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Abstract

Virtually every compiler performs transformations on the
program it is compiling in an attempt to improve efficiency.
However, a transformation known as “lambda floating” has
not received much attention in the past. In this paper we
describe an analysis on the arity of a function which deter-
mines the number of lambdas that can be floated out. We
give detailed measurements of the effect in an optimising
compiler for the higher-order polymorphic functional lan-
guage Haskell. Our results show that it is an important
transformation offering an average reduction of 5% in exe-
cution time.

1 Introduction

Consider a summation function h1 adopted from [7] which
has an implicit accumulating parameter y.

h1 = \n -> \x -> if x<n then let v = h1 n (x+1)
in \y -> v (x+y)

else \y -> y

A semantically-equivalent function which differs only in the
positioning of the \y is this:

h2 = \n->\x->\y-> if x<n then let v = h2 n (x+1)
in v (x+y)

else y

Given same arguments, the two functions produce the same
value but h2 is much more efficient than h1 to evaluate.
In this case, the time and space consumption is significantly
reduced by 60% and 50% respectively. There are two reasons
for this improvement:

1. a great number of lambda-closure-builds are saved dur-
ing recursions.

2. many optimization techniques [?, ?, ?] can be applied to
h2 during compilation whereas few or no optimizations
can be done for h1.

A question one may ask is “how often functions are defined
with inner lambdas such as h1?”. While programmers may
not define functions in this way, however, compiled code
which goes through many transformation stages often ends
up in this form. For example, the h1 definition results from
the fusion of fold (+) 0 [1..(n-1)] by the short-cut de-
forestation technique proposed in [7]. Thus, a good com-
piler should transform h1 into h2 whenever possible. We

call this transformation “lambda floating” as it floats the
inner lambda(s) to the top level of its function definition.

The Glasgow Haskell Compiler (GHC) is an optimising
compiler for the higher-order polymorphic functional lan-
guage Haskell [18]. The compilation process is expressed as
a series of correctness-preserving program transformations.
To determine how many inner lambdas should be floated
to the top level, it is equivalent to saying what arity we
should give to a function where arity is defined as the num-
ber of arguments a function expects. GHC-6.4 (and earlier)
takes the syntactic number of top level lambdas in a function
definition as its arity without considering inner lambda(s)
because it is a non-trivial task to find the ideal arity of each
function. This challenge is discussed in §2.3. In this paper,
we make the following contributions:

• We use a type system to analyse a function’s arity in-
dependent of its callers. This analysis is effectively a
forward arity analysis (§4.1).

• We propose a complementary backward arity analysis
which derives the arity information of each (higher or-
der) function’s parameter based on the usage of each
function (§4.2). This also helps in improving the pre-
cision of the arity information obtained by the forward
analysis.

• We conduct experiments on the effectiveness of selec-
tive lambda floating guided by the two analyses (§5).

Our analysis results are not lazy-language-specific as we
determine that funtion f has arity n if it is called at all.
Thus, analogous transformations should be equally success-
ful in other compilers for strict languages.

2 Background and key ideas

In this section, we explain with examples why we need an
arity analysis, how the lambda floating can be done and
which lambda should be floated out.

2.1 The cost of building a lambda

Given a function f of the form λx1.λx2. . . . λxn.e where e
is not a lambda abstraction and f has no free variables, if
f is given n arguments, most implementation will perform
multi-reductions [17] whereby each call is viewed as a vector
application, rather than a series of binary applications. For
example, we have



ff1 = \x -> \y -> let {n = x+2} in n + y

Evaluation of (ff1 1 5) is as follows. (We use |-> to rep-
resent β-reduction)

(ff1 1 5)
|-> let n = 1 + 2 in n + 5
|-> let n = 3 in n + 5
|-> 3 + 5

In contrast, for a semantically-equivalent definition like

f1 = \x -> let {n = x + 1} in \y -> n + y

after taking the first argument, we need to build a lambda
closure before taking the second argument.

(f1 1 5)
|-> (let {n = 1 + 2} in \y -> n + y) 5
|-> (let {n = 3} in \y -> n + y) 5
|-> (\y -> 3 + y) 5 {- extra lambda closure -}
|-> 3 + 5

This shows that if we float the lambda y to the top level,
we save building lambda once. Similarly, for the case-
expression,

f2 = \x -> case x >0 of
True -> \y -> x+y
False -> \y -> x-y

ff2 = \x -> \y -> case x>0 of
True -> x+y
False -> x-y

Calls to execute ff2 is faster than the corresponding one for
f2 as one lambda closure is saved as shown below.

(ff2 2 3)
-> case 2>0 of

True -> 2 + 3
False -> 2 - 3

-> 2+3

(f2 2 3)
-> (case 2>0 of

True -> \y -> 2+y
False -> \y -> 2-y) 3

-> (\y->2+y) 3 {- extra lambda closure -}
-> 2+3

Thus, the purpose of floating lambdas to the top level of
a function’s definition is to save building lambda closures
during execution, where possible. The gain can best be seen
in a recursive function definition. Consider the example h1
in Secton 1, many lambda closures are built during recursive
invocations. However, for the definition of h2, no lambda
closure is built.

Arity of a function is informally defined as follows.
Given let f = \x1,...,xm -> e1 in e2, f has arity n iff
let f = \x1,...,xm,xm+1,...,xn-> (e1 xm+1,...,xn)
in e2 takes no more steps to evaluate. For example, func-
tions f1 and f2 have arity 2 and h1 has arity 3.

Arity analysis may also be used to provide guidance for
a better fully-lazy lambda lifting technique and cheap de-
forestation. These two applications are discussed in Ap-
pendix A.

