
Dynamic Contract Checking for OCaml

– A Tutorial

Dana N. Xu

INRIA France

na.xu@inria.fr

January 22, 2014

Contents

1 Introduction 1

2 Contracts 3

2.1 Predicate contract . 3
2.2 Dependent function contract . 4

2.2.1 Pure functions in contracts 4
2.2.2 Specifying size properties 5
2.2.3 Higher order functions can be called in contracts 6
2.2.4 Higher order contracts . 6

2.3 Dependent tuple contract . 7
2.4 Local contract declaration . 9

3 Divergent functions in contracts 10

4 Contract violations in contracts are reported 10

5 Modules 11

6 Command line instructions 12

7 Contract checking algorithm behind the scene 13

1 Introduction

A contract in a programming language is a formal and checkable interface spec-
ification that allows programmers to declare what a function assumes and what
a function guarantees. In an OCaml program, you can specify a contract for a
top-level function with a keyword contract. Consider a simple example:

1

(* basic.ml *)

contract f = {x | x > 0} -> {r | r > x}

let f x = if x > 0 then x + 1

else failwith "f requires a positive number"

let t1 = f 2

let t2 = f 0

The contract for f specifies that an input to f must be greater than 0 (indicated
by {x | x > 0}) and f should guarantee that after taking a non-negative input,
its output is greater than its input (indicated by {r | r > x}).

We can see two calls of f in basic.ml:

• t1 calls f with 2, which satisfies f’s precondition;

• t2 calls f with 0, which violates f’s precondition.

If we compile basic.ml and run it, we get:

Fatal error: exception

Contract_failure("basic.ml, line: 6, chars: 9-10,

Blame t2, because t2 fails f’s precondition")

The error message gives the precise information where a contract violation oc-
curs. It tells the programmer that in the file basic.ml, the call of f (at location
(line 6, chars 9-10)) violates the contract and the function t2 (i.e. the caller) is
at fault.

Without the contract declaration, a call (f 0) gives the following run-time
error message:

Fatal error: exception

Failure("f requires a positive number")

which does not tell which caller of f invokes this failure.
Consider another example:

(* basic.ml *)

contract g = {x | x > 0} -> {r | r > x}

let g x = x - 1

let t3 = g 2

We would get the following run-time error message:

Fatal error: exception

Contract_failure("basic.ml, line: 11, chars: 9-10,

Blame g, because g’s postcondition fails")

2

It says that the call of g (at location (line 11, chars 9-10)) causes a contract
violation and the function g itself is at fault. From the definition of g, we can see
that the result of g is not greater than its input, thus, violates g’s postcondition.

From these examples, we can see that contracts give a way to reason about
your program and help locating the function at fault precisely. This makes
debugging more fun!

2 Contracts

Figure 1 gives the abstract syntax tree for contracts. We explain each of them
in detail below. Note that the -> is right associative and the * binds stronger
than -> without brackets.

t ::= {x | p} (∗ predicate contract ∗)
| x : t1 → t2 (∗ dependent function contract ∗)
| x : t1 ∗ t2 (∗ dependent tuple contract ∗)

Figure 1: Abstract Syntax Tree for Contracts

2.1 Predicate contract

We use set notation {x | p} to mean ∀x.p holds, where the p is a boolean-
expression in OCaml. Currently, we allow arbitrary pure functions not raising

exceptions to be called in the boolean expression p. For example, we may define
a function sorted, which tests whether a list is sorted.

let rec sorted xs = match xs with

| [] -> true

| [x] -> true

| x::y::l -> x <= y && sorted (y::l)

We may have a function insert, which inserts an item to a sorted list and
returns a sorted list.

contract insert = {x | true} -> {y | sorted y} -> {r | sorted r}

let rec insert item xs = match xs with

| [] -> [item]

| x::l -> if item <= x then item::x::l

else x::(insert item l)

We can now define a function insertion_sort which always returns a sorted
list.

contract insertion_sort = {xs | true} -> {r | sorted r}

let rec insertion_sort xs = match xs with

| [] -> []

| x::l -> insert x (insertion_sort l)

