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Abstract
Program errors are hard to detect and are costly both to program-
mers who spend significant efforts in debugging, and to systems
that are guarded by runtime checks. Extended static checking can
reduce these costs by helping to detect bugs at compile-time, where
possible. Extended static checking has been applied to object-
oriented languages, like Java and C#, but it has not been applied to
a lazy functional language, like Haskell. In this paper, we describe
an extended static checking tool for Haskell, named ESC/Haskell,
that is based on symbolic computation and assisted by a few novel
strategies. One novelty is our use of Haskell as the specification lan-
guage itself for pre/post conditions. Any Haskell function (includ-
ing recursive and higher order functions) can be used in our spec-
ification which allows sophisticated properties to be expressed. To
perform automatic verification, we rely on a novel technique based
on symbolic computation that is augmented by counter-example
guided unrolling. This technique can automate our verification pro-
cess and be efficiently implemented.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms verification, functional language

Keywords pre/postcondition, symbolic simplification, counter-
example guided unrolling

1. Introduction
Program errors are common in software systems, including those
that are constructed from advanced programming languages, such
as Haskell. For greater software reliability, such errors should
be reported accurately and detected early during program de-
velopment. This paper describes an Extended Static Checker for
Haskell, named ESC/Haskell (in homage to ESC/Modular-3 [14]
and ESC/Java [8]), which is a tool that allows potential errors in
Haskell programs, that are not normally detected until run-time to
be accurately and quickly reported at compile-time.

Consider a simple example:

f :: [Int] -> Int
f xs = head xs ‘max‘ 0

where head is defined in the module Prelude as follows:
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head :: [a] -> a
head (x:xs) = x
head [] = error "empty list"

If we have a call f [] in our program, its execution will result in
the following error message from GHC’s runtime system:

Exception: Prelude.head: empty list

This gives no information on which part of the program is wrong
except that head has been wrongly called with an empty list. This
lack of information is compounded by the fact that it is hard to trace
function calling sequence at run-time for lazy languages, such as
Haskell.

In general, programmers need a way to assign blame, so that
the specific function that is supposedly at fault can be better ex-
amined. In the above case, the programmer’s intention is that head
should not be called with an empty list. This effectively means the
programmer wants to blame the caller of head instead of the head
function itself. In our system, programmers can achieve this by
providing a precondition for the head function.

head xs @ requires { not (null xs) }
head (x:xs) = x

null :: [a] -> Bool
null [] = True
null xs = False

not True = False
not False = True

This places the onus on callers to ensure that the argument to head
satisfies the expected precondition. With this annotation, our com-
piler would generate the following warning (by giving a counter-
example) when checking the definition of f:

Warning: f [] calls head
which may fail head’s precondition!

Suppose we change f’s definition to the following:

f xs = if null xs then 0
else head xs ‘max‘ 0

With this correction, our tool will not give any more warning as the
precondition of head is now fulfilled.

Basically, the goal of our system is to detect crashes in a pro-
gram where a crash is informally defined as an unexpected termi-
nation of a program (i.e. a call to error). Divergence (i.e. non-
termination) is not considered to be a crash.

In this paper, we develop ESC/Haskell as a compile-time
checker to highlight a variety of program errors, such as pattern
matching failure and integer-related violations (e.g. division by
zero, array bound checks), that are common in Haskell programs.
ESC/Haskell checks each program in a modular fashion on a per
function basis. We check the claims (i.e. pre/post-conditions) about
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a function f using mostly the specifications of functions that f
calls, rather then by looking at their actual definitions. This mod-
ularity property is essential for the system to scale. We make the
following key contributions:

• Pre/postcondition annotations are written in Haskell itself so
that programmers do not need to learn a new language. More-
over, arbitrary functions (including higher order and recursive
functions) can be used in the pre/postcondition annotations.
This allows sophisticated properties to be conveniently ex-
pressed. (§2).

• Unlike the traditional verification condition generation ap-
proach that solely relies on a theorem prover to verify it, we
treat pre/postconditions as boolean-valued functions (§4) and
check safety properties using symbolic simplification that ad-
heres closely to Haskell’s semantics instead (§5).

• We exploit a counter-example guided (CEG) unrolling tech-
nique to assist the symbolic simplification. (§6). CEG approach
is used widely for abstraction refinement in the model checking
community. However, to the best of our knowledge, this is the
first time CEG is used in determining which call to be unrolled.

• We give a trace of calls that may lead to crash at compile-time,
whilst such traces are usually offered by debugging tools at
run-time. A counter-example is generated and reported together
with its function calling trace as a warning message for each
potential bug (§7).

• Our prototype system currently works on a significant subset
of Haskell that includes user defined data types, higher-order
functions, nested recursion, etc (§8).

2. Overview
In a type-safe language, a well-typed program is guaranteed not
to crash during run-time due to type errors. In the same spirit, we
allow programmers to specify more safety properties (through sup-
plying pre/postconditions for a function) to be checked at compile-
time in addition to types. This section gives an informal overview,
leaving the details in §3

2.1 Pre/Postcondition Specification

We have seen the precondition annotation for head:

head xs @ requires { not (null xs) }

Such annotations in a program allow ESC/Haskell to check our pro-
grams in a modular fashion on a per function basis. At the defini-
tion of each function, if there is a precondition specified, our system
checks if the precondition can ensure the safety of its function body.
If so, when the function is called with crash-free arguments, the call
will not lead to any crash. A crash-free argument is an expression
whose evaluation may diverge, but will not invoke error. In other
words, whenever a function is called, its caller can assume at the
call site that, there will not be a crash resulting from that function
call if the arguments satisfy its specified precondition.

Besides the precondition annotation mentioned above, our sys-
tem also allows the programmer to specify a postcondition of a
function. Here is an example:

rev xs @ ensures { null $res ==> null xs }
rev [] = []
rev (x:xs) = rev xs ++ [x]

where the symbol $res denotes the result of the function and the
++ and ==> are just functions used in an infix manner. They are
defined as follows:

(++) :: [a] -> [a] -> [a]
(++) [] ys = ys

(++) (x:xs) ys = x : (xs ++ ys)

(==>) :: Bool -> Bool -> Bool
(==>) True x = x
(==>) False x = True

The annotated postcondition will be checked in our system to make
sure that it is a correct assertion for the function body. With this
confirmation, the function’s postcondition can be used directly at
each of its call sites without re-examining its concrete definition.
For example, consider:

... case (rev xs) of
[] -> head xs
(x:xs’) -> ...

From the postcondition of rev, we know xs is [] in the first branch
of the case construct. This situation would definitely fail head’s
precondition. With the help of pre/postcondition annotations, we
can detect such potential bugs in our program.

