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Summary

Parallel functional programming plays an important role in parallel program-

ming [20]. Type system has significant impact on program analysis [33]. In this

paper, we show how to automatically and correctly synthesize parallel programs

from sequential functional program based on the concept of a type system. Our

type system captures the parallelizability of a program, in a modular fashion, by ex-

ploring the ring structures of the program’s operators. It handles programs defined

by self-recursive functions with accumulating parameters, as well as a limited form

of non-linear mutual-recursive functions. In contrast to the Damas-Milner type

system (the typical type system) that is constructed from the evaluation rules of

the underlying language, our type system is constructed from a set of meta-rules

that are used to transform sequential programs into a special normal form suitable

for parallelization. The idea of this paper has been implemented and used to gen-

erate parallel code of a form, called mutumorphism, a general parallel computation

model. Transforming into such a form is an important step towards constructing

efficient data parallel programs.
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Chapter 1
Introduction

Many computational-intensive or data-intensive applications require performance

level attainable only on parallel architectures. As multiprocessor systems have

become increasingly available and their price/performance ratio continues to im-

prove, interest has grown in parallel programming. While sequential programming

is already far from trivial, parallel programming is much, much harder as there are

many more things to consider during debugging. A more desirable way for parallel

programming is to start with a sequential program, then test and debug the se-

quential program and systematically transform the sequential program to parallel

code.

However, systematic parallelization of sequential programs still remains a major

challenge in parallel computing. Particularly challenging are the restructuring of

programs which make use of distributive and associative operators to obtain divide-

and-conquer style parallelism.

A traditional approach to this problem is to identify a set of useful algorithmic

skeletons with program restructuring properties that allow parallelism to be pro-

vided. These skeletons are predefined higher-order functions such as map, reduce,

1
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etc. We call them higher-order skeletons. As an example, Blelloch’s NESL lan-

guage [3] supports two important parallel skeletons, namely scan and segmented

scan, that together can cover a wide range of parallel programs.

However, these higher-order skeletons are non-trivial to use as they require

the associative property to be present in their combining (conquering) operators.

Before a programmer can use them, he/she must manually fit the stated problem

into the skeleton program structure. Often, this task is non-trivial as combining

operators which return multiple results may be required.

For example, consider the polynomial function definition:

poly [a] c = a

poly (a : x ) c = a + c × (poly x c)

To write it using an associative combining operator, we need to introduce comb2

and thus poly ’s new definition is

poly xs c = fst (polytup xs c)

polytup [a] c = (a, c)

polytup (a : x ) c = (a, c) ‘comb2‘ (polytup x c)

where comb2 (p1, u1) (p2, u2) = (p1 + p2 ∗ u1, u2 ∗ u1)

With the help of combining operator comb2 that is associative, we are able to

match the above definition to a higher-order skeleton, as shown below.

poly xs c = fst (reduce comb2 (map (\ x → (x , c)) xs))

A potential problem is how users are able to come out with an associative

operator, such as comb2, from a naive sequential program. Without this extra

effort, higher-order skeletons remain untenable.

In this thesis, we claim that parallelization of sequential code can be auto-

mated to a great extent through automatic program analysis and transformation.
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Specifically, type inference system can be employed to detect the parallelizabil-

ity of sequential code, and reduce the effort required from users. This automatic

parallelization technique currently apply to a first-order typed functional language

with strict semantics.

To demonstrate the feasibility of our thesis, we design a system that allows

users to write recursive functions in their natural setting whenever they feel hard to

express the definition using higher-order skeletons. Our approach is complementary

to the traditional higher-order skeleton approach. Specifically, traditional approach

encourages users to write non-recursive functions using higher-order skeletons while

we parallelize recursive functions obtained from user-defined program.

We view parallelization as a meta-level transformation from sequential program

to parallel program. As there is a big difference in the control structure of these two

kinds of programs, we twist a parallelization problem to a problem of transforming

sequential program to a special form (which is still a sequential program) and

provide a direct mapping from this special form to parallel program.

In this thesis, we call the special form skeleton value. We show that skeleton

values are desired special forms by

1. proving all skeleton values are parallelizable (in Section 2.3) through the

concept of context preservation whose definitions will be explained in Sec-

tion 2.1.1,

2. providing parallel code for each skeleton value (in Chapter 4) and

3. showing the correctness of the parallel code provided (in Section 4.3).

Our transformation rules are called normalization rules, and a type system is used

for detecting parallelism of a sequential program before normalizing the program.

We call this new type system the PType system, where PType denotes Parallelizable

Type. Underlying the PType system is a new way of reasoning about expressions,
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not according to the usual semantic evaluation rules, but rather in accordance

with our normalization rules. Consequently, the PType system is built upon meta-

level program transformation, instead of usual semantic evaluation. If a sequential

program is well-PTyped, it is parallelizable and parallel code can be automatically

generated by our system.

In the case of function poly defined earlier, our PType system infers that the

expression (a + c × (f x )) has the type R[+,×]. Here, + and × in R[+,×] are the

operators that enable context preservation through their associativity and distribu-

tivity properties. More specifically, the present PType system aims to discover a

set of binary operators, within an expression, that obeys an extended-ring prop-

erty (defined in Section 2.1.2). Such discovery guarantees the parallelization of the

sequential program.

As another example, consider the following variant function,

f1 [(a, y)] c = a + c × y

f1 ((a, y) : x ) c = a + (c × (y + (f1 x c)))

Even though the variant appears to be quite different from poly definition, the

PType system is still able to classify f1 as having the same PType as that for poly ,

namely, R[+,×] resulting a similar parallel code as poly . Parallel codes for poly and

f1 are shown in Figure 1.1. We can see that the definitions of prod and prod1, and

the recursive equations of poly and f1 are the same. The main difference lies in the

base cases of these two functions.

This type-based approach to parallelization provides a high-level user interface

to programmers. It frees programmers from operational detail (eg. context preser-

vation testing, normalization and even the concept of the type system) and focuses

on the (extended ring) properties of the operators involved.

The main contributions of this thesis are as follows:

1. We propose a novel type-based approach to parallelization. We prove the



5

— parallel code for function poly

poly [a] c = a

poly (xl ++ xr) c = poly xl c+(prod xl c)×(poly xr c)

prod [a] c = c

prod (xl ++ xr) c = (prod xl c) × (prod xr c)

— parallel code for function f1

f1 [a] c = a + c × y

f1 (xl ++ xr) c = f1 xl c+(prod1 xl c)×(f1 xr c)

prod1 [a] c = c

prod1 (xl ++ xr) c = (prod1 xl c) × (prod1 xr c)

Figure 1.1: Parallel Codes for poly and f1

soundness of our type system.

2. We construct a type (PType) system at the meta level (the PType of an ex-

pression indicates a program’s parallelizability), over a set of program trans-

formation rules. To the best of our knowledge, we have not seen type system

being applied at meta-level.

3. Our system can automatically infer PType of each function and automatically

derive its parallel counterpart as well.

4. We implement a prototype and provide a web interface for user to test out

our system.

The outline for the thesis is as follows. In the next chapter, we describe the
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syntax of the language used in the thesis and give an overview of the PType sys-

tem. Chapter 3 gives a set of typing rules and provides a corresponding inference

algorithm. An algorithm for deriving parallel code and its correctness proof are

described in Chapter 4. We illustrate how the PType system works using examples

in Chapter 5. Chapter 6 describes two important extensions (namely, recursive

functions with accumulating parameters and non-linear recursive functions) to our

PType system. Chapter 7 shows some testing result and a web interface of the

PType system. Related works are discussed in Chapter 8. Finally, we conclude the

thesis in Chapter 9.



Chapter 2
Overview

Analogous to Damas-Milner (DM) type system [12], our PType system asserts

some properties about the subject program. However, this property is not directly

related to the program’s underlying semantics. Rather, it relates to the program’s

parallelizability. Thus, it is possible for two function definitions with the same

denotational semantics (e.g. different sorting algorithm) to exhibit different PTypes

in our type system, as one may be parallelizable but not the other.

In order to correctly reason about the PType of a program, we depart from

the usual practice of type construction, and define a program’s PType from a set

of normalization rules, instead of from a set of evaluation rules. Under the set of

normalization rules, a term in the program may be normalized to a special value,

which we call skeletal value, or s-value (skeletal values are algorithmic skeletons

that allow parallelism to be provided other than the higher-order skeletons men-

tioned in Chapter 1). The purpose of PType system is thus to identify as many

terms as possible that can be normalized to skeletal values . Table 2.1 gives an

analogy between the DM type system (which is at object level) and the PType sys-

tem (which is at meta level). Suppose the recursive part of a sequential function

definition is f (a : x ) = e where e involves recursive call (f x ). The well-typeness

7
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Table 2.1: Object Level vs. Meta Level

DM Type System PType System

Subject program functional functional

Basic Values Semantic Value S-Value

Reduction Rules Evaluation rules Normalization rules

of e asserts that e can be normalized to an s-value ; this s-value enables automatic

derivation of parallel code for function f . Consequently, the subject-reduction

property of PType system is illustrated via the set of normalization rules.

2.1 Definitions

In this section, we give defines of some important terms that will be used in later

chapters.

2.1.1 Context Preservation

In [10], a program restructuring technique, known as context preservation was

introduced to determine if parallelization is feasible. The term “context” here

refers to a contextual expression where the recursive sub-term has been extracted.

Consider the polynomial function definition again. As context preservation is

done primarily for the recursive equation of poly :

poly (a : x) c = a + c × (poly x c)

the contextual function (we call it “context” for the rest of the thesis) which ex-

tracts away the recursive subterm of the RHS of this equation can be written as

λ(•) . α + β × (•). Hence, the symbol • denotes an occurrence of self-recursive

call, while α and β denote subterms that do not contain any recursive calls. Such a
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context is said to be context preserved modulo replication (or context preservation

for short) if after composing the context with itself, we can still obtain (by trans-

formation) a resulting context that has the same form as the original context. For

the case of function poly , we compose the context with a renamed copy of itself,

as follows:

(λ (•) . α1 + β1 × (•)) ◦ (λ (•) . α2 + β2 × (•))

This composition is simplified through a sequence of transformation steps. If the

simplified form matches the original context, we will have achieved context preser-

vation, as illustrated below.

(λ (•) . α1 + β1 × (•)) ◦ (λ(•) . α2 + β2 × (•))

— function composition

= λ (•) . α1 + β1 × (α2 + β2 × (•))

— × is distributive over +

= λ (•) . α1 + (β1 × α2 + β1 × (β2 × (•)))

— +, × being associative

= λ (•) . (α1 + β1 × α2) + (β1 × β2) × (•)

— it matches the original form as we can write it in the following form

= λ (•) . α + β × (•)

— where α = α1 + β1 × α2 and β = β1 × β2

Theorem 1 (Context Preservation [10, 23]) Consider a recursive function f

of the form f (a : x ) = e where expression e consists of recursive call(s), if e is

context preserved, then function f can be succesfully parallelized.

This transformation process is called normalization. Currently, the normaliza-

tion process has been ad-hoc, usually guided by some heuristics.
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2.1.2 Extended-Ring Property

Our PType system aims to detect an extended-ring property of the operators used

in the subject program, from which context preservation is guaranteed. In this

section, we define this property as follows. Let S = [⊕1, . . . ,⊕n] be a sequence of

n binary operators. We say that S possesses an extended-ring property iff

1. all operators are semi-associative;

2. each operator ⊕ has an identity, denoted by ι⊕;

3. ⊕j is distributive over ⊕i ∀ 1 ≤ i < j ≤ n.

The semi-associative law states that e1 ⊕ (e2 ⊕ e3) = (e1 ⊕′ e2) ⊕ e3 where

⊕′ is the associative dual of ⊕. Note that associativity is a special case of semi-

associativity whereby ⊕′ = ⊕. Furthermore, the identity of each operator ⊕ satis-

fies: for all possible operand v, we have: ι⊕ ⊕ v = v ⊕ ι⊕ = v.

For example, in the domain of non-negative integers, operators max , + and ×

in that order form an extended ring. Their identities are 0, 0 and 1 respectively.

2.1.3 Reference to Recursive Call

As our analysis focuses on the syntactic expressions consisting of recursive calls,

all variables directly or indirectly denoting an expression consisting of recursive

call(s) need to be traced. We call such variable a reference to recursive call whose

detailed definition is defined below.

Definition 1 (Reference to Recursive Call) A variable v is said to be a ref-

erence to recursive call(s) if an invocation of v leads to an invocation of a recursive

call.

For example, given function definition
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f2 (a : x ) = let v = 1 + f2 x in a + v

variable v is a reference to recursive call since the invocation of v in the expression

a + v will invoke recursive call f2 x . For another example,

f3 (a : x ) = let v = 1 + f3 x in let u = 2 + v in a + u

The variables u and v are references to recursive call. Variable v denotes an

expression that contains a recursive call, while variable u indirectly depends on

the recursive call since it contains v .

2.2 Language Syntax

We apply our technique to a first-order typed functional language with strict se-

mantics. The syntax of our source language is given in Figure 2.1. We require

programmers to annotate properties of binary operators used in the program. For

example, annotation #(Int , [+,×], [0, 1]) is needed for the function definition poly .

The annotation tells the system that, for all integers, operators + and × sat-

isfy the extended-ring property with 0 and 1 as their respective identities. (Note:

annotations for system-defined operators are pre-stored in a library. Only user-

defined operators’ properties are required to be annotated by programmers in the

implemented system.)

Function definitions in this thesis are written in Haskell syntax. For the rest of

the thesis, we shall discuss detection of parallelism for recursive functions of the

form

f(a : x) = E[〈ti〉
m
i=1, 〈qj x〉nj=1, 〈fx〉]

where f is inductively defined on a list. This form was first described in [23]. E [ ]

denotes an expression context with three groups of holes 〈〉. It itself contains no

occurrence of references to a, x and f . 〈ti〉
m
i=1 is a group of m terms, each of which
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τ ∈ Typ Type

n ∈ Cons Constants

c ∈ Con Data Constructors

v ∈ Var Variables

⊕ ∈ Op Binary Primitive Operators

γ ∈ Ann Annotations

γ ::= #(τ, [⊕1, . . . ,⊕n], [ι⊕1
, . . . , ι⊕n

])

e, t ∈ Exp Expressions

e, t ::= n | v | c e1 . . . en | e1 ⊕ e2

| f e0 e1 . . . en | let v = e1 in e2

| if e0 then e1 else e2

p ∈ Pat Pattern

p ::= v | c v1 . . . vn

σ ∈ Prog Programs

σ ::= γ∗, (fi p0 p1 . . . pn = e)∗ ∀ i. 1 ≤ i ≤ m

where f1 is the main function.

Figure 2.1: Syntax of the source langauge.

is allowed to contain occurrences of a, but not those of references to (f x ). 〈qi x 〉nj=1

denotes a group of n function applications, each of which is a mutumorphism (aka.,

parallelized function, c.f. [23]). Lastly, 〈f x 〉 is the self-recursive call. For ease of

presentation, we consider the following simplifications to our language that can be

overcome in our full implementation.

