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Abstract

Program errors are hard to detect or prove absent. Allowing p
grammers to write formal and precise specifications, eafigdn
the form of contracts, is a popular approach to program eerifi
tion and error discovery. We formalize and implement a hg/bri
(static and dynamic) contract checker for a subset of OCahd.
key technique is symbolic simplification, which makes imgging
static and dynamic contract checking easy and effective t€uin-
nigue statically checks contract satisfaction or blamediction
violating the contract. When a contract satisfaction isaaidbble,

it leaves residual code for dynamic contract checking.

Categories and Subject Descriptors D.3 [Softwarg: Program-
ming Languages

General Terms functional language, verification, debugging

Keywords contract semantics, static, dynamic, hybrid, contract
checking, symbolic simplification

1. Introduction

Constructing reliable software is difficult. Formulatingdacheck-
ing (statically or dynamically) logical assertions [2, 5,17, 36],
especially in the form of contracts [7, 12, 13, 29, 40], is popular
approach to error discovery. Static contract checking eachcall
contract violations but may raise false alarms and can dméck
restricted properties; dynamic checking can check moresssjve
properties but consumes run-time cycles and only checkgates
actually executed, and so is not complete. Consider an O@a&ml|
gram augmented with a contract declaration:

(x val f1 : (int -> int) -> int *)
contract f1 = ({x | x >= 0} > {y | y >= 0})
-> {z | z >= 0}

let f1 g=(g 1) -1
let £2 = f1 (fun x -> x - 1)

The contract off1 says thatf1 will return a non-negative num-
ber whenever it is applied to a function that returns a nayatiee
number when given a non-negative number. Both a static eineck
and a dynamic checker are able to report thafails its postcon-
dition: a static checker relies on the unsoundnesggof int —
int, (g 1) > 0= (g 1) — 1 > 0 while a dynamic checker eval-
uvates(((fun x -> x - 1) 1) - 1) to -1, which violates the
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contract{z | z >= 0}. However, a dynamic checker cannot tell
that the argumenffun x -> x - 1) fails £1's precondition be-
cause there is no witness at run-time, while a static chezzkere-
port this contract violation because : int,z >0=2x—12>0
does not hold. On the other hand, a static checker usualBsgiv
three outcomes: (a) definitely no bug; (b) definitely a buyp@s-
sibly a bug. Here, a bug refers to a contract violation. AScstnd
dynamic checking can be complementary, we may want to invoke
a dynamic checker when the outcome is (c). This ensures that n
contract violations can escape while maintaining expvessiss.
Following the formalization in [40], but this time for a gtfi
language, we first give a denotational semantics for consiatts-
faction, i.e., we define what it means for an expressiom satisfy
its contractt (written e € t) without knowing how to check it.
Next, we define a wrapperthat takes: and¢ and produces a term
e >t with contract checks inserted at appropriate places ifia
contract check is violated, a special construd@sbp’ signals the
violation where the labdl precisely captures the function at fault.
All we have to do is to check the reachability RED’ in the term
e > t. We symbolically simplify the terne > ¢, aiming to simplify
BADs away. If someBAD constructors remain, we either report it as
a compile-time error or leave the residual code for dynareck-
ing. We make the following contributions:

¢ We clarify the relationship between static contract chegldnd
dynamic contract checkingZ). A new observation is that, af-
ter static checking, we should prune away some more unreach-
able code before going to dynamic checking. Such unreaghabl
code, however, is essential during static checking. We shew
correctness of this pruning®) with the telescoping property
studied (but not used for such purpose) in [7, 40].

o We definee € ¢t ander>t and prove a theorenetst is crash-free
<= e € t"(§4). “Crash-free” meanBAD is not reachable un-
der any context. Such a formalization is tricky and its cctrre
ness proof is non-trivial. We rework the proofs from [41] for
strict language.

e We design a novel SL machine that augments symbolic sim-
plification with contextual information synthesis for ckag
the reachability of8AD statically §5). The checking is auto-
matic andmodularand we prove its soundness. Moreover, the
SL machine produce®sidualcode for dynamic checking.

¢ We design dogicizationtechnique that transforms expressions
to logical formulae. The key contribution is to deal with ron
total terms §5).

2. Overview

Assertions [17] state logical properties of an executiatesat arbi-
trary points in a program; contracts specify agreementserming
the values that flow across a boundary between distinct pérts
a program (modules, procedures, functions, classes). Hoaee-
ment is violated, contract checking is supposed to provigeipe



blaming of the function at fault. Contracts [29] and higloeder
contracts [12] were to be checked at run-time when they wese fi
introduced. To perforndynamic contract checkind®CC), a func-
tion must be called to be checked. For example:

contract inc = {x | x>0} > {y | y > 0}
let inc = fun v > v + 1
let hl = inc O

A dynamic checker wraps thimc in h1 with its contractt i, (a
shorthand for the contract ahc):

BADL

let hl = (inc pq tipc) O
Bapl’

wherel is (2, 5, “inc”) the (row,col) source location whetec is
defined and’ is (3, 10, “h1”) the source location of the call site
with caller's name. This wrappeadl expands to:
(Az1. lety = inc: (let z =1 in
if 2 > 0 then z else BAD(10:"B1"))

in:if y > 0 then y else BAD(>>12¢) 1y

In the upper box, the argument afic is guarded by the check
x > 0; in the lower box, the result afnc is guarded by the check
y > 0. If a check succeeds, the original term is returned, otrsrwi
the special construct@AaD is reached and blame is raised. In this
casehl callsinc with 0, which failsinc’s precondition. Running
the above wrapped code, we gap®% 11" which blames1.

With the DCC algorithm, given a functiofi and a contract,
to check that the calle¢ and its caller agree on the contréct
dynamically, a checker wraps each callftavith its contract:

BADf
Tt
, Which behaves the same @isexcept that (a) iff disobeyst, it
blamesf, signaled byBAD?; (b) if the context useg in a way not
permitted byt, it blames the caller of, signaled byBAD® where
“7"is filled with a caller name and the call site.

Later, [7, 40] give formal declarative semantics for coctra
satisfaction that not only allow us to prove the correctrigd3CC
against this semantics, but also to check contracts dtgtica

The essence dtatic contract checkin¢SCC) is:

splittin o into two halvese > t o' tande<t o t
e = e e =€ .
PING o9 o o?

The > (“ensures”) and thes (“requires”) are dual to each other.
The special construct@R (“unreachable”), does not raise blame,
but stops execution. (Those who are familiar withsert and
assume can think of (f p then e else BAD) as @ssert p; e)
and @£ p then e else UNR) as @ssume p; €).)