2.2 Floating lambda out by η expansion

The easiest way to float lambda(s) out to the top level of a
function’s definition is to apply η-expansion. The number of
η-expansions that should be applied depends solely on the
arity information obtained from our analyses.

Definition 1 (η-expansion) In lambda-calculus, the η ex-
pansion rule states f ==> \x -> f x provided x does not
occur free in f and f is a function.

There are three rules of transformation (named
beta-reduction, let-apply and if-apply shown in Figure 1)
which preserve the operational semantics in a lazy language
setting. We use ==> to represent a one step transformation
and ==>∗ to represent multiple steps of transformation.

With these three rules, inner lambdas can be easily
floated to the top level after applying a suitable number
of η-expansions. For example, for a function of arity 2, we
can apply η-expansion twice as follows.

\x -> if x>0 then let m = x+1
in \y -> m + y

else \z -> z
==>* [apply eta-expansion twice]

\a1 -> \a2 -> ((\x -> if x>0 then let m = x+1
in \y -> m + y

else \z -> z
) a1 a2)

==> [apply beta-reduction]
\a1 -> \a2 -> ((if a1>0 then let m = a1 + 1

in \y -> m + y
else \z -> z) a2

==> [apply if-apply law]
\a1 -> \a2 -> (if a1>0 then (let m = a1+1

in \y -> m + y) a2
else (\z -> z) a2

==> [apply let-apply law]
\a1 -> \a2 -> if a1>0 then let m = a1 + 1

in ((\y -> m + y) a2)
else (\z -> z) a2

==>* [apply beta reduction for each branch]
\a1 -> \a2 -> if a1>0 then let m = a1 + 1

in m + a2
else a2

2.3 Analysing for lambda floating

The arity of a function indicates the ideal number of lamb-
das that should appear at the top level of a function’s def-
inition. Both forward and backward analyses are used in
deriving such information. We give an overview of these
two mechanims in this section. Technical details of how
each step is implemented and what the actual gain achieved
are discussed in later sections.

2.3.1 Forward arity analysis

We need to bear in mind that the purpose of floating lambda
out is to improve efficiency of the code. Generally speaking,
floating lambda out can be a disaster under some situations,
whereby it may introduce high run-time overhead. For ex-
ample,

let f3 = \n -> let m = fib n
in \x -> x + m
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(λx→ e1) e2 ==> (e1[e2/x]) (beta-reduction)
(let x = e1 in λy → e2) e3) ==> let x = e1 in ((λy → e2) e3) (let-apply)

((if e1 then λx→ e2 else λy → e3) e4) ==> if e1 then ((λx→ e2) e4) else ((λy → e3) e4) (if-apply)

Figure 1: Transformation Rules

in map (f3 100) [1..1000]
==>*

let f3 = \n -> \x -> let m = fib n
in x+ m

in map (f3 100) [1..1000]

The transformed code will compute (fib 100) one thou-
sand times while the original code only computes it
once. This tells us that given an expression of the form
let x = e1 in e2, if e1 is an expensive expression, we may
not be able to afford losing the sharing by floating out any
lambda in e2. Thus, when we encounter such e1, we should
assign arity 0 to the whole expression let x = e1 in e2 to
mean no lambda should be floated from this expression.

Consider another situation,

let f4 = \n -> if (fib n > 1234) then \y -> y+1
else \y -> y-1

in map (f4 100) [1..1000]
==>*

let f4 = \n -> \y -> if (fib n > 1234) then y+1
else y-1

in map (f4 100) [1..1000]

the expensive computation (fib n) in the original code is
only computed once while the (fib n) in the transformed
code will be computed 1000 times. An if-expression is sub-
sumed by case-expression:

if e0 then e1 else e2 <==> case e0 of True -> e1
False -> e2

To generalise it, for expression case e0 of {pi -> ei}, if
e0 is expensive, we should assign arity 0 to the whole case-
expression regardless what arity each branch has.

We can see that some expressions have arity 0 although
they contain some lambdas. This leads to another concern:
for the different branches of the case alternatives, they may
have different arity. To play safe, we need to choose the
minimum arity among these branches. For example,

f5 = \n -> if n > 0 then let m = fib n
in \x -> x + m

else \y -> n - y

The then-branch gives arity 0 and the else-branch gives ar-
ity 1 so the whole if-expression has arity 0, that is to say
function f5 has arity 1.

To find the arity of a recursive function, we need to do
a fixpoint computation to get its arity. Consider the h1 in
the §1,

h1 = \n -> \x -> if x<n then let v = h1 n (x+1)
in \y -> v (x+y)

else \y -> y

where both LHS and RHS has the same arity, we say a
fixpoint is reached. Suppose we start from 0, that means we
assume h1 has arity 0, then we look at the RHS. As h1 has
arity 0, the expression (h1 n (x+1)) is not cheap and has
arity 0 (as arity cannot go negative). This leads the whole

let-expression to have arity 0. Since one branch has arity
0, the other branch has arity 1, the if-expression has the
minimum of these two which is 0. Thus, the RHS has arity
2. As the arity at LHS is 0 and RHS gives arity 2, a fixpoint
is not reached. Let us increase the arity at LHS to 2 directly.
After going through the similar procedure, we get arity 2 for
the RHS. We reach a fixpoint. However, this is not the end of
the story. If we continue increasing the arity at LHS to 3, we
will get arity 3 for the RHS - another fixpoint. This means
if we start fixpoint computation from 0, we will get the least
fixpoint. Unfortunately, this is not what we want, we want
the greatest fixpoint as we want to float as many lambda(s)
out as possible under safe conditions. Thus, we propose to
start computing fixpoint from ∞. In § 4.1.1, explanantion
on the computation of greatest fixpoint is given.