• Each recursive function has only one recursion parameter located at position

p0; the rest of the parameters are considered accumulating parameters. (We
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shall discuss how to deal with multiple recursion parameters and accumulat-

ing parameters in Section 6.1 and Section 6.2 respectively).

• There are only one occurrences of parallelizable auxiliary function, denoted

by (q x ). (Users are allowed to use (q1x ), . . . , (qn x ) in their program because

we can tuple (q1x ), . . . , (qn x ) to obtain a single (q x ) with the technique in

[8, 22] as they are known to be homomorphism before normalization.)

• The recursive call (f x ) (or its references, whose definition is in Section 2.1.3)

only appears in the right operand of any associative operator. (If it appears

in the left operand, symmetrical typing/normalization rules can be defined.)

• The recursive call (f x ) (or its references) does not occur in the test of if

expression. (As context preservation of such functions require complex use

of invariants that are not presently captured by our system.)

• Recursive functions are all linear self-recursive. (We show how to parallelized

non-linear recursive function in Section 6.3).

A function definition is said to be linear self-recursive if every execution path

represented in its RHS expression contains at most one reference to a self-recursive

call.

For example, the function f4 is linear self-recursive:

f4 [ ] = 0

f4 (a : x ) = if a ≤ 0 then f4 x else a + (f4 x )

whereas the function f5 is not, because it will invoke two references to (f5 x ) during

the execution of the let-body:

f5 [ ] = 0

f5 (a : x ) = let v = a + (f5 x ) in v + v
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2.3 Skeletal Values

S-values (defined in Figure 2.2) are possible (also desirable) final results of normal-

ization as s-values can be directly translated into parallel codes. S-values belong to

a class of expressions conforming to a fix set of patterns which are parallelizable.

In the figure, we use • (the same as in Section 2.1.1) to denote a self-recursive call

in a function definition.

sv ∈ S−Values

sv ::= lv | if ζ1 then ζ2 else lv

lv ::= bv | let v = bv in ζ

bv ::= • | (ζ1 ⊕1 . . . ⊕n−1 ζn ⊕n •)

ζ ∈ C−Exp

ζ ::= C[a, (q x)]

where C is arbitrary expression context not

involving references to •

Figure 2.2: Skeletal Values

An s-value of the form (ζ1 ⊕1 . . . ⊕n−1 ζn ⊕n •)1 is said to be composed di-

rectly by the sequence of operators [⊕1, . . . , ⊕n ] with extended-ring property

(defined in Section 2.1.2). An s-value of the form if ζ0 then ζ1 else lv is said to

be in conditional form. Its self-recursive call occurs only in its alternate branch.

Lastly, an s-value of the form let v = bv in ζ is said to be in local-abstraction

form. Its recursive call only occurs in the local abstraction. Note the use of ζ in

1It is equivalent to (ζ1 ⊕1 (· · · ⊕n−1 (ζn ⊕n •) . . . )). We omit brackets in the expression for

simplicity.
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the let-body, which means that there is no recursive call in the body, neither is

there any reference to recursive call indirectly through a variable, such as v . The

reason we need to have such s-value is we follow strict semantics and assume we

parallelize an unoptimized sequential program. Thus, we need to parallelize the bv

in let v = bv in ζ.

From Theorem 1, we know that given the recursive part of a function body e ,

if e is context preserved, the function is parallelizable. In the following lemma, we

show that all s-values are context preserved. Consequently, any expression e that

can be normalized to an s-value is context preserved.

Lemma 2 (S-Values are Context Preserved)

Given a recursive part of a function definition f (a : x ) = e, if e is an s-value,

then e can be context preserved.

Proof 1 The proof is based on the definition of context preservation described in

[10, 23]; ie., an expression e = E [〈 ti〉
m
i=1, 〈 q x 〉, •] is context preserved if the fol-

lowing holds:

E [〈 Ai〉
m
i=1, 〈q (y ++ x )〉, E [〈 Bi〉

m
i=1, 〈q x 〉, •]] = E [〈 t ′i〉

m
i=1, 〈 q x 〉, •].

It is easy to check that any recursive function with an s-value as its RHS can also

be expressed in the form:

f(a : x) = E[〈ti〉
m
i=1, 〈qj x〉nj=1, 〈fx〉]

Note: we let Ci [a, (q x )] = ti (q x ) and ti = λ z .((gi a) z ) ∀ 1 ≤ i ≤ n for

arbitrary gi . Operator ⊕q refers to the first operator of the sequence S in RS where

RS is the PType of the function q.

We prove the lemma by analysing the structure of s-values. The first two cases

prove that bv is context preserved. Case 3a and 3b prove that conditional form

is context preserved when lv is bv. Case 4 proves that local abstraction form is
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context preserved. Case 5 proves that conditinal form is context preserved when lv

is in local abstract form.

Case 1: e = • It is vicciously true.

Case 2: e = (t1 (q x ) ⊕1 (t2 (q x ) ⊕2 . . . ⊕n−1 (tn (q x ) ⊕n •)))

This context is preserved since

E [〈 Ai〉
n
i=1, 〈 q (y ++ x )〉, E [〈Bi〉

n
i=1, 〈 q x 〉, •]]

= E [〈 t ′i〉
n
i=1, 〈 q x 〉, •]

where

∀ 1 ≤ i ≤ n.

t ′i = λ z . ti (q y ⊕q z ) ⊕i . . . ⊕n−1 tn (q y ⊕q z ) ⊕ ti z

Case 3a: e = if t1 (q x ) then t2 (q x ) else •

This context is preserved since

E [〈 Ai〉
2
i=1, 〈 q (y ++ x )〉, E [〈Bi〉

2
i=1, 〈 q x 〉, •]]

= E [〈 t ′i〉
2
i=1, 〈q x 〉, •]

where

t ′1 = λ z . A1 (q ⊕q z ) ∨ B1 z

t ′2 = λ z . if A1 (q ⊕q z ) then A2 (q ⊕q z ) else B2 z

Case 3b:e = if tn+1 (q x ) then tn+2 (q x )

else t1 (q x ) ⊕1 . . . ⊕n−1 tn (q x ) ⊕n •
For simplicity of presentation, we only prove context

E [〈 ti〉
4
i=1, (q x ), •] :: R[⊕1,⊕2] =

if t3 (q x ) then t4 (q x ) else t1 (q x ) ⊕1 t2 (q x ) ⊕2 •

It is not difficult to generalize the proof to get a complete proof.

— checking context preservation
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if A3 (q (y ++ x )) then A4 (q (y ++ x ))

else A1 (q (y ++ x )) ⊕1 A2 (q (y ++ x ))⊕2

(if B3 (q x ) then B4 (q x )

else B1 (q x ) ⊕1 B2 (q x ) ⊕2 •)
— lifting if out

= if A3 (q (y ++ x )) then A4 (q (y ++ x ))

else (if B3 (q x )

then A1 (q (y ++ x ) ⊕1 A2 (q (y ++ x ))

⊕2 B4 (q x )
else A1 (q (y ++ x )) ⊕1 A2 (q (y ++ x ))

⊕2 B1 (q x ) ⊕1 B2 (q x ) ⊕2 •)
— merging two ifs

= if (A3 (q (y ++ x )) ∨ B3 (q x ))

then (if (A3 (q (y ++ x ))then A4 (q (y ++ x ))

else A1 (q (y ++ x )) ⊕1 A2 (q (y ++ x ))

⊕2 B4 (q x )
else A1 (q (y ++ x )) ⊕1 A2 (q (y ++ x )) ⊕2 B1 (q x )

⊕1 B2 (q x ) ⊕2 •)
= if (λ z . A3 (q y ⊕q z )) ∨ B3 z ) (q x ))

then (λ z . if (A3 (q y ⊕q z )) then A4 (q y ⊕q z )

else A1 (q y ⊕q z ) ⊕1 A2 (q y ⊕q z )

⊕2 B4 z ) (q x )
else (λ z . A1 (q y ⊕q z )) ⊕1 A2 (q y ⊕q z )) ⊕2 B1 z

⊕1 B2 z ) (q x ) ⊕2 •

Techniques of handling (q y ++ x ) and (q x ) are shown in Cases 1-3. For the ease

of presentation, we use αi and βi ∀ 1 ≤ i ≤ n to denote terms ti (q x ). Vb(•)

denotes an s-value of the form bv and Vb(e) denotes an bv where the the recursive

call is replaced by e.

Case 4:e = let v = bv in α

(let v1 = Vb1
(•) in α1) ◦ (let v2 = Vb2

(•) in β1)
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= let v1 = Vb1
(let v2 = Vb2

(•) in β1) in α1

= let v2 = Vb2
(•) in (let v1 = Vb1

(β1) in α1)

= let v2 = Vb2
(•) in α2

where α2 = let v1 = Vb1
(β1)in α1

Case 5: e = if α1 then α2else(let v = Vb(•) in α3)

(if α1 then α2else(let v1 = Vb1
(•) in α3))◦

(if β1 then β2else(let v2 = Vb2
(•) in β3))

= if α1 then α2

else(letv1 = Vb1
(if β1 then β2else(let v2 = Vb2

(•) in β3))

in α3)
= if α1 then α2

else(if β1 then (let v1 = Vb1
(β2) in α3)

else(let v1 = Vb1
(let v2 = Vb2

(•)in β3)

in α3))
= if (α1 ∨ β1) then(if α1 then α2 else α4)

else(let v1 = Vb1
(let v2 = Vb2

(•)in β3)

in α3)
where α4 = let v1 = Vb1

(β2)in α3

= if (α1 ∨ β1) then(if α1 then α2 else α4)

else(let v2 = Vb2
(•) in let v1 = Vb1

(β3) in α3)
= if (α1 ∨ β1) then(if α1 then α2 else α4)

else(let v2 = Vb2
(•) in α5)

where α5 = let v1 = Vb1
(β3) in α3

(end of proof)

2.4 Normalization Rules and Normal Forms

Figures 2.3, 2.4, 2.5, 2.6 and 2.7 define normalization rules on expressions. They

preserve the denotational semantics of those expressions of which the standard
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evaluation terminates. As mentioned in section 2.2, the language’s semantics is

strict.

e  e′

ζ ⊕i e  ζ ⊕i e
′

(N− op)

bv = ζ2 ⊕i bv1 i < j

ζ1 ⊕j bv  (ζ1 ⊕j ζ2) ⊕i (ζ1 ⊕j bv1)
(N− distr)

bv = ζ2 ⊕ bv1

ζ1 ⊕ bv  (ζ1 ⊕′ ζ2) ⊕ bv1

(N− semiassoc)

ζ1 ⊕ if ζ0 then ζ2 else lv  if ζ0 then ζ1 ⊕ ζ2 else ζ1 ⊕lv (N− liftIf1)

sv = if ζ1 then ζ2 else lv

let v = sv in ζ3  if ζ1 then let v = ζ2 in ζ3
else let v = lv in ζ3

(N− liftIf2)

Figure 2.3: Normalization Rules I

The relation e  e ′ defines a one-step normalization of expression e to e ′. Its

transitive closure defines a normalization process. The symbol sv represents an

s-value, whereas bv and lv represent s-values belonging to the syntactic categories

bv and lv respectively. Sometimes (and especially in the proof), we also use the

symbols V (•) (resp. Vb(•) and Vl(•)) to represent s-values from the syntactic
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ζ1 ⊕ let v1 = bv in ζ2  let v1 = bv in ζ1 ⊕ ζ2 (N − liftLet)

e1  e′1

let v = e1 in e2  let v = e′1 in e2

(N − let)

e1 6 e2  e′2

let v = e1 in e2  let v = e1 in e′2

(N − in)

e2 6 

let v = ζ in e2  e2[v 7→ ζ]
(N − sub1)

e2 6 v ∈ FV (e2)

let v = sv in e2  e2[v 7→ sv]
(N − sub2)

let v = let u = bv in ζ1 in ζ2

 let u = bv in let v = ζ1 in ζ2

(N − elimLet)

Figure 2.4: Normalization Rules II

category sv (resp. bv and lv).

All normalization rules observe the following property: an expression may be
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subject to normalization only when it encompasses some self-recursive calls, de-

noted by •. Application of the normalization rules is deterministic.

When an expression e cannot be normalized by any of these rules, we say e is

in normal form, and denote it by “e 6 ”.

The rules in Figure 2.3 and Figure 2.4 deal with binary operations and let

expressions. We assume that all binary operators are strict on both arguments. In

N-op, we attempt to normalize the right operand of the binary operation first. This

is due to our assumption that the self-recursive call (denoted by •) appears only at

the right operand. N-distr and N-semiassoc try to normalize the entire binary

operation after the right operand has been normalized to an s-value composed

directly by a sequence of binary operations. Note that in the rule N-semiassoc,

the operator ⊕′ is an semi-associative counterpart of ⊕; ie., a⊕(b⊕c) = (a⊕′b)⊕c.

N-liftIf1/2 and N-liftLet lift if and let to the top of the expression re-

spectively. As we assume that the binary operators are strict on both argument,

the normalization is correct with respect to the strict semantics. N-let attempts

to normalize e1 to an s-value (if e1 contains recursive call) while N-in attempts

to normalize e2 to an s-value before v in e2 is substituted with e1. N-sub1 is

applied when e1 does not contain any recursive call. When e1 is an s-value and

v is a free variable in e2, rule N-sub2 is applied. Such unfolding of local defini-

tion may cause code duplication, and it should be compensated by a common-

subexpression-abstraction phase after the parallelization tranformation, in order

to maintain efficiency. Lastly, N-elimLet aims to eliminate nested let-expressions.

The rules in Figure 2.5, Figure 2.6 and Figure 2.7 handle normalization of condi-

tionals. N-else and N-then attempt to normalize the branches of the conditional.

N-sv and N-grpN ensure that the self-recursive call occurs only in the alternate

branch of the top-level conditional. N-grpR1 to N-grpR3 consider cases of nested

conditionals in which the self-recursive calls appear in more than one branches.
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They aim to contain these calls within the alternate branch of the top-level con-

ditional. N-rmTest eliminates redundant conditional test, whereas N-pushIf1 to

N-pushIf5 transform “conditionals of binary operations” into “binary operations

over conditionals”. This is accomplished by introducing identity elements of the

respective binary operators. Coupled with N-rmTest, N-pushIf1 to N-pushIf3

effectively eliminate multiple occurrences of self-recursive call. Rules N-elimLet1,

N-elimLet2 and N-elimLet3 attempt to eliminate let-expressions in each of the

branches and form nested conditionals which can be further normalized by the

other rules.

The relation between normal form and s-values can be described by the follow-

ing Lemma:

Lemma 3 (Normal Form) All s-values are in normal form.