SCC is modular and is performed at the definition site of each

function. For examplelAv.v + 1) > ¢4 expands to:

Azi. lety = (Avw+1)
(let & = x; in if = > 0 then x else UNR') in

if y > 0 then y else BAD(2:5:“inc”)

At the definition site of a functionf = e, we assumef’s
precondition and assert its postcondition. IfBdDs ine >t are
not reachable, we know satisfies its contragt One way to check
reachability ofBAD is to symbolically simplify the fragment. In the
above case, inlining gives:

Az1. lety =(Av.v 4 1) (if 1 > 0 then z; else UNR') in
if y > 0 then y else BAD(%:5,“1nC”)

In this paper, besides symbolic simplification, we collexnitextual
information in logical formula form and consult an SMT salite
check the reachability a§AD. An SMT solver usually deals with
formulae in first-order logic (FOL). In this section, we peaes
formulae in higher-order logic whil€5 gives the details of the
generation of formulae in FOL. For the two subexpressiorthef
RHS ofy, we have:

v+ 1
if x1 > 0 then 71 else UNR’

| Jzo, (Vv,22(v) =v +1)
dxs, (x1 >0=x3 = x1)/\
(not(xz1 > 0) = false)
One can think of the existentially quantifie¢, (and z3) as de-
noting the expression itself. For the RHSyofwe have:
Yy, 32, Vv, z2(v) = v+ 1) A (Fos, (21 > 0= 23 = 1)
A(not(xz1 > 0) = false) Ay = z2(x3)) [Q1]
We check the validity of a formula collected from the path to
BAD(*® 1) e, Vz1,Q1l = y > 0, by consulting an SMT
solver. Since it is valid, we know that tHEAD(?:% “12C") s not
reachable, thusnc satisfies its contract.
Consider the functiofil and its contract¢4 in §1. Sof1 ¢4
is (Ag.(g 1) — 1) > t¢4, which expands to:
let z=(Ag.(g1)—1)
(Az2. let y=1z1 (letz =22 in
if £ > 0 then x else BAD(4’5""fl”)) in
if y > 0 then y else UNR’) in
if z > 0 then z else BAD(*»>"/17)

A:El.

After applying some conventional simplification rules, vavé:

R1: Azi. letz= lety=ux;1lin
if y > 0 theny — 1 else UNR’

if z > 0 then z else BAD(*5*17)

We see that the inne@AD*% “/1") has been simplified away, be-
causer = zy = 1 and @f 1 > 0 then 1 else BAD*% /1)) s
simplified to 1. As we cannot prowér:,Vz, (Jy,y = z1 1A (y >
0= z=y—1)) = z > 0, the otheBAD**>*/1") remains. We
can either report this potential contract violation at cdextime or
leave this residual code R1 for DCC to achieve hybrid chegkin
Hybrid contract checkindHCC) performs SCC first and runs
theresidualcode as in DCC. In SCG1 > t¢4 checks whethef1
satisfies its postcondition by assuming its preconditiotusoAt
each call site of 1, we wrap the function witki. For example:

contract £3 = {v | v >= 0}
let £3 = f1 zut

where zut is a difficult function for an SMT solver andut’s
contract is{z | true}. Supposezut < {z | true} = zut, we
then have the term3 > t¢3 to be:

((f1<tgq) zut)>{v | v > 0}

which requires £3 to satisfy £1's precondition and assumest
satisfies its postcondition because > tfq has been checked.
During SCCa top-level function is never inlinetVe do not have
to know its detailed implementation at its call site as it bagn
guarded by its contract witli <« ¢. Thef3 > ¢t¢3 expands to:

letv =
let z =f1
(Az2.let y = zut (letz = x> in
if 2 > 0 then z else UNR(™10"/17)) ip
if y > 0 then y else BAD(7’10""f3”)) in
if z > 0 then z else UNR(7-10:%/17)
in if v > 0 then v else BAD(7-10:%fs")



As < is dual tor, the RHS ofv is actually a copy of the earlier
£1 > t¢q but swapping th®AD andUNR and substitutingz: with
zut. We now know the source location of the call site oo
and its caller's name, theNR’ becomesBAD("1%:“f3") and the
BAD%“/1") becomewNR("10:*/17) | At definition site where the
caller is unknown, we use the locationtdf, i.e.,(4, 5, “f1”). Once
its caller is known, we usé€7, 10, “f1”). It is easy to get source
location so we do not elaborate it further.

As an SMT solver saysalid for Vv.(3z.z > 0 Av = 2) =
v > 0, thef3 > t¢3 can be simplified to (say R2):

let z= f1 (Az2. lety =zut (letz =x2in
if x > O then x
else UNR(10:"A17)) ip
if y > 0 then y else BAD(T1%"/37)) ip
if 2 > 0 then z else UNR(710:"/17)

leaving oneBAD. We can either report this potential contract viola-
tion at compile-time or continue a DCC. For SCC, we have chéck
fipteq, butfor DCC, to invoket1>t¢4, we must use the residual

code R1. However, theNR clauses are useful for SCC, but redun-
dant for DCC. We can remov@&Rs with a simplification rule:

[rmUNR]

(We shall explain why it is valid to apply this rule evereif may
diverge or crash i§6. Intuitively, UNR is indeed unreachable and
eo has been checked before this program point.) Applying thee ru
[rmUNR] to R1 and R2 and, simplifying a bit, we get:

fif = Az1. letz=(lety=(x11)iny—1) in
if 2z > 0 then z else BAD(}% /1)
3t = f1f (Aze.lety =zut z2 in
if y > 0 then y else BAD(7’10’“f3”))

(if eo then e1 else UNR) = ¢;

respectively, which is theesidual code being run. We show i§6
that HCC blames a functiof iff DCC blamesf;.

Summary Given a definitionf = e and a contract, to check that

e satisfiest (writtene € t), we perform these steps. (1) Construct
e > t. (2) Simplify e > ¢t as much as possible td, consulting an
SMT solver when necessary. (3) If BaD is in ¢’, then there is no
contract violation, while if there is 8AD in €', we give error (or
warning) message for a definite (or potential) bug at corvpite.

(4) For a functionf not satisfying its contract, create its residual
code ft by simplifying ¢’ with the rule [rmUNR], and run the
program with eacly being replaced by.

3. Thelanguage

The language presented in this paper, named M, is pure dot str
and is a subset of OCaml with parametric polymorphism.