For higher-order function like f = \g -> \x -> g x 1,
as we do not have information about g, we say f has arity
2. In order to derive the arity of a function’s parameter, we
need to analyse the usage of a function. A mechanism that
does this is explained in the next section.

2.3.2 Backward arity analysis

Forward analysis finds only the arity for each function, but
not arity for each of its parameter if the parameter is a func-
tion itself, while backward analysis can do the job. Back-
ward analysis of a function aims to answer the following
question:”given arity of the function’s result, what are the
arities of the function’s parameters?”. The more precise
the arity we have for the function’s result, the more precise
the arities we have for the parameters. For this purpose, a
function may be seen as a monotonic arity transformer: it
transforms an arity of the function’s result into arities of the
function’s parameters. For example:

let g = ...
s f = f 3

in ...(s g)...

An arity transformer for f can produce the following table:

(s g) f
0 1
1 2
2 3
: :
n n+ 1

It says if (s g) applies to n arguments, then f applies to n+1
arguments. Suppose, we see an application (s g 4 5 6)
which implies (s g) has arity 3, by looking up the table
above, we know f has arity 4.

The backward analysis strategy is essentially built for
each let-expression because the toplevel function definition
can be modeled in the same way as a let-binding. In the rest
of this section, we describe three analysis plans to compute
an arity transformer for expression of this format.

let {f = rhs} in body.
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Plan A. Intuition tells us that we need to analyse body
before rhs. For example:

let f10 = \g ->\x -> g x
in f10 h 2 3

From the body, we can get {f10::3}. If we feed this usage in-
formation to the rhs, we can get {(\g->\x->g x)::3} which
gives {g::2}. However, if we have this:

zipWith :: (a->b->c) -> [a] -> [b] -> [c]
zipWith f [] ys = []
zipWith f xs [] = []
zipWith f (x:xs) (y:ys) = (f x y):zipWith xs ys

f9 foo xs ys = let goo = foo 6 7 8
in zipWith goo xs ys

Without analysing the definition of zipWith, its us-
age (i.e. zipWith goo xs ys) can only give information
{zipWith::3} which says nothing about goo. So Plan A
is not desirable.

There are more things to consider before we introduce
Plan B, for example:

let f7 = \x -> if (fib 100) then \y-> x+y
else \y-> x*y

in zipWith f7 [1..1000] [1..1000]

in this case, it is safe to float \y-> out (i.e. assigning f7 arity
2) as f7 cannot do any work without taking two arguments,
as this is enforced by the definition of zipWith. (Note: with
or without floating \y-> out, (fib 100) will be computed
for 1000 times.) However, for definition like

let f8 = if (fib 100) then \x->\y->x+y
else \x->\y->x*y

in zipWith f8 [1..1000] [1..1000]

it is not safe to float any of the \x-> and \y-> out
(i.e. should assign f8 arity 0) as the expensive compu-
tation (fib 100) will be evaluated 1000 times. Thus,
the backward analysis is not only to count the number
of times a function is used, but also should capture how
the function is used. This leads to the idea of deriving
a usage type which captures the usage of each free vari-
able in an expression. For example, in the application
zipWith f8 [1..1000] [1..1000], the usage type for f8 is
〈1, 2〉 which says if f applies to 1 argument, it will definitely
apply to 2 arguments.

Definition 2 (Usage Type) 〈a, b〉 is a usage type of a
function f if no partial application of f to i arguments
∀i.a ≤ i < b is shared.

Plan B. Analyse the rhs, then the body, then the rhs
again, and the body again. This iteration continues until it
reaches a fix point. In the case of f9, from the definition
of zipWith, we know its first parameter f has usage type
〈1, 2〉. From the definition of goo, we know foo’s usage type
is 〈1, 3〉 which states if foo applies to either 1 or 2 argu-
ments, it will definitely apply to 3 arguments. This gives
the first row of Table 1 where “?” means the arity of goo is
unknown. From the body, we know goo has usage type 〈1, 2〉.
Thus, foo 6 7 8 shares the same usage type which means
if foo 6 7 8 applies to 1 argument, it will definitely apply
to 2 argument. This means if foo applies to 4 arugments, it
will definitely apply to 5 arguments. Thus, the usage of foo

Table 1: Arity Transformer

goo foo
? 〈1, 3〉

〈1, 2〉 〈4, 5〉

is 〈4, 5〉. This gives the second row of Table 1. Note that
the 〈1, 3〉 and 〈4, 5〉 cannot be combined to form 〈1, 5〉 as
explained in the example with f8 which is used many times
by its caller. Linearity does influence the usage type of a
variable, for example, we have:

t1 = \x -> (x 1 2, True)
t2 = \y -> (y 1 2, y 3 4)

As x is used once, the usage type of x is 〈0, 2〉 while that
of y is 〈1, 2〉 as it is used more than once. An operator
u will take care of this, specifically both y 1 2 and y 3 4
give 〈0, 2〉 and 〈0, 2〉 u 〈0, 2〉 = 〈1, 2〉. Formal definition of
u can be found in §4.2. Although this sophisticated anal-
yse could capture the full glory of an arity transformer, the
complexity of this analysis is exponential for heavily nested
let-expressions. So our analyser instead uses a brutal, yet
effective, approximation: Plan C.

Plan C. We choose to use a lighter version of Plan B
by deriving its parameter’s usage solely from the function’s
definition. In the case of f9, only the first row of the Table 1
is computed.