Normalization of an expression always terminates. If the normal form is an s-value,

we say the generation of parallel code is guaranteed. Otherwise, the expression

cannot be parallelized by our PType system.
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e1  e′1 e2 6 

if ζ then e1 else e2  if ζ then e ′1else e2

(N − then)

e2  e′2

if ζ then e1 else e2  if ζ then e1 else e ′2

(N − else)

if ζ0 then sv else ζ2  if ¬ ζ0 then ζ2 else sv (N− sv)

if ζ0 then ζ1
else (if ζ2 then ζ3 else lv)

 if (ζ0 ∨ ζ2)
then (if ζ0 then ζ1 else ζ3)
else lv

(N − grpN)

sv2 = if ζ1 then ζ2 else lv2

if ζ0then lv1 else sv2  if (¬ ζ0 ∧ ζ1) then ζ2
else (if ζ0 then lv1 else lv2)

(N− grpR1)

sv1 = if ζ1 then ζ2 else lv1

if ζ0then sv1 else lv2  if (ζ0 ∧ ζ1) then ζ2
else (if ζ0 then lv1 else lv2)

(N− grpR2)

sv1 = if ζ1 then ζ2 else lv1

sv2 = if ζ3 then ζ4 else lv2

if ζ0 then sv1 else sv2  if (ζ0 ∧ ζ1) then ζ2
else (if ζ0 then lv1 else sv2)

(N− grpR3)

Figure 2.5: Normalization Rules III
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if ζ then • else •  • (N − rmTest)

bv1 = ζ1 ⊕i bv3 bv2 = ζ2 ⊕i bv4

if ζ0then bv1 else bv2  (if ζ0 then ζ1 else ζ2) ⊕i

(if ζ0 then bv3 else bv4)

(N − pushIf1)

bv1 = ζ1 ⊕i bv3 bv2 = ζ2 ⊕j bv4 i < j

if ζ0then bv1 else bv2  (if ζ0 then ζ1 else ιi ) ⊕i

(if ζ0 then bv3 else bv2)

(N − pushIf2)

bv1 = ζ1 ⊕i bv3 bv2 = ζ2 ⊕j bv4 i > j

if ζ0 then bv1 else bv2  (if ζ0 then ιj else ζ2) ⊕j

(if ζ0 then bv1 else bv4)

(N − pushIf3)

bv1 = • bv2 = ζ2 ⊕i •

if ζ0 then bv1 else bv2  (if ζ0 then ιi else ζ2) ⊕i

(if ζ0 then • else •)

(N − pushIf4)

bv1 = ζ1 ⊕i • bv2 = •

if ζ0 then bv1 else bv2  (if ζ0 then ζ1 else ιi) ⊕i

(if ζ0 then • else •)

(N − pushIf5)

Figure 2.6: Normalization Rules IV
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lv1 = let v1 = bv1 in ζ1 lv2 = let v2 = bv2 in ζ2

if ζ0 then lv1 else lv2  if ζ0 then ζ1
else (if ζ0 then bv1 else lv2)

(N − elimLet1)

lv1 = bv1 lv2 = let v2 = bv2 in ζ2

if ζ0 then lv1 else lv2  if ¬ ζ0 then ζ2
else (if ¬ ζ0 then bv2 else bv1)

(N − elimLet2)

lv1 = let v1 = bv1 in ζ1 lv2 = bv2

if ζ0 then lv1 else lv2  if ¬ ζ0 then lv2
else lv1

(N − elimLet3)

Figure 2.7: Normalization Rules V



Chapter 3
PType System

Normalization of an expression terminates with three possible kinds of normal

forms: (1) one that does not contain any self-recursive calls; (2) one that is an

s-value; and (3) one that contains self-recursive calls but is not an s-value. The

objective of PType system is to classify an expression symbolically according to the

kind of normal form it can normalize to.

PType consists of NTypes and RTypes. PType expressions are defined in Fig-

ure 3.1. (We assume that the input program to our system is well-typed under

the Milner-Damas type system. This assumption is reasonable because any pro-

grammer should know sequential programming before parallel programming.). The

S in Figure 3.1 is a sequence of n binary operators satisfying the extended-ring

property. For example, for the self-recursive equation of a function

f6 (a : x) = 5 ‘max‘ (a + 2 × (f6 x)),

its RHS has type R[max ,+,×].

An NType is a collection of syntactic expressions that do not contain any oc-

currences of self-recursive call • or its reference. On the other hand, an RType

is a collection of syntactic expressions that contain occurrences of •, and can be

26
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ρ ∈ PType

ρ ::= ψ | φ

ψ ∈ NType

ψ ::= N

φ ∈ RType

φ ::= RS

where S is a sequence of operators

Figure 3.1: Type Expressions

transformed to s-values via the normalization rules defined in Section 2.4. Con-

sequently, any expression containing • but cannot be normalized to an s-value is

considered ill-typed in our PType system.

We write [[ρ]] to denote the semantics of PType ρ. Thus,

[[N ]] = C−Exp,

where C-Exp is defined in Figure 2.2.

Given S = [op1, . . . , opn] with extended-ring property, then

[[RS ]] = {e | e ∗ e′ ∧ e′ is an s−value

∧ e′ is composable by operators in S},

where  ∗ represents a normalization process.

Note that we say the expression e ′ is composable, rather than composed directly,

by a set of operators. There are two reasons for saying that:

1. e ′ need not simply be an s-value of bv category; it can also include conditional

and local abstraction, but its set of operators must be limited to S .
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2. As operators in S have identities, we allow e ′ to contain only a subset of

operators in S , as we can always extend e ′ to contain all operators in S using

their respective identities.

The last point implies that the semantics of RType enjoys the following subset

relation:

Lemma 4 Given two sequences of operators S1 and S2, both with extended-ring

property. If S1 is a subsequence of S2, then [[RS1
]] ⊆ [[RS2

]].

The above lemma induces the following type subsumption relation:

Definition 2 (Subsumption of RType) Given two sequences of operators S1 and

S2, both with extended-ring property. We say RS1
is subsumed by RS2

, denoted by

RS1
<: RS2

, if and only if S1 � S2 (where “S1 � S2” means “S1 is a subsequence

of S2”).

A type assumption Γ binds program variables to their PTypes. A judgment of the

PType has the form

Γ `κ e :: ρ

This states that the expression e has PType ρ assuming that any free variable in

it has PType given by Γ and κ is an expression that may occur in e . κ is either a

self-recursive call or a reference (defined in Definition 1) to such call. It represents

the currently active reference (the detail can be seen in the type-checking rule for

let.) Before type checking the RHS of a recursive definition of f , we initiate κ to

be the term (f x ). we also assign PType N to the recursive parameters of f .

Analogous to the well known Damas-Milner type system, we can now illustrate

the objective of PType system through the notion of well-PTypedness.

Definition 3 (Well-PTypedness) Given a recursive equation of f defined by f (a : x )

= e. The expression e is said to be well-PTyped if there is some PType ρ such

that Γ `(f x) e :: ρ, where Γ assigns a to N and x to N .
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3.1 Type-Checking Rules

Γ `κ n :: N
(con)

v 6= κ

Γ ∪ {v :: N} `κ v :: N
(var− N)

v = κ

Γ ∪ {v :: RS} `κ v :: RS

(var− R)

Γ `(f x) (f x) :: RS (rec)

Γ `κ e1 :: N Γ `κ e2 :: ρ (ρ = N) ∨ (ρ = RS ∧ ⊕ ∈ S)

Γ `κ (e1 ⊕ e2) :: ρ
(op)

Figure 3.2: Type-Checking Rules I

The PType of a function f is defined as the PType of the RHS of its recursive

equation. Figure 3.2 and Figure 3.3 list the type-checking rules which are explained

below.

As explained earlier, any expression not enclosing any references of the recursive

call (f x ) will be given NType. Thus, both constants and variables not referencing
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Γ `κ e0 :: N Γ `κ e1 :: ρ1 Γ `κ e2 :: ρ2 5 if (ρ, ρ1, ρ2)

Γ `κ (if e0 then e1else e2) :: ρ
(if)

Γ `κ e1 :: N Γ ∪ {v :: N} `κ e2 :: ρ

Γ `κ (let v = e1 in e2) :: ρ
(let− N)

Γ `κ e1 :: RS Γ ∪ {v :: RS} `v e2 :: ρ 5 let (ρ′, S, ρ)

Γ `κ (let v = e1 in e2) :: ρ′
(let− R)

Γ `κ e :: N g 6∈ FV (κ)

Γ `κ (g e) :: N
(g)

Γ `κ e : ρ ρ <: ρ′

Γ `κ e :: ρ′
(sub)

Figure 3.3: Type-Checking Rules II

the recursive call are given NType, as shown in the rules (var-N) and (con).

Use of variable referencing self-recursive call will be given an RType if it is the

currently active references; ie., it is the same as κ. The self-recursive call (f x ) will

also be given an RType. Implicitly, we note that any use of inactive references are

ill-PType, as there is no corresponding rule for it. This is reasonable, since such

use is non-linear.
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In rule (op), binary operations over expressions of NType yields an expression

of NType. As we restrict our language to have references to the self-recursive call

occurring only at the right operand of binary operation, we only consider the case

where the self-recursive call occur on the right operand. In this case, the binary

operation yields an RType if the right operand is already so, and the binary operator

under investigation is part of the sequence S .

We have already assumed that references to the self-recursive call cannot appear

in conditional-test position. Thus, in rule (if), a conditional expression is of NType

if both its branches are of NType. On the other hand, it is of RType if one of its

branches is of RType. When both branches are of RType, the conditional will be

of RType provided both branches can be normalized to s-values composable by

operators in S (aka. RS .) These inferences are expressed by the operator 5if,

which is declared as follows:

5 if(ρ, ρ, ρ) 5 if(RS, N, RS) 5 if(RS, RS, N)

There are two rules for let-expression. Rule let-N applies to expressions with

no recursive-call references in e1. Thus, the resulting type depends on the type of

e2. Rule let-R applies to expressions with recursive-call references occurring in e1.

If e2 :: N , we know that e2 does not contain the variable v (which is a reference to

the recursive call). Since the source language has a strict semantics, we still need

to parallelize e1. Thus, the type of e1 is returned. Otherwise, if e2 containing v can

be found to have the same type as that of e1, the resulting type follows the type

of e2. These inferences are expressed by the operator 5 let, defined as follows:

5 let(RS, S, N) 5 let(RS, S, RS)

Note that in the rule (let-R), the deductive operator has changed from `κ to `v .

This means that in e2, v is the sole active reference to the recursive function. Thus,
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the following two expressions will fail the PType check: In the first expression, the

recursive call is non-linear; in the second expression, the use of v is non-linear.

let v = f x in f x

let v = f x in let u = v in v

In rule (g), the application of an auxiliary function g is of NType if its argument

e is of NType too. Otherwise, such application may not be effectively parallelized,

and the application will be deemed ill-PTyped.

Note that while we consider the presence of mutumorphisms, such as (q x ),

during normalization, we need not formulate a separate typing rule for such appli-

cation. In fact, the distinction between (q x ) and ordinary auxiliary function call

is only required at parallelization phase.

The (sub) rule provides a linkage between the subtyping and typing relations.

3.2 Soundness of PType System and Strong Nor-

malization

In this section, we provide the soundness of our type-checking rules with respect to

normalization process by proving the progress and preservation theorems. Note:

For Theorem 6, Theorem 7 and Theorem 8, expressions that do not contain recur-

sive call or references to recursive calls are not in the scope of these proofs.

3.2.1 Soundness of PType System

For the proof of the progress theorem, it is convenient to record a couple of facts

about the possible shapes of the canonical forms of RType.

Lemma 5 (Canonical Forms) If e is an s-value of PType R[⊕1, ...,⊕n ] where ∀ n.

n ≥ 0 (when n = 0, it is R[ ]), then e is either (ζ1 ⊕1 . . . ⊕n •), (letv = (ζ1 ⊕1 . . .
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⊕n •) in ζ), (if ζa then ζb else (ζ1 ⊕1 . . . ⊕n •)) or (if ζa then ζb else (let v =

(ζ1⊕1 . . . ⊕n •) in ζ)).

Proof 2 The grammar in Figure 2.2 gives the desired result immediately.

Theorem 6 (Progress) If Γ `κ e :: RS , then either e is an s-value or e  e ′.

Proof 3 By induction on the normalization of e :: RS . The self-rec case is im-

mediate since e is an s-value. For the other cases, we argue as follows.

Case (var-R): Since v is in Γ , by induction hypothesis, the result is immediate.

Case (op) where (ρ = RS ∧ ⊕ ∈ S ): By induction hypothesis, either e2 is an

s-value or else there is some e ′
2 such that e2  e ′

2. If e2 is an s-value, either

e is an s-value or the canonical forms lemma assures us that e2 must be one of

the canonical forms in which case either N-distr, N-semiassoc, N-liftIf1 or

N-liftLet applies to (e1 ⊕ e2). On the other hand, if e2  e ′
2, then N-op applies.

Case (if) where 5 if (RS ,N ,RS ): By induction hypothesis, either e2 is a s-value

or else there is some e ′
2 such that e2  e ′

2. If e2 is an s-value, e is either an s-value

or the canonical forms lemma assures us that e2 must be the third form in which

case N-grpN applies. On the other hand, if e2  e ′
2, then N-else applies.

Case (if) where 5 if (RS ,RS ,N ): By induction hypothesis, either e1 is a s-value

or else there is some e ′
1 such that e1  e ′

1. If e1 is an s-value, rule N-sv applies.

On the other hand, if e1  e ′
1, then N-then applies.

Case (if) where 5 if (RS ,RS ,RS ): If both e1 and e2 are s-values, either e is

an s-value or either rule N-grpR1, N-grpR2, N-rmTest, N-pushIf1, N-pushIf2

or N-pushIf3, N-elimLet1, N-elimLet2 or N-elimLet3 applies. If e1 is not an
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s-value but e2 is an s-value, rule N-then applies. If e1 is an s-value but e2 is not,

rule Nrule-else applies. If neither e1 nor e2 are s-values, N-else applies.

Case (let-N) where e2 :: RS : If e2 is an s-value, N-sub1 applies. If it is not,

N-in applies.

Case (let-R): If e1 is not an s-value, N-let applies. If e1 is an s-value, either e

is an s-value or either N-in, N-sub2 or N-elimLet applies. (end of proof)

Theorem 7 (Preservation) If e :: RS and e  e ′, then e ′ :: RS

Proof 4 By induction on a derivation of e :: RS . At each step of the induction,

we assume that the desired property holds for all subderivations and proceed by case

analysis on the final rule in the derivation.

Case (var-R): Since v is in Γ , by induction hypothesis, the result is immediate.

Case (rec): If the last rule in the derivation is (rec), then we know from the

form of this rule that e must be •. Since e is an s-value, it cannot be the case that

e  e ′ for any e ′, and the theorem is vacuously satisfied.

Case (op) where (ρ = RS ∧ ⊕ ∈ S ): If this is the last rule in the derivation,

we know from the form of this rule that e may have the form ζ ⊕ e, for some

ζ and e. We must also have subderivations with conclusions ζ :: N , e :: RS and

⊕ ∈ S. Now, looking at the normalization rules with such form on the left-hand

side in Figure 2.3, we find that there are 5 rules by which e  e ′ can be derived.

We consider each case separately.