3

2.2 Dependent function contract

Dependent function contracts allow us to specify a dependency between input
and output in a function’s postcondition. Its full notation is x : t1 → t2 as
shown in Figure 1 where x denotes an element in the precondition t1 and can
be used in the postcondition t2. A simple example of a dependent function
contract is:

contract f = k:{x | x > 0} -> {r | r > k}

where k denotes an element in the precondition {x | x > 0} and we can refer
to k in the scope of the postcondition {r | ... }. If k denotes an element of
a predicate contract, we can omit the k, for example:

contract f = {x | x > 0} -> {r | r > x}

We allow such shorthand by assuming the x in the precondition {x | ... }

scopes over the RHS of ->. However, if k denotes a (dependent) function con-
tract, we cannot omit the k:. For example,

contract g = k:({x | x > 0} -> {y | y > x}) -> {z | z > 0}

-> {r | r > k z}

let g f x = f x + 1

when we refer to the function contract, we have to use k in {r | r > k z}.
Note that we cannot refer the x and the y outside the scope of the function
contract, such as

contract g = k:({x | x > 0} -> {y | y > x}) -> {z | z = x}

-> {r | r > k z}

2.2.1 Pure functions in contracts

Properties in contracts are all defined using pure expressions in OCaml itself.
Logical operators are also pure functions. Note that the (&&) and (||) in the
stdlib are lazily defined and can be used directly. If you want strict versions,
you can have the following.

let (&&) x y = if x then y else false

let (||) x y = if x then true else y

let (==>) x y = if x then y else true

let not x = if x then false else true

Let us see more examples of what can be specified in contracts.

let null xs = match xs with

| [] -> true

| _ -> false

contract hd = {xs | not (null xs)} -> {r | true}

4

let hd xs = match xs with

| [] -> failwith "hd"

| x::_ -> x

contract tl = {xs | not (null xs)} -> {r | true}

let tl xs = match xs with

| [] -> failwith "tl"

| _::l -> l

contract risers = {xs | true}

-> {r | not (null xs) ==> not (null r)}

let rec risers xs = match xs with

| [] -> []

| [x] -> [[x]]

| x::y::l -> let ss = risers (y::l) in

if x <= y then (x::(hd ss))::(tl ss)

else [x]::ss

We can see that preconditions of the functions hd and tl are always fulfilled.

2.2.2 Specifying size properties

In many cases, we want to specify size information of a function. For example:

contract length = {xs | true} -> {r | r >= 0}

let rec length xs = match xs with

| [] -> 0

| (x::l) -> 1 + length l

contract combine = {xs | true} -> {ys | length xs = length ys}

-> {rs | length xs = length rs}

let rec combine xs ys = match (xs, ys) with

| ([],[]) -> []

| (x::w, y::v) -> (x, y) :: combine w v

| (_,_) -> failwith "requires arguments of equal length"

Function combine requires both arguments to have the same length and the
length of the resulting list is the same as that of the first argument.

For another example:

let min x y = if x <= y then x else y

contract zip = {x | true} -> {y | true}

-> {r | length rs = min (length x) (length y)}

let rec zip = xs ys =

match (xs, ys) with

| ([],_) | (_,[]) -> []

| (x::w, y::v) -> (x, y) :: zip w v

5

Function zip does the same as combine except that it stops combining two lists
when the shorter list reaches its end.

2.2.3 Higher order functions can be called in contracts

We can define a higher-order function filter whose result is asserted with the
help of another recursive higher-order function for_all.

(* val all : (a -> bool) -> [a] -> bool *)

let rec for_all f xs = match xs with

| [] -> true

| x::l -> f x && for_all f l

(* val filter : (a -> bool) -> [a] -> [a] *)

contract filter = {f | true} -> {x | true} -> {z | for_all f z}

let rec filter f xs = match xs with

| [] -> []

| x::l -> if f x then x :: filter f l

else filter f l

2.2.4 Higher order contracts

A higher order contract allows t1 in x : t1 → t2 to be a (dependent) function
contract itself. For example:

(* ho.ml *)

(* val f1 : (int -> int) -> int *)

contract f1 = ({x | x > 0} -> {y | y >= x}) -> {z | z > 0}

let f1 g = (g 0) - 5

let t1 = f1 (fun x -> x + 1)

In this case, we get run-time error message:

Fatal error: exception

Contract_failure("ho.ml, line: 5, chars: 9-11,

Blame f1, because f1’s postcondition fails or

f1 violates its parameter’s contract")

It is because f1 does not use g in a way that satisfies g’s precondition. But this
is detected at the call site of f1, i.e. (line 6, chars 9-11).