2.4 seq and error

Two special operators seq and error in Haskell make the
analyses in a lazy language setting invalid. These operators
are special in that they perform strict evaluation on their
argument(s). The η-expansion is only valid if ⊥ and \x->⊥
are equivalent in all contexts. They are certainly equivalent
when applied to some argument - they both fail to terminate.
If we are allowed to force the evaluation of an expression in
any other way, e.g. using seq in Haskell then ⊥ and \x->⊥
will not be equivalent. The function seq :: a -> b -> b
evaluates its first argument before returning its second. For
example, given

f11 = \x -> if x then \y -> 1
else \y -> 2

ff11 = \x -> \y -> if x then 1 else 2

(f11 ⊥ ‘seq‘ True) diverges whereas (ff11 ⊥ ‘seq‘ True)
converges. This means if we apply η-expansion to f11, the
program may terminate more often. Another function we
need to take into consideration is error :: String -> a
which takes a String, prints the string, and brings execu-
tion to a halt. From the semantics point of view, error is
considered as ⊥ or divergence. If we η-expand f12 with:

f12 = \x -> if x < 0 then error ‘‘...’’
else \y -> \z -> x+y+z

we will have:

ff12 = \x -> \y -> \z -> if x < 0 then error ‘‘...’’
else x + y + z
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which converges more often then f12.
Although these two operators violate the semantic equiv-

alence of η-expansion, in common cases, the transformed
code is more efficient. Moreover, making programs converge
more often is not a bad thing at all. Thus, we choose to
perform η-expansion on them, by default. However, users
intend to adhere strictly to the semantics of seq/error, we
can analyse where they are used and then force them to have
arity 0 to prevent lambda-floating.

3 Language and Cost Framework

Before we give a formal arity analysis and the “lambda-
floating” transformation themselves, we must first introduce
the language we use. Figure 2 shows the abstract syntax of
the Core, the intermediate language of the GHC [22] with
omission of some features that obstruct the clarity of the
presention of the key ideas. (Our implementation supports
the full Core language.)

n ∈ Const Constants
c ∈ Constr Constructors

v, x ∈ Var Variables
p ∈ Pat Patterns
e ∈ Exp Expressions

val ∈ Val Values
e ::= n | v | λx.e | e1 v

| case e0 of alts
| let x = e1 in e2
| letrec [vi = ei]

n
i=1 in e0

alts ::= {−→p → −→e }
p ::= c x1 . . . xn

val ::= n | v | λx.e

Figure 2: Syntax of the source language.

Only a value denoted by val is considered a cheap ex-
pression where val is defined in Figure 2.

Definition 3 (Expression is Cheap) Expression e is
cheap iff e is a val.

Throughout the paper we take a few liberties with the
syntax: we allow infix operators and if-expressions. We
use letter e and ei (where i ≥ 0) to represent arbitrary
expression and use −→x to represent x1 . . . xn. We use
\x-> e and λx.e interchangeablly to represent lambda ab-
straction. We allow e1 e2 as it can easily be converted to
let v = e1 in e2. We also allow multiple definitions in a
single let-expression to abbreviate a sequence of nested let-
expressions. We write let {−→x = −→e1} in e2 as short hand for
let {x1 = e1, . . . , xn = en} in e0. A list of mutual recursive
functions are grouped together with the construct letrec.
A singleton in the lecrec construct means a self-recursive
function.

3.1 Operational Semantics

In order to reason about the usefulness and correctness of a
transformation we must have a model that calculates costs
to execute it. Figure 3 shows the call-by-need semantics
adopted from [15] in which a tick-algebra is described to
count the costs of execution. One transition → is counted
as one tick.

Transitions are over configurations consisting of a heap
Γ (which contains bindings), the expression currently being
evaluated e, and a stack S:

Γ ::= {x = e}
S ::= (v | alts | #x)∗

The heap is a partial function from variable to terms whereas
the stack may contain variables (the arguments to applica-
tions), case alternatives, or update markers denoted by #x
for some variable x. Update markers ensure that a binding
to x will be recreated in the heap with the result of the cur-
rent evaluation; this allows sharing to be captured by the
semantics.

Formal convergence of a closed configuration is defined
as follows.

Definition 4 (Convergence) For closed configurations
〈Γ, e, S〉,

〈Γ, e, S〉⇓n =def ∃Γ′, val.〈Γ, e, S〉 →n 〈Γ′, val, ε〉,
〈Γ, e, S〉⇓ =def ∃n.〈Γ, e, S〉⇓n,

〈Γ, e, S〉⇓≤n =def ∃m.〈Γ, e, S〉⇓m ∧ m ≤ n.

3.2 Improvement

The η-expansion and rules in Figure 1 are known semantics-
preserving transformations. Thus, the lambda-floating
transformation is semantics-preserving. In order to show
the significance of the arity analysis, we need to show that
the transformed code improves the orginal one with respect
to execution time. We adopt the terminologies and results
in [15]. Contexts are in the following form:

C,D ::= [.] | x | λx.C | Cx | c −→x
| let {x = C} in D
| case C of {ci

−→xi → Di}

Definition 5 (Improvement) We say that e is improved
by e′, written eD e′, if for all C such that C[e] and C[e′] are
closed,

C[e]⇓n⇒ C[e′]⇓≤n

The notation C[e]⇓n and C[e]⇓≤n identify closed expres-
sion C[e] with initial configuration 〈∅, C[e], ε〉.

4 Type Systems

The two analyses mentioned in §2.3 are modelled using two
type systems which are described in §4.1 and §4.2 respec-
tively. The soundness of these two type systems can be
proven with a proof technique that is similar to the im-
provement theory in [15]. Details is still being worked out
and omitted in this paper.