Subcase N-op: Applying induction hypothesis to subderivation e2  e ′
2, we get

e ′ :: RS . We can apply rule (op) to get (ζ ⊕i e ′) :: RS .
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Subcase N-distr: If e  e ′ is derived using N-distr, then from the form of

this rule we can see that ζ1 :: N , (ζ2 ⊕i bv1) :: RS and ⊕j ∈ S. we also know

ζ1 :: N , ζ2 :: N , bv1 :: RS and ⊕i ∈ S by hypothesis. Applying rule (op), we ob-

tain (ζ1 ⊕j ζ2) :: N , (ζ1 ⊕j bv1) :: RS and ((ζ1 ⊕j ζ2) ⊕i (ζ1 ⊕j bv1)) :: RS .

Subcase N-semiassoc: If e  e ′ is derived using N-semiassoc, then from the

form of this rule we can see that ζ1 :: N , (ζ2 ⊕i bv1) :: RS and ⊕j ∈ S. we also

know ζ1 :: N , ζ2 :: N , bv1 :: RS and ⊕i ∈ S by hypothesis. Applying rule (op), we

obtain (ζ1 ⊕′ ζ2) :: N , bv1 :: RS and ((ζ1 ⊕′ ζ2) ⊕ bv1) :: RS .

Subcase N-liftIf1: Applying induction hypothesis to subderivations, we get (if

ζ0 :: N then ζ2 :: N else lv :: RS ) :: RS . Applying rule (op), we get (ζ1 ⊕i lv) :: RS

and (ζ1 ⊕i ζ2) :: N . Applying rule (if), we get (if ζ0 then ζ1 ⊕i ζ2 else ζ1 ⊕i

lv) :: RS .

Subcase N-liftLet: Applying induction hypothesis to subderivation, we get (let

v1 = bv :: RS in ζ2 :: N ) :: RS . Applying rule (op), we get (ζ1 ⊕ ζ2) :: N . Apply-

ing rule (let-R), we get (let v1 = bv in ζ1 ⊕ ζ2) :: RS

Case (if) where 5 if (RS ,N ,RS ): If this is the last rule in the derivation, we

know from the form of this rule that (if e0 :: N then e1 :: N else e2 :: RS ) :: RS .

We find that N-else and N-grpN can be derived. We consider each case separately.

Subcase N-else: Applying induction to subderivation e2  e ′
2, we get e ′

2 :: RS .

Applying typing rule (if), we get (if ζ then e1 else e ′
2) :: RS
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Subcase N-grpN: Applying rule (if), we have (ζ0 ∨ ζ2) :: N . Similarly, we have

(if ζ0then ζ1 else ζ3) :: N as well. Applying induction to subderivation (if ζ2 then

ζ3 else lv , we get lv :: RS . Applying rule (if), we obtain (if (ζ0 ∨ ζ2) then

(if ζ0then ζ1 else ζ3) else lv) :: RS .

Case (if) where 5 if (RS ,RS ,N ): We find that N-sv can be applied. Apply-

ing induction on subderivations, we get ζ0 :: N , sv :: RS and ζ2 :: N . Applying rule

(g), ¬ζ0 :: N . Applying rule (if), (if ¬ζ0 then ζ2 else sv) :: RS .

Case (if) where 5 if (RS ,RS ,RS): If this is the last rule in the derivation, then

we know from the form of this rule that e must have the form (if e0 then e1 :: RS

else e2 :: RS ) :: RS . Now, looking at the normalization rules with such form on

the left-hand side in Figure 2.4, we find that there are 8 rules by which e  e ′

can be derived. We consider each case separately.

Subcase N-then: Applying induction to subderivations, we get e ′
1 :: RS . Apply-

ing rule (if), we have (if e0 then e ′
1 else sv) :: RS .

Subcase N-else: Similar to that of Subcase N-then.

Subcase N-grpR1: Applying induction to subderivation, we get ζ0, ζ1, ζ2 :: N , sv1, lv2

:: RS . Applying rule (g), we have ¬ζ0 :: N . Applying rule (if), we have (if ζ0

then sv1 telse lv1) :: RS . Applying rule (if) again, we obtain ((if ¬ζ0 ∧ ζ1 then

ζ2 else (if ζ0 then sv1 else lv1)) :: RS

Subcase N-grpR2: Similar to that of Subcase N-grpR1.
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Subcase N-rmTest: Apply induction to subderivation, we get • :: RS .

Subcase N-pushIf1: Apply induction to subderivations, we get ζ0, ζ1, ζ2 :: N and

bv3, bv4 :: RS . Applying rule (if), we can get (ifζ0 then ζ1 else ζ2) :: N and (if

ζ0 then bv3 else bv4) :: RS . Applying rule (op), ((if ζ0then ζ1 else ζ2) ⊕i (if ζ0

then bv3 else bv4)) :: RS

Subcase N-pushIf2: Similar to that of Subcase N-pushIf1.

Subcase N-pushIf3: Similar to that of Subcase N-pushIf1.

Subcase N-elimLet1: Apply induction to subderivations, we get lv1 :: RS , bv1 :: RS

and lv2 :: RS . Applying rule (if), we have (if ζ0then bv1 else lv2) :: RS . Applying

rule (if) again, we obtain (if ζ0 then ζ1else (if ζ0 then bv1 elselv2)) :: RS .

Subcase N-elimLet2: Similar to that of Subcase N-elimLet1.

Subcase N-elimLet3: Similar to that of Subcase N-elimLet1.

Case (let-N): If the last rule in the derivation is (let-N), we know that e must

have the form (let v = e1 ::N ine2 :: ρ) :: ρ. It matches either N-in or N-sub1.

Subcase M-in: By induction hypothesis,e ′
2 :: ρ. Applying rule (let-N), we get (let

v = e1 in e ′
2) :: ρ

Subcase N-sub1: The result is immediate.
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Case (let-R) where 5 let (RS ,RS ,N ): If this is the last rule in the derivation,

then we know from the form of this rule that e must have the form (let v = e1 :: RS

in e2 :: N ) :: RS . Now, looking at the normalization rules with such form on the

left-hand side in Figure 2.3, we find that there are 3 rules by which e  e ′ can be

derived. We consider each case separately.

Subcase N-liftIf2: Apply induction to subderivations, we get ζ1, ζ2, ζ3 :: N and

lv :: RS . Applying rule (let-N), we have (letv = ζ2 in ζ3) :: N and (let v = lv

in ζ3) :: RS . Applying rule (if), we obtain (if ζ1 then (let v = ζ2 in ζ3) else

(let v = lv in ζ3)) :: RS .

Subcase N-let: By induction hypothesis, e ′
1 and e1 have the same type. Thus,

applying rule (let-R), let v = e ′
1 in e2 has the same type as let v = e1 in e2.

Subcase N-elimLet: Apply induction to subderivations, we get bv :: RS and ζ1, ζ2 :: N .

Applying rule (let-N), we have (let v = ζ1 in ζ2) :: N . Applying rule (let-R), we

have (let u = bv in (letv = ζ1 in ζ2)) :: RS .

Case (let-R) where 5 let (RS ,RS ,RS ):If this is the last rule in the derivation,

then we know from the form of this rule that e must have the form (let v = e1 :: RS

in e2 :: RS ) :: RS . Now, looking at the normalization rules with such form on the

left-hand side in Figure 2.3, we find that there are 2 rules by which e  e ′ can be

derived. We consider each case separately.

Subcase N-let:By induction hypothesis, e ′
1 and e1 have the same type. Thus, ap-

plying rule (let-R), let v = e ′
1 in e2 has the same type as let v = e1 in e2.
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Subcase N-in: By induction hypothesis, e ′
2 and e2 have the same type. Thus,

applying rule (let-R), let v = e1 in e ′
2 has the same type as let v = e1 in e2.

Subcase N-sub2: Resulting type follows the type of e2. (end of proof)

3.2.2 Strong Normalization

In this section, we prove that a well-PTyped expression is strong normalizing with

respect to the normalization rules in Figure 2.3, 2.4, 2.5, 2.6 and 2.7.

We prove it by induction on the size of the syntax tree. Usually strong normal-

ization property cannot be proven using the size of the syntax tree as a function

application may increase the syntax tree to an arbitrary size. However, in our case,

we work at meta-level so that we can employ this technique with the help of the

definitions of atomic expression and effective syntax tree.

Definition 4 (Atomic Expression) An atomic expression is either an expres-

sion of NType or a recursive call.

The definition of atomic expression is valid because an expression of NType does

not play a role in normalization and a function application with a recursive call or

a reference to recursive call is treated as • in the normalization.

Definition 5 (Effective Syntax Tree) An effective syntax tree is a syntax tree

built from atomic expressions.

Note: the size of an atomic expression in an effective syntax tree is one.

For example, we have function f (a : x ) = (1 + a ∗ 2) + (f x ) the depth of

its effective syntax tree is two though the size of its concrete syntax tree is four.

There are three cases that may lead to increasing of the size of the syntax tree

in the proof of strong normalization in lambda calculus.



3.2 Soundness of PType System and Strong Normalization 40

1. recursive call

2. function application (other than recursive call)

3. let-expression

In this section, we analyse each case to show that why they are no longer a

problem in our normalization system.

Case 1 (recursive call): Our system works at meta-level. Thus, a recursive call

is treated as an atomic expression (i.e. • in the earlier part of the thesis). This

means no substitution takes place.

Case 2 (other function application): Similarly to the reason in Case 1, other

function applications (i.e. (q x ) or (g x ) mentioned in the earlier part of the thesis)

all have type of N . Thus, they are considered as atomic expressions as well.

Case 3 (let-expression): There are two subcases to consider. Given an let-

expression of the form (let v = e1 in e2), one subcase is e1 :: N and e2 :: RS ; the

other subcase is e1 :: RS and e2 :: RS .

For the first subcase, although there may be many copies of v in the expression

e2, according to the definition of atomic expression, they still form one atomic

expression and thus the size of the effective syntax tree is reduced by one instead

after substitution. For example, we have function definition as follows.

f (a : x ) = let v = 2 + a in (v + a ∗ v) + (f x )

After applying normalization rule N-sub1, we have

f (a : x ) = ((2 + a) + a ∗ (2 + a)) + (f x )

where according to the definition of atomic expression, expression ((2 + a) + a ∗

(2 + a)) is still considered as one atomic expression of size one though it is larger

than the expression (v + a ∗ v).
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For the second subcase, there is only one v appear in expression e2. This fact is

obtained from the canonical forms we defined. Before applying normalization rule

N-sub2, both e1 and e2 are in normal form. Since the type of e2 is RS , all s-values.

According to the canonical form lemma, only one v can appear in e2. So the rule

N-sub2 does not increase the size of the effective syntax tree.

Theorem 8 (Strong Normalization) If e :: ρ, then ∃ e ′ s .t . e  ∗ e ′ 6 .

Proof 5 We prove it by induction on the size of the effective syntax tree (EST).

Case N-op: By induction hypothesis, e2  e ′
2 decreases the size of the EST, it is

obvious that ζ ⊕i e2  ζ ⊕i e ′
2 decreases the size of the EST.

Case N-distr: The part that will participate in further normalization is ζ1 ⊕j bv1.

Thus, the size of EST is decreased by one.

Case N-semiassoc: The RHS of the rule is an s-value.

Case N-liftIf1: The part that will participate in further normalization isζ1 ⊕j lv1.

Thus, the size of EST is decreased by 4.

Case N-liftIf2: The RHS of the rule is an s-value.

Case N-liftLet: The RHS of the rule is an s-value.

Case N-let: By induction hypothesis, e1  e ′
1 decreases the size of the EST, it is

obvious that let e1 in e2  let e ′
1 in e2 decreases the size of the EST.

Case N-in: Similar reasoning as Case N-let.
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Case N-sub1 & Case N-sub2: It is obvious that the size of the EST is reduced

based on the definition of atomic expression.

Case N-elimLet: The RHS of the rule is an s-value.

Case N-then: By induction hypothesis, subexpression e1  e ′
1 decreases the size

of the EST. Thus the resulting normalization decreases the size of the EST.

Case N-else: Similar reasoning as Case N-then.

Case N-sv: The RHS of the rule is an s-value.

Case N-grpN: The RHS of the rule is an s-value.

Case N-grpR1: The part that will participate in further normalization is if ζ0 then lv1

else lv2. Thus, the size of the EST is reduced.

Case N-grpR2 & Case N-grpR3: Similar reasoning as Case N-grpR1.

Case N-rmTest: The RHS of the rule is an s-value.

Case N-pushIf1: The part will participate in further normalization is if ζ0 then bv3

else bv4. Thus, the size of the EST is reduced.

Case N-pushIf2 to Case N-pushIf5: Similar reasoning as Case N-pushIf1.

Case N-elimLet1: The part that will participate in further normalization is if ζ0 then
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bv1 else lv2. Thus, the size of the EST is reduced.

Case N-elimLet2: Similar reasoning as Case N-elimLet1.

Case N-elimLet3: The RHS of the rule maps rule N-elimLet2 and this rule will

not be re-visited at the same program point.

From the above case analysis, we can see that each normalization rule either help

reducing the size of the effective syntax tree or the right hand side of the rule is an

s-value. This proves the lemma. (end of proof)

3.3 PType Inference Algorithm

The PType inference is done on an extension of the PType with sequence variables.

The extension, called EPtype, is defined as follows:

ρ ∈ EPtype — Extended PType

ρ ::= N |RΠ

Π ∈ ESeq — Extended Sequences

Π ::= S | β | S ./ β

β ∈ SVar — Sequence Variables

S ∈ Seq — Sequences

S ::= [ ] | [⊕1, . . . ,⊕n]

Note that S denotes a (possibly empty) sequence of operators, satisfying the

extended ring property. The extended sequence Π can either be a sequence, a

sequence variable, or a joint between a sequence and a sequence variable. The

latter enables a sequence to be extended to include new operators. We also identify

S ./ [ ] with S . This allows us to “terminate” the extended sequence by converting

it into a normal sequence.
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The subtyping relation for extended-PType system is based on the notion of type

subsumption, as defined in Definition 2, with the extension to include sequence

variables. The subtyping rules are as follows:

β � β

S1 � S2

(S1 ./ β) � (S2 ./ β)

ρ <: ρ
ρ1 <: ρ2 ρ2 <: ρ3

ρ1 <: ρ3

Π1 � Π2

RΠ1
<: RΠ2

The EPType-type inference algorithm, W‖κ, is defined in Figure 3.4 and Fig-

ure 3.5. It is expressed as:

W‖κ :: ( Exp, Env) → ( EPType, Sub)

W‖κ(e, Γ) = (ρ, θ)

where Γ ∈ Env is type assumption containing mapping between program vari-

ables and EPTypes, and θ ∈ Sub is a substitution mapping sequence variables to

extended sequences.

Before inferencing the RHS of a definition of a function f , all parameter vari-

ables of f will be kept in the initial environment Γinit and are assigned the EPType

N . Moreover, κ is set to the term representing the self-recursive call to f , such as

(f x ).

Unification of EPType is performed by the function U , the definition of which, as

well as its associated functions, are defined in Figure 3.6 and Figure 3.7 respectively.

Application of a substitution to an EPType (or an environment or an extended

sequence) is performed by the overloaded function app. Similarly, composition

of substitutions are defined by the operator ;. These are defined in Figure 3.7.

