrutineex > 0, which is being
rebuilt after a few trivial steps.

〈〈∅ || x > 0 ||
(if • then (if x+ 1 > 0

then 5 else BAD)
else UNR) :: (λx.•) :: []

|| ∀x : int〉〉

Before applying the transition [R-s-save], we check whether
x > 0 or not(x > 0) is implied byL to see whether the transition
[R-s-match] can be applied. The transition [R-s-match] implements
[E-match], where the side condition “if∃(K −→x), L ⇒ [[a]](K −→x)”
checks if there is any branchK −→x that matches the scrutineea.
But the current information inL is not enough to show the validity

of eitherx > 0 or not(x > 0). By [R-s-save], we convert this
scrutinee to logical formula with[[a]](K −→x) (explained later) and
put it in L and simplify both branches. Note that we putx > 0 in
L for thetrue branch whilenot(x > 0) for thefalse branch.

[〈∅ ||
if x+ 1 > 0
then 5 else BAD

||
(if x > 0 then •)
:: (λx.•) :: []

||
∀x : int,
x > 0

〉;

〈∅ || UNR || (if x > 0 else •) :: S || ∀x : int, not(x > 0)〉]

In thetrue branch, after a few steps, we rebuild the scrutinee
x + 1 > 0. In this case,∀x : int, x > 0 ⇒ x + 1 > 0 is valid.
By [R-s-match], we take thetrue branch, which is a constant5.
As both 5 andUNR cannot be simplified further, we rebuild them by
[S-const] and [S-unr] respectively and obtain:

[〈〈∅ || 5 ||
(if x > 0 then •)
:: (λx.•) :: []

||
∀x : int, x > 0,
(x+ 1 > 0)

〉〉;

〈〈∅ || UNR ||
(if x > 0 else •)
:: (λx.•) :: []

||
∀x : int,
not(x > 0)

〉〉]

x, s, i ∈ Identifier
file ::= decl1, . . . , decln
ty ::= int | bool | ’α |

−→
ty s Types

lty ::= ty |
−→
ty -> ty Logic type

decl ::= type
−→
’α s

| logic~i : lty | axiom i : φ | goal i : φ
⊕ ::= + | − | ∗ | /
⊙t ::= = | < | ≤ | > | ≥
⊙p ::= -> | <-> | or | and
m ::= n | x | m1 ⊕ m2 | - m | x(−→m) Term

φ ::= true | false | f −→m Predicate
| m1 ⊙t m2 | φ1 ⊙p φ2 | not(φ)
| forall ~x : ty.φ | exists ~x : ty.φ

Figure 6. Syntax of logic declaration

By [R-match], we combine both simplified branches to rebuild
theif expression:

〈〈∅ || if x > 0 then 5 else UNR || (λx.•) :: [] || ∀x : int〉〉

We continue to rebuild the expression by [R-lam]:

〈〈∅ || λx. if x > 0 then 5 else UNR || [] || ∀x : int〉〉

and terminate (by [R-done]) with a syntactically safe expression:

λx. if x > 0 then 5 else UNR.

Besides [R-s-save], another transition that saves ctx-info toL is
[R-let-save]. We refer readers to [39] for more examples.

Theorem 2 (SL machine terminates). For all expressione, there
exists an expressiona such that〈∅ || e || [] || ∅〉 ∗ a.

Intuitively, SL machine behaves like CEK machine [14], but
rebuilds an expression anddoes not inline top-level functions. As
we do not have locallet rec in our language, only inline trivial
values and also call SMT solver Alt-ergo with an option “-stop
〈time-bound〉” or “-steps 〈bound〉” to make sure the SMT solver
terminates, there is no element causing non-termination.

Theorem 3 (Correctness of SL machine). For all expressione, if
〈∅ || e || [] || ∅〉 ∗ a, thene ≡s a.

The SL is designed in a way such that the simplifieda pre-
serves the semantics of the original expressione. The proof of
Theorem 3 (in [39]) uses the fact that, if there existse3 such that
〈H || e1 || S || L〉 ∗ 〈H || e3 || S || L〉 and〈H || e2 || S || L〉 ∗

〈H || e3 || S || L〉, thene1 ≡s e2. (See Definition 1 for≡s.)