However, some properties that our ESC/Haskell may attempt to
check can either be undecidable or difficult to verify at compile-
time. An example is the following:

g1 x :: requires { True }
g1 x = case (prime x > square x) of

True -> x
False -> error "urk"

where prime gives the xth prime number and square gives x2.
Most theorem provers including ours are unable to verify the con-
dition prime x > square x, so we report a potential crash. For
another example:

g2 xs ys :: requires { True }
g2 xs ys
= case (rev (xs ++ ys) == rev ys ++ rev xs) of

True -> xs
False -> error "urk"

Some theorem provers may be able to prove the validity of the
theorem: (rev (xs++ys) == rev ys ++ rev xs) for all well-
defined xs and ys. However, this is often at high cost and may
require extra lemmas from programmers such as the associativity
of the append operator ++.

As it is known to be expensive to catch all errors in a program,
our ESC/Haskell chooses only to provide meaningful messages to
programmers based on three possible outcomes after checking for
potential crashes in each function definition (say f ). They are:

(a) Definitely safe. If the precondition of f is satisfied, any call to
f with crash-free arguments will not crash.

(b) Definite bug. Any call to f with crash-free arguments, satisfy-
ing the declared precondition of f , crashes.

(c) Possible bug. The system cannot decide it is (a) or (b).

For the last two cases, a trace of function calls that leads to a (poten-
tial) crash together with a counter-example1 will be generated and
reported to the programmer. We make a distinction between defi-
nite and possible bugs, in order to show the urgency of the former
and also because the latter may not be a real bug.

2.2 Expressiveness of the Specification Language

Programmers often find that they use a data type with many con-
structors, but at some specialised contexts in the program expect
only a subset of these constructors to occur. Sometimes, such a data

1 Programmers can set the number of counter-examples they would like to
view.
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type is also recursive. For example, in a software module of the
Glasgow Haskell Compiler (GHC) that is used after type checking,
we may expect that types would not contain mutable type variables.
Under such a scenario, certain constructor patterns may be safely
ignored. For example, we define a datatype T and a predicate noT1
as follows:

data T = T1 Bool | T2 Int | T3 T T

noT1 :: T -> Bool
noT1 (T1 _) = False
noT1 (T2 _) = True
noT1 (T3 t1 t2) = noT1 t1 && noT1 t2

The function noT1 returns True when given any data structure of
type T in which there is no data node with a T1 constructor. We may
have a consumer:

sumT :: T -> Int
sumT x @ requires { noT1 x }
sumT (T2 a) = a
sumT (T3 t1 t2) = sumT t1 + sumT t2

which requires that the input data structure does not contain any T1
node. We may also have a producer like:

rmT1 :: T -> T
rmT1 x @ ensures { noT1 $res }
rmT1 (T1 a) = case a of

True -> T2 1
False -> T2 0

rmT1 (T2 a) = T2 a
rmT1 (T3 t1 t2) = T3 (rmT1 t1) (rmT1 t2)

we know that for all crash-free t of type T, a call (sumT (rmT1 t))
will not crash. Thus, by allowing a recursive predicate (e.g. noT1)
to be used in the pre/postcondition specification, we can achieve
such goal.

In fact, any Haskell function can be called in the pre/postcondition
specification (though we strongly recommend a total function to be
used). Here we show a higher-order function filter whose result
is asserted with the help of another higher-order function all.

filter f xs @ ensures { all f $res }
filter f [] = []
filter f (x:xs’) = case (f x) of

True -> x : filter f xs’
False -> filter f xs’

all f [] = True
all f (x:xs) = f x && all f xs

(&&) True x = x
(&&) False x = False

Allowing arbitrary functions to be used in the pre/postcondition
specification does not increase the complication of our verification
which is based on symbolic simplification. Sometimes, it makes
the simplification process easier as all the known information can
be re-used. In the case of the postcondition checking for filter,
we have the following fragment during the symbolic simplification
process:

case xs of
[] -> True
(x:xs’) -> case all f (filter f xs’) of

True -> ... all f (filter f xs’) ...

All the occurrences of the scrutinee all f (filter f xs’) in
the True branch can be replaced by True. This simplification

process is based on the syntactic transformation that can be very
efficiently implemented.

2.3 Functions without Pre/Post Annotation

A special feature of our system is that it is not necessary for
programmers to annotate all the functions. There are two reasons
why a programmer may choose not to annotate a function with
pre/postconditions:

1. The programmer is lazy.
2. There is no pre/postcondition that is more compact than the

function definition itself.

Examples of the second case are the function (==>), null and
even a recursive function like the noT1 function in §2.2.

If a function (including recursive function) does not have
pre/post-condition annotation, one way is to assume both its pre-
condition and postcondition to be True. It is always safe to assign
True as the postcondition to any function, this weak assertion ef-
fectively causes the result of the function to be unknown. However,
assuming True as a function’s precondition may lead to unsound-
ness. Our approach is to inline the function definition at each of its
call sites.

We introduce a special strategy, called counter-example guided
unrolling, which only unroll (i.e. inline) a function call on demand
and the details are described in §6. We guarantee termination in
our checking by only unrolling a recursive function for a fixed
number of times - a number that can be pre-set in advance. Nor-
mally, if a structural recursive function is used as a predicate in the
pre/postcondition of another structural recursive function, the re-
cursive calls in both functions may not need to be unrolled at all.
An example of this is elaborated in §6 where a recursive sumT func-
tion makes use of a similar structurally recursive predicate noT1 in
its precondition. But we still recommend programmers to provide
annotations for functions with big code size.

Inlining also helps to reduce false alarms created due to laziness.
For example:

fst (a,b) = a
f3 xs = (null xs, head xs)
f4 xs = fst (f3 xs)

A conservative precondition for f3 is not (null xs). Without
inlining (i.e. treating both the pre/post condition of fst and snd to
be True), our system will report spurious warnings

(f4 []) may fail f3’s precondition

when checking the definition of f4. However, by inlining f3, fst
and snd, we have f4 xs = null xs and our system will not give
the spurious warning mentioned before.

3. The Language
In this section, we set the scene for ESC/Haskell by giving the
syntax and semantics of the language and necessary definitions.
The language H, whose syntax is shown in Figure 1, is a subset of
Haskell augmented with a few special constructs, namely BAD, UNR,
OK and Inside. These language constructs are for ESC/Haskell to
use internally and hidden from Haskell programmers.

3.1 Language Syntax and Features

We assume a program is a module that contains a set of function
definitions. Programmers can give multiple preconditions and post-
conditions with key words requires and ensures respectively.
These pre/postconditions are type-checked by a preprocessor.

The let in the language H is simply a non-recursive let.
In this paper, we allow top-level recursive functions and do not
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pgm ∈ Program
pgm := def1, . . . , defn

def ∈ Definition
def := f �x = e

| f �x @ requires { e }
| f �x @ ensures { e }

a, e ∈ Expression
a, e ::= BAD lbl A crash

| OK e Safe expression
| UNR Unreachable
| Inside lbl loc e A call trace
| λx.e
| e1 e2 An application
| case e0 of alts
| let x=e1 in e2

| C e1 . . . en Constructor application
| x Variable
| n Constant

alts ::= alt1 . . . altn

alt ::= p → e Case alternative

p ::= C x1 . . . xn Pattern

val ∈ Value
val ::= n | C e1 . . . en | λx.e

Figure 1. Syntax of the language H

support nested letrec while a version that supports letrec can
be found in our technical report [21].