3.1 Syntax

Figure 1 gives the syntax of language M. A program contaireta s
of data type declarations, contract declarations and ifmatefi-
nitions. Expressions include integetsvariables, lambda abstrac-
tions, applications, constructors amdtch expressions. We have
top-level let rec, but for the ease of presentation, we omit lo-
cal let rec. (It is possible to allow localet rec by either as-
suming that a local recursive function is given a contracusr
ing contract inference [21] to infer its contract. Even iflL][4s
not modular, it is enough to infer a contract for a local func-
tion.) Pairs are a special case of constructed terms. A beal
expressiornlet x = e; in ey iS syntactic sugar fofAz.ez2) e;.
An if expressionif ep then e; else eg iS Syntactic sugar for
match eg with {true — e;;false — ex}.

We assume all top-level functions are given a contract. @oht
checking is done after the type checking phase in a compulers

T € Type constructors

@, f € Variables K € Data constructors

pgm = defr,...,defn Program
T n= int|bool | 7 T |7 — 7 Types
t € Contracts
t = {z]|p} predicate contract
| m:it1— b dependent function contract
| (m:t1,t2) dependent tuple contract
|  Any polymorphicAny contract
def € Deﬁrﬂ;ions
def == type'aT = K of ;
|  contract f =t
| letfZ =e top-level function
|  let recf 7 =e top-level recursive function
a,e,p € Expressions
a,e,p = n|7‘|:c|/\(:c7).e|eleg|K€>
| match eg with alt
alt == K (z7,...,27%) — e Alternatives
r = BAD' | UNR! Blames
l == (n1,n2,String) Label
_>
val == n|z|r |£>( val | A(z7).e Values
tv = nlx| Kt
tval == tv]| Az7).e Trivial values

Figure 1. Syntax of the language M

assume all expressions, contexts, and contracts are ypeittand
use the type information (presented as a superscript,c€.gr,t™)
whenever necessary. Type-checking material is in [39].

The two contract exceptions (also called blanBs)’ andUNR!
are adapted from [40]. They are for internal usage, and are no
visible to programmers. The labélcaptures source location and
function name, which are useful for error reporting as welfa
the examination of the correctness of blaming. But we mayt omi
the labell when it is not the focus of the discussion.

It is possible for programmers to write:

let head xs = match xs with
| [ -> raise Error
|

x::1 > x

where raise : Va. Exception — «. The Error has type
Exception, which is a built-in data type for exceptions. As we
do not havetry-with in language M (leaving it as future work), a
preprocessing step convetsise Error toBADP®2d.

We have four forms of contracts. Thein a predicate con-
tract {x | p} refers to a boolean expression in the same lan-
guage M. Dependent function contracts allow us to descrése d
pendency between input and output of a function. For example
z:{y | y > 0} — {2z | z > z} says that, the input is greater
than 0 and the output is greater than the input. We can usera sho
hand{z | « > 0} — {z | # > «} by assumingr scopes over
the RHS of—. The — is right associative. Similarly, dependent
tuple contracts allow us to describe dependency betweerdwn
ponents of a tuple. For example;: {y | y > 0},{z | z > z}) has
short hand{z | = > 0}, {z | z > «}). ContractAny is a universal
contract that any expression satisfies. We support higtisrcon-
tracts, e.9.k: {z |z >0} = {y |y >z}) = {2 k5> z}
for afunctionlet £ g = g 2.



ContextsC = [o] | Ce|val C—LK vl Ce e€{z|p} <= et or(eiscrash-free and [A1]
|  matchCwith alt ple/x] =" true)
e€x:ti >t < et or(e—=" Azr.ez and [A2]
e1 — e let (rec) f=e€ A Vwal € t1, (eval) € taval/x])
Clei] — Clez] [E-ctx] T—e [E-top] e € (x:t1,t2) <= et or(e—=" (valy,valz) and [A3]
valy € t1 andvals € tavali/x])
Clr] = r [E-exn] (Az.e)val — e[val/z] [E-beta] € € Any <= true [A4]
% - . .
match K val with { K7 —e;.} —elval/z] [E-match] Figure 3. Contract Satisfactione(¢ ¢)
Figure 2. Semantics of the language M Definition 6 (Total contract) A contractt is total (tl) iff
tis{z | p} andXz.pistl (i.e., crash-free, terminating)
. . L or tis(xz:t1,t2)andt; istl andVoval € t1,t2[val/x] istl
The semantics of our language is given by the reduction rales or tisAny
Figure 2. For a top-level function, we fetch its definitioorir the . o )
evaluation environmen\, which maps a variable to its definition. Our definition of total contract is different from that in [Hut
We adapt some basic definitions from [40]. Definition 1 defines close to the crash-free contract in [40] with an additiormaidition
the usual contextual equivalence. Two expressions aretsdie thatAz.p is a terminating function. For example, contréet| « 7
semantically equivalent if and only if under all (closing)ntexts, (1} — {y [ head 2 > y} istotal in our framework becausead =
if one evaluates to a blame the other also evaluates to the same does not crash for alt satisfying{z | = # [1}. Such a contract
r. The notation(C[e])P°°1 meangC[e] is closed and well-typed. is not total in [7] because a crashing functinead is called in a

L ) . ] predicate contract.
Definition 1 (Semantically Equivalent)Two expressions; andes

are semantica”y equivajent, name]y =, eq, iff VC’ (Cﬂezﬂ)bOO:L 4.1 A semantics for contract satisfaction

fori=1,2,r € {BAD,UNR}, Clei] =" r <= Cle2] =" 1 We give the semantics of contracts by definingtisfies” (e € t)
We useBAD to signal that something has gone wrong in a N Figure 3. Here are some consequences: (1) a divergernesxpr

program, which can be a program failure or a contract violati sion satisfies any contract, hence all contracts are irewb(2)
. ) only crash-free expressions satisfy a predicate conf@csny ex-

Definition 2 (Crash) A closed terme crashesff e —* BAD. pression satisfies contrakiy; (4) BAD only satisfies contradiny.
Our framework only guaranteesutial correctness. A divergin One difference from [40] is that, we do not allgie/z] in [A1]

program does not cra)s/r?. Fa ging to diverge while [40] allows because they only do static &hex
o ] o ) We support dependent tuple contracts, that are not in [7,@0¢

Definition 3 (Diverges) A closed expressiandivergeswrittenet, difference from [7] is that, they say that a crashing expoesgoes

iff eithere —™ UNR, or there is no valueal such thate —* val. not satisfy any contract; we say that a crashing expressitsfies
At compile-time, one decidable way to check the safety of a the universal contradtny. Having a top ordering contradhy is

program is to see whether the program is syntactically safe. debated in [11]. We define a subcontract ordering as follows.