Lastly, we define a ground substitution, θ[ ] such that, ∀ β, app(θ[ ], β) = [ ], the
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W‖κ(n,Γ ) = (N , {})

W‖κ(v ,Γ ) = if v 6= κ then let ρ = Γ (v)

in if (ρ == N ) then (N , {}) else Error
else (Γ (v), {})

W‖κ(f x ,Γ ) = if (f x ) == κ then let β be fresh

in (Rβ , {})
else Error

W‖κ(e1 ⊕ e2,Γ ) =

let (ρ1, θ1) = W‖κ(e1,Γ)

(ρ2, θ2) = W‖κ(e2, app(θ1,Γ))

in case (app(θ2, ρ1), ρ2) of

(N,N) → (N, θ2 ; θ1)

(N,RS) → let β′ be fresh
S ′ = [⊕] ./ β′

θ3 = U(RS ,RS ′)
in (app(θ3, RS ), θ3 ; θ2 ; θ1)

( , ) → Error

Figure 3.4: Type Inference Algorithm - I

empty sequence. An application of θ[ ] to an EPType-value will effectively eliminate

any sequence variables occurring in it. A substitution θ is a ground validation of Γ

and ρ if and only if it is a ground substitution that covers Γ and ρ. We can safely

say θ[ ] is a ground validation of Γ and ρ in all the cases.

The algorithm resembles a typical type inference algorithm. The detail can be

found in standard program analysis textbook [28].
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W‖κ(if e0 then e1 else e2,Γ ) =

let (ρ0, θ0) = W‖κ(e0,Γ)

(ρ1, θ1) = W‖κ(e1, app(θ0,Γ))

(ρ2, θ2) = W‖κ(e2, app(θ1 ; θ0,Γ))

θ = θ2 ; θ1 ; θ0
in if (app(θ2 ; θ1, ρ0)) = N

then case (app(θ2, ρ1), ρ2) of

(N,N) → (N, θ)

(N,RS) → (RS , θ)

(RS , N) → (RS , θ)

(RS1
, RS2

) → let θ′ = U(RS1
,RS2

)
in (app(θ′,RS1

), θ′ ; θ)
else Error

W‖κ(let v = e1 in e2,Γ ) =

let (ρ1, θ1) = W‖κ(e1,Γ )

in if (ρ1 == N ) then

W‖κ(e2, {v :: N } ∪ Γ )

else let (ρ2, θ2) = W ‖ v (e2, {v :: ρ1} ∪ Γ )

in if (ρ2 == N ) then (app(θ2, ρ1), θ2; θ1)

else let θ = U(app(θ2, ρ1), ρ2)

in (app(θ, ρ2), θ ; θ2 ; θ1)

W‖κ(g e,Γ ) =

let (ρ, θ) = W‖κ(e,Γ )

in if (ρ == N & g 6∈ FV (κ)) then (N , θ) else Error

Figure 3.5: Type Inference Algorithm - II
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U :: ( EPType, EPType) → Sub

U(N ,N ) = {}

U(RΠ1
,RΠ2

) = US (Π1,Π2)

U(ρ1, ρ2) = Error

US :: ( ESeq, ESeq) → Sub

US (β,Π ) = {β 7→ Π }

US (Π , β) = {β 7→ Π }

US (S1,S2 ./ β) = let S = S1 ] S2

in if (S == S2 & S 6= S1)

then Error

else let T2 = diff (S ,S2)

in {β 7→ T2}
US (S1 ./ β,S2) = US (S2,S1 ./ β)

US (S1 ./ β1,S2 ./ β2) = let S = S1 ] S2

T1 = diff (S ,S1)

T2 = diff (S ,S2)

β be fresh

in {β1 7→ (T1 ./ β), β2 7→ (T2 ./ β)}

Figure 3.6: Unify Function

3.4 Soundness and Completeness of Inference Al-

gorithm

The correctness of W‖κ can be expressed as follows:
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app :: ( Sub, ESeq) → ESeq

app(θ1 ; θ2,Π ) = app(θ1, (app(θ2,Π )))

app(θ,S ) = S

app(θ, β) = if ((β,Π ) ∈ θ) then Π else β

app(θ,S ./ β) = let Π = θ β

in case Π of

S → S

β′ → S ./ β′

S′ ./ β′ → (S ] S′) ./ β′

— app is extended naturally to operate on EPType and Env.

] :: Seq → Seq → Seq

s1 ] s2 = case s1 of [ ] → s2

(x : s′1) → s′1 ] (insert x s2)

insert :: Op → Seq → Seq

insert ⊕ [ ] = [⊕]

insert ⊕ [⊕1, . . . , ⊕n ] =

if (⊕ ∈ [⊕1, . . . , ⊕n ]) then [⊕1, . . . , ⊕n ]

else if (∃ k ∈ 0..n : ∀ i : 1 ≤ i ≤ k .

⊕ is distributive over ⊕i and
∀ j : (k + 1) ≤ j ≤ n.

⊕j is distributive over ⊕)
then [⊕1, . . . , ⊕k , ⊕, ⊕k+1, . . . , ⊕n ]

else Error

Figure 3.7: Associate Functions to Type Inference Algorithm
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Theorem 9 (Soundness of W‖κ) Given a type environment Γ and an expres-

sion e. If W‖κ(e,Γ ) = (ρ, θ) for some ρ and θ, then app(θ[ ] ; θ,Γ ) `κ e :: app(θ[ ], ρ).

Proof 6 By the definition of θ[ ], θ[ ] is a ground validation for all θ. If θ is a

ground validation of app(θ1; θ2,Γ ), then (θ; θ1) is a ground validation of app(θ2,Γ ).

The proof proceeds by structural induction on e (because W‖κ is defined by struc-

tural induction on e).

Case n: We have W‖κ(n,Γ ) = (N , {}). From rule (con) in Figure 3.2, it is im-

mediate that Γ `κ n :: N .

Case v: There are two subcases we need to consider.

Subcase v 6= κ: We have W‖κ(v ,Γ ) = (N , {}) provided Γ (v) = N . From rule

(var-N) in Figure 3.2, it is immediate that Γ ∪ {v :: N } `κ v :: N .

Subcase v == κ: We have W‖κ(v ,Γ ) = (Γ (v), {}). From rule (var-R) in Fig-

ure 3.2, it is immediate that app(θ[ ],Γ ∪ {v :: RS}) `κ v :: app(θ[ ],Γ (v)).

Case (f x ): We have W‖κ(f x ,Γ ) = (Rβ, {}). From rule (rec) in Figure 3.2,

it is immediate that app(θ[ ],Γ ) `κ (f x ) :: R[ ] where app(θ[ ],Rβ) = R[ ].

Case e1 ⊕ e2: We shall use the notion established in the clause for W‖κ(e1 ⊕ e2,Γ ).

There are two subcases to consider.

Subcase (app(θ2, ρ1) == N , ρ2 == N): θ[ ] is a ground validation of app(θ2; θ1, Γ ).

Then θ[ ] ; θ2 is an ground validation of app(θ1, Γ ). Hence by the induction hypoth-

esis, we get app(θ[ ]; θ2; θ1,Γ ) `κ e1 :: N and app(θ[ ];θ2 ;θ1,Γ ) `κ e2 :: N . We can

apply rule (op) and get app(θ[ ]; θ2;θ1,Γ ) `κ (e1 ⊕ e2) :: N which is the desired
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result.

Subcase (app(θ2, ρ1) == N , ρ2 == RS): θ[ ] is a ground validation of app(θ3; θ2; θ1,Γ )

and app(θ3,RS ). Then θ[ ] ;θ3 is a ground validation of app(θ2 ;θ1, Γ ). θ[ ]; θ3; θ2

is a ground validation of app(θ1,Γ ). Hence by the induction hypothesis, we get

app(θ[ ]; θ3 ;θ2 ; θ1, Γ ) `κ e1 :: N and app(θ[ ]; θ3 ; θ2 ; θ1,Γ ) `κ e2 :: app(θ[ ] ; θ3;

θ2; θ1 ,RS ). Since we have W‖κ((e1 ⊕ e2,Γ ) = (app(θ3, RS ), θ3; θ2 ; θ1), we get

⊕ ∈ S. We can apply rule (op) and get app(θ[ ]; θ3; θ2 ; θ1, Γ ) `κ (e1 ⊕ e2) :: app

(θ[ ]; θ[ ] ;θ3;θ2; θ1, RS ) which is the desired result.

Case (if e0 then e1 else e2): We shall use the notion established in the clause for

W‖κ(if e0 then e1 else e2,Γ ). If e0 has type N , there are four subcases to consider.

Subcase (ρ1 == N and ρ2 == N): θ[ ] is a ground validation of app(θ[ ]; θ,Γ ) and

ρ2. Then θ[ ]; θ2 is a ground validation of app(θ1; θ0,Γ ) and ρ1. By the induction

hypothesis, we get app(θ[ ]; θ,Γ ) `κ e1 :: app(θ[ ];θ, ρ1) and app(θ[ ]; θ,Γ ) `κ e2 ::

app(θ[ ]; θ, ρ2). We apply rule (if) and get Γ `κ (if e0then e1 else e2) :: N where

app(θ[ ];θ,N ) = N .

Subcase (ρ1 == N and ρ2 == RS1
): θ[ ] is a ground validation of app(θ[ ]; θ,Γ )

and ρ2. Then θ[ ]; θ2 is a ground validation of app(θ1; θ0,Γ ) and ρ1. By the in-

duction hypothesis, we get app(θ[ ]; θ,Γ ) `κ e1 :: app(θ[ ];θ, ρ1) and app(θ[ ]; θ,Γ )

`κ e2 :: app (θ[ ]; θ, ρ2). We apply rule (if) and get app(θ[ ]; θ,Γ ) `κ (ife0 then e1

else e2) :: app(θ[ ] ; θ, ρ2)

Subcase (ρ1 == RS1
and ρ2 == N): Similar reasoning as Subcase (ρ1 == N and

ρ2 == RS1
).
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Subcase (ρ1 == RS1
and ρ2 == RS2

): θ[ ] is a ground validation of app(θ′; θ,Γ )

and if U (RS1
,RS2

) = θ then app(θ[ ]; θ,RS1
) = app(θ[ ]; θ,RS2

). Then θ[ ]; θ
′ is

a ground validation of app(θ,Γ ), RS1
and RS2

. By the induction hypothesis, we

get app(θ[ ]; θ
′;θ, Γ ) `κ e1 :: app(θ[ ]; θ

′; θ,RS1
) and app (θ[ ]; θ

′;θ, Γ ) `κ e2 :: app

(θ[ ]; θ′; θ,RS2
). Since θ′ is the result of unifying RS1

and RS1
, app(θ[ ]; θ

′; θ,RS1) is

as same as app(θ[ ]; θ′; θ,RS2). Applying rule (if) and get app(θ[ ]; θ
′; θ,Γ ) `κ (if

e0 thene1 else e2) :: app(θ[ ]; θ
′ ; θ,RS1

)

Case (g e): We shall use the notion established in the clause for W‖κ((g e),Γ ).

Hence by the induction hypothesis we get: app(θ[ ],Γ ) `κ e :: app(θ[ ], ρ). If ρ == N ,

we can apply rule (g) and get Γ `κ (g e) :: N which is the desired result.

Case let v = e1 in e2: There are two subcases to consider.

Subcase ρ1 == N : θ[ ] is a ground validation of Γ . By the induction hypothesis, we

have app(θ[ ],Γ ) `κ e1 :: ρ1 and app(θ[ ],Γ ) ∪ {v :: ρ1} `κ e2 :: app(θ[ ], ρ2). Ap-

plying rule (let-N), app(θ[ ],Γ ) ∪ {v :: N } `κ (let v = e1 in e2) :: app(θ[ ], ρ2).

Subcase ρ1 == RS1
: θ[ ] is a ground validation of app(θ; θ2; θ1,Γ ). Then θ[ ]; θ

is a ground validation of app(θ2; θ1,Γ ) and ρ2. θ[ ]; θ; θ2 is a ground validation

of app(θ1,Γ ) and ρ1. By induction hypothesis, we have app(θ[ ]; θ; θ2;θ1,Γ ) `κ

e1 :: app(θ[ ];θ; θ2; θ1, ρ1) and app(θ[ ]; θ; θ2; θ1,Γ ) ∪ {v :: ρ1} `v e2 :: app(θ[ ]; θ;

θ2; θ1, ρ2). Applying rule (let-R), app(θ[ ]; θ; θ2; θ1,Γ ) ∪ {v :: app(θ[ ]; θ; θ2;θ1, ρ1)}

`v (let v = e1 in e2) :: app (θ[ ]; θ; θ2; θ1, ρ2). (end of proof)

Theorem 10 (Completeness of W‖κ) For any type environment Γ and expres-

sion e, if there exists a PType ρ′ such that Γ `κ e :: ρ′, then there exists ρ such
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that W‖κ(e,Γ ) = (ρ, θ) and app(θ[ ], ρ) <: ρ′.

Proof 7 The proof is by induction on the shape of the inference tree since the

type-checking rules in Figure 3.2 and Figure 3.3 are syntax directed.

Case n: We have Γ `κ n :: N . Clearly W‖κ(n,Γ ) = (N , {}).

Case v 6= κ: We have Γ ∪ {v :: N } `κ v :: N . Clearly W‖κ(v ,Γ ′) = (Γ ′(v), {})

where Γ ′ = Γ ∪ {v :: N }.

Case v = κ: We have Γ ∪ {v :: RS} `κ v :: RS . Clearly W‖κ(v ,Γ ′) = (Γ ′(v), {})

where Γ ′ = Γ ∪ {v :: N }.

Case (f x ): We have Γ `(f x) (f x ) :: RS . Clearly W‖κ(f x ,Γ ) = (Rβ, {}),

app(θ[ ],Rβ) = R[] and R[] <: RS for all S .

Case (e1 ⊕ e2): There are two type-checking rules we need to consider. We con-

sider each case separately.

Subcase (op) where ρ = N : We have Γ `κ (e1 ⊕ e2) :: N . If rule (op) is the

last rule applied, we have Γ `κ e1 :: N and Γ `κ e2 :: N . By induction hypothe-

sis, we have W‖κ(e1,Γ ) = (N , {}) and W‖κ(e2,Γ ) = (N , {}) respectively. Clearly

W‖κ(e1 ⊕ e2,Γ ) = (N , {}).

Subcase (op) where ρ = RS ∧ ⊕ ∈ S: We have Γ `κ (e1 ⊕ e2) :: RS . If rule

(op) is the last rule applied, we have Γ `κ e1 :: N , Γ `κ e2 :: RS . By induc-

tion hypothesis, we have W‖κ(e1,Γ ) = (N , θ1) and W‖κ(e2,Γ ) = (RS , θ2). Since

⊕ ∈ S, θ3 = {}. Clearly, W‖κ(e1 ⊕ e2,Γ ) = (RS , θ2; θ1) and RS <: RS .
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Case (if e0 then e1 else e2): There are four type-checking rules we need to con-

sider. We consider each case separately.

Subcase (if) where 5 if (N ,N ,N ): We have Γ `κ (if e0 then e1 else e2) :: N .