Theorem 4(Soundness of static contract checking). For all closed
expressione, and closed and terminating contractt,

〈∅ || e ⊲ t || [] || ∅〉 ∗ e′ andBAD /∈s e′ ⇒ e ∈ t

Proof.By Theorem 3, Lemma 1 and Theorem 1.
For open expressions and open contracts, see [39].

5.2 Logicization

We now explain the conversion[[.]]f , which we call logicization.
Figure 6 gives the abstract syntax of the logical formula supported
by an SMT solver named Alt-ergo [8], which is an automatic
theorem prover for polymorphic first-order logic modulo theories.
It uses classical logic and assumes all types are inhabited.First,
Alt-ergo allows us to represent data type declaration, e.g.,

type ’a list = Nil | Cons of ’a * (’a list)

in Alt-ergo code withtype andlogic declarations:

Data type declaration in language M:
type

−→
’a s = K1 of

−→
t1 | · · · | Kn of

−→
tn

Its alt-ergo code:type
−→
’a s

−−−−−−−−−−−−−−−→
logic K :

−→
t ->

−→
’a s

Figure 7. Converting data type to Alt-ergo code

[[τ1 . . . τn T]] = [[τ1]] . . . [[τn]] T
[[τ1 → τ2]] = ([[τ1]], [[τ2]]) arrow

Figure 8. Converting OCaml types to logic type

type ’a list
logic nil : ’a list
logic cons : ’a , ’a list -> ’a list

As Alt-ergo supports only first-order logic (FOL), the arguments of
a logical function (e.g.,cons) are given as a tuple. The type variable
’a is assumed universally quantified at top-level. The conversion
algorithm for an arbitrary user-defined data type is in Figure 7.

A conventional way [22] to encode higher-order function to
FOL is to define a typearrow and a logical functionapply:

type (’a, ’b) arrow
logic apply : (’a, ’b) arrow , ’a -> ’b

where the’a and ’b refer to a function’s input and output type
respectively. Converting types in the language M is easy (Figure 8).
Base typesint andbool are data types with no parameter.

We now give an example to show what logicization can do.

(* val len : ’a list -> int *)
contract len = {x | true} -> {y | y >= 0}
let len s = match s with | [] -> 0

| x::u -> 1 + len u
(* val append : ’a list -> ’a list -> ’a list *)
contract append = {xs | true} -> {ys | true}

-> {len rs = len xs + len ys}
let append xs ys = match xs with
| [] -> ys
| x::u -> x :: append u ys

The functionlen computes the length of a list and the function
append appends two lists. Letea and ta stand for the definition
and contract ofappend respectively. Applying only simplification
rules (including reduction rules) toea ⊲ ta, we get (R3):

λv1.λv2.match v1 with
| [] → if len v2 = len v1 + len v2 then v2 else BAD

l1

| x :: u → if (len (x ::
(if len (append u v2) = len u+ len v2
then append u v2 else UNR))

= len v1 + len v2)
then x :: append u v2 else BADl2

The simplification approach in [38] and the model-checking ap-
proach in [33] involve inlining top-level functions, whilewe do
not. Instead, we axiomatize the top-level function definitions that
were called in contracts and lift expressions under checking to logic
level and consult an SMT solver. The challenge is to deal with
non-total expressions (e.g.,BAD) in our source code. In the liter-
ature about converting functional code (in an interactive theorem
prover) to SMT formulae [1, 6, 9, 28], expressions are converted
to a logical form directly. In [1], given a non-recursive function
definition f = e, they firstη-expande to getf = λx1 . . . xn.e