Definition 4 (Syntactic safety) A (possibly open) expressianis Definition 7 (Subcontrapt) For 2" clqsed contracts$; andta, t1

syntactically safeff BAD ¢ e. Similarly, a context is syntacti- is & subcontract ofz, writtent, < ¢z, iff Ve, e € t1 = e € 12

cally safe iffBAD ¢ C. For example, we havézr | true} < Any, but not vice versa.
The notatiorBAD ¢, e meansBAD does not syntactically appear | "€Any is like (but not the same as), a.. Consider:

anywhere ine, similarly for BAD ¢, C. For example \z.z is contract fail = Any

syntactically safe, whilez. (BAD, z) is not. let fail = raise Error

Definition 5 (Crash-free Expression)A (possibly open) expression  In [7] and other refinement type checking framework [5, 24, 36

e is crash-free iff ¥C, BAD ¢, C and(C[e])P°°t = C[e] /" BAD they give function likefail a function contrac{x | false} —

{z | true} so that the preconditiofz | false} allows their
system to blame all the callers o&i1. Using a function contract
for a non-function type is somewhat ad hoc. More discussion o
the contractiny can be found in [39].

The quantified context serves the usual role of a probe that
tries to provokee into crashing. A crash-free expression may not
be syntactically safe, e.g\x.if = * x > 0 then z + 1 else BAD.

Lemma 1 (Syntactically safe expression is crash-free)
4.2 The wrappers

e is syntactically safe = e is crash-free . . -
y y As mentioned in§2, the essence of contract checking is the two

For ease of presentation, when we do not give labeBAD or wrappers> and <, which are dual to each other, whose full ver-
UNR, we mearBAD or UNR for any . Moreover, expressioran sions are>!! and<(! respectively. The wrapped expressioR ¢
andUNR’ are closed expressions ever i$ not explicitly bound. 2 2 )

(defined in Figure 4) expands to a particular expressionchvhe-
haves the same agxcept that it raises blame if e does not obey
4. Contracts t and raises if the wrapped term is used in a way that violates
Inspired by [40], we design a contract satisfaction and kimecal- From [P1] to [P3], ife crashes, the wrapped term crasheg; if
gorithm for a strict language. As diverging contracts majessnic diverges, the wrapped term diverges. Whenever, @reached, we
contract checking unsound (explained§i#.2) and we do hybrid know the propertyp does not evaluate torue (as in [P1]). Rules
checking, we focus on total contracts. in Figure 3 and 4 are defined such that Theorem 1 holds.



ur'2
edt=e€e pq t
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edt=e pq t
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T1
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T2
1
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T -
epq Any =12 [P4]
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Figure 4. Contract checking with the wrappers

Theorem 1 (Soundness of contract checkingjor all closed ex-
pressiong:” and closed, terminating contracts,

(e>t)iscrash-free = ect

The superscript- says bothe andt¢ are well-typed and have
the same type. Note that ift is terminating ane > ¢ is crash-free,
thent is total. See [39] for a full proof and a completeness theorem
Basically, we rework the proofs in [41] for a strict language

Unlike [12], which assumes there are no exceptions in cotgra
our checking algorithm detects contract exceptiongdntracts

The terméa[(z1 ;_i] t1/x] in[P2] and [P3] says that, each (function)
1

callin a contractis wrapped with its contract so that, if there is any
contract violation in a contract, we report this error. Faaraple:

contract f =k:({x | x>0} >{yly>0D}
> {z | k0> -1}

let £ g=g 2

let t2 = f (fun x -> x)

a contract violation occurs ifiz | k 0 > -1} because the call

k 0 failsk’s preconditior{x | x > 0}. Ther; says that the label
of r; is updatedr;’s label is the call site of; in ¢2 and the name
of the contracty’s label is the location of £; :” and the name

of z1. We leave the correctness proof of this label update aseutur
work. Our proof [39] is different from that in [7] and the pifan [7]
works because they use an ad hoc fix, i.e., usifRyinstead ofr;.

Terminating contracts We wantp in {« | p} to be terminating
becausea divergent contract hides crashdsor example:

let rec loop x = loop x
contract fb = {x | loop x} -> {y | true}
let fb x = head []

£b >ty iS Az1.((Az.head [ ]) (if loop x1 then x; else BAD)),
which diverges whenever applied because oflbep. However,
the functionfb is not crash-free.

We only have to prove termination of functions used in con-
tracts, not all the functions in a program. We can adapt ideas
in [4, 27, 35] to build an efficient automatic termination cker.

5. Static contract checking and residualization

The Theorem 1 i84.2 says that, to check contract satisfaction, we
can check the reachability &AD in e > ¢ as eactBAD signals a
contract violation. We introduce an SL machine (Figure 5)civh
tries to simplify away th&ADs in an expression. The novelty of our
work is to combine symbolisimplificationand contextual informa-
tion (ctx-info) synthesis withogical store in order to achieveer-
ification, blaming andresidualizationin one-go. The SL machine

takes an expressianand produces its semantically equivalent and
simplified version. A 4-tupldH | e | S | £) is tosimplifye and a
4-tuple((H | e| S| L)) is torebuild e where

e 7{ is an environment mapping variables to trivial values;
e ¢ is the expression under simplification (or being rebuilt);

e S is a stack which embodies the simplification context, or
continuation that will consume a simplified expression;

e L is a logical store which contains the ctx-info in logical-for
mula form; its syntax is

Lo=0|Ve:7,L]| ¢, L
whereg is a predicate in Figure 6.

The job of the SL machine is to simplify an expression as much
as possible, consulting the logical store when necessahgnwit
cannot simplify the expression further, it rebuilds therespion.

5.1 The SL machine

In Figure 5, the constamtand blame- cannot be simplified further,
thus being rebuilt as shown in [S-const] and [S-exn] respelgt
One might ask why we rebuild rather than return a blame. Téere
two reasons: (a) it gives more information for static ereporting,
i.e., we know conditions leading to a reachaBl®; (b) as we do
hybrid contract checking, we want to send the residual coitle w
undischarged blames to a dynamic checker.

As we perform symbolic simplification rather than evaluatio
(as for the CEK machine [14]), we only put a variable in the
environmentH if it denotes a trivial value. A variable denoting
a top-level function is not put ift{. Variables in are inlined by
[S-varl] while variables not ifi{ are rebuilt by [S-var2].