If rule if is the last rule applied, we have e0 :: N , e1 :: N and e2 :: N . By induction

hypothesis, we have W‖κ(e0,Γ ) = (N , {}), W‖κ(e1,Γ ) = (N , {}) and W‖κ(e2,Γ )

= (N , {}). Clearly W‖κ(if e0 then e1 else e2,Γ ) = (N , {}).

Subcase (if) where 5if (RS ,N ,RS): We have Γ `κ (if e0 then e1 else e2) :: RS .

If rule (if) is the last rule applied, we have Γ `κ e0 :: N , Γ `κ e1 :: N and

Γ `κ e2 :: RS . By induction hypothesis, we have W‖κ(e0,Γ ) = (N , θ0), W‖κ(e1,Γ )

= (N , θ1) and W‖κ(e2,Γ ) = (RS , θ2) where RS <: RS . Clearly

W‖κ(if e0 then e1 else e2,Γ ) = (RS , θ2; θ1; θ0).

Subcase (if) where 5if (RS ,RS ,N ): Similar to the Subcase if where 5 if (RS ,N ,RS ).

Subcase (if) where 5if (RS ,RS ,RS): We have Γ `κ (if e0 then e1 else e2) :: RS .

If rule (if) is the last rule applied, we have Γ `κ e0 :: N , Γ `κ e1 :: RS ′ and

Γ `κ e2 :: RS ′. By induction hypothesis, we have W‖κ(e0,Γ ) = (N , θ0), W‖κ(e1,Γ )

= (RS , θ1) and W‖κ(e2,Γ ) = (RS , θ2) and app(θ[ ], RS ) <: RS ′. Clearly we have

W‖κ(if e0 then e1 else e2,Γ ) = (app(θ′, RS ) , θ′; θ2;θ1; θ0). Since U (RS ,RS) = {},

θ′ = {}. This is the desired result.

Case (g e): We have Γ `κ e :: ρ. From rule (g) in Figure 3.3, we know that

e :: N and g 6∈ FV (κ). By induction hypothesis, we have W‖κ(e,Γ ) = (N , {}).

Clearly W‖κ(g e,Γ ) = (N , {}).



3.4 Soundness and Completeness of Inference Algorithm 54

Case (W‖κ(let v = e1 in e2,Γ )): We have Γ `κ (let v = e1 in e2) :: ρ. There

are two cases to consider.

Subcase (let-N): We have Γ `κ e1 :: N , Γ `κ v :: N and Γ `κ e2[v 7→ e1] :: ρ′.

By induction hypothesis, W‖κ(e1,Γ ) = (N , θ1) and W‖κ(e2[v 7→ e1], {v :: (N , {})} ∪ Γ )

= (ρ, θ2;θ1) and app(θ[ ], ρ) <: ρ′. Type ρ is the desire result.

Subcase (let-R) where ρ == N : We have Γ `κ e1 :: RS ′, Γ ∪ {v :: RS ′} `κ e2 :: N .

By induction hypothesis, W‖κ(e1,Γ ) = (RS , θ1), W‖κ(e2[v 7→ e1], {v :: RS} ∪ Γ ) =

(N , θ2) and app(θ[ ],RS) <: R′
S . Thus, (RS , θ2; θ1) is the desire result.

Subcase (let-R) where ρ == RS : We have Γ `κ e1 :: RS ′, Γ ∪ {v :: RS ′} `κ e2 :: RS ′.

By induction hypothesis, W‖κ(e1,Γ ) = (RS , θ1) and W‖κ(e2[v 7→ e1], {v :: RS} ∪ Γ )

= (RS , θ2) and app(θ[ ],RS ) <: RS ′. Type RS is the desire result.

(end of proof)



Chapter 4
Algorithm for deriving parallel code

Once a function has been inferred to have RType, we can automatically derive its

parallel counterpart. In the parallel context, the most commonly used technique

is divide-and-conquer and the computation model for it is called homomorphism.

In this chapter, we give a background to homomorphism and a more expressive

parallel computation model mutumorphism, which is used in our system. After

that, we describe informally an algorithm for deriving parallel code from expression

of RType and give its correctness proof.

4.1 Homomorphisms and Mutumorphisms

In skeleton approach to data parallel list programming, homomorphisms are often

used as the basic divide-and-conquer scheme. Homomorphisms are a good charac-

terization of parallel computational models and can be effectively implemented on

modern parallel architectures [38, 18, 11].

Definition 6 (List Homomorphism) A function hom is a homomorphism if it

satisfies the equations:

hom(f ,⊕) [a] = f a

55
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hom(f ,⊕) (xl + +xr) = (hom(f ,⊕) xl) ⊕ (hom(f ,⊕) xr)

It can also be expressed with two primitive skeletons reduce and map as follows.

hom(f ,⊕) (xs) = reduce⊕ (map f (xs))

A near homomorphism proposed by Cole is the composition of a projection

function and a homomorphism. With Cole’s idea and results in [21, 22], we choose

list mutumorphisms [16] as our parallel computation model.

Definition 7 (List Mutumorphisms) The functions h1 . . . hn are called list mu-

tumorphisms (or mutumorphisms for short) if they are mutually defined in the

following way:

hj [a] = kj a

hj (x ++ y) = ((4n
1 hi) x ) ⊕j ((4n

1 hi) y)

Particularly, a single function, say hi , is said to be a list mutumorphism, if there

exist a set of functions h1, . . . , hi−1, hi+1, . . . , hn which together with hi satisfying

the above equational form.

4n
1 fi abbreviates f1 M . . . M fn where M is a binary operator on tuples, de-

fined by

(f M g) a = (f a, g a).

Mutumorphisms have more powerful descriptive power than homomorphisms.

They are considered as most general recursive functions defined in an inductive

manner [16], being capable of describing most interesting functions. They can be

automatically transformed into efficient homomorphisms via tupling calculation as

have been intensively studied in [8, 22].

Theorem 11 (Tupling [22]) Let h1, . . . , hn be mutumorphism as defined in Defi-

nition 7. Then, 4n
1 hi = ([ 4n

1 ki ,4n
1 ⊕i ]) where ([ k , ⊕]) = (reduce ⊕) ◦ (map k).
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4.2 Parallel Code Derivation

Our running example is the following general definition of a sequential function f :

f [a] = Ctx1[a, (q x )]

f (a : x ) = Ctx2[a, 〈(q x )〉, (f x )]

— Ctx1 and Ctx2 are arbitrary contexts

If f is well-PTyped, f can be normalized to an s-value. In this section, we show

how to parallelize each s-value automatically. If f has return type R[ ], parallel code

is obvious [23]. For other cases, we consider them one by one. Auxilary functions

are defined in Figure 4.1. Note: “gi a (q x )” can be considered and read as “any

expression involving a and/or (q x )”.

If the RHS of f is normalized to a bv of the form

f(a : x) = g1 a (q x) ⊕1 · · · ⊕n−1 gn a (q x) ⊕n •

function f ’s parallel version is as follows.

f [a] = Ctx1[a]

f (xl ++ xr)

= h1 xl (q xr) ⊕1 . . . ⊕n−1 hn xl (q xr) ⊕n (f xr)

If the RHS of f is normalized to an s-value of the form

f (a : x ) =

let v = g1 a (q x ) ⊕1 . . . ⊕n−1 gn a (q x ) ⊕n •

in gc a (q x )

function f ’s parallel version is as follows.

f [a] = gc a (q x )

f (xl ++ xr)

= let v = h1 xl (q xr) ⊕1 . . . ⊕n−1 hn xl (q xr) ⊕n (f xr)

in f xl
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ha [a] z = ga a z

ha (xl ++ xr) z = ha xl (q xr ⊕q z ) ∨ ha xr z

hb [a] z = gb a z

hb (xl ++ xr) z

= if ha xl (q xr ⊕q z ) then hb xl (q xr ⊕q z )

else h1 xl (q xr ⊕q z ) ⊕1 . . . ⊕n−1

hn xl (q xr ⊕q z ) ⊕n hb xr z

— hi ∀ 1 ≤ i ≤ p is defined as follows.

hi [a] = gi a z

hi (xl ++ xr) z

= hi xl (q xr ⊕q z ) ⊕i . . . ⊕n−1 hnxl (q xr ⊕q z )

⊕n hi xr z

Figure 4.1: Auxillary functions

If the RHS of f is normalized to an s-value of the form

f (a : x ) = if ga a (q x )then gb a (q x )

else g1 a (q x ) ⊕1 . . . ⊕n−1 gn a (q x ) ⊕n •

function f ’s parallel version is as follows:

f [a] = Ctx1[a]

f (xl ++ xr) =

if ha xl (q x )then hb xs (q x )

else h1 xl (q xr) ⊕1 . . . ⊕n−1 hn xl (q xr) ⊕n (f xr)

If the RHS of f is normalized to an s-value of the form
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f (a : x ) =

if ga a (q x )then gb a (q x )

else let v = g1 a (q x ) ⊕1 . . . ⊕n−1 gn a (q x ) ⊕n •

in gc a (q x )

function f ’s parallel version is as follows.

f [a] = gc a (q x )

f (xl ++ xr)

= if ha xl (q x )then hb xs (q x )

else let v = h1 xl (q xr) ⊕1 . . . ⊕n−1 hn xl (q xr) ⊕n (f xr)

in f xl

4.3 Correctness of Algorithm for Parallel Code

Derivation

In [23], a primitive form f (a : x ) = g a (q x ) ⊕ (f x ) and a conditional form

f (a : x ) = if g1 a (q1 x ) then g2 a (q2 x ) ⊕ (f x )

else g3 a (q3 x )

.

Parallel versions and the correctness proofs for each form are given in [23] as well.

In this thesis, with respect to the primitive form, we introduce a more general form

bv that involves arbitrary number of binary operators (which fullfill extended ring

property). In this chapter, we want to show the correctness of the parallel code

derived for bv . The correctness of the parallel code derived for general conditional

form follows from this proof. Regarding let-expression, the gist of the parallel code

derivation is for the bv . That is to say, it suffices to show the correctness of the

parallel code derived for bv .

Firstly, given f (xl ++ xr) = (h1 xl) op1 (h2 xl) op2 (f xr) is the parallel version

of f (a : x ) = (g1 a) op1 (g2 a)op2 (f x ), we want to show
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h1 (xl ++ xr) = (h1 xl) op1 (h2 xl) op2 (h1 xr)

h2 (xl ++ xr) = (h2 xl) op2 (h2 xr)

are the parallel versions of g1 and g2 respectively.

Proof 8 We make use of the associative property of the constructor ++ i.e. the

fact that f ((xl1 ++ xl2) ++ xr) = f (xl1 ++ (xl2 ++ xr)).

f ((xl1 ++ xl2) ++ xr)

= (h1 (xl1 ++ xl2)) op1 (h2 (xl1 ++ xl2)) op2 (f xr) (4.1)

f (xl1 ++ (xl2 ++ xr))

= (h1 xl1) op1 (h2 xl1) op2 (f (xl2 ++ xr))

= (h1 xl1) op1 (h2 xl1) op2 ((h1 xl2) op1 (h2 xl2) op2 (f xr))

— op2 is distributive over op1.

= (h1 xl1) op1 (((h2 xl1) op2 (h1 xl2)) op1 ((h2 xl)op2 (h2xl2) op2 (f xr)))

— op1 is associative.

= ((h1 xl1) op1 ((h2 xl1) op2 (h1 xl2))) op1

((h2 xl1) op2 (h2 xl2) op2 (fxr)) (4.2)

Since f ((xl1 ++ xl2) ++ xr) = f (xl1 ++ (xl2 ++ xr)), after unifying the RHS

of equation 4.1 and 4.2 we have

h1 (xl1 ++ xl2) = (h1 xl1) op1 (h2 xl1) op2 (h1 xl2)

h2 (xl1 ++ xl2) = (h2 xl1) op2 (h2 xl2)

(end of proof)

Secondly, we show that given f (xl ++ xr) = (h1 xl) op1 (h2xl) op2 (h3 xl) op3

(f xr) to be the parallel version of f (a : x ) = (g1 a (q x )) op1 (g2 a (q x )) op2

(g3 a (q x )) op3 (f x ),
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h1 (xl ++ xr) = (h1 xl) op1 (h2 xl) op2 (h3 xl) op3 (h1 xr)

h2 (xl ++ xr) = (h2 xl) op2 (h3 xl) op3 (h2 xr)

h3 (xl ++ xr) = (h3 xl) op3 (h3 xr)

are the parallel versions of g1, g2 and g3 respectively.

Proof 9 We make use of the associative property of the constructor ++ i.e. the

fact that f ((xl1 ++ xl2) ++ xr) = f (xl1 ++ (xl2 ++ xr)) again.

f ((xl1 ++ xl2) ++ xr)

= (h1 (xl1 ++xl2)) op1 (h2 (xl1 ++xl2)) op2 (h3 (xl1 ++xl2)) op3 (f xr) (4.3)

f (xl1 ++ (xl2 ++ xr))

= (h1 xl1) op1 (h2 xl1) op2 (h3 xl1) op3 (f (xl2 ++ xr))

= (h1 xl1) op1 (h2 xl1) op2 (h3 xl1) op3

((h1 xl2) op1 (h2 xl2) op2 (h3 xl2) op3 (f xr))
— op3 is distributive over op1.

= (h1 xl1) op1 (h2 xl1) op2 (((h3 xl1) op3 (h1 xl2)) op1

(h3 xl1) op3 ((h2 xl2) op2 (h3 xl2) op3 (f xr)))
— op3 is distributive over op2.

= (h1 xl1) op1 (h2 xl1) op2(((h3 xl1) op3 (h1 xl2)) op1

((h3 xl1) op3 (h2 xl2)) op2 (h3 xl1) op3 ((h3 xl2) op3 (f xr)))
— op3 is associative.

= (h1 xl1) op1 (h2 xl1) op2(((h3 xl1) op3 (h1 xl2)) op1

((h3 xl1) op3 (h2 xl2)) op2 ((h3 xl1) op3 (h3 xl2)) op3 (f xr)))
— op2 is distributive over op1.

= (h1 xl1) op1 (((h2 xl1) op2 ((h3 xl1) op3 (h1xl2))) op1

(h2 xl1) op2((h3 xl1) op3 (h2 xl2)) op2 (((h3 xl1) op3 (h3 xl2)) op3 (f xr)))
— op2 is associative.

= (h1 xl1) op1 (((h2 xl1) op2 ((h3 xl1) op3 (h1xl2))) op1

((h2 xl1) op2((h3 xl1) op3 (h2 xl2))) op2 ((h3 xl1) op3 (h3 xl2)) op3 (f xr))
— op1 is associative.
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= ((h1 xl1) op1 (h2 xl1) op2 (h3 xl1) op3 (h1 xl2)) op1

((h2 xl1) op2 ((h3 xl1) op3 (h2 xl2))) op2

((h3 xl1) op3 (h3 xl2)) op3 (f xr) (4.4)

Since f ((xl1 ++ xl2) ++ xr) = f (xl1 ++ (xl2 ++ xr)), after unifying equation 4.3

and 4.4 we have

h1 (xl1 ++ xl2) = (h1 xl1) op1 (h2 xl1) op2 (h3 xl1) op3 (h1 xl2)

h2 (xl1 ++ xl2) = (h2 xl1) op2 (h3 xl1) op3 (h2 xl2)

h3 (xl1 ++ xl2) = (h3 xl1) op3 (h3 xl2)

(end of proof)

The proofs for the above two cases give us confidence to give the following

theorem.