For another example:

contract f2 = ({x | x > 0} -> {y | y >= x}) -> {z | z > 0}

let f2 g = (g 1) - 5

let t2 = f2 (fun x -> x + 1)

We get the following error message:

6

Fatal error: exception

Contract_failure("ho.ml, line: 9, chars: 9-11,

Blame f2, because f2’s postcondition fails")

We can see that the argument of f2, (fun x -> x + 1), satisfies f2’s precon-
dition. From the contract of f2, we can see that x > 0 and y >= x, so y > 0,
that is, (g 1) > 0. However, (g 1) - 5 is not greater than 0, thus, f2 fails
its postcondition {z | z > 0}. That is why the error message blames f2. The
location (line 9, chars 9-11) refers to the call site of f2.

Moreover, if we have:

let t3 = f2 (fun x -> x - 1)

we have error message:

Fatal error: exception

Contract_failure("ho.ml, line: 11, chars: 9-11,

Blame t3, because t3 fails f2’s precondition")

The location (line 11, chars 9-11) is the call site of f2. Since t3 calls f2 with a
function that fails f2’s precondition, the function t3 is blamed.

2.3 Dependent tuple contract

Currently, we allow tuple contract of arbitrary length. For example, we may
have:

(* tuple.ml *)

let fst (a,b) = a

let snd (a,b) = b

(* val f : int array -> int -> int *)

contract f = k:({arr | true} * {i | 0 <= i && i < Array.length arr})

-> {r | r = snd k}

let f (arr, i) = arr.(i)

let a = Array.init 5 (fun x -> x)

let t1 = f (a, 2)

let t2 = f (a, 8)

Function f takes a tuple of an array arr and an index i and access the ith
element in the array. The contract of f requires the index to be within the
bounds of the array, i.e. greater or equal to 0 and less than the length of the
array. It also specifies that the result of f should be the same as the second
component of the argument (i.e. the index). We can see that the call in t1

satisfies f’s precondition while the call in t2 violates f’s precondition and gives
the following run-time error message:

Fatal error: exception

Contract_failure("tuple.ml, line: 9, chars: 9-10,

Blame t2, because t2 fails f’s precondition")

7

Given a dependent tuple contract x : t1 ∗ t2, if t1 denotes a predicate contract,
we can use shorthand, for example,

{arr | true} * {i | 0 <= i && i < Array.length arr}

by assuming the variable arr scopes over the second component. However, if
t1 is a (dependent) function contract, we cannot omit the x in x : t1 ∗ t2. For
example:

k:({x | x > 0} -> {y | y > x}) * {z | z > k 0}

we cannot omit the k if we want to use it in {z | ... }.
Moreover, in the contract of f, we can see that the varialbe arr and i

do not scope over the RHS of ->. In order to refer to the subcomponents
of the argument, we have to define projection function that projects on the
subcomponent such as fst and snd and use them instead.

Consider another example:

contract f1 = {x | x > 0} * {y | y > 0} -> {z | z > 0} ;;

let f1 (a,b) = a

let t3 = f1 (5, -1)

Although the second element of the tuple is not used in the definition of fstPos.
Due to strict evaluation, a call fst (5, -1) fails fst’s precondition.

Recall the syntax in Figure 1, we can also give fstPos the following contract.

contract fstPos = {x | fst x > 0 && snd x > fst x}

-> {r | r = fst x}

let fstPos (a,b) = a

Here, we use a predicate contract for the parameter of fstPos and requires the
second component to be greater than the first.

If we are only interested in the first element of the tuple, we can write:

contract fstPos = {x | fst x > 0} -> {r | r = fst x}

A call fstPos (5, -1) satisfies fstPos’s precondition. However, a call

fstPos (5, failwith "fstPos: 2nd component")

gives error message:

Fatal error: exception Failure("fstPos: 2nd component")

It is because the contract {x | fst x > 0} requires that the first component
of x to be greater than 0 and the second component to be any total expression.
A total expression refers to an expression that neither diverges nor throws an
exception.