Each element on the stack is callestack framevhere the hole
e in a stack frame refers to the expression under simplifinatio
being rebuilt. We use to represent an expression that has been
simplified. The syntax of is

Su=[]|(ee)::S|(c0)::S|(Ar.e) ::S|letxz=eine
| (match o withalt):: S| (letz=eine) =S

| (match eg with K @ — (e,8,L)) = S

The transitions [S-app], [S-match] and [S-K] implement toa-
text reduction in Figure 2. The transitions [S-letL], [Steta],
[S-letR], [S-matchR], [S-m-match], [S-match-let] implent the
conventional simplification rules. Hera! abbreviates a sequence
of z1,...,z,. We uselet instead of lambda for easy reading.
Rules [S-letL] and [S-matchL] push the argument into the let
body and match-body respectively; rules [S-letR] and [SeimR]
push the function into the let-body and match-body. Thesrule
[S-m-match] and [S-match-let] are to make an expressios les
nested. Rule [S-K-match] allows us to simplify an expressio
like match Some e with {Some x — 5;None — BAD} to
let z = e in 5 which is crash-free.

What doesebuilddo? It unwinds the stack. If the stack is empty
([R-done]), indicating the end of the whole simplificatioropess,
we return the expression. Otherwise, we examine the staaokefr
By [E-exn], the transition [R-r] rebuild8NR (or BAD) with the rest
of the stack. After we finish simplifying one subexpressiome
start to simplify the next subexpression (e.g., [R-fun])hé&n all
subexpressions are simplified, we rebuild the expression, (K-
lam] and [R-app]). If current simplified expression is aixlwalue
and we have stack frame lambda Snwe use [R-beta]; together
with [S-varl], they implement a beta-reduction [E-betapuBd
variables are renamed when necessary.

The logical storeC captures all the ctx-info up to the program
point being simplified. (We usef expression to save space, but



HIn|S|L) ~ (H]|n|S]|L) [S-const]
(H|r|S|L) ~ (H]|r|S|L) [S-exn]
(Hlz = tval] |z [ S|L) ~ (H]z— tval]|tval | S| L) [S-varl]
If x ¢ H, Hlz|S|1L) ~ (H]|z|S|L) [S-var2]
(HlXxTe|S1L) ~ (Hle|l(Ax.e)::S|L,Va:[7]) [S-lam]
(Hlerea| S|L) ~ (Her|(oe2) : S|L) [S-app]
(H |match eg withalts | S| L) ~ (H]|eo|(match e withalts):: S|L) [S-match]
. (H|K (a1,...,€i,...,en) | S|L) ~~ (Hlei| (K (a1,...,0,...,en)]) =S| L) [S-K]
if & fo(e), (H|letz=eiines|(oe)::S|L) ~ (H|letz=eiinese|S|L) [S-letL]
. — (match ep with =
if fule)Nz; =0, (H] m) |(ee)::S|L) ~ (H]|matcheowith K 7 —e;e|S|L) [S-matchlL]
if x & fo(a), (H|val|(e(letz=-e1iney)) =S|L) ~» (H|letz=e;invales |S|L) [S-letR]
if fo(val) N =0, .
(H | val| (e (matcheo with K 7 — €)) = S| L) ~ (H|matcheowith K @ — vale |S|L) [S-matchR]
if fo(alts)N@ =0,
match eg with m o i It ) .S | £> . (H " match eg with " S " £> [S-m-match]
el KT —e | (match thoaits) = K 7 — match e with alts
if z & fu(alts),
(H|let z = e; in ey | (match e withalts):: S|L) ~» (H|letz =e; inmatchep withalts|S|L) [S-match-let]
(Hlal[]1£) ~ o [R-done]
if (s #matchewith K 7 — (8,S,L)), (H|r|s=S|L) ~ (H|r|S|L) [R-]
................................. (Hla] ((v.0) :S|L) ~ (H]|Iz.a|S|L) [R-lam]
: Rules belowa ¢ {BAD', UNR'} by default:
......................... (Hlal(eex) =S|L) ~ (H]ez|(ae):S]|L) [R-fun]
(H|tval| (Ax.a1) @) = S| L) ~ ((Hlx— tval]|lar|S|L) [R-beta]
if a1 # Ax.a’ ora # tval, (Hla](ar0):=:S|L) ~~ {(H]ara]lS|L) [R-app]
(Hlan](Kai...0) = S|L) ~ (H|Kd[S]|L) [R-K]
(H|K d | (match @ with {...; K @ —e;...}) = S|L) ~ (H|letz=adine|S]|L) [R-K-match]
if exists (K 7’) such thatC = (3 : [[T]i, lal(x =),
T
(Hla| (match e with K z" —e) = S[L) ~ (Hle|S|L,Vr:[7],[a]x z)) [R-s-match]
if for all (K 2’) such thatC % (3 : ﬁ ] ,
(<(H|)a|| (match e wii:th[[a; El e()K ~~?s))|| L) ~ (H|e| (matchawith K z | £V [, ) [R-s-save]
) = (9,8,£)) =[] [adx 2
(H]a| (match ap with K @@ — (8,S,L)) = S"| L") ~ (H|matchaowith K Z — a|S|L) [R-match]
for someS’ and£’ anda can ber
(Hla](Qletz™ =eines) = S|L) ~ (H|ez|(letz=aine)::S|L,Vz: [7],[a].) [R-let-save]

Figure 5. SL machine

refer tomatch-transitions.) Consider:

o] Ax.

of eitherxz > 0 or not(z > 0). By [R-s-save], we convert this
scrutinee to logical formula witlfa] ; =) (explained later) and
put it in £ and simplify both branches. Note that we put> 0 in
L for the true branch whilenot(xz > 0) for thefalse branch.

ifz>0then(ifx+1>0
then 5 else BAD) else UNR

I (T19)

The [S-lam] puts/z : int in £, which is initially empty:

1

The [S-match] starts to simplify the scrutinee> 0, which is being
rebuilt after a few trivial steps.