The (OK e) indicates that the evaluation of e will never crash.
The constructor Inside is for tracing the calling path that leads to
BAD where lbl and loc give the name and the location of the function
being called respectively.

The (BAD lbl) indicates a point where a program definitely
crashes. A program crashes if and only if it calls BAD. The label lbl
is a message of type String. For example, a user-defined function
error can be explicitly defined as:

error :: String -> a
error s = BAD ("user error:"++ s)

We shall ensure that source programs with missing cases of pattern
matching are explicitly replaced by the corresponding equations
with BAD constructs. This is carried out by the preprocessor as well.
For example, if a programmer writes:

last :: [a] -> a
last [x] = x
last (x:xs) = last xs

after the preprocessing, it becomes:

last :: [a] -> a
last [x] = x
last (x:xs) = last xs
last [] = BAD "last"

In the ESC/Haskell system, we construct a checking code
named fChk for each function f . The fChk denotes a piece of Haskell
code whose simplified version determines the three outcomes men-
tioned at the end of §2.1. One fragment of fChk may look like this:

case f.pre x of

True -> ...
False -> UNR

where f.pre denotes the precondition of f and similar notation
applies in the rest of the paper. If the precondition of a function is
not satisfied, we assume the function body will not be evaluated.
So we use UNR to indicate that the False branch is unreachable. In
order not to keep a large number of unreachable branches during the
simplification process, we choose to omit them. This is achieved by
one of the simplification rules which tells the simplifier to remove
all the unreachable branches. For example, the above fragment will
become:

case f.pre x of
True -> ...

Thus, in our language H if there should be any cases of missing
patterns (e.g. during the symbolic simplification of fChk), they will
effectively denote unreachable states.

3.2 Operational Semantics

The call-by-need operational semantics of the language is given
in Figure 2 and is based on work by Moran and Sands [16]. The
transitions are over machine configurations consisting of a heap Γ
(which contains bindings), the expression currently being evaluated
e, and a stack S.

Γ := {x1 = e1, . . . , xn = en}
S := ε | e :S | alts :S | �x :S | (OK •) :S | (Inside f l •) :S

The heap is a partial function from variable to terms. The stack
S is a stack of continuations that says what to do when the cur-
rent expression is evaluated. A continuation can be an expres-
sion e which is a function’s argument, case alternatives, update
markers denoted by �x for some variable x or constructors OK
and Inside. When the stack is empty, the current expression is
returned as the final result. Transition rules for Inside are sim-
ilar to those of OK except for INSIDEBAD which is as follows.
〈Γ, BAD lbl, (Inside f l •) :S〉 → 〈Γ, Inside f l BAD, ε〉

3.3 Definitions

Before we describe the algorithm for pre/postcondition checkings,
we need to give a few formal definitions. Given a function f �x = e,
we wish to check under all contexts whether e will crash. If f is
given an argument (say a) that contains BAD lbl, the call (f a) may
crash but this may not be f ’s fault. Thus, what we would like to
check is whether e will crash when f takes a crash-free argument
whose definition is given below.

DEFINITION 1 (Crash-free Expression). For all heap Γ, an ex-
pression e is crash-free in Γ iff for all totally safe S. 〈Γ, e, S〉 �→∗

〈Γ, BAD lbl, ε〉.
DEFINITION 2 (Totally Safe Stack). A stack S is totally safe iff
∀s ∈ S, s = e and e is a totally safe expression

or s = {Ci �x → ei} and λ�x.ei is an totally safe expression.

DEFINITION 3 (Totally Safe Expression). An expression e is a to-
tally safe expression iff e is closed and noBAD(e) returns True.

We define a function named noBAD :: Exp -> Bool which syn-
tactically checks whether there is any BAD appearing in an expres-
sion e. The definition of noBAD is shown in Appendix B.1.

Note that a crash-free expression is allowed to diverge. For
example:

repeat x = x : repeat x
one = repeat 1
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〈Γ, OK e, S〉 → 〈Γ, e, (OK •) :S〉 (OK)
〈Γ, BAD lbl, (OK •) :S〉 → 〈Γ, UNR, [ ]〉 (OKBAD)

〈Γ, n, (OK •) :S〉 → 〈Γ, n, S〉 (OKCONSTANT)
〈Γ, C e1 . . . en, (OK •) :S〉 → 〈Γ, C (OK e1) . . . (OK en), S〉 (OKCONSTRUCT)

〈Γ, λx.e, (OK •) :S〉 → 〈Γ, λx.OK e, S〉 (OKLAMBDA1)

〈Γ, UNR lbl, S〉 → 〈Γ, UNR, [ ]〉 (UNREACHABLE)
〈Γ, BAD lbl, S〉 → 〈Γ, BAD lbl, [ ]〉 (OK •) �∈ S (BAD)

〈Γ{x = e}, x, S〉 → 〈Γ, e, �x :S〉 (LOOKUP)
〈Γ, val, �x :S〉 → 〈Γ{x = val}, val, S〉 (UPDATE)

〈Γ, λx.e1, e2 :S〉 → 〈Γ{x = e2}, e1, S〉 (LAMBDA)
〈Γ, e1 e2, S〉 → 〈Γ, e1, e2 :S〉 (UNWIND)

〈Γ, case e of alts, S〉 → 〈Γ, e, alts :S〉 (CASE)
〈Γ, Cj �y, {Ci �xi → ei} :S〉 → 〈Γ, ej [�y/ �xj ], S〉 (BRANCH)
〈Γ, let {�x = �e} in e0, S〉 → 〈Γ{�x = �e}, e0, S〉 �x �∈ dom(Γ, S) (LET)

Figure 2. Semantics of the abstraction language H

where one is an infinite list of 1s. The expression (repeat 1) is
crash-free, despite its potential for divergence.

Now we can formally define valid pre/postconditions of a func-
tion, as follows.

DEFINITION 4 (Precondition). f.pre is a precondition of a func-
tion f iff for all heap Γ and crash-free expressions �a in Γ, if
ok (f.pre �a) is crash-free in Γ, then (f �a) is crash-free in Γ.

The definition of the function ok is defined as follows.

ok :: Bool -> ()
ok True = ()
ok False = BAD "ok"

The definition of precondition says that f ’s arguments �a are crash-
free (but allowed to diverge), if f.pre �a does not evaluate to False
or BAD, then f �a will not crash.

As we allow recursive predicates to be used in the precondition
specification, the precondition may diverge. If the precondition
itself diverges, it is still considered as a valid precondition because
any call satisfying the precondition will diverge before the call is
invoked. For example:

bot :: a -> a
bot x = bot x

p :: [Int] -> Int
p xs @ requires { bot xs == 5 && not (null xs) }
p [] = BAD "p"
p (x:xs’) = x + 1

q :: [Int] -> Int
q [] = 0
q xs = case bot xs == 5 of

True -> p xs
False -> 0

We can see that p’s precondition is satisfied in the definition of q.
When q is called, the program diverges and thus, the call to (p xs)
will never be invoked and (q xs) is crash-free.