8

2.4 Local contract declaration

It is possible to give a contract to a local let-binding. For example:

contract bubblesort = {xs | true} -> {r | sorted r}

let rec bubblesort xs =

let rec bsorthelper sat {xs | true} ->

{r | (not (snd r)) ==> (sorted (fst r))}

= function

| [] -> ([], false)

| [a] -> ([a], false)

| x::xs -> let (y::ys, changed) = bsorthelper xs in

if x <= y then (x ::(y::ys), changed)

else (y ::(x::ys), true)

in

let (result, changed) = bsorthelper xs in

if changed then bubblesort result

else result

let test_bubblesort = bubblesort [2,1,5]

We give a contract to the local function bsorthelper in a format

< function name > sat < contract > = < function body >

which is analogic to the local function type declaration

< function name > : < type > = < function body >

In the above example, the result of bubblesort is sorted and thus satisfies its
postcondition. Let us see another example:

contract f = {x | x >= 0} -> {y | y > x}

let f v = let rec h sat {x | x > 5} -> {y | y > x}

= fun x -> x + v

and k sat {x | x > 3} -> {y | y > 3}

= fun x -> h x + 1 in

k v + h 6

let t1 = f 0

let t2 = f 4

The contract of the local function h requires its result to be greater than its
input. The call (f 0) in the definition of t1 produces x+0 which is not greater
than x. Thus, the postcondition of h is not satisfied and we get run-time error
message:

Fatal error: exception

Contract_failure("local.ml, line: 6, chars: 17-18,

Blame h, because h’s postcondition fails or

h violates its parameter’s contract")

9

where the location (line 6, chars 17-18) refers to the call (h 6).
The local function k requires its input to be greater than 3, the call (f 4) in

the definition of t2 satisfies this precondition. However, the function k calls the
local function h with its argument and fails h’s precondition {x | x > 5}. Thus,
the call h x (line 5, chars 26-27), in the definition of k, violates h’s precondition
and the function k is to blame. So we get the following run-time error message:

Fatal error: exception

Contract_failure("local.ml, line: 5, chars: 26-27,

Blame k, because k fails h’s precondition")

3 Divergent functions in contracts

We only have partial correctness for our contract framework. That is, a di-
vergent expression satisfies any contract and a divergent expression is the only
expression that satisfies {x | p} where p evaluates to false.

Given

(* loop.ml *)

contract loop = {x | x > 0} -> {y | false}

let rec loop x = loop x

let t1 = loop 0

let t2 = loop 5

The call (loop 0) invokes error message:

Fatal error: exception

Contract_failure("loop.ml, line: 4, chars: 9-13,

Blame t1, because t1 fails loop’s precondition")

while a call (loop 5) diverges (i.e. causes stack overflow).

4 Contract violations in contracts are reported

As we allow arbitrary pure functions to be called in contracts, it is possible that
a call to a function throws an exception in contracts. For example:

(* c.ml *)

contract f1 = {x | true} -> {y | hd x > y}

let f1 x = 5

let t1 = f1 []

As we gave hd a contract, we can get run-time error message:

Fatal error: exception

Contract_failure("cntr.ml, line: 16, chars: 33-34,

Blame f1, because f1 fails hd’s precondition")

10

The location (line 16, chars 33-34) refers to the call site of hd in the contract
{y | hd x > y}. Here, "blame: f1" means blaming f1’s contract.

For another example:

contract f2 = k:({x | x > 0} -> {y | y > x}) -> {z | k 0 < z}

let f2 g = g 5

let t2 = f2 (fun x -> x + 1)

We have error message:

Fatal error: exception

Contract_failure("cntr.ml, line: 7, chars: 53-54,

Blame f2, because f2 fails k’s precondition")

We blame the location of the call (k 0), which is in the contract of f2. Note, in
this case, the f2 in f2 fails k’s precondition refers to the contract of f2.