4.1 Forward Arity Analysis

An intuitive approach of finding the arity of a function is to
create a counter, initiate it to 0, and whenever we encounter
a lambda, we increase it by one and whenever we encounter
an application, we decrease it by one. Let us treat such arity
counter as the type of an expression. For example, given the
arity of (+) is 2, ((+) x) has arity 2 − 1 = 1, ((+) x y)
has arity 1 − 1 = 0, (\y -> (+) x y) has arity 0 + 1 = 1
and (\x->\y->(+) x y) has arity 1 + 1 = 2.
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〈Γ{x = e}, x, S〉 → 〈Γ, e,#x : S〉 (Lookup)
〈Γ, val,#x : S〉 → 〈Γ{x = val}, val, S〉 (Update)

〈Γ, e x, S〉 → 〈Γ, e, x : S〉 (Unwind)
〈Γ, λx1 . . . λxn.e, y1 : · · · : yn : S〉 → 〈Γ, e[−→yi/

−→xi ], S〉 (Subst)
〈Γ, case e of alts, S〉 → 〈Γ, e, alts : S〉 (Case)

〈Γ, ci
−→y , {ci

−→xi → ei} : S〉 → 〈Γ, ej [
−→y /−→xj ], S〉 (Branch)

〈Γ, let {−→x = −→e } in e0, S〉 → 〈Γ{−→x = −→e }, e0, S〉
−→x 6∈ dom(Γ, S) (Letrec)

Figure 3: The abstract machine semantics for call-by-need.

Following this idea, we are now ready to define the full
type system. A type assumption ∆ binds program variables
to their arity. A judgement for forward analysis has the form

∆ ` e :: η

This states that given ∆, e has arity η assuming that any
free variable in it has arity given by ∆. The type expression
is defined as follows.

η ::= ∞ | 0 | 1 | 2 | . . .

Type η ranges over non-negative integers from 0 to ∞
which forms a lattice whose bottom value is 0 and top value
is ∞. It is always safe to assign arity 0 to an expression as
it means no lambda can be floated out from the expression.
We write [[η]] to denote the semantics of the type η. Thus,

[[η]] = {e | ∃e′.λx1..xη .(e x1..xη)==>∗e′ & C[e]⇓n⇒ C[e′]⇓≤η}

4.1.1 Typing Rules

Figure 4 lists a set of typing rules. For a constant, it is obvi-
ous that it should have arity 0. A variable v has type η if the
type assumed for v in ∆ is η. In the rule (ABS), we assume
the bound variable x has arity 0 when finding the arity of
e. This is because in the forward arity analysis we are only
interested in finding a function’s arity and we do not find ar-
ity information of its parameters even though its parameter
may be a function itself. Since the expression \x -> e has
one more parameter than the expression e which has type
η, its type should be η + 1. For example, we may have the
following derivation

{double::1,x::0} ` (double x) :: 0
{double::1} ` (\x -> double x) :: 1

For function application rule (APP), as the number of
arities cannot be negative, if e1 has arity 0, the application
(e1 v) has arity 0. On the other hand, if e1 has arity bigger
than 0, after it is being applied to an actual parameter v,
the resulting arity should be η− 1. For example, we assume
h1 is a function having arity 3 and ∆ = {h1:3,n::0,x::0},
we may have this typing.

∆ ` h1::3

∆ ` (h1 n) :: 2
∆ ` (x + 1) :: 0

∆ ` (h1 n (x + 1)) :: 1

As explained in §2.3.1, we need to check expensiveness
when we encounter case-expression or let-expression. For
the case-expression, if e0 is a val, we analyse expressions
at each branch and find the minimum of their arities. The
operator u is defined as η1 u η2 = min(η1, η2). However, if
e0 is an expensive expression, we do not bother to check the

expressions at branches and simply return 0. This means
it is not worth floating any lambda out of this expression.
Similar ideas apply to (LET) and (LETREC).

One thing that must be mentioned is that in (LETREC),
it involves an iteration to find fixpoint of η1. We choose to
find the greatest fixpoint. In our inference algorithm, we
assign ∞ to η1 initially. Consider the recursive function h1
in the §1, it is obvious that the whole let-expression has
arity ∞ if h1 has arity ∞. As (\y -> y) has arity 1 and we
choose the minimum arity of the two branches, the whole if-
expression has arity 1 which means the RHS has arity 3. We
can decrease the arity of h1 from ∞ to 3 directly. After going
through the same procedure, we find that RHS has arity 3.
We reach a fixpoint - a greatest fixpoint! Termination of
this iteration is proven in Appendix B. The reason we want
to find greatest fixpoint is that we want to float as many
lambdas out as possible.

4.2 Backward Arity Analysis

In the forward analysis, we focus on finding the arity of
a function whereas in the the backward analysis, we focus
on finding the arity information of the function’s each pa-
rameter as well as a more precise arity of the function by
analysing its usage at its call site(s).

4.2.1 Type Expression

An extended set of type expressions are defined as follows.

v ∈ Var
η ::= ∞ | 0 | 1 | 2 | . . .
ψ ::= 〈η1, η2〉
Φ ::= ∅ | {v :: ψ}
δ ::= • | ψ → δ | >

The η still captures the arity of a variable like the one in
the forward analysis. We introduce Φ which contains a set
of bindings of variables to their usage type, ψ. As we need to
capture arity information of each parameter of a function,
we introduce δ. The symbol • says “don’t care” whereas
the symbol > indicates the arity is unknown. The ψ → δ
gives arity of each parameter of a function. For example,
we have function definition f h x = h x 0, the expression
(\h -> \x -> (h x 0)) has type 〈0, 2〉 → 〈0, 0〉 → •. Dur-
ing the backward analysis, we do not derive arity for a func-
tion itself when we analyse its definition, thus, we give it
•. A function’s usage type is usually captured in Φ. The
operations on usage types are defined in Figure 5.