Theorem 12 Given function

f [a] = Ctx1 [a]

f (a : x ) = (g1 a) ⊕1 . . . ⊕n−1 (gn a) ⊕n (f x ),

the parallel version of f and the parallel versions of hi ∀ 1 ≤ i ≤ n are

f [a] = Ctx1[a]

f (xl ++ xr) = (h1 xl) ⊕1 . . . ⊕n−1 (hn xl) ⊕n (f xr)

and

hi [a] = gi a z

hi (xl ++ xr) z = (hi xl) ⊕i . . . ⊕n−1 (hn xl) ⊕n (hi xr)

respectively.
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Proof 10 We prove it using mathematical induction on the number of operators

used in the function body. Let P(n) be the statement in the theorem 12 for n

operators used in the function definition. Assume P(k) is true. i.e.

P(k): Given

f [a] = Ctx1 [a]

f (a : x ) = (g1 a) ⊕1 . . . ⊕k−1 (gk a) ⊕k (f x ),

the parallel version of f and the parallel versions of hi ∀ 1 ≤ i ≤ k are

f [a] = Ctx1[a]

f (xl ++ xr) = (h1 xl) ⊕1 · · · ⊕k−1 (hk xl) ⊕k (f xr)

and

hi [a] = gi a z

hi (xl ++ xr) z = (hi xl) ⊕i . . . ⊕k−1 (hk xl) ⊕k (hi xr)

respectively.

We want to show P(k + 1) is true. Since variable n denotes the number of

operators used in the function definition, there is no difference to place the (k + 1)th

term (gk+1 xl) at the 0th position or (k + 1)th position. For the easy reading of the

proof, we put it at position 0 and use numbering 0 instead of (k + 1).

P(k + 1): Given

f [a] = Ctx1 [a]

f (a : x ) = (g0 a) ⊕0 (g1 a) ⊕1 . . . ⊕k−1 (gk a) ⊕k (f x )

Let

f (xl ++ xr) = (h0 xl) ⊕0 (h1 xl) ⊕1 · · · ⊕k−1 (hk xl) ⊕k (f xr)

We know
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f (xl1 ++ xl2) ++ xr) = h0 (xl1 ++xl2) ⊕0

(h1 (xl1 ++xl2) ⊕1 . . . ⊕k−1 hk (xl1 ++xl2) ⊕k (f x)) (4.5)

f (xl1 ++ (xl2 ++ xr))

= h0 xl1 ⊕0 (h1 xl1 ⊕1 . . . hk xl1 ⊕k (f (xl2 ++ xr))

= h0 xl1 ⊕0 h1 xl1 ⊕1 . . . hk xl1 ⊕k (h0 xl2 ⊕0 h1 xl1 ⊕1 . . . hn xl1 ⊕k (f xr))

:

:

= (h0 xl1 ⊕0 h1 xl1 ⊕1 . . . hk xl1 ⊕k h0 xl2) ⊕0

((h1 xl1 ⊕1 . . . hk xl1 ⊕k h1 xl2) ⊕1 . . . ⊕k (f xr)) (4.6)

Since f ((xl1 ++ xl2) ++ xr) = f (xl1 ++ (xl2 ++ xr)), after unifying terms at

RHS of both definition 4.5 and 4.6, we have

h0 [a] = g0 a z

h0 (xl1 ++ xl2) = h0 xl1 ⊕0 h1 xl1 ⊕1 . . . hk xl1 ⊕k h0 xl2

hi [a] = gi a z

hi (xl ++ xr) z = (hi xl) ⊕i . . . ⊕k−1 (hk xl) ⊕k (hi xr) ∀ i . 1 ≤ i ≤ k

By induction hypothesis, we know

hi [a] = gi a z

hi (xl ++ xr) z = (hi xl) ⊕i . . . ⊕k−1 (hk xl) ⊕k (hi xr) ∀ i . 1 ≤ i ≤ k

gives P(k). Thus,

hi [a] = gi a z

hi (xl ++ xr) z = (hi xl) ⊕i . . . ⊕k−1 (hk xl) ⊕k (hi xr) ∀ i . 0 ≤ i ≤ k

proves the P(k + 1) case and therefore proves the theorem 12. (end of proof)



Chapter 5
Examples

In this section, we show some interesting well-PTyped sequential programs by giving

their PType and their corresponding parallel code in mutumorphism form. Note

that all parallel code derived by our system can be transformed into more efficient

code as mentioned in Chapter 4.

5.1 Conditional Form

The following function, f7, traverses a list and returns an integer.

#(Int , [+,×], [0, 1])

f7 [a] = a

f7 (a : x ) = if (a > 5) then a + f7 x

else a × f7 x

Let us initialize Γ = { a 7→ N , x 7→ N }. The main steps of PType inference of

the RHS of f7 is illustrated below:
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W‖κ(if (a > 5) then a + f7 x else a × f7 x ,Γ)

W‖κ((a > 5),Γ)

⇒ (N, {})

W‖κ(a + f7 x, app({},Γ))

⇒ (RΠ1
, θ1) where Π1 = [+] ./ β2; θ1 = {β1 7→ Π1}

W‖κ(a × f7 x, app((θ1 ; {}),Γ))

⇒ (RΠ2
, θ2) where Π2 = [×] ./ β4 ; θ2 = {β3 7→ Π2}

U(RΠ1
, RΠ2

)

⇒ θ3 where θ3 = {β2 7→ [×] ./ β5, β4 7→ [+] ./ β5}

⇒ (R[+,×] ./ β5
, θ3 ;θ2 ; θ1)

The expression if (a > 5) then a + f7 x else a × f7 x is normalized to an s-

value of the following form.

(if (a > 5) then a else 0) + (if (a > 5) then 1 else a) × (f7x )

Parallel code derived is given below:

f7 [a] = if (a > 5) then a else 0

f7 (xl ++ xr) = h1 xl + h2 xl × f7 xr

h1 [a] = if (a > 5) then a else 0

h1 (xl ++ xr) = h1 xl + h2 xl × h1 xr

h2 [a] = if (a > 5) then 1 else a

h2 (xl ++ xr) = h2 xl × h2 xr

This example shows the usefulness of the identities provided for each operator used

in the program.
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5.2 mss Problem

Consider a sequential program to find the maximum segment sum (mss) of a list.

#(Int , [max , +], [0, 0])

mis [a] = a

mis (a : x ) = a ‘max ‘ (a + mis x )

mss [a] = a

mss (a : x ) = (a ‘max ‘ (a + mis x )) ‘max ‘ mss x

In the definition of function mss, it calls function mis with argument x , the

recursion parameter. This implies the parallelization of mss requires the paral-

lelization of mis to be present. Thus, we need to type check function definition of

mis before that of mss. The PType inferred for both definition are: mis :: R[max ,+]

and mss :: R[max ] respectively.

Parallel codes derived are given below:

mis [a] = a

mis (xl ++ xr) = h1 xl ‘max ‘ (h2 xl + mis xr)

h1 [a] = a

h1 (xl ++ xr) = h1 xl ‘max ‘ (h2 xl + h1 xr)

h2 [a] = a

h2 (xl ++ xr) = h2 xl + h2 xr

mss [a] = a

mss (xl ++ xr) = h3 xl (mis xr)‘max ‘ mss xr

h3 [a] z = a ‘max ‘ z

h3 (xl ++ xr) z = h3 xl (mis xr ‘max ‘ z ) ‘max ‘ h3 xr z
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5.3 List and Higher-Order Skeletons

For a function that returns a list, we may use the annotation #(List , [++,map2], [Nil ,Nil ]),

where map2 is defined as follows:

y ‘map2‘ z = map (y ++) z

Function map2 has the following properties:

— distributive over ++

y ‘map2‘ (zl ++ zr) = y ‘map2‘ zl ++ y ‘map2‘ zr

— semi-associative

x ‘map2‘ (y ‘map2‘ z ) = (x ++ y) ‘map2‘ z

When map2 is used as a binary operator for scan, as shown below:

#(List , [++,map2], [Nil ,Nil ])

scan [a] = [ [a] ]

scan (a : x ) = [ [a] ] ++ ([a] ‘map2‘ (scan x ))

we can infer that scan has type R[++, map2]
1.

Parallel codes derived are given below:

scan [a] = [ [a] ]

scan (xl ++ xr) = h1 xl ++ h2 xl ‘map2‘ scan xr

h1 [a] = [ [a] ]

h1 (xl ++ xr) = h1 xl ++ h2 xl ‘map2‘ h1 xr

h2 [a] = [ [a] ]

1Usually programmers may write recursive part of scan as:

scan(a : x ) = a : ([a]‘map2‘(scanx )). Before type-checking, we can transform this to

[a] ++([a]‘map2‘(scanx )). Such transformation is trivial and will be done in a pre-processing

phase.
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h2 (xl ++ xr) = h2 xl ‘map2‘ h2 xr

In this section, we want to show higher-order skeletons lead to parallelization

with the reasoning of our PType system. Besides function scan which is one of the

higher-order skeleton candidates, map and reduce are also PTypeable.

map [] f = []

map (a : x ) f = [(f a)] ++ map x f

reduce [a] op = a

reduce (a : x ) op = a ‘op‘ reduce x op

Details of dealing with functions with parameters other than the recursion pa-

rameter is discussed in Chapter 6. For the simplicity of explanation, readers can

assume both parameters f and op in function definition of map and reduce have

NType. It is obvious that the PTypes of function map and reduce are R[++] and R[op]

respectively.

Above shows that our PType system can cover at least as many as applications

that using higher-order skeletons. Functions that need accumulating parameters

and non-linear recursion are not supported by higher-order skeletons, however, they

are supported by the PType system. Detailed on this is discussed in Chapter 6.

5.4 Fractal Image Decompression

A fractal image may be encoded by a series of mappings, called affine transforma-

tions, which are combinations of scalings, rotations and translations of the coor-

dinate axes. This problem was considered in [18]. For clarity, we only present the

type-inference and parallelization of those important functions used in the process

of fractal image decomposition. The auxilliary function nodup removes repeated
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occurrences of a value in a list effectively generating a set. We assume efficient

implementation of nodup is provided.

#(List , [++], [Nil ])

#(Set , [union], [Nil ])

tr :: [(a → a, a)] → [a]

tr [(f , p)] = [f p]

tr ((f , p) : fs) = [f p] ++ tr fs

k :: [[a]] → [a]

k [a] = nodup (tr a)

k (a : x ) = nodup (tr a) ‘union‘ (k x )

Types of tr and k are R[++] and R[union] respectively.

Parallel code derived:

tr [(f , p)] = [f p]

tr (xl ++ xr) = h1 xl ++ tr xr

h1 [(f , p)] = [f p]

h1 (xl ++ xr) = h1 xl ++ h1 xr

k [a] = nodup (tr a)

k (xl ++ xr) = h2 xl ++ k xr

h2 [a] = nodup (tr a)

h2 (xl ++ xr) = h2 xl ++ h2 xr



Chapter 6
Extensions

In this section, we show the PType system can be extended to cover broader classes

of parallelizable code.

6.1 Multiple Recursion Parameters

When a function has multiple recursion parameters, we require the function re-

curses over all its recursion parameters at the same frequency whose formal defi-

nition is as follows.

Definition 8 A recursive function f is said to recurse over all its recursion pa-

rameters at the same frequency if f is in the form

f [a1] . . . [an ] = Ctx [a1, . . . , an ]

f (a1 : x1) . . . (an : xn) = . . . (f x1 . . . xn) . . .

where Ctx [] is an arbitrary context and expression . . . (f x1 . . . xn) . . . says any

recursive call in the definition should be in the form of (f x1 . . . xn).

For example, function definition of zip satisfies this requirement as zip is defined

as follows.
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zip [a] [b] = [(a, b)]

zip (a : x ) (b : y) = [(a, b)] ++ zip x y

For the simplicity of presentation, we use −→x (for the rest of the thesis) to express

x1 . . . xn . In order to handle multiple recursion parameters, we can simply replace

all (f x ) with (f −→x ) in the type checking rules and the inference algorithm and

adding {a1 :: N , . . . , an :: N , x1 :: N , . . . , xn :: N } to Γ before type checking the

RHS of the function definition. In the case of zip, its type is R[++].

The correctness of the above type checking strategy can be reasoned as follow-

ing:

Since the function recurses all its recursion parameters at the same frequency, we

can zip all recursion parameters to form one recursion parameter using function

mzip (multiple zip). Definition of mzip is

mzip [a1] . . . [an ] = [(a1, . . . , an)]

mzip (a1 : x1) . . . (an : xn) = (a1, . . . , an) : mzip x1 . . . xn

Thus, the parallelizability of the function with multiple recursion parameters (of

same recursive frequency) is as same as the function with one recursion parameters.

6.2 Accumulating Parameters

When a function f has accumulating parameters, we shall type check each of them

individually to see if they are well-PTyped before we type check the body of f . If

one of the accumulating parameters is ill-typed, function f is considered ill-typed

regardless of whether the function body is well-typed or not. Thus, given a function

definition

f (a1 : x1) . . . (an : xn) p1 . . . pi . . . pn = e

where e is in the form . . . (f −→x e1 . . . ei . . . en) . . . and p1 . . . pn are accumulating

parameters, we need to do the following:



6.2 Accumulating Parameters 73

1. We extract context for each accumulating parameter pi using the function C

which is defined in Figure 6.1.

2. ∀ i . i ∈ {1, . . . , n}. let e ′
i be the result of C[[ e ]]pi

.

Γ ∪ {ai :: N , xi :: N , pi :: N ∀ i . i ∈ {1, . . . , n}} `pi
e ′
i :: ρi

3. Γ ∪ {ai :: N , xi :: N , pi :: N ∀ i . i ∈ {1, . . . , n} `(f −→x ) e :: RS

4. Normalization rules in Figures 2.3, 2.4, 2.5, 2.6 and 2.7 can be applied to

e ′
i with pi as • ∀ i . i ∈ {1, . . . , n}

5. Same parallel code derivation strategy can be used for each accumulating

parameter with pi as •.

Function C (defined in Figure 6.1) takes the expression e and an accumulat-

ing parameter pi as inputs and returns an expression which is the context of the

accumulating parameter pi . The second field of the returned results from C is

for eliminating redundant context. If the second field is True, it means that the

expression in the first field may be redundant; if the second field is False, it means

that the expression in the first field must be part of the context of the accumulating

parameter.