(if o then (ifz+1>0
then 5 else BAD)
else UNR) :: (Az.e) :: []

Before applying the transition [R-s-save], we check whethe
x > 0 ornot(x > 0) is implied by L to see whether the transition
[R-s-match] can be applied. The transition [R-s-match]lengents
[E-match], where the side condition H(K ), £ = [a]x #)"
checks if there is any branch’ Z that matches the scrutinee
But the current information it is not enough to show the validity

ifz>0then(ifx+1>0

ifr+1>0 (if z > O then o) | Vx : int,
then 5 else BAD) else UNR

(01 then 5 else BAD " w(Az.e) ] x>0 k
(D] UNR | (if z > O else o) :: S| Vz : int, not(z > 0))]

| (A\z.0) :: []|Vz : int)

In the true branch, after a few steps, we rebuild the scrutinee
xz + 1 > 0.Inthis caseyz : int,z > 0 = x + 1 > 0is valid.
By [R-s-match], we take therue branch, which is a consta#t
As both 5 andJNR cannot be simplified further, we rebuild them by
[S-const] and [S-unr] respectively and obtain:

(@]=>0] | Vo : int))

(05| .(i:f:E > 0 then )

" Vo :int,z >0,
i (Az.e) i []
(0| unr |

(l’ + 1 .> 0) >>7
| mote >'0) )

(if x > 0 else o)

i (Az.e) i []



z,s,i € Identifier
file == decl,...,decl,
ty == int|bool |’ z s Types
lty == ty|ty >ty Logic type
decl = type s
| logici :lty|axiomi:¢|goali: ¢
& = +|—]xl/
O u= =|<[<S[>]2>
®p = ->|<=>|or|and
m nlxz|m @ mo|-m|z(m) Term
0] true | false | f 7t Predicate

mi1 Or m2 | $1 Op b2 | not(¢)
forall T: ty.¢ | exists T : ty.¢

Figure 6. Syntax of logic declaration

Data type declaration in language M:
— — —
type ’a s = K of_>t1 |- | Kn of ty
Its alt-ergo code:type ’a s

%
‘a

%
logic K: t ->’as

Figure 7. Converting data type to Alt-ergo code

|IT1 v Tn T]]
[[T1*>’7'2]] =

[r] .. ] T
([m1], [72]) arrow

Figure 8. Converting OCaml types to logic type

type ’a list
logic nil ’a list

logic cons : ’a , ’a list -> ’a list

By [R-match], we combine both simplified branches to rebuild  As Alt-ergo supports only first-order logic (FOL), the argemts of

theif expression:
(@] if z > O then 5 else UNR| (A\x.e) :: [ ]| Vz : int))
We continue to rebuild the expression by [R-lam]:
(@] Ax. if > O then 5 else UNR| [ ]| Vx : int))
and terminate (by [R-done]) with a syntactically safe ezpien:
Ax. if x > 0 then 5 else UNR.

Besides [R-s-save], another transition that saves comE is
[R-let-save]. We refer readers to [39] for more examples.

Theorem 2 (SL machine terminates)For all expressiore, there
exists an expressiansuch that(@ | e | []]0) ~* a.

Intuitively, SL machine behaves like CEK machine [14], but
rebuilds an expression ambes not inline top-level functioné\s
we do not have localet rec in our language, only inline trivial
values and also call SMT solver Alt-ergo with an option “gsto
(time-bound” or “-steps (bound” to make sure the SMT solver
terminates, there is no element causing non-termination.

Theorem 3 (Correctness of SL machinefor all expressiore, if
@]e][]]0) ~* a,thene =, a.

The SL is designed in a way such that the simplifiegre-
serves the semantics of the original expressioiThe proof of
Theorem 3 (in [39]) uses the fact that, if there existssuch that
(Hle | S1L) " (Hes|S|L)and(H | ea | S| L) ~~
(Hles| S| L) thener =, e2. (See Definition 1 foe=,.)

Theorem 4(Soundness of static contract checkingpr all closed
expressiore, and closed and terminating contrait

Dlest|[]]0) ~" ¢ andBAD ¢, ¢’ =

Proof.By Theorem 3, Lemma 1 and Theorem 1. |
For open expressions and open contracts, see [39].

ect

5.2 Logicization

We now explain the conversioh] s, which we calllogicization
Figure 6 gives the abstract syntax of the logical formulgpsuted

by an SMT solver named Alt-ergo [8], which is an automatic
theorem prover for polymorphic first-order logic modulodties.

It uses classical logic and assumes all types are inhalitiest,
Alt-ergo allows us to represent data type declaration, e.g.

type ’a list = Nil | Cons of ’a * (’a list)
in Alt-ergo code withtype andlogic declarations:

a logical function (e.ggons) are given as atuple. The type variable
’a is assumed universally quantified at top-level. The corneers
algorithm for an arbitrary user-defined data type is in Fegnwr

A conventional way [22] to encode higher-order function to
FOL is to define a typerrow and a logical functiormpply:

type (’a, ’b) arrow

logic apply : (’a, ’b) arrow , ’a -> °’b

where the’a and ’b refer to a function’s input and output type
respectively. Converting types in the language M is easyuiféi 8).
Base typednt andbool are data types with no parameter.

We now give an example to show what logicization can do.

(* val len : ’a list -> int *)
contract len = {x | true} -> {y | y >= 0}
let len s = match s with | [] -> 0
| x::u > 1 + len u

(* val append : ’a list -> ’a list -> ’a list *)
contract append = {xs | true} -> {ys | true}

-> {len rs = len xs + len ys}
let append xs ys = match xs with

I 1 ->ys

| x::u -> x :: append u ys

The functionlen computes the length of a list and the function
append appends two lists. Leta andta stand for the definition
and contract obppend respectively. Applying only simplification
rules (including reduction rules) & > ta, we get (R3):

Avi.Avz.match vy with
| [] — if len vz = len vy + len vz then vz else BAD!
|z :u— if (len (z =
(if len (append u v2) = len u + len vo
then append u v2 else UNR))
= lenv: + len vy)
then z :: append u vz else BAD'

The simplification approach in [38] and the model-checkipg a
proach in [33] involve inlining top-level functions, whilee do
not. Instead, we axiomatize the top-level function defomis that
were called in contracts and lift expressions under chedkogic
level and consult an SMT solver. The challenge is to deal with
non-total expressions (e.@®AD) in our source code. In the liter-
ature about converting functional code (in an interactheotem
prover) to SMT formulae [1, 6, 9, 28], expressions are caeder
to a logical form directly. In [1], given a non-recursive fition
definition f = e, they firstn-expande to getf = Az1...zn.€’
wheree’ does not contaird; if it is a recursive function, they as-



sumee is in a particular form such that all lambdas are at top-level
and the function performs an immediate case-analysis awei0b
its arguments. Then, they fortiz’, f(z1, . ..,x,) = [¢'] where
[.] converts an expression to logical form. (On the other hasid, [
usesh\-lifting method: A-abstractions are translated from inside out,
where each\-abstraction is replaced by a call to a newly defined
functions, SOV, fr(x1,...,2n) = [€'];...; Va1, f = fi(z1) )
This is fine for converting total terms, e.§5] = 5 and[z] = =,
etc., but what ar¢BAD] and [UNR]? Our key idea is not to convert
an expression directly to a corresponding logical term,foun
equality with[.] recursively (defined in Figure 9). The subscript
fin [e] s denotes the expressien Moreover, we perform neither
n-expansion (which does not preserve semantics in the presegn
non-total terms) noA-lifting, and yet we allow arbitrary forms of
recursive functions. We have such flexibility because weedn-
abstraction and partial application directly with the hefapply.
(Note that our logicizatiof.] ; can also produce higher-order logic
formula for interactive proving by replacinGapply(f,z)) with
(f(z)) and not converting the types.) No logicization work in the
literature (including [6, 9, 28, 34]) deal with non-totafies. The
work [6] uses approaches in [9, 28] to deal with polymorphism
while Alt-ergo itself supports polymorphism.