Sometimes, we use shorthand 0 to represent 〈0, 0〉, ∞ to
represent 〈∞,∞〉 and • to denote a function type 0 -> . . . ->
0 -> • which has type 0 for each parameter and > to denote a
function type ∞ -> . . . -> ∞ -> > whose each parameter’s
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∆ ` n :: 0 (CONST)
x :: η ∈ ∆
∆ ` x :: η

(VAR)
∆ ∪ {x :: 0} ` e :: η
∆ ` (λx.e) :: η + 1

(ABS)

∆ ` e1 :: η1 ∆ ` v :: η2
∆ ` (e1 v) :: max(0, η1 − 1)

(APP)

∆ ` ei :: ηi

∆ ` (case val of {−→pi → −→ei }) :: uηi
(CASE1)

∆ ` ei :: ηi e0 6= val
∆ ` (case e0 of {−→pi → −→ei}) :: 0

(CASE2)

∆ ` val :: η1 ∆, v :: η1 ` e2 :: η2
∆ ` (let v = val in e2) :: η2

(LET1)
∆ ` e1 :: η1 ∆, v :: η1 ` e2 :: η2 e1 6= val

∆ ` (let v = e1 in e2) :: 0
(LET2)

∆ ∪ {vi :: ηi}
n
i=1 ` vali :: ηi ∆ ∪ {vi :: ηi}

n
i=1 ` body :: ηb

∆ ` (letrec [vi = vali]
n
i=1 in e2) : ηb

(LETREC1)

∆ ∪ {vi :: ηi}
n
i=1 ` ei :: ηi ∆ ∪ {vi :: ηi}

n
i=1 ` body :: ηb ei 6= vali

∆ ` (letrec [vi = ei]
n
i=1 in e2) : 0

(LETREC2)

Figure 4: Forward Arity Analysis Typing Rules

& and t operations

〈0, η1〉 & 〈0, η2〉 = 〈1,min(η1, η2)〉
〈η1, η2〉 & 〈η3, η4〉 = 〈min(η1, η3),min(η2, η4)〉

〈0, η1〉 t 〈0, η2〉 = 〈0,min(η1, η2)〉
〈η1, η2〉 t 〈η3, η4〉 = 〈min(η1, η3),min(η2, η4)〉

• t δ = •
> t δ = δ

ψ1 → δ1 t ψ2 → δ2 = (ψ1 t ψ2) → (δ1 t δ2)

Ordering on usage types

• v δ
δ v >

η1 ≤ η3 η2 ≤ η4
〈η1, η2〉 v 〈η3, η4〉

ψ2 v ψ1 δ1 v δ2
ψ1 → δ1 v ψ2 → δ2

Figure 5: Operations on usage types

type is ∞. A function splitParaFun is used in splitting
a function’s first parameter and its result. For example,
splitParaFun(〈0, 3〉->〈1, 2〉->•) gives (〈0, 3〉, 〈1, 2〉->•).

splitParaFun(•) = (0, •)
splitParaFun(→) = (∞,>)
splitParaFun(ψ → δ) = (ψ, δ)

4.2.2 Typing Rules

A type assumption Π binds program variables to their usage
type δ and a usage type ψ tells the usage of e. A judgement
for backward analysis has the form

Π;ψ ` e :: (δ,Φ)

This judgement states that if e is a lambda abstraction
and the result of e is used in a way stated by ψ, then δ gives

usage type of each parameter of e and Φ gives the usage
type of each free variable in e.

Figure 6 lists the backward arity analysis typing rules.
The rule (CONST) and (VAR1) are rather obvious. Let us look
at the rule (ABS) before the rule (VAR2). In rule (ABS), if
λx.e has usage type 〈0, 2〉, then e will have usage type 〈0, 1〉.
If λx.e has usage type 〈1, 2〉, then e will have usage type
〈0, 1〉 as e takes one less argument. As x is bound in the
expression λx.e, {x :: ψx} is removed from Φ which only
captures free variable’s usage type. The expression e may
contain a free variable that is not bound in Π and hence the
rule (VAR2) is needed.

Operators ⊗ and ⊕ in the rest of the rules are used in
merging two sets. They operate differently when (v :: ψ)
appears in both sets. One apply operator & and and the
other applies t to the two usage types. The operators ⊗
and ⊕ are defined as follows.

Φ1 ⊗ Φ2 = ∀(vi :: ψi) ∈ Φ1, (vj :: ψj) ∈ Φ2.
if vi == vj

then {vi :: (ψi & ψj)}∪
((Φ1 ∪ Φ2) − {vi :: ψi, vj :: ψj})

else Φ1 ∪ Φ2

Φ1 ⊕ Φ2 = ∀(vi :: ψi) ∈ Φ1, (vj :: ψj) ∈ Φ2.
if vi == vj

then {vi :: (ψi t ψj)}∪
((Φ1 ∪ Φ2) − {vi :: ψi, vj :: ψj})

else Φ1 ∪ Φ2

In the rule (APP), function splitParaFun gives ψ2 for
type checking e2. It is obvious that e1’s arity increases by
one before being applied to e2. For case-expression, since
forward analysis already handles the case when e0 is expen-
sive, we do not need to repeat it in the backward analysis.
As we want to find usages of each function, we analyse e0
as well as ei at each branch and pairwise finding the least
upper bound of δi with the operator t defined in Figure 5.