DEFINITION 5 (Postcondition). f.post is a postcondition of a
function f iff for all heap Γ and crash-free expressions �a in Γ.
if ok(f.pre �a) is crash-free in Γ and then ok (f.post �e (f �a)) is
crash-free in Γ.

As we allow recursive predicates to be used in the postcondition
specification, the postcondition may diverge as well. For example:

and :: [Bool] -> Bool
and [] = True
and (b:bs) = b && (and bs)

ts @ ensures { and $res }
ts = repeat True

h1 xs @ requires { and xs }
h1 xs = ...

h2 xs = take 5 (h1 ts)

The postcondition of ts diverges, but this postcondition can be
useful at its call site, for example, in h2.

4. Symbolic Pre/Post Checking for ESC/Haskell
At the definition of each function f , we shall assume that its given
precondition holds, and proceed to check three aspects, namely:

(1) No pattern matching failure
(2) Precondition of all calls in the body of f holds
(3) Postcondition holds for f itself.

Given f �x = e with precondition f.pre and postcondition
f.post, we can specify the above checkings by the following
symbolic checking code, named fChk:

fChk �x = case f.pre �x of
True → let $res = e[f1#/f1, . . . , fn#/fn]

in case f.post �x $res
True → $res
False → BAD "post"

where f1 . . . fn refer to top-level functions that are called in e,
including f itself in the self-recursive calls. In our system, for each
function f in a program, we compute a representative function for
it, named f#. The representative function f# is computed solely
based on the pre/postcondition of f (if they are given) as follows:

f# �x = case f.pre �x of
False → BAD "f"
True → let $res = (OK f) �x

in case f.post �x $res of
True → $res

where (OK f) means given a crash-free argument �a, (f �a) will
not crash. The f# basically says that, if the precondition of f is
satisfied, there will not be a crash from a call to f . Moreover, if the
postcondition is satisfied, we return the function’s symbolic result
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which is ((OK f) �x). If the precondition of f is not satisfied, it
indicates a potential bug by BAD "f". That means all crashes from
f are exposed in f# (i.e. the BAD in the False branch) as (OK f)
turns all BAD in f to UNR according the operational semantics in
Figure 2. and this justifies the substitution [f1#/f1 . . . fn#/fn] in
the fChk. We claim that fChk satisfies the following theorem.

THEOREM 1 (Soundness of Pre/Postcondition Checking). For all
e such that e is crash-free in Γ, if fChk e is crash-free in Γ, then
f.pre is a precondition of f and f.post is a postcondition of f .

To show the soundness, we need to answer the following two
questions:

(a) How to show fChk is crash-free?
(b) If fChk is crash-free, why does it help in checking the three

aspects (1), (2) and (3)?

To show fChk is crash-free, we symbolically simplify the RHS of
fChk and check for the existence of BAD in the simplified version.
The check for the existence of BAD in e is achieved by invoking
a (noBAD e) function call. That means we hope that all or some
of the BADs could be eliminated during the simplification process.
If the BAD "post" remains after simplification, we know the post-
condition has failed. A residual BAD lbl indicates a precondition
has failed. Furthermore, from the label lbl, we can also determine
which function call’s precondition has failed. Details of the simpli-
fication process are described in §5.
To check (1), we just need to check whether there is any BAD in
e because a preprocessing algorithm converts each missing pattern
matching of a function from the source program to a case-branch
that leads to a BAD in e. If there is no BAD in e, we know that when
the function f is called, the program will not crash due to any pat-
tern matching failure in f .
To check (2), we need to check whether there is any BAD in

e[f1#/f1, . . . , fn#/fn]

If the BAD in each fi# is removed, by the definition of f#, ∀i. the
precondition of fi is satisfied. If f is a recursive function, it means
we assume the precondition is True at the entry of the definition
and try to show that the precondition at each recursive call is satis-
fied.
To check (3), we want to check whether (f.post �x $res) gives
True where $res = e[f1#/f1, . . . , fn#/fn]. So if the BAD "post"
remains after simplification, it indicates that the postcondition does
not hold. Note that in the definition of f#, we assume the post-
condition holds for each recursive call. In other words, with this
assumption, we try to show the postcondition holds for the RHS of
f as well.

For a function without pre/postcondition annotations, it is al-
ways safe to assume f.post is True. But for precondition, we first
assume f.pre is True and use the same checking code fChk to
determine if there are any BADs after simplification. If there is no
BAD, we know it is safe to assign f.pre to be True and can use:
f# �x = (OK f) �x. Otherwise, we have: f# �x = (f �x). Our use
of direct calls to f is meant to allow its concrete definition e to
be inlined, where necessary. Our strategy for inlining (also called
unrolling) is discussed later in §6.

5. Simplifier
As there is no automatic theorem prover that handles arbitrary
user defined data types and higher-order functions, we need to
write our own specialised solver which we call the simplifier. The
simplifier is based on symbolic evaluation and attempts to simplify
our checking code to some normal form. A set of deterministic
simplification rules is shown in Figure 3 (where fv(e) returns free
variables of e). Each rule is a theorem which has been proven to

be sound (see [21]). That means for each rule e1 =⇒ e2, we prove
e1 ≡s e2. In the DEFINITION 7, as usual, we restrict the result type
to be a single observable type, here Boolean.

DEFINITION 6 (Convergence). For closed configurations 〈Γ, e, S〉,
〈Γ, e, S〉⇓val iff ∃Γ′.〈Γ, e, S〉 →∗ 〈Γ′, val, ε〉.
DEFINITION 7 (Semantically Equivalent). Two expressions e1 and
e2 are semantically equivalent, namely e1 ≡s e2, iff ∀Γ, S.
(〈Γ, e1, S〉⇓True) ⇔ (〈Γ, e2, S〉⇓True).

5.1 Simplification Rules

Many simplification rules are adopted from the literature [17].
For example, the INLINE rule removes all let bindings, the beta-
reduction rule BETA and the rule CASECASE which floats out
the scrutinee. The short-hand {Ci �xi → ei} stands for ∀i, 1 ≤
i ≤ n.{C1 �x1 → e1; . . . ; Cn �xn → en} where �xi refers to a
vector of fields of a constructor Ci. The rule CASEOUT pushes an
application into each branch. The rest of the rules are elaborated as
follows.

Unreachable In the rule NOMATCH, it says that if the scrutinee
does not match any branch, we replace the case-expression by UNR.
Due to the unreachable False branch of the test of the f.pre in
the fChk, we may have the following derived code fragment during
the simplification process:

... case False of
True -> ...

The inner case expression contains only one pattern matching
branch, and we assume the other branch (i.e. the missing case) is
unreachable as mentioned in §3. So the fragment actually repre-
sents this:

... case False of
True -> ...
False -> UNR

which means the scrutinee matches the False branch which is
an unreachable branch and this justifies our simplification rule
NOMATCH.