To use a partial function in contracts that may throw an exception, we
recommend users to give sufficient precondition for the partial function used.
For example:

contract f3 = {xs | not (null xs)} -> {z | z > hd xs}

let f3 xs = match xs with

| [] -> failwith "f3"

| x::xs -> x + 1

let t3 = f3 []

We get error message:

Fatal error: exception

Contract_failure("cntr.ml, line: 18, chars: 9-11,

Blame t3, because t3 fails f3’s precondition")

We can see that the precondition of hd is always satisfied when the call hd xs

is reached.

5 Modules

We allow a contract to be defined directly next to its corresponding function in
.ml files with a keyword contract mainly because programmers often want to
specify contracts for functions that are not exported as well. Exported contracts
are in .mli files where they should be syntactically the same as those in .ml files
and declared after their type declaration. (That is, if a contract is specified for
an exported function, programmers should write this contract in both .ml and
.mli files and make sure that they are syntactically the same.) For example:

11

(* basic.mli *)

val f: int -> int

contract f = {x | x >= 0} -> {y | y > x}

It is possible not to write a .mli file. In this case, all contracts declared in the
.ml file are presumed to be exported.

Similar ideas apply to nested modules: exported contracts are written in
a module signature; if no module signature is given, we assume all contracts
declared in the module are exported.

6 Command line instructions

Source code can be obtained by:

svn checkout https://yquem.inria.fr/caml/svn/ocaml/branches/contracts

which is based on the source code of ocamlc-3.11.2. To build ocamlc from
source, do:

$./configure

$make ocamlc

Small examples can be downloaded at:

http://gallium.inria.fr/~naxu/research/testcontracts.tar.bz2

I put the folder testcontracts and the folder contracts side by side in the
same directory. To release .tar.bz2, do:

$tar -jxvf testcontracts.tar.bz2

To test one of the examples, e.g. basic.ml, you can do:

$make basic

$ocamlrun ./basic

To compile all examples:

$make all

If you have installed the newly built ocamlrun and ocamlc and you do not want
to use a Makefile, you can compile your own example as usual:

$ocamlrun ocamlc -I stdlib -c basic.ml

$ocamlrun ocamlc -o basic -I stdlib basic.cmo

$ocamlrun ./basic

If you want to install the newly built ocamlc locally, you need do:

$make distclean

$./configure --prefix=‘pwd‘/_install

$make ocamlc

$make install

12

This will install everything at local directory ./_install. For example, you
can see ocamlc, ocamlrun at _install/bin/ and the standard library is at
_install/lib/ocaml/. You need to give the full path to invoke them.

If you want to switch off the contract checking, you can do:

$ocamlrun ocamlc -I stdlib -nocontract -c basic.ml

You can look up the flag -nocontract with ocamlc -help.

7 Contract checking algorithm behind the scene

The beauty of contract checking is that it is simple! Given

contract f = t
let f = e

where the t refers to the contract of the function f and the e refers to the
definition of f. The contract checking algorithm is:

e
l1

⊲⊳
l2

{x | p} = let x = e in if p then x else blame l1

e
l1

⊲⊳
l2

x : t1 → t2 = fun v → (e (v
l2

⊲⊳
l1

t1))
l1

⊲⊳
l2

t2[(v
l2

⊲⊳
l1

t1)/x]

e
l1

⊲⊳
l2

x : t1 ∗ t2 = match e with

(x1, x2) → (x1

l1

⊲⊳
l2

t1, x2

l1

⊲⊳
l2

t2[(x1

l2

⊲⊳
l1

t1)/x])

The operator
l1

⊲⊳
l2

is called a wrapper, which wraps an expression with its contract.

If the contract is satisfied, the original expression is returned; otherwise, a
contract violation is reported. Here the li contains information about source
location and function name of a callee (or a caller). The algorithm makes
blaming of a callee or a caller precise. For more information related to contracts,
you can read [1, 3, 2].

References

[1] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order
functions. In ICFP: the ACM SIGPLAN Intl. Conf. on Fnl. Prog., pages
48–59, 2002.

[2] Dana N. Xu. Hybrid contract checking via symbolic simplification. In Pro-

ceedings of the ACM SIGPLAN 2012 workshop on Partial evaluation and

program manipulation, PEPM ’12, pages 107–116, New York, NY, USA,
2012. ACM.

13

[3] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static contract
checking for Haskell. In POPL, pages 41–52, 2009.

14