′

wheree′ does not containλ; if it is a recursive function, they as-

sumee is in a particular form such that all lambdas are at top-level
and the function performs an immediate case-analysis over one of
its arguments. Then, they form∀−→x , f(x1, . . . , xn) = [[e′]] where
[[.]] converts an expression to logical form. (On the other hand, [6]
usesλ-lifting method:λ-abstractions are translated from inside out,
where eachλ-abstraction is replaced by a call to a newly defined
functions, so∀−→x , fn(x1, . . . , xn) = [[e′]]; . . . ;∀x1, f = f1(x1) .)
This is fine for converting total terms, e.g.,[[5]] = 5 and[[x]] = x,
etc., but what are[[BAD]] and[[UNR]]? Our key idea is not to convert
an expression directly to a corresponding logical term, butform
equality with[[.]]f recursively (defined in Figure 9). The subscript
f in [[e]]f denotes the expressione. Moreover, we perform neither
η-expansion (which does not preserve semantics in the presence of
non-total terms) norλ-lifting, and yet we allow arbitrary forms of
recursive functions. We have such flexibility because we convertλ-
abstraction and partial application directly with the helpof apply.
(Note that our logicization[[.]]f can also produce higher-order logic
formula for interactive proving by replacing(apply(f, x)) with
(f(x)) and not converting the types.) No logicization work in the
literature (including [6, 9, 28, 34]) deal with non-total terms. The
work [6] uses approaches in [9, 28] to deal with polymorphism
while Alt-ergo itself supports polymorphism.

Our framework can systematically generate Alt-ergo code, like
below, to show that thoseBADs in R3 are unreachable.

logic len: (’a list, int) arrow
logic append: (’a list,

(’a list,’a list) arrow) arrow

axiom len_def_1 : forall s:’a list. s = nil ->
apply(len,s) = 0

axiom len_def_2 : forall s:’a list. forall x:’a.
forall l:’a list. s = cons(x,l) ->
apply(len,s) = 1 + apply(len,l)

goal app_1 : forall v1,v2:’a list. v1 = nil ->
apply(len,v2) = apply(len,v1) + apply(len,v2)

goal app_2 : forall v1,v2,l:’a list.forall x:’a.
v1 = cons(x,l) ->
apply(len,apply(apply(append,l),v2))

= apply(len,l) + apply(len,v2) ->
(exists y:’a list. y = apply(apply(append,l),v2)
and apply(len,cons(x, y))

= apply(len,v1) + apply(len,v2))

To make an SMT solver’s life easier (i.e., multiple small axioms are
better than one big axiom), we have two axioms forlen, one for
each branch, which are self-explanatory. As a constructor is always
fully applied, we do not encode its application withapply. The->
(in axioms and goals) is a logical implication.

For example, the axiomlen_def_1, is generated by:

[[λs’a list. match s with {Nil → 0}]]len
= ∀s :’a list.[[match s with {Nil → 0}]](apply(len,s))
= ∀s :’a list. ∃x0 :’a list.[[s]]x0

∧
(x0 = nil -> [[0]](apply(len,s)))

= ∀s :’a list. ∃x0 :’a list. x0 = s ∧
(x0 = nil -> apply(len, s) = 0)

Lettingx0 bes, we get a more readable version (axiomlen_def_1).
An algorithm that partially eliminates redundant existentially quan-
tified variables can be found in [39].

Theorem 5 (Logicization for axioms). Given closed definition
f = eτ , the logical fomula∃f : τ, [[e]]f is valid.

⊕ ∈ [+,−, ∗, /] ⊙ ∈ [>,<,=]
[[.]]f : Expression → Formula

[[let (rec) f = e]]f = [[e]]f top-level defn

[[BADl]]f =

{

true for axioms
false for goals

[[UNRl]]f = false
[[x]]f = f = x
[[n]]f = f = n

[[eτ11 ⊕ eτ22]]f = ∃x1 : [[τ1]], ∃x2 : [[τ2]],
[[e1]]x1

∧ [[e2]]x2
∧ f = x1 ⊕ x2

[[eτ11 ⊙ eτ22]]f = ∃x1 : [[τ1]], [[e1]]x1
∧

∃x2 : [[τ2]], [[e2]]x2
∧

((x1 ⊙t x2 ∧ f = true)∨
(not(x1 ⊙t x2) ∧ f = false))

[[λxτ .e]]f = ∀x : [[τ]], [[e]](apply(f,x))

[[let xτ = e1 in e2]]f = ∃x : [[τ]], [[e1]]x ∧ [[e2]]f
[[eτ11 eτ22]]f = ∃x1 : [[τ1]], [[e1]]x1

∧
∃x2 : [[τ2]], [[e2]]x2

∧
f = apply(x1, x2)

[[K eτ11 . . . eτnn]]f = ∃x1 : [[τ1]], [[e1]]x1
∧ · · · ∧

∃xn : [[τn]], [[en]]xn∧
f = K (y1, . . . , yn)