As explained earlier in §3, in order to reduce the size of the ex-
pression during the simplification process, we remove all branches
that are unreachable and this is achieved by the rule UNREACH-
ABLE.

Match The rule MATCH follows directly from the transition rule
BRANCH in Figure 2 which selects the matched branch and remove
the unmatched branches. This rule seems to be able to replace the
two rules NOMATCH and UNREACHABLE, but this is not the case.
Consider:

... case xs of
True -> case False of

True -> ...
False -> ...

The rule MATCH only deals with the situation when the scrutinee
matches one of the branches. So in the above case, we need to apply
the rule NOMATCH and UNREACHABLE respectively to get:

... case xs of
False -> ...

Common Branches During the simplification process, we often
encounter code fragment like this:

... case xs of
C1 -> True
C2 -> True
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let x = r in b =⇒ b[r/x] (INLINE)

(λx.e1) e2 =⇒ e1[e2/x] (BETA)

(case e0 of {Ci �xi → ei}) a =⇒ case e0 of {Ci �xi → (ei a)} fv(a) ∩ �xi = ∅ (CASEOUT)

case (case e0 of {Ci �xi → ei}) of alts =⇒ case eo of {Ci �xi → case ei of alts}
fv(alts) ∩ �xi = ∅ (CASECASE)

case Cj �ej of {Ci �xi → ei} =⇒ UNR ∀i.Cj �= Ci (NOMATCH)

case e0 of {Ci �xi → ei; Cj �xj → UNR} =⇒ case e0 of {Ci �xi → ei} (UNREACHABLE)

case e0 of {Ci �xi → ei} =⇒ e1 patterns are exhaustive and
for all i, fv(ei) ∩ �xi = ∅ and e1 = ei (SAMEBRANCH)

case e0 of {Ci �xi → e} =⇒ e0 e0 ∈ {BAD lbl, UNR} (STOP)

case Ci �yi of {Ci �xi → ei} =⇒ ei[yi/xi] (MATCH)

case e0 of {Ci �xi → . . . case e0 of{Ci �xi → ei} . . .} =⇒ case e0 of {Ci �xi → . . . ei . . .} (SCRUT)

Figure 3. Simplification Rules

In the rule SAMEBRANCH if all branches are identical (w.r.t.
α-conversion), the scrutinee is redundant. However, we need to
be careful as we should do this only if

(a) all patterns are exhaustive (i.e. all constructors of a data type
are tested) and

(b) no free variables in ei are bound in ci �xi.

For example, consider:

rev xs @ ensures { null $res ==> null xs }

During the simplification of its checking code revChk, we may
have:

... case $res of
[] -> case xs of

[] -> $res
(x:xs’) -> ...

The inner case has only one branch (the other branch is under-
stood to be unreachable). It might be believed that we would re-
place the expression (case xs of {[] -> $res }) by $res as
there is only one branch that is reachable and the resulting expres-
sion does not rely on any substructure of xs. However, this makes
us lose a critical piece of information, namely:

if (rev xs) == [], then xs == [].

On the other hand, given this information we can perform more
aggressive simplification. For example, suppose we have another
function g that calls rev:

g xs = case (rev xs) of
[] -> ... case xs of

[] -> True
(x:xs) -> False

(x:xs) -> ...

we may use the above information to simplify the inner case to
True which may allow more aggressive symbolic checking.

Termination The rule STOP follows from the transitions:

〈Γ, case BAD lbl of alts, S〉 → 〈Γ, BAD lbl, alts : S〉
→ 〈Γ, BAD lbl, [ ]〉

Similar reasoning applies when the scrutinee is UNR.

Static Memoization As mentioned at the end of §2.2, all known
information should be used in simplifying an expression. In order
for the rule SCRUT to work, we need to keep a table which captures
all the information we know when we traverse the syntax tree of an
expression. As the scrutinee of a case-expression is an expression,
the key of the table is an expression rather than a variable. The value
of the table is the information that is true for the corresponding
scrutinee. For example, when we encounter:

case (noT1 x) of
True -> e1

we extend the information table like this:
: :

noT1 x True
When we symbolically evaluate e1 and encounter (noT1 x) a
second time in e1, we look up its corresponding value in the
information table for substitution.

5.2 Arithmetic

Our simplification rules are mainly to handle pattern matchings.
For expressions involving arithmetic, we need to consult a theorem
prover. Suppose we have:

foo :: Int -> Int -> Int
foo i j @ requires {i > j}

Its representative function foo# looks like this:

foo# i j = case (i > j) of
False -> BAD "foo"
True -> ...

Now, suppose we have a call to foo:

goo i = foo (i+8) i

After inlining foo#, we may have such symbolic checking code:

gooChk i = case (i+8 > i) of
False -> BAD "foo"
True -> ...

A key question to ask is if BAD can be reached? To reach BAD,
we need i+8 > i to return False. Now we can pass this off to
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a theorem prover that is good at arithmetic and see if we can prove
that this case is unreachable. If so, we can safely remove the branch
leading to BAD.

In theory, we can use any theorem prover that can perform
arithmetics. Currently, we choose a free theorem prover named
Simplify [5] to perform arithmetic checking in an incremental
manner. For each case scrutinee such that

• it is an expression involving solely primitive operators, or
• it returns a boolean data constructor

we invoke Simplify prover to determine if this scrutinee evaluates to
definitely true, definitely false or DontKnow. If the answer is either
true or false, the simplification rule of MATCH is applied as well
as adding this to our information table. Otherwise, we just keep the
scrutinee and continue to symbolically evaluate the branches.

Each time we query the theorem prover Simplify, we pass the
knowledge accumulated in our information table as well. For ex-
ample, we have the following fragment during the simplification
process:

... case i > j of
True -> case j < 0 of

False -> case i > 0 of -- (*)
False -> BAD

When we reach the line marked by (*) and before query i > 0, we
send information i > j == True and j < 0 == False to the
Simplify. Such querying can be efficiently implemented through the
push/pop commands supplied by the theorem prover which allow
truth information to be pushed to a global (truth) stack and popped
out when it is no longer needed.