For let-expression, as explained earlier, we choose Plan
C. So we give usage 0 when type checking e1. Similar rea-
soning holds for the rule (LETREC). You may notice that
{vi :: ψi} does not appear in the resulting Φ. Our infer-
ence algorithm returns an new expression with these arity

7



x :: δ ∈ Π
Π;ψ ` x :: (δ, {x :: ψ})

(VAR1)
x 6∈ Π

Π;ψ ` x :: (•, {x :: ψ})
(VAR2)

Π;ψ ` n :: (•, ∅) (CONST)
Π; 〈max(0, η1 − 1),max(0, η2 − 1)〉 ` e :: (δ, {x :: ψx} ∪ Φ)

Π; 〈η1, η2〉 ` (λx.e) :: (ψx → δ,Φ)
(ABS)

Π; 〈η1, η2 + 1〉 ` e1 :: (δ1,Φ1) splitParaFun(δ1) = (ψ2, δ) Π;ψ2 ` e2 :: (δ2,Φ2)
Π; 〈η1, η2〉 ` (e1 e2) :: (δ,Φ1 ⊗ Φ2)

(APP)

Π; 0 ` e0 :: (δ0,Φ0) Π;ψ ` ei :: (δi,Φi)
Π;ψ ` (case e0 of {pi → ei}

n
i=0) :: (

Fn

i=0
δi,Φ0 ⊗ (Φ1 ⊕ · · · ⊕ Φn)

(CASE)

Π; 0 ` e1 :: (δ1,Φ1) Π ∪ {v :: δ1};ψ ` e2 :: (δ2, {v :: ψ1} ] Φ2)
Π;ψ ` (let v = e1 in e2) :: (δ2,Φ1 ⊗ Φ2)

(LET)

Π ∪ {vi :: δi}
n
i=1; 0 ` ei :: (δi, {vi :: ψi} ∪ Φi) Π ∪ {vi :: δi}

n
i=1;ψ ` body :: (δb, {v :: ψb} ∪ Φb)

Π;ψ ` (letrec [vi = ei]
n
i=1 in body) :: (δb,Φi ⊗ Φb)

(LETREC)

Figure 6: Backward Arity Analysis Typing Rules

information attached to each bound variable besides return-
ing (δ,Φ). In the case of (LET), expression let v :: ψ1 =
e1 in e2 is returned and in the case of (LETREC), expression
letrec v :: (ψi ⊗ ψb) = e1 in e2 is returned.

4.3 Combining FW and BW Arity Analysis

The forward arity analysis and the backward arity analysis
can be applied independently which means from each anal-
ysis, we can get the arity of a function and can apply the
corresponding number of η-expansions to the function. For
example, we have:

let f13 = \x -> if expensive_exp
then \y -> e1
else \y -> e2

in f13 1 2

In the forward arity analysis, from the definition of f13,
we see that the if-test is an expensive expression, so \y->
will not be floated out. Thus, no η-expansion is done which
means the analysis gives safe result. On the other hand,
in the backward analysis, from the usage of f13, the appli-
cation (f13 1 2), we have Φ = {f13 :: 〈0, 2〉}. This tells
us that f13 is called once and f13 is always applied to two
arguments. According to this information, it is safe to float
\y-> out.

However, backward analysis cannot replace forward anal-
ysis because if we have:

let f14 = if val
then \x->\y -> e1
else \y -> e2

in zipWith f14 [1..1000] [1..1000]

the backward arity analysis cannot tell it is safe to float
\x->\y-> out so it chooses to tell the compiler not to float
them out as explained in § 2.3.2. However, the forward arity
analysis can tell it is safe to float them out as val is cheap
and we can afford duplicate its computation.

Both analyses have their own duty and strength. As
backward arity analysis also captures the arity information
of each function’s parameter which can improve the preci-
sion of the forward analysis, we choose to apply the back-
ward arity analysis before the forward arity analysis in our

implementation. Detailed measurement for the performance
of each analysis as well as their combination is presented in
the next section.

5 Measurement

We measure the effect of our transformations on a sample
consisting of XX “spectral” programs and XX “real” pro-
grams from our NoFib test suite [16]. The programs range in
size from a few hundread to a few thousand lines of Haskell.
Programs are run on a PC with Intel Pentium M processor
1.80GHz and 1.00GB of RAM.

The table 5 summarises the effect of the forward arity
analysis, the backward arity analysis and the total effect
of the two analyses compiled with ghc-6.5 -O -farityfw,
ghc-6.5 -O -faritybw and ghc-6.5 -O -farity respec-
tively where the option -farity indicates “compiling with
arity analysis”. The number of inner lambdas being floated
out is counted and the -X% shows the time reduction (in per-
centage) after lambda floating transformation is done based
on the result of the arity analysis. The last three lines give
the mininum, maximum and geometric mean of the last col-
umn.

6 Related Work

Using correctness-preserving transformation as a compiler
optimization is certainly a well established technique [1, 3].
In the functional programming area especially the idea of
compilation by transformation has received quite a lot of
attention [14, 12, 13, 6, 2, 20].

Generally speaking, it is dangerous to float lambda(s)
out as it raises the potential of duplicating computation of
whatever expression used to be above the lambda. Par-
ticularly, in [20], it shows in some cases, floating let out
of lambda (i.e. the reverse transformation of the lambda-
floating) helps improve performance. Perhaps this is why
there are few papers about how to float lambda out safely.
In the chapter 4.4 of [7], Gill first pointed out (in 2 pages)
the need of having an arity analysis which determines the
number of inner lambdas that should be floated out as the
resulting transformation saves building lambda closures as

8



Table 2: How “lambda floating” compares with -O

Program Forward Backward Backward+Forward
No. of λs floated -farityfw No. of λs floated ghc -O -faritybw No. of λs floated ghc -O -farity

sum X X X X X -60%
gen regexps X X X X X -50%

maillist X X X X X -33%
multiplier X X X X X -11.11%
typecheck X X X X X -5.17%
compress X X X X X -4.35%
nucleic2 X X X X X -4.35%
sphere X X X X X -4.17%

listcompr X X X X X -3.57%
simple X X X X X -3.45%
event X X X X X -3.23%
wang X X X X X -3.13%
solid X X X X X -2.53%

treejoin X X X X X -2.44%
para X X X X X -2.34%
life X X X X X -2.00%

primetest X X X X X -1.45%
tak X X X X X -1.26%

wave4main X X X X X -1.11%
lcss X X X X X -1.05%
Min X X X X X -1.05%
Max X X X X X -60%

Geo. Mean X X X X X X%

well as exposes more opportunities for further optimization.
This inspired us to make a deeper exploration of the effec-
tiveness of the arity analysis.