[[
match eτ00 with
−−−−−−→
K

−→
xτ → e

]]f =
∃x0 : [[τ0]], [[e0]]x0

∧

(
∧

−−−−−−−−−−−−−−−−−−−−→
∀
−−−→
x : [[τ]], (x0 = K −→x) ⇒ [[e]]f)

Figure 9. Convert expression to logical formula

Next, what query (i.e., goal) shall we make? All we want is to
check if the branch leading toBAD is reachable or not. So our task
is to examine the scrutinee of amatch expression. For example,
the goalapp_1 states that the ctx-infov1=nil, which is from the
pattern matchingmatch v1 with {[] → . . . }, implies the scrutinee.
By [S-lam] and [R-s-save], we haveL = ∀v1 : ’a list,∀v2 :
’a list, v1 = nil. The scrutinee is[[len v2 = len v1 +
len v2}]]true. That is, we want to check whetherlen v2 =
len v1 + len v2 is equivalent totrue. Alt-ergo saysvalid for
both goals. Thus, we know bothBADl1 andBADl2 are not reachable.

Theorem 6(Logicization for goals: validity preservation). For all
(possibly open) expressioneτ , for all fv(e), ∃f : τ , if [[e]]f is valid
ande → e′ for somee′, then[[e′]]f is valid.

More details on design choices are in [39]. Here, we highlight
a few. (1) Only functions called in contracts are converted to Alt-
ergo axioms. (2) In Figure 9, there are two conversions forBAD,
true for axioms. This is for generating a harmless axiomtrue for
the crashing branch of a partial function called in contracts. (3)
For goals, the[[e]]f collects ctx-infobeforea scrutinee of amatch
expression, thus,[[BAD]]f = [[UNR]]f = false, which implies that
the rest of the code is not reachable.

5.3 Discussion and preliminary experiments

One might notice that SL machine simplifies terms under lambda
and the body ofmatch expression while we do not have such ex-
ecution rules in Figure 2. As we rebuild blames and do not inline
recursive functions (i.e., no crashing and no looping during simpli-
fication), the SL machine does not violate call-by-value execution.

One might worry that the rule [S-m-match] causes exponen-
tial code explosion for static analysis (although no run-time over-
head). From our current observation, quite often the scrutinee is
if b then d else e wheree is BAD or UNR. As blames trigger
the SL machine to immediately rebuild the blame with the restof
the stack, applying the rule [S-m-match], we do not have duplica-
tion but have a desired smaller formula for the SMT solver. We

have implemented a prototype based on the source code of ocamlc-
3.12.1. Table 1 shows the results of preliminary experiments, which
are done on a PC running Ubuntu Linux with a quad-core 2.93GHz
CPU and 3.2GB memory. We take some examples from [26] and
OCaml stdlib and time the static checking. The column Ann gives
the LOC count for contract annotations. One advantage of theSL

Table 1. Results of preliminary experiments
program total LOC Ann LOC Time (sec)
intro123, neg, mc91 28 5 0.10
ack, fhnhn, zipunzip 25 4 0.16
arith, sum, max 26 4 0.20
OCaml stdlib/list.ml 81 16 0.72

machine is that it allows rules to be easily added or removed.This
paper focuses on the theory of hybrid contract checking. We leave
optimization and rigorous experimentation on tuning the strength
of symbolic simplification and the frequency of calling an SMT
solver as future work.

6. Hybrid contract checking
We have explained with examples how SCC, DCC, HCC work
in §2. Programmers may choose to have SCC only, DCC only,
or HCC. In this section, we summarize their algorithm. Givena
programfi ∈ ti, fi = ei for 1 ≤ i ≤ n. Supposefi is the
current function under contract checking;fj is a function called
in fi (includingfi’s recursive call);sl is the SL machine;rmUNR
implements the rule[rmUNR] (mentioned earlier in§2).