6. Counter-Example Guided Unrolling
If every function is annotated with a pre/postcondition that is suc-
cinct and precise enough to capture the gist of the function and no
recursive function is used in the pre/postcondition, the simplifier
alone is good enough to determine whether the checking code is
crash-free or not. However, real life programs may not fit into the
above scenario and we need to introduce new strategies. Consider:

sumT :: T -> Int
sumT x @ requires { noT1 x }
sumT (T2 a) = a
sumT (T3 t1 t2) = sumT t1 + sumT t2

where noT1 is the recursive predicate mentioned in §2.3. After
simplifying the RHS of its checking code sumTChk, we may have:

case ((OK noT1) x) of
True ->case x of

T1 a -> BAD
T2 a -> a
T3 t1 t2 ->case ((OK noT1) t1) of

False -> BAD
True ->case ((OK noT1) t2) of

False -> BAD
True -> (OK sumT) t1

+ (OK sumT) t2

Program Slicing To focus on our goal (i.e. removing BADs) as
well as to make the checking process more efficient, we slice the
program by collecting only the paths that lead to BAD. A function
named slice, which does the job, is defined in Appendix B.2. A
call to slice gives the following sliced program:

case ((OK noT1) x) of
True ->case x of

T1 a -> BAD
T3 t1 t2 ->case ((OK noT1) t1) of

False -> BAD
True ->case ((OK noT1) t2) of

False -> BAD

The Unrolling Itself We know we need to unroll one or all of
the call(s) to noT1 in order to proceed. Let us unroll them one by
one. The unrolling is done by a function named unroll which is
defined in Appendix B.3. This function unrolls calls on demand,
for example, unroll(f (g x)) will only inline the definition of
f and leaves the call (g x) untouched. When unroll is given an
expression wrapped with OK, besides unrolling the call, it wraps all
functions in each call with OK. Thus, the unrolling of the topmost
(OK noT1) gives:

case (\x -> case x of
T1 a’ -> False
T2 a’ -> True
T3 t1’ t2’ -> (OK noT1) t1’ &&

(OK noT1) t2’) x) of
True ->case x of

T1 a -> BAD
T3 t1 t2 ->case ((OK noT1) t1) of

False -> BAD
True ->case ((OK noT1) t2) of

False -> BAD

Keeping Known Information Note that the new information
(OK noT1) t1’ && (OK noT1) t2’ after the unrolling is what
we need to prove ((OK noT1) t1) and ((OK noT1) t2) can-
not be False at the branches. However, if we continue un-
rolling the calls ((OK noT1) t1) and ((OK noT1) t2) at the
branches, we lose the information (noT1 t1) == False and
(noT1 t2) == False. To solve this problem (i.e. to keep this in-
formation), we add one extra case-expression after each unrolling.
So unrolling the call of (noT1 x) actually yields:

case (case (NoInline ((OK noT1) x)) of
True ->(\x -> case x of

T1 a’ -> False
T2 a’ -> a’
T3 t1’ t2’->((OK noT1) t1’ &&

((OK noT1) t2’))) x) of
True ->case x of

T1 a -> BAD
T3 t1 t2 ->case ((OK noT1) t1) of

False -> BAD
True ->case ((OK noT1) t2) of

False -> BAD

But to avoid unrolling the same call more than once, we wrap
(noT1 x) with NoInline constructor which prevents the function
unroll from unrolling it again.

Counter-Example Guided Unrolling - The Algorithm Given a
checking code fChk �x = rhs, as we have seen that in order to
remove BADs, we may have to unroll some function calls in the rhs.
One possible approach is to pre-set a fixed number of unrolling
(either by system or by programmers) and we unroll all function
calls a fixed number of times before we proceed further. A better
alternative is to use a counter-example guided unrolling technique
which can be summarised by the pseudo-code algorithm escH
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defined below:

escH rhs 0 = ”Counter-example :” ++ report rhs
escH rhs n =
let rhs′ = simplifier rhs

b = noBAD rhs′

in case b of
True → ”No Bug.”
False → let s = slice rhs′

in case noFunCall s of
True → let eg = oneEg s

in ”Definite Bug :” ++ report eg
False → let s′ = unrollCalls s

in escH s′ (n − 1)

Basically, the escH function takes the RHS of fChk to simplify it and
hope all BADs will be removed by the simplification process. If there
is any residual BAD, it will report to the programmer by generating
a warning message. To guarantee termination, escH takes a pre-
set number which indicates the maximum unrolling that should be
performed. Before this number decreases to 0, it simplifies the rhs
once and calls noBAD to check for the absence of BAD. If there
is any BAD left, we slice rhs′ and obtain an expression which
contains all paths that lead to BAD. If there is no function calls in
the sliced expression which can be checked by a function named
noFunCalls, we know the existence of a definite bug and report it
to programmers. In our system, programmers can pre-set an upper
bound on the number of counter-examples that will be generated
for the pre/post checking of each function. By default, it gives one
counter-example. If there are function calls, we unroll each of them
by calling unroll.

This procedure is repeated until either all BADs are removed or
the pre-set number of unrollings has decreased to 0. When escH
terminates, there are three possible outcomes:

• No BAD in the resulting expression (which implies definitely
safe);

• BAD lbl (where lbl is not "post") appears and there is no
function calls in the resulting expression (where each such BAD
implies a definite bug);

• BAD lbl (where lbl is not "post") appears and there are function
calls in the resulting expression (where each such BAD implies
a possible bug).

These are essentially the three types of messages we suggest to
report to programmers in §2.1.

From our experience, unrolling is mainly used in the following
two situations:

1. A recursive predicate (say noT1) is used in the pre/postcondition
of another function (say sumT1). During the checking process,
only the recursive predicates are unrolled. We do not need to
unroll sumT1 at all as its recursive call is represented by its
pre/postcondition whose information is enough for the check-
ing to be done. Thus, we recommend programmers to use only
recursive predicate of small code size.

2. A recursive function is used without pre/postcondition annota-
tion. In such a case, we may unroll its recursive call to obtain
more information during checking. An example is illustrated
in §8.3.

7. Tracing and Counter-Example Generation
After trying hard to simplify all BADs in a checking code, if there is
still any BAD left, we will report it to programmers by generating a
meaningful message which contains a counter-example that shows
the path that leads to the potential bug.

As claimed in §1, our static checker can give more meaningful
warnings. We achieve this by putting a label in front of each repre-
sentative function. The real f# used in our system is of this form:

f# �x = Inside "f" loc
(case f.pre �x of
False → BAD "f"
True → let $res = (OK f) �x

in case f.post �x $res of
True → $res)

where the loc indicates the location (e.g. (row,column)) of the
definition of f in the source code file. For example, we have:

f1 x z @ requires { x < z }
f2 x z = 1 + f1 x z

f3 [] z = 0
f3 (x:xs) z = case x > z of

True -> f2 x z
False -> ...

After simplification of the checking code of f3, we may have:

f3Chk xs z = case xs of
[] -> 0
(x:y) -> case x > z of

True -> Inside "f2" <l2>
(Inside "f1" <l1> (BAD "f1"))

False -> ...

This residual fragment enables us to give one counter-example with
the following meaningful message at compile-time:

Warning <l3>: f3 (x:y) z where x > z
calls f2
which calls f1
which may fail f1’s precondition!

where <l3> is a pseudo symbol which indicates the location of the
definition of f3 in the source file.

Simplification rules related to Inside follow directly from the
transition rules for Inside, the details can be found in [21].

8. Implementation and Challenging Examples
We have implemented a prototype system based on the ideas de-
scribed in previous sections and experimented with various exam-
ples. The checking time for each of them is within a second or
a few seconds. Besides the ability to check pre/postconditions in-
volving recursive predicates and predicates involving higher-order
functions, here, we present a few more challenging examples which
can be classified into the following categories.