Our framework can systematically generate Alt-ergo caée, |
below, to show that thosgADs in R3 are unreachable.

(’a list, int) arrow
(’a list,
(’a list,’a list) arrow) arrow

logic len:
logic append:

axiom len_def_1 : forall s:’a list. nil ->
apply(len,s) = 0

axiom len_def_2 : forall s:’a list. forall x:’a.
forall 1:’a list. s = cons(x,1) —>

apply(len,s) = 1 + apply(len,l)

s =

goal app_1 : forall vil,v2:’a list. vl = nil ->
apply(len,v2) = apply(len,vl) + apply(len,v2)

goal app_2 : forall vi1,v2,1:’a list.forall x:’a.
vl = cons(x,1l) —>
apply(len,apply (apply(append,l),v2))
= apply(len,l) + apply(len,v2) ->
(exists y:’a list. y = apply(apply(append,l),v2)
and apply(len,cons(x, y))
= apply(len,vl) + apply(len,v2))

To make an SMT solver’s life easier (i.e., multiple smallaxs are
better than one big axiom), we have two axioms ¥en, one for
each branch, which are self-explanatory. As a construstaimways
fully applied, we do not encode its application witbply. The->
(in axioms and goals) is a logical implication.

For example, the axiomen_def _1, is generated by:

[As’® 135% natch s with {Nil — 0}]1ep
Vs :’a list.[match s with {Nil — 0}]apply(len,s)
Vs:’a list. Jxo:’a list.[s]s, A
(zo =nil > [[Oﬂ(apply(len,s)))
= Vs:’a list. dzg:’a list.zo=sA
(zo =nil -> apply(len, s) = 0)

Lettingxo bes, we get a more readable version (axiben_def_1).
An algorithm that partially eliminates redundant existeliy quan-
tified variables can be found in [39].

Theorem 5 (Logicization for axioms) Given closed definition
f = €7, the logical fomuladf: T, [e] s is valid.

@6[4—7—7*7 ] ®6[>7<7:]
. :  Expression — Formula
[let (xec) f=¢€]y = [e]; top-leveldefn
! _ true for axioms
[BaD]y = { false for goals
[NR']; = false
[z]; = f==
[nly = f=n
[el* ®ex?]ly = Fzi:[m], 3xz: [r2],

lei]zy Ale2]as A f =21 @ 22
Fz1 : [11], [ei]e A

Jzz ¢ [r2], [e2]esn

((z1 @t xz2 A f = true)V
(not(z1 ©¢ z2) A f = false))

[el' ©ex’]ly =

[a"e]y = Va:[r], [elappiy o)
o PP
[let 2" =eiines]y = 3Fz:[7], [er]= A le2]s
[[e? 6;2]]10 = dxi: IITl]], [[el]]zl/\
Jzz : HTQ]]7 |I€2]]ac2/\
[ = apply(z1,z2)
IIK 671—1 ...e;"]]f = dzi: |I7'1]]7 |I61]]x1 VANCRRWAN
3zn : [a], [en]en A

f:K(yh,yn)
Fxo : [10], [eo]zo A

(AVz: [, (w0 = K 7) = [e]y)

Figure 9. Convert expression to logical formula

match e;® with

=

Kzm —e

Ir =

Next, what query (i.e., goal) shall we make? All we want is to
check if the branch leading ®AD is reachable or not. So our task
is to examine the scrutinee ofmatch expression. For example,
the goalapp_1 states that the ctx-infe1=nil1, which is from the
pattern matchingatch vy with {[] — ...}, implies the scrutinee.
By [S-lam] and [R-s-save], we hawé = Vv, : ’a list,Vus :

’a list,v; = nil. The scrutinee iflen v2 = len v +
len v2}]true- That is, we want to check wheth@en v, =
len v; + len ws iS equivalent totrue. Alt-ergo saysvalid for
both goals. Thus, we know boBaD'! andBAD'? are not reachable.

Theorem 6 (Logicization for goals: validity preservation}or all
(possibly open) expressief, for all fu(e), 3f : 7, if [e] s is valid
ande — ¢’ for somee’, then[e] s is valid.

More details on design choices are in [39]. Here, we higlligh

a few. (1) Only functions called in contracts are convertedit-
ergo axioms. (2) In Figure 9, there are two conversionsBiar,
true for axioms. This is for generating a harmless axitmae for
the crashing branch of a partial function called in consa¢8)
For goals, thde] ; collects ctx-infobeforea scrutinee of aatch
expression, thugBAD]; = [UNR]; = false, which implies that
the rest of the code is not reachable.

5.3 Discussion and preliminary experiments

One might notice that SL machine simplifies terms under laanbd
and the body ofatch expression while we do not have such ex-
ecution rules in Figure 2. As we rebuild blames and do nohénli
recursive functions (i.e., no crashing and no looping dusimpli-
fication), the SL machine does not violate call-by-valuecexien.
One might worry that the rule [S-m-match] causes exponen-

tial code explosion for static analysis (although no runetiover-
head). From our current observation, quite often the swoeatis
if b then d else e Wheree is BAD or UNR. As blames trigger
the SL machine to immediately rebuild the blame with the ofst
the stack, applying the rule [S-m-match], we do not haveidapl

tion but have a desired smaller formula for the SMT solver. We



have implemented a prototype based on the source code ofecam
3.12.1. Table 1 shows the results of preliminary experisemhich

Moreover, [T1] justifies the correctness of applying theerul
[rmUNR] because alUNRs are indeed unreachable B&D' is in-

are done on a PC running Ubuntu Linux with a quad-core 2.93GHz voked befor@nR! for the samé. Thatis, (.f p then e; else BAD')
CPU and 3.2GB memory. We take some examples from [26] and is invoked before{f p then e else UNR') for the samey, maybe

OCaml stdlib and time the static checking. The column Anregjiv
the LOC count for contract annotations. One advantage oSthe

Table 1. Results of preliminary experiments

program total LOC | Ann LOC | Time (sec)
intro123, neg, mc91 28 5 0.10
ack, fhnhn, zipunzip 25 4 0.16
arith, sum, max 26 4 0.20
OCaml stdlib/list.ml 81 16 0.72

machine is that it allows rules to be easily added or removhs
paper focuses on the theory of hybrid contract checking. &&fed
optimization and rigorous experimentation on tuning thergth
of symbolic simplification and the frequency of calling an M
solver as future work.