(if e0 then e1 else UNR) =⇒ e1 [rmUNR]

We have:

[SCC] : sl(ei[(fj ⊳
fj
fi

tfj)/fj] ⊲
fi
? t)

[DCC] : ei[(fj
BAD

fj

⊲⊳
BADfi

tfj)/fj]

[HCC] : fi♯ = λ?.rmUNR(sl(ei[((fj♯ “fi”) ⊳
fj
fi

tfj)/fj] ⊲
fi
? t))

In [HCC], the residual codefi♯’s parameter “?” waits for a caller’s
name. For example,if an SMT solver cannot prove the goalapp_2
in §5.2 (although it can), recalling R3 in§5.2, the residual code
append♯ is:

λ?.λv1.λv2.match v1 with
| [] → v2;
| x :: l → if len (x :: append t v2) = len v1+len v2

then x :: append t v2 else BAD
l

which says that we only have to check the postcondition for the
second branch. (If allBADs are simplified away during SCC, a
residual code of a function is its original definition.)

Lemma 2 (Telescoping property [7, 40]). For all expressione,
total contractt, blamesr1, r2, r3, r4, (e

r1
⊲⊳
r2

t)
r3
⊲⊳
r4

t = e
r1
⊲⊳
r4

t.

Precondition of a function is checked at caller sites. Anfj♯ is
the simplifiedfj ⊲

fj
fi

tfj , inspecting [HCC], eachfj at caller sites

is replaced by(fj ⊲
fj
fi

tfj) ⊳
fj
fi

tfj , which is(fj
BAD

fj

⊲⊳
UNRfi

tfj)
UNR

fj

⊲⊳
BADfi

tfj .

By the telescoping property, we have:

(fj
BAD

fj

⊲⊳
UNRfi

tfj)
UNR

fj

⊲⊳
BADfi

tfj = fj
BAD

fj

⊲⊳
BADfi

tfj [T1]

which is the same as in DCC. This shows that [HCC] blamesf if
and only if [DCC] blamesf .

Moreover, [T1] justifies the correctness of applying the rule
[rmUNR] because allUNRs are indeed unreachable asBADl is in-
voked beforeUNRl for the samel. That is, (if p then e1 else BADl)
is invoked before (if p then e else UNRl) for the samep, maybe
differente. So it is safe to apply the rule[rmUNR] even ifp diverges
or crashes. See [39] for more details.

7. Related work
Contract semantics were first formalized for a strict language [7,
11] and later for a lazy language [40]. This paper adapts and re-
formalizes some of their ideas on contract satisfaction andcontract
checking. Detailed design difference is explained in§4.

Pre/post-condition specification using logical formulae [2, 15,
17, 34] allows programmers to existentially quantify over infi-
nite domains or express metaproperties that are not expressible in
contracts. We like the idea of ghost refinement [36], which sep-
arates properties that can be converted to program code fromthe
metaproperties expressed only as logical formulae. As there are al-
ways limits to automatic static checking, it is practical toconvert
some difficult checks to dynamic checks. Unlike pre/post-condition
specification, refinement types and contracts allow us to study sub-
contract relations [11, 41], recursive contracts [7], and polymorphic
contracts [3]. Contracts also enjoy interesting mathematical prop-
erties [7, 11, 39, 40].

One might recall hybrid refinement type checking (HTC) [13,
24]. In theory [16], (picky, i.e. our) contract checking is able to
give more blame than refinement type checking in the presenceof
higher-order dependent function contracts. That is partlywhy [36]
invents a Kind checker to report ill-formed refinement types. As
discussed in§4.2, we checke ⊲ t for crash-freeness in one-go and
do not have to check t to be crash-free separately. In practice,
the H andL in the SL machine serve a similar purpose as the
typing environment in HTC. But symbolic simplification gives
more flexibility in such ways as teasing out the path sensitivity
analysis with the rule [S-m-match], etc. We hope this work opens a
venue to compare HCC and HTC in practice. Notably, VeriFast [20]
(for verifying C and Java code) suggests that symbolic execution is
faster than the verification condition generation method [2, 15].

Khoo et al. [23] mix type checking and symbolic execution. Be-
sides they do not generate residual code, they require programmers
to place block annotations{t t} for type checking and{s s} for
symbolic execution while our SL machine systematically simplifies
subterms and consults the logical store for checking at the appro-
priate program point. Moreover, their symbolic expressionis given
in linear arithmetic, which is more restrictive than ours.