8.1 Sorting

As our approach gives the flexibility of asserting properties about
components of a data structure, it can verify sorting algorithms.
Here we give examples on list sorting. In general, our system
should be able to verify sorting algorithms for other kinds of data
structures, provided that appropriate predicates are given.

sorted [] = True
sorted (x:[]) = True
sorted (x:y:xs) = x <= y && sorted (y : xs)

insert i xs @ ensures { sorted xs ==> sorted $res }
insert item [] = [item]
insert item (h:t) = case item <= h of

True -> cons item (cons h t)
False -> cons h (insert item t)
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insertsort xs @ ensures { sorted $res }
insertsort [] = []
insertsort (h:t) = insert h (insertsort t)

Other sorting algorithms that can be successfully checked in-
clude mergesort and bubblesort whose definitions and corre-
sponding annotations are shown in [21].

8.2 Nested Recursion

The McCarthy’s f91 function always returns 91 when its given
input is less than or equal to 101. We can specify this by the
following pre/post annotations that can be automatically checked.

f91 n @ requires { n <= 101 }
f91 n @ ensures { $res == 91 }
f91 n = case (n <= 100) of

True -> f91 (f91 (n + 11))
False -> n - 10

This example shows how pre/post conditions can be exploited to
give succinct and precise abstraction for functions with complex
recursion.

8.3 Quasi-Inference

Our checking algorithm sometimes can verify a function without
programmer supplying specifications. This can be done with the
help of the counter-example guided unrolling technique. While
the utility of unrolling may be apparent for non-recursive func-
tions, our technique is also useful for recursive functions. Let us
examine a recursive function named risers [15] which takes
a list and breaks it into sublists that are sorted. For example,
risers [1,4,2,5,6,3,7] gives [[1,4],[2,5,6],[3,7]].
The key property of risers is that when it takes a non-empty
list, it returns a non-empty list. Based on this property, the calls to
both head and tail (with the non-empty list arguments) can be
guaranteed not to crash. We can automatically exploit this prop-
erty by using counter-example guided unrolling without the need
to provide pre/post annotations for the risers function. Consider:

risers [] = []
risers [x] = [[x]]
risers (x:y:etc) =

let ss = risers (y : etc)
in case x <= y of

True -> (x : (head ss)) : (tail ss)
False -> ([x]) : ss

head (s:ss) = s
tail (s:ss) = ss

By assuming risers.pre == True for its precondition, we can
define the following symbolic checking code for risers, namely:

risersChk =
case xs of
[] -> []
[x] -> [[x]]
(x:y:etc) -> let ss = (OK risers) (y : etc)

in case x <= y of
True -> (x:(head_1 ss)):(tail_1 ss)
False -> ([x]):ss

We use the label _i to indicate different calls to head and tail.
As the pattern-matching for the parameter of risers is ex-
haustive and the recursive call will not crash, what we need to
prove is that the function calls (head_1 ss) and (tail_1 ss)
will not crash. Here, we only show the key part of the check-

ing process due to space limitation. Unrolling the call (head_1
((OK risers) (y:etc))) gives:

case (case (y:etc) of
[] -> []
[x’] -> [[x’]]
(x’:y’:etc’)->let ss’ = (OK risers) (y’:etc’)

in case x’ <= y’ of
True ->(x’:((OK head_2) ss’)):

((OK tail_2) ss’)
False -> [x’]:ss’) of

[] -> BAD "risers"
(z:zs) -> x:z:zs

The branch []->[] will be removed by the simplifier according to
the rule match because [] does not match the pattern (y:etc). For
the rest of the branches, each of them returns a non-empty list. This
information is sufficient for our simplifier to assert that ss is non-
empty. Thus, the calls (head_1 ss) and (tail_1 ss) are safe
from pattern-matching failure. Note that when we unroll a function
call wrapped with OK (e.g. OK risers), we push OK to all function
calls in the unrolled definition by a function named pushOK which
is defined in Appendix B.3. This is why head_2 and tail_2 are
wrapped with OK.

In essence, our system checks whether True is the precondition
of a function when no annotation is supplied from programmers.
We refer to this simple technique as quasi-inference. Note that
we do not claim that we can infer pre/postconditions for arbitrary
functions, which is an undecidable problem, in general.

9. Related Work
In an inspiring piece of work [9, 8], Flanagan et al, showed the fea-
sibility of applying an extended static checker (named ESC/Java)
to Java. Since then, several other similar systems have been further
developed, including Spec#’s and its automatic verifier Boogie [3]
that is applicable to the C# language. We adopt the same idea of
allowing programmers to specify properties about each function
(in the Haskell language) with pre/post annotations, but also al-
low pre/post annotations to be selectively omitted where desired.
Furthermore, unlike previous approaches based on verification con-
dition (VC) generation which rely solely on a theorem prover to
verify, we use an approach based on symbolic evaluation that can
better capture the intended semantics of a more advanced lazy
functional language. With this, our reliance on the use of theorem
provers is limited to smaller fragments that involve the arithmeti-
cal parts of expressions. Symbolic evaluation gives us much bet-
ter control over the process of the verification where we have cus-
tomised sound and effective simplification rules that are augmented
with counter-example guided unrolling. More importantly, we are
able to handle specifications involving recursive functions and/or
higher-order functions which are not supported by either ESC/Java
or Spec#.

In the functional language community, type systems have
played significant roles in guaranteeing better software safety. Ad-
vanced type systems, such as dependent types, have been advo-
cated to capture stronger properties. While full dependent type sys-
tem (such as Cayenne [1]) is undecidable in general, Xi and Pfen-
ning [20] have designed a smaller fragment based on indexed ob-
jects drawn from a constraint domain C whose decidability closely
follows that of the constraint domain. Typical examples of objects
in C include linear inequalities over integers, boolean constraints,
or finite sets. In a more recent Omega project [18], Sheard shows
how extensible kinds can be built to provide a more expressive
dependent-style system. In comparison, our approach is much more
expressive and programmer friendly as we allow arbitrary functions
to be used in the pre/post annotations without the need to encode
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them as types. It is also easier for programmers to add properties
incrementally. Moreover, our symbolic evaluation is formulated to
adhere to lazy semantics and is guaranteed to terminate when code
safety is detected or when a preset bound on the unrollings of each
recursive function is reached.

Counter-example guided heuristics have been used in many
projects (in which we can only cite a few) [2, 10] primarily for
abstraction refinement. To the best of our knowledge, this is the first
time it is used to guide unrolling which is different from abstraction
refinement.

In [12], a compositional assertion checking framework has been
proposed with a set of logical rules for handling higher order func-
tions. Their assertion checking technique is primarily for postcon-
dition checking and is currently used for manual proofs. Apart from
our focus on automatic verification, we also support precondition
checking that seems not to be addressed in [12].