6. Hybrid contract checking

We have explained with examples how SCC, DCC, HCC work
in §2. Programmers may choose to have SCC only, DCC only,
or HCC. In this section, we summarize their algorithm. Gigen
program f; € ti, fi = e; for 1 < ¢ < n. Supposef; is the
current function under contract checking; is a function called

in f; (including f;'s recursive call);s1 is the SL machinermUNR
implements the rulérmUNR] (mentioned earlier i§2).

(if eo then e; else UNR) = e; [TmUNR]

We have:
[SCCI: si(eil(f; <f ty,)/fi]0f )

B’

[DCC] : e:i[(f; > ty;)/ fil
[HCC]: fit = A?.emUNR(sL(e:[((f4 “f:7) < t5,)/f5]1>5 1))

In [HCC], the residual codg; #’'s parameter “?” waits for a caller’s
name. For exampléf an SMT solver cannot prove the geaip_2
in §5.2 (although it can), recalling R3 i§b.2, the residual code
appendf is:

A7 1. \vg.match v; with

| ] = w2

| x : 1 — if len (= :: append t v2) = len v;+len vz

then 7 :: append ¢ v2 else BAD!

which says that we only have to check the postcondition fer th
second branch. (If alBADs are simplified away during SCC, a
residual code of a function is its original definition.)

Lemma 2 (Telescoping property [7, 4Q])For all expressione,

3

1 1
total contractt, blamesri, 72, 73,74, (epit) it =epqt.
T2 T4 T4
Precondition of a function is checked at caller sites. Afis

the simplifiedf; D'ij ty;, inspecting [HCC], eaclf; at caller sites
is replaced by f; 77 t7,) <} t,, whichis(f; D?J t,) D{ ty,.

) UNRJ 2 BADY @
By the telescoping property, we have:

'

b=
fi = ]Bﬁﬁi fi

pap’ e’

(fi i ty;) >

which is the same as in DCC. This shows that [HCC] blarhéfs
and only if [DCC] blamesf.

(T1]

differente. So itis safe to apply the rulermUNR] even ifp diverges
or crashes. See [39] for more details.

7. Related work

Contract semantics were first formalized for a strict lamgugv,
11] and later for a lazy language [40]. This paper adapts and r
formalizes some of their ideas on contract satisfactioncamtract
checking. Detailed design difference is explaineg4n

Pre/post-condition specification using logical formulae 15,
17, 34] allows programmers to existentially quantify ovafi-i
nite domains or express metaproperties that are not expleas
contracts. We like the idea of ghost refinement [36], whicp-se
arates properties that can be converted to program codetfrem
metaproperties expressed only as logical formulae. Az thes al-
ways limits to automatic static checking, it is practicalctmvert
some difficult checks to dynamic checks. Unlike pre/postition
specification, refinement types and contracts allow us tystub-
contract relations [11, 41], recursive contracts [7], aolymorphic
contracts [3]. Contracts also enjoy interesting matherahfirop-
erties [7, 11, 39, 40].

One might recall hybrid refinement type checking (HTC) [13,
24]. In theory [16], (picky, i.e. our) contract checking ibl@ to
give more blame than refinement type checking in the preseince
higher-order dependent function contracts. That is partly [36]
invents a Kind checker to report ill-formed refinement typas
discussed ir84.2, we checle > ¢ for crash-freeness in one-go and
do not have to check t to be crash-free separately. In peactic
the # and £ in the SL machine serve a similar purpose as the
typing environment in HTC. But symbolic simplification gi/e
more flexibility in such ways as teasing out the path serisitiv
analysis with the rule [S-m-match], etc. We hope this wor&rapa
venue to compare HCC and HTC in practice. Notably, VeriF2Gt [
(for verifying C and Java code) suggests that symbolic ei@tis
faster than the verification condition generation methqd §).

Khoo et al. [23] mix type checking and symbolic execution- Be
sides they do not generate residual code, they requireqrogers
to place block annotation§: +} for type checking and .} for
symbolic execution while our SL machine systematicallydifies
subterms and consults the logical store for checking at pipeoa
priate program point. Moreover, their symbolic expressgogiven
in linear arithmetic, which is more restrictive than ours.

Our approach is different from [36], which extracts proofs o
refinement types from an SMT solver and injects them as temms i
the generated bytecode RDCIL (like proof carrying code)rdur
refinement type checking. Theirs has a security motivation.

Some work [25, 26, 32, 33] suggests converting programs to a
higher-order recursive scheme (HORS), which generatessiiply
infinite) trees, and specify properties in the form of a &ivau-
tomaton and do model checking to see whether HORS satidies it
desired property. Our approach is completely differettalgh we
both do reachability checking. They work on automata whige w
work on programs directly. Our approachnedularwhile theirs
is not. They deal with localet rec while we do not, but we
could infer local contract with method in [21] or inline thechl
let rec function for a fixed number of times. They deal with-pro
tocol checking while we do not, except where a protocol chmerk
problem can be converted to checking the reachabiliBAdf

The contextual information synthesis and conversion ofesq
sion to logical formula is inspired by the use of the applma
in [18, 19], which makes conversion of higher-order functi@as-
ier. But we use the technique in different contexts.



Many papers on program verification [2, 10, 15, 30, 31, 37] [16] M. Greenberg, B. C. Pierce, and S. Weirich. Contractdemaanifest.

focus on memory leaks, array bound checks, etc. and a fewehand

higher-order functions and recursive predicates. Our iotkses
on more advanced properties and precise blaming of furetbn
fault. Contract checking in the imperative world is lead U]
which statically checks contract satisfaction at the hytiecCIL
level and runs dynamic checking separately. Residuabzétias

not been done in [10]. We may adapt some ideas in [20] to extend

our framework for program with side effects.

8. Conclusion

We have formalized a contract framework for a pure, stricthér-
order subset of OCaml. We propose a natural integrationaticst
contract checking and dynamic contract checking. With the S
machine, our approach gives precise blame at both compike-t
and run-time in the presence of higher-order functionshértear
future, besides rigorous experimentation and case-studie plan
to add user-defined exceptions, allow side effects in progaad
hidden side effects in contracts, do contract or invariafgérence.
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