Our approach is different from [36], which extracts proofs of
refinement types from an SMT solver and injects them as terms in
the generated bytecode RDCIL (like proof carrying code) during
refinement type checking. Theirs has a security motivation.

Some work [25, 26, 32, 33] suggests converting programs to a
higher-order recursive scheme (HORS), which generates (possibly
infinite) trees, and specify properties in the form of a trivial au-
tomaton and do model checking to see whether HORS satisfies its
desired property. Our approach is completely different although we
both do reachability checking. They work on automata while we
work on programs directly. Our approach ismodularwhile theirs
is not. They deal with locallet rec while we do not, but we
could infer local contract with method in [21] or inline the local
let rec function for a fixed number of times. They deal with pro-
tocol checking while we do not, except where a protocol checking
problem can be converted to checking the reachability ofBAD.

The contextual information synthesis and conversion of expres-
sion to logical formula is inspired by the use of the application •
in [18, 19], which makes conversion of higher-order functions eas-
ier. But we use the technique in different contexts.

Many papers on program verification [2, 10, 15, 30, 31, 37]
focus on memory leaks, array bound checks, etc. and a few handle
higher-order functions and recursive predicates. Our workfocuses
on more advanced properties and precise blaming of functions at
fault. Contract checking in the imperative world is lead by [10],
which statically checks contract satisfaction at the bytecode CIL
level and runs dynamic checking separately. Residualization has
not been done in [10]. We may adapt some ideas in [20] to extend
our framework for program with side effects.

8. Conclusion
We have formalized a contract framework for a pure, strict, higher-
order subset of OCaml. We propose a natural integration of static
contract checking and dynamic contract checking. With the SL
machine, our approach gives precise blame at both compile-time
and run-time in the presence of higher-order functions. In the near
future, besides rigorous experimentation and case-studies, we plan
to add user-defined exceptions, allow side effects in program and
hidden side effects in contracts, do contract or invariant inference.

Acknowledgments
I would like to thank Xavier Leroy, Francois Pottier, Nicolas Pouil-
lard, Martin Berger, Simon Peyton Jones, Michael Greenberg, and
the anonymous reviewers for their comments.

References
[1] N. Ayache and J.-C. Filliatre. Combining the Coq proof assistant

with first-order decision procedures. Unpublished, 2006. URL http:
//www.lri.fr/~filliatr/publis/coq-dp.ps.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview.CASSIS, LNCS 3362, 2004.

[3] J. F. Belo, M. Greenberg, A. Igarashi, and B. C. Pierce. Polymorphic
contracts. InESOP, pages 18–37, 2011.

[4] A. M. Ben-Amram and C. S. Lee. Program termination analysis in
polynomial time. ACM Trans. Program. Lang. Syst., 29:5:1–5:37,
January 2007.

[5] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.
Refinement types for secure implementations.ACM Trans. Program.
Lang. Syst., 33:8:1–8:45, February 2011.

[6] J. C. Blanchette, S. Böhme, and L. C. Paulson. ExtendingSledgeham-
mer with SMT solvers. InCADE, pages 116–130, 2011.

[7] M. Blume and D. A. McAllester. Sound and complete models of
contracts.J. Funct. Program., 16(4-5):375–414, 2006.

[8] S. Conchon, E. Contejean, and J. Kanig. Ergo : a theorem prover for
polymorphic first-order logic modulo theories. Unpublished, 2006.
URL http://ergo.lri.fr/papers/ergo.ps.

[9] J.-F. Couchot and S. Lescuyer. Handling polymorphism inautomated
deduction. InCADE, pages 263–278, 2007.

[10] M. Fähndrich and F. Logozzo. Static contract checkingwith abstract
interpretation. InFoVeOOS: the Intl. Conf. on Formal Verf. of OO
Software, pages 10–30, 2010.

[11] R. B. Findler and M. Blume. Contracts as pairs of projections. In
Functional and Logic Prog., pages 226–241, 2006.

[12] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In ICFP: the ACM SIGPLAN Intl. Conf. on Fnl. Prog., pages 48–59,
2002.

[13] C. Flanagan. Hybrid type checking. InPOPL: the ACM SIGPLAN-
SIGACT symp. on Prin. of Prog. Lang., pages 245–256, 2006.