Contracts checking for higher-order functional programs have
been advocated in [7, 11]. However, their work is based on dy-
namic assertions that are applied at run-time, while ours is on static
checking to find potential bugs at compile-time.

Amongst the Haskell community, there have been several works
that are aimed at providing high assurance software through vali-
dation (testing) [4], program verification [13] or a combination of
the two [6]. Our work is based on program verification. Compared
to the Programatica project which attempts to define a P-Logic for
verifying Haskell programs, we use Haskell itself as the specifica-
tion language and rely on sound symbolic evaluation for its rea-
soning. Our approach eliminates the effort of inventing and learn-
ing a new logic together with its theorem prover. Furthermore, our
verification approach does not conflict with the validation assisted
approach used by [4, 6] and can play complementary roles.

10. Conclusion and Future Work
We have presented an extended static checker for an advanced
functional programming language, Haskell. With ESC/Haskell,
more bugs can be detected at compile-time. We have demonstrated
via examples the expressiveness of the specification language and
highlighted the effectiveness of our verification techniques. Apart
from the fact that ESC/Haskell is good at finding bugs, it also has
good potential for optimisation to remove redundant runtime tests
and unreachable dead code.

Our system is designed mainly for checking pattern matching
failures as well as other potential bugs. Being able to verify the
postcondition of a function is also for the goal of detecting more
bugs at the call sites of the function.

Our extended static checking is sound as our symbolic evalu-
ation follows closely the semantics of Haskell. We have proven
the soundness of each simplification rule and given a proof of
the soundness of pre/postcondition checking in the technical re-
port [21].

In the near future, we shall extend our methodology to accom-
modate parametric polymorphism. That means to extend the lan-
guage H to GHC Core Language [19] which the full Haskell (in-
cluding type classes, IO Monad, etc) can be transformed to. We
plan to integrate it into the Glasgow Haskell Compiler and test it
on large programs so as to confirm its scalability and usefulness for
dealing with real life programs.
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A. Free Variables
fv :: Exp → [Var]
fv(BAD lbl) = ∅
fv(UNR) = ∅
fv(OK e) = ∅
fv(Inside lbl loc (e)) = fv(e)
fv(λx.e) = fv(e) − {x}
fv(e1 e2) = fv(e1) ∪ fv(e2)
fv(case e0 {ci �xi → ei}) = fv(e0) ∪ Sn

i=0(fv(ei) − �xi)
fv(let x = e1 in e2) = fv(e1) ∪ fv(e2) − {x}
fv(C e1 . . . en) =

Sn
i=0 fv(ei)

fv(x) = {x}
fv(n) = ∅

B. Auxiliary Functions
The two auxiliary functions noBAD and slice are combined into
one algorithm in our real implementation. But for the clarity of
presentation, we leave them as two separate functions.

B.1 A Totally Safe Expression

The function noBAD checks syntactically the existence of BAD in an
expression. So when it encounters a free variable (i.e. a variable
not in ρ) which may refer to BAD in the heap, in such case, it
simply return False. However, for an application wrapped with
OK, it returns True by the semantics of OK.

noBAD :: Exp → Bool
noBAD e = noBAD’ e [ ]

noBAD’ :: Exp → [Var] → Bool
noBAD’ (BAD lbl) ρ = False
noBAD’ (v) ρ = v ∈ ρ
noBAD’ (n) ρ = True
noBAD’ (OK e) ρ = True
noBAD’ (e1 e2) ρ = noBAD’ e1 ρ &&

noBAD’ e2 ρ
noBAD’ (λx.e) ρ = noBAD’ e (x :ρ)
noBAD’ (C �e) ρ = and (map noBAD’ �e ρ))
noBAD’ (case e0 of alts) ρ = noBAD’ e0 ρ &&

and (map (λ(C �x e) → noBAD e (�x ++ρ)) alts)
noBAD’ (let x = e1 in e2) = let ρ′ = x : ρ

in noBAD’ e1 ρ &&
noBAD’ e2 ρ′

noBAD’ (Inside n e) = noBAD’ e ρ
noBAD’ (NoInline e) = noBAD’ e ρ

B.2 An Algorithm for Slicing

The expression slicing is always done after the simplification of the
expression. During the simplification process, all let bindings are

inlined so we do not need to deal with let-expression during slicing.

slice :: Exp → Exp
slice (BAD lbl) = BAD
slice (OK e) = UNR
slice (n) = UNR
slice (v) = v
slice (e1 e2) = (e1 e2)
slice (λx.e) = let s = λx.(slice e)

in case s of
UNR → UNR
→ s

slice (C �e) = let s = (map slice �e))
in if all (map (== UNR) s)

then UNR
else C s

slice (Inside n e) = let s = (slice e)
in case s of

UNR → UNR
→ Inside n s

slice (case e0 of alts) =
case e0 of (filter (λ(C �x e) → slice (e) �= UNR) alts)

B.3 Unrolling

The function unroll takes an expression, two environments as
inputs. The environment ρ# is a mapping from a function name
to its representative function while the environment ρ is a mapping
from a function name to its representative function, an its concrete
definition. The function unroll returns a new expression in which
all function calls are unrolled. By all function call, we mean, for
example, given a call (f (g x)), the f is unrolled while the g
is untouched as (g x) is an argument to f . All function calls in
arguments are untouched. Remark: as the unrolling is always done
after the simplification, we do not encounter a let-expression as an
input.

unroll :: Exp → [(Name,Exp)]
→ [(Name,Exp)] → Exp

unroll (e1 e2) ρ# ρ = ((unroll e1 ρ# ρ) e2)
unroll (v) ρ# ρ = ρ#(v)
unroll (OK v) ρ# ρ = let ns = map fst ρ

in pushOK ρ(v) ns
unroll (NoInline e) ρ# ρ = NoInline e
unroll (case e0 of {ci �xi → ei}) ρ# ρ =
case (case (unroll e0 ρ# ρ) of {ci �xi → NoInline e0}) of

{ci �xi → unroll ei ρ# ρ}}
unroll (λx.e) ρ# ρ = λx.(unroll e)
unroll (C x1..xn) ρ# ρ = C (unroll x1)..(unroll xn)
unroll Inside lbl loc e = Inside lbl loc (unroll e)
unroll others = others

The pushOK function make sure that if there is any top-level func-
tion is called in the input expression, it will indicate the call is safe
by wrapping the function with OK. So pushOK takes an expression
and a list of top-level function names and return a new safe expres-
sion.

pushOK :: Exp → [Name] → Exp
pushOK e ρ = if fv(e) �∈ ρ then e

else pOK e ρ

pOK (e1 e2) ρ = (pOK e1 ρ) e2

pOK v ρ = if v ∈ ρ then OK v
else v

pOK (λx.e) ρ = λx.(pOK e ρ)
pOK (case e0 of {ci �xi → ei}) ρ =

case pOK e0 ρ of {ci �xi → pOK ei ρ})
pOK (C x1 . . . xn) ρ = C (pOK x1 ρ) . . . (pOK xn ρ)
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