Besides our work, arity raising [21, 8] and lambda lift-
ing [11] also increase a function’s arity, however, these three
pieces of work are orthogonal though their names are similar.
Arity raising transforms a function of one parameter into a
function of several parameters by decomposing the structure
of the original one parameter into individual components in
that structure Lambda lifting is a program transformation
to remove free variables. An expression containing a free
variable is replaced by a function applied to that variable.

Backward analysis was first introduced in [9] and the
difficulty of analysing higher-order function in a backward
fashion is discussed in the Section 6 of [9] by giving an
example (apply f x) in which the information about x is
unknown from the definition of apply. Fortunately, in this
paper we are only interested in finding arity of a function.
In this case, x is not a function, thus the precision of its
arity information is not crucial and we can simply assign x
arity 0 as an approximation.

Computable backward analysis for higher-order func-
tional programs is discussed in [4], but the technique of re-
versing abstract interpretation has not been successfully ap-
plied to perform absence analysis. The arity analysis shares
the same model as absence analysis, so the technique cannot
be applied here either.

Eta-expansion is used in improving binding-time analysis
that makes a partial evaluator yields better results [5]. In
this paper, we use eta-expansion to float appropriate number
of inner lambdas to the top level a function. These are two
orthogonal applications of eta-expansion.

7 Conclusion

We have presented two mechanisms to find a function’s ideal
arity. Each mechanism is modelled by a type system which
handles a language equivalent to the Core intermediate lan-
guage of the Glasgow Haskell Compiler. We have proven
each type system sound with respect to the operational se-
mantics (involving calculation of costs) of the language. In
addition, we have implemented a inference algorithm for
each type system and measured the effects of the lambda
floating transformations. The improvements we obtain are
modest but significant.
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A Other Applications of Arity Analysis

In this section, we give two more applications of arity anal-
ysis. We believe there are some more applications yet to be
discovered.

A.1 Fully-Lazy Lambda Lifting

Lambda Lifting [11], an orthogonal transformation to
lambda-floating, is a program transformation to remove free
variables. An expression containing a free variable is re-
placed by a function applied to that variable. For example,

f x = g 5 where g y = y + x

here, x is a free variable of g so it is added as an extra
argument:

f x = g 5 x where g y x = y + x

A fully lazy lambda lifter [10, 19] makes each maximal
free sub-expression of a lambda abstraction into a function
applied to those expressions. For example,

f = \x -> (\y -> (+) (sqrt x) y)

here, ((+) (sqrt x)) is a maximal free expression in
(\ y . (+) (sqrt x) y) so this inner abstraction is re-
placed with

(\g -> \y -> g y) ((+) (sqrt x))

Now, if a partial application of f is shared, the result of evalu-
ating (sqrt x) will also be shared rather than re-evaluated
on each application of f. This is similar to the code mo-
tion optimisation in procedural languages where constant
expressions are moved outside a loop or procedure. How-
ever, a clever fully lazy lambda lifter who knows the arity
of (+) is 2 will do the following transformation instead:

(\z -> \ y -> (+) z y) (sqrt x)

If we replace (+) by a arbitrary function h of arity 1, the
clever lifter should obtain

(\g -> \y -> g y) (h (sqrt x))

This example shows the arity information of a function plays
a pivot role in selecting ideal free sub-expressions for fully
lazy lambda lifting.

A.2 Cheap Deforestation

In [7], Gill introduced a technique for eliminating intermedi-
ate lists from programs. The gist of the method is a rewrit
rule “foldr/build”:

foldr k z [] = z
foldr k z (x:xs) = k x (foldr k z xs)

build g = g (:) []

-- rule ‘‘foldr/build’’
foldr k z (build g) = g k z
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The function map can be defined in terms of foldr and
build:

map f xs = build (\c n -> foldr (c . f) n xs)

Suppose we find an application (map f (build g)), we
want to transform the call like this:

map f (build g)
= {- inline map (DANGER!) -}

build (\c -> \n -> foldr (c . f) n (build g))
= {- apply foldr/build rule -}

build (\c -> \n -> g (c . f) n)

The difficulty is in the step marked DANGER!. Here we
substitute (build g) for xs in the body of map, but this oc-
currence of xs is under a lambda abstraction. In general, one
can make a program run arbitrarily more slowly by substi-
tuting a redex inside a lambda abstraction. However, if we
know the parameter of build has arity 2, we can safely inline
(build g). This example shows that the arity information
of a parameter of a function plays crucial role in inlining
which is a pivot in the cheap deforestation technique.

B Forward Arity Inference

Theorem 1 (Termination of Forward Inference) If a
recursive function’s definition is well-typed, then fixpoint it-
eration for finding its arity terminates.

There are two cases to consider. Case1: The recursive func-
tion does not have terminating case. Its arity is ∞. Only
one iteration occurs and it terminates. Case2: The recursive
function have terminating case(s). According to the typing
rules (i.e. minimum arity value is chosen when having more
than one branches), after one iteration, the arity will be low-
ered from ∞ to a constant (say n). Since the bottom of the
lattice is 0 (i.e. there is no infinite-decreasing chain), it will
take at most n steps to terminate.
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