[14] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. InPLDI: the ACM SIGPLAN conf. on
Prog. Lang. Design and Impl., pages 237–247. ACM, 1993.

[15] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. InPLDI, pages 234–245,
2002.

[16] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
In POPL: the ACM SIGPLAN-SIGACT symp. on Prin. of Prog. Lang.,
pages 353–364, 2010.

[17] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12:576–580, October 1969.

[18] K. Honda and N. Yoshida. A compositional logic for polymorphic
higher-order functions. InPPDP: the ACM SIGPLAN intl. conf. on
Prin. and practice of Decl. Prog., pages 191–202, 2004.

[19] K. Honda, M. Berger, and N. Yoshida. Descriptive and relative com-
pleteness of logics for higher-order functions. InICALP: the Intl. Col-
loq. on Autamata, Lang. and Prog., pages 360–371, 2006.

[20] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. VeriFast: A powerful, sound, predictable, fast verifier for
C and Java. InNASA Formal Methods, pages 41–55, 2011.

[21] R. Jhala, R. Majumdar, and A. Rybalchenko. HMC: Verifying func-
tional programs using abstract interpreters. InCAV: the intl. conf. on
Comp. Aided Verf., pages 262–274, 2011.

[22] M. Kerber. How to prove higher order theorems in first order logic. In
IJCAI, pages 137–142, 1991.

[23] Y. P. Khoo, B.-Y. E. Chang, and J. S. Foster. Mixing type checking
and symbolic execution. InPLDI: the ACM SIGPLAN conf. on Prog.
Lang. Design and Impl., pages 436–447, 2010.

[24] K. Knowles and C. Flanagan. Hybrid type checking.ACM Trans.
Program. Lang. Syst., 32:6:1–6:34, February 2010.

[25] N. Kobayashi. Types and higher-order recursion schemes for verifica-
tion of higher-order programs. InPOPL, pages 416–428, 2009.

[26] N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and cegar
for higher-order model checking. InPLDI, pages 222–233, 2011.

[27] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change
principle for program termination. InPOPL, pages 81–92, 2001.

[28] K. R. M. Leino and P. Rümmer. A polymorphic intermediate veri-
fication language: Design and logical encoding. InTACAS: the Intl.
Conf. on Tools and Algo. for the Construction and Anls. of Syst., pages
312–327, 2010.

[29] B. Meyer. Eiffel: the language. Prentice-Hall, 1992.

[30] M. Might. Logic-flow analysis of higher-order programs. In POPL:
the ACM SIGPLAN-SIGACT symp. on Prin. of Prog. Lang., pages
185–198, 2007.

[31] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and sepa-
ration in Hoare type theory. InICFP, pages 62–73, 2006.

[32] C.-H. L. Ong. On model-checking trees generated by higher-order
recursion schemes. InLICS: IEEE Symp. on Logic in Computer
Science, pages 81–90, 2006.

[33] C.-H. L. Ong and S. J. Ramsay. Verifying higher-order functional
programs with pattern-matching algebraic data types. InPOPL, pages
587–598, 2011.

[34] Y. Régis-Gianas and F. Pottier. A Hoare logic for call-by-value func-
tional programs. InMPC, pages 305–335, 2008.

[35] D. Sereni and N. D. Jones. Termination analysis of higher-order func-
tional programs. Inproceedings of the 3rd Asian Symp. on Program.
Lang. and Systems (APLAS), pages 281–297, 2005.

[36] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. InICFP,
pages 15–27, 2011.

[37] H. Xi and F. Pfenning. Dependent types in practical programming.
In POPL: the ACM SIGPLAN-SIGACT symp. on Prin. of Prog. Lang.,
pages 214–227, 1999.

[38] D. N. Xu. Extended static checking for Haskell. InProceedings of the
ACM SIGPLAN workshop on Haskell, pages 48–59, 2006.

[39] D. N. Xu. Hybrid contract checking via symbolic simplification.
INRIA technical report RR-7794, 2011.

[40] D. N. Xu, S. Peyton Jones, and K. Claessen. Static contract checking
for Haskell. InPOPL, pages 41–52, 2009.

[41] N. Xu. Static Contract Checking for Haskell. Ph.D. thesis, Aug. 2008.