For example,

f8 [a] c = a

f8 (a : x ) c = if (a > 0) then a + (f8 x (1 + c))

else a × (f8 x (a + c))

C[[ if (a > 0) then a + (f8 x (1 + c)) else a × (f8 x (a + c))]]c =

if (a > 0) then 1 + c else a + c

Generally speaking, expressions not involving recursive calls tend to be redun-

dant. Particularly, a in expression (a + (f8 x (1 + c))) is redundant for captur-

ing the context of the accumulating parameter c (similarly for the a at the left



6.2 Accumulating Parameters 74

operand of × in expression (a × (f8 x (a + c)))). The expression involving the

accumulating parameter in the recursive call must be part of the context. Specifi-

cally, expressions (1 + c) and (a + c) are part of the context of the accumulating

parameter c.

For if-expression, if both branches have recursive call (like the above example),

the conditional test must be captured. If one of the branches has recursive call, the

conditional test is redundant and only the context from the branch with recursive

call needs to be captured.

For example, we have function definition

f9 [a] c = a

f9 (a : x ) c = if (a > 0) then a + f9 x (1 + c) else a + c

C [[ if (a > 0) then a + f9 x (1 + c) else a + c ]]c = 1 + c

Note that although accumulating parameter c appears at else-branch, it is not

in a recursive call. Thus, it does not play a role in parallelizing the accumulating

parameter and it is a redundant context.

When an expression may be redundant, we still need to propagate it. The reason

is that if the accumulating parameter depends on the value of such expression, the

expression will no longer be redundant. This usually happens in a let-expression.

For example,

f10 [a] = 0

f10 (a : x ) c = let d = a + 1 in f10 x (d + c)

Although d is an expression involving neither a recursive call nor the accumulating

parameter c, it is used in the accumulating argument (d + c). Thus,

C[[ let d = a + 1 in f x d + c ]]c = let d = a + 1 in (d + c)

.
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C :: Exp → Var → (Exp, Bool)

C[[ n ]]pi
= (n, True)

C[[ v ]]pi
= (v , True)

C[[ f −→x e0 . . . ei . . . en ]]pi
= (ei , False)

C[[ g e0 . . . en ]]pi
= (g e0 . . . en , True)

C[[ e1 ⊕ e2 ]]pi
= let (e ′1, b1) = C[[ e1 ]]pi

(e ′2, b2) = C[[ e2 ]]pi

in case (b1, b2) of

(True, True) → (e1 ⊕ e2, True)

(True, False) → (e ′2, False)

(False, True) → (e ′1, False)

(False, False) → error
C[[ if e0 then e1 else e2]]pi

= let (e ′1, b1) = C[[ e1 ]]pi

(e ′2, b2) = C[[ e2 ]]pi

in case (b1, b2) of

(True, True) → (if e0 then e1 else e2, True)

(True, False) → (e ′2, False)

(False, True) → (e ′1, False)

(False, False) → (if e0 then e ′1 else e ′2, False)
C[[ let v = e1 in e2 ]]pi

= let (e ′1, b1) = C[[ e1 ]]pi

in if b1 then let (e ′2, b2) = C[[ e2 ]]pi

in if b2 then (let v = e1 in e2, True)

else (let v = e ′1 in e ′2, False)
else (e ′1, False)

Figure 6.1: Definition of Context-Derivation Function C.
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6.2.1 Example 1 - pack

Consider function pack which takes a list of integers and converts them to a single

integer. For example, pack [1, 2, 3] 0 will return 123.

pack [ ] c = c

pack (a : x ) c = pack x (a + 10 × c)

For the accumulating parameter c, we have

Γ ∪ {a :: N, x :: N} `c (a + 10 × c) :: R[+,×].

Since the accumulating parameter c is well-PTyped, we continue type-checking the

body of the function definition pack . It is obvious that

Γ ∪ {a :: N, x :: N} `(pack x) pack x (a + 10 × c) :: R[ ].

Therefore, function pack is well-PTyped.

6.2.2 Example 2 - Bracketing Problem

Bracketing problem is a language recognition problem for determining whether the

brackets ’(’ and ’)’ in a given string are correctly matched. This problem has a

straightforward linear sequential algorithm, in which the string is examined from

left to right. A counter is initialized to 0, and increased or decreased as opening

and closing brackets are encountered. This definition is taken from [23].

#(Bool , [∧], [True])

#(Int , [+, ∗], [0, 1])

sbp x = sbp ′ x 0

sbp ′ [ ] c = c == 0

sbp ′ (a : x ) c = if (a == ‘(‘) then sbp ′ x (c + 1)

else if (a == ‘)‘) then c > 0 ∧ sbp ′ x (c − 1) else sbp ′ x c
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Two annotations are needed in order to type-check this program. The first annota-

tion says that for expression of type Bool , operator ∧ can be used and its identity

(i.e. unit) is True. The second annotation has been explained in earlier chapters.

C[[ RHS of sbp ′]]c = if (a == ‘(‘) then 1 + c

else if (a == ‘)‘) then (−1) + c else c

The PType inferred are : sbp :: N , c :: R[+] and sbp ′ :: R[∧]. Note that, when we

type check function body of sbp ′, the PType of c is initialized to N .

6.3 Non-linear Recursion

In previous chapters, we only consider linear recursion. However, we can extend

the PType system to cover a subset of non-linear recursion with an additional

requirement that ⊕ must be commutative. This requirement is often found in

parallel works on non-linear recursion.

To parallelize mutually defined non-linear recursive functions, we need to group

these functions together forming a tuple and type-check them together. Thus,

extending κ to a set which captures the names of different recursive calls is crucial.

For self-recursive non-linear recursive functions, the group will become a singleton

set.

6.3.1 Strategy

Given mutually defined recursive functions as follows

f1 (a : x ) = e1

f2 (a : x ) = e2

:

:
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fm (a : x ) = em

where e1 = g11 a (q1 x ) ⊕ · · · ⊕ (g1m a (qm x ) ⊗ fm x )

e2 = g21 a (q4 x ) ⊕ . . . ⊕ (g2m a (qm x ) ⊗ fm x )

:

:

em = gm1 a (q4 x ) ⊕ . . . ⊕ (gmm a (qm x ) ⊗ fm x ),

Function gi is an arbitrary function (i.e. an arbitrary context) involving a and

qi x ) ∀ i , j ∈ {1, . . . ,m}. We need to do the following in order to obtain its parallel

counterpart :

1. Group function definitions to form (f1, . . . , fm) = (e1, . . . , em).

2. Type check ej ∀ j . 1 ≤ j ≤ m with rules in Figure 3.2, Figure 3.3 together

with the rule op-RR.

S = ⊕ : S′ (length S) ≤ 2 ⊕ is commutative

Γ `{(f1 x),...,(fm x)} e1 :: RS Γ `{(f1 x),...,(fm x)} e2 :: RS

Γ `{(f1 x),...,(fm x)} (e1 ⊕ e2) :: RS

(op− RR)

3. Type check (e1, . . . , em) with rule non-linear.

Γ `{(f1 x),...,(fm x)} ej :: RS ∀ j.1 ≤ j ≤ m

Γ `{(f1 x),...,(fm x)} (e1, . . . , ej, . . . , em) :: RS

(non− linear)

4. If (f1, . . . , fm) is well-PTyped, normalize each ej∀ j . 1 ≤ j ≤ m.

5. It is trivial to generalize the parallel code in [23] to obtain the parallel

counter-part for functions f1 . . . fm .

Theorem 13 (Non-linear Recursion) For any function definition consisting of

multiple recursive calls and involving use of more than two operators related to

recursive calls (even if they satisfy extended ring property), it is not parallelizable

with respect to the theorem of context preservation.
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We need to show that context preservation does not hold for such function

definition. After unfolding each recursive calls, the resulting form cannot match

back to the original form of the function definition. By the theorem of context

preservation, the parallelizability of the function is unknown. Thus, such function

is not parallelizable by our system.

Since there is no completeness proof for the theorem of context preservation,

there may possibly exist other methods to parallelize such function.

Theorem 13 explains why we need the condition (length S ) ≤ 2 in rule op-RR.

The constraint (length S ) ≤ 2 indicates at most two operators in S are allowed to

relate recursive calls.

Remark: we have yet to know any work that demonstrate the parallelization of

a non-linear recursive function with accumulating parameters.

6.3.2 Example - Fibonacci Number

Function lfib computes Fibonacci Number. We take this example from section

4.2.4 of [23] in which corresponding parallel code is provided.

lfib [ ] = 1

lfib (a : x ) = lfib x + lfib ′ x

lfib ′ [ ] = 0

lfib ′ (a : x ) = lfib x

Sketch of type checking is shown below.

Γ ∪ {a :: N , x :: N } `{(lfib x),(lfib′ x)} (lfib x + lfib ′ x ) :: R[+]

Γ ∪ {a :: N , x :: N } `{(lfib x),(lfib′ x)} (lfib x ) :: R[ ]

— R[ ] <: R[+]

Γ ∪ {a :: N , x :: N } `{(lfib x),(lfib′ x)} (lfib x ) :: R[+]

Γ ∪ {a :: N , x :: N } `{(lfib x),(lfib′ x)} ((lfib x + lfib ′ x ), (lfib x )) :: R[+]
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Thus, lfib and lfib ′ can be parallelized.



Chapter 7
Implementation

We have implemented a prototype of PType system in Haskell 98 [25], a widely used

purely functional language. The implementation corresponds closely to the theory

developed in the previous chapters. All the examples presented in Chapter 5 have

been verified with this implementation. The expression syntax recognized by the

prototype is a subset of the language Haskell.

We provide executable code for two platforms

1. Microsoft WindowsXp (version 2002)

2. Linux Red Hat 7.2

Softwares/Tools used to compile source code include

1. Happy 1.13 (Parser Generator for Haskell)

2. Glasgow Haskell Compiler GHC-5.04.2

7.1 Experiments

We have tested our system with sample files of different sizes. The purpose of doing

such experiment is to show the scalability of our analysis. The time taken to do
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(PType inference + normalization + parallel code generation) for each application

is shown in Table 7.1. The results in the table verify the time complexity of par-

allelization process (PType inference + normalization + parallel code generation)

is O(n2). (The PType inference and parallel code generation both have time com-

plexity of O(n) and normalization has time complexity of O(n2) which contributes

to the overall time complexity.)

Table 7.1: Statistics

Option Lines of Code total computation time (sec)

Sample1 100 0.92

Sample2 200 3.96

Sample3 400 18.18

Sample4 600 39.26

Sample5 800 71.50

Sample6 1000 107.68

Further more, we have tried one benchmark - matrix multiplication whose func-

tional definition is taken from [1] where ip is inner product, distl is distribute left,

distr is distribute right, and trans is transpose. Its definition in Haskell syntax is

in Figure 7.1. Total time taken to do type checking, normalization and parallel

code generation for matrix multiplication function definition is 0.10sec.

7.2 PType Online

We have provided a web interface to the PType system. The URL is

http://loris-1.ddns.comp.nus.edu.sg/˜ xun

In Figure 7.2, a snapshot of the web interface is shown. Users have two ways to

input the program:
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combine xs ys = case (xs, ys) of

([a], [b]) → [(a ++ b)]

((a : x ), (b : y)) → [(a + +b)] ++ (combine x y)
trans1 xs = case xs of

[a] → [[a]]

(a : x ) → [[a]] ++ trans1 x
trans xs = case xs of

[a] → trans1 a

(a : x ) → (trans1 a) ‘combine‘ (trans x )
ip xs ys = case (xs, ys) of

([a], [b]) → a ∗ b

((a : x ), (b : y)) → a ∗ b + ip x y
distl xs y = case xs of

[a] → [(y , a)]

(a : x ) → [(y , a)] ++ distl x y
distr xs y = case xs of

[a] → [(a, y)]

(a : x ) → [(a, y)] ++ distr x y
mapL f xs = case xs of

[a] → [f a]

(a : x ) → [f a] ++ (mapL f x )
mapLL f xs = case xs of

[a] → [f a]

(a : x ) → [f a] ++ (mapLL f x )
matrixmul a b = let b ′ = trans b

ab = (mapLL (\ (x , y) → distl y x ) (distr a b ′))

f = \ w → (mapL (\ (u, v) → (ip u v)) w)
in mapLL f ab

Figure 7.1: Matrix Multiplication Definition in Haskell
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1. upload a file directly from his/her machine by either giving the path of the

file or selecting a file using the ’Browse’ button;

2. type a program in the text field provided.

There are three options a user can choose:

1. PType which will infer PType for each top-level function;

2. Normalize which will give the normal form of each top-level function;

3. Parallelize which will show the parallel counter-part of each top-level func-

tion.
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Figure 7.2: PType System Online



Chapter 8
Related Works

To the best of our knowledge, this is the first piece of work that brings together type

system and parallelization together. Prior to our work, researchers working on type

systems do not look into parallelization, and those who work on parallelization do

not bother to use type system in their work. By bringing the two fields together, we

hope to apply the formalism of type theory to yet another important application

domain.

In our approach, we have managed to hide the detail mechanisms of type in-

ference/checking under the carpet, and provide a clean and simple interface to the

user. Users only need to provide our system with the extended ring property of the

binary operators used in the program. This provision is, in general, the minimum

that is required for users working in parallelization.

In this chapter, we shall describe related work under two broad categories and

to compare our work with existing works under each of the two categories.

86



8.1 Comparison with other Works on Parallelization 87

8.1 Comparison with other Works on Paralleliza-

tion

In our thesis, we make use of a pure functional language with strict semantics. The

parallelization technique we use also make use of implicit models. In this section,

we give a brief survey on each of these areas.

8.1.1 Functional versus Imperative

Generic program schemes have been advocated for use in structured parallel pro-

gramming, both for imperative programs expressed as first-order recurrences through

a classic result of [39] and for functional programs via Bird’s homomorphism [37].

Unfortunately, most sequential specifications fail to match up directly with these

schemes. To overcome this shortcoming, there have been calls to constructively

transform programs to match these schemes, but these proposals [35, 18] often

require deep intuition and the support of ad-hoc lemmas – making automation dif-

ficult. Another approach is to provide more specialized schemes, either statically

[34] or via a procedure [23], that can be directly matched to sequential specification.

On the imperative language (e.g. Fortran) front, there have been interests in

parallelization of reduction-style loops [15, 17]. By modelling loops via functions,

they noted that function-type values could be reduced (in parallel) via associa-

tive function composition. These propagated function-type values could only be

efficiently combined if they have a template closed under composition. This re-

quirement is similar to the need to find a common context under recursive call

unfolding, aka., context preservation, as described in [7]. Imperative loops cor-

respond to tail recursion, and this can be considered as a special case of linear

recursive forms that we are dealing with.
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8.1.2 Strict versus Non-strict

There are two broad classes of functional language: strict languages, where all the

arguments to a function are evaluated before the function itself is evaluated (e.g.

Hope [6], OPAL [13]), and non-strict languages, where arguments are evaluated

only if they are needed (e.g. pH [30], Id [29]). Some languages also use hybrid

mechanisms, where simple arguments such as integers are evaluated before the

function itself, but where complex arguments such as lists and other recursive data

structures are not (e.g. Hope [32]).

Strict languages have more predictable execution order, and are therefore more

amenable to explicitly controlled parallelism.

8.1.3 Pure versus Impure

The term purity has a well-known intuitive definition - excluding implicit side-

effects such as assignment, I/O or exceptions. In a parallel setting, side-effects are

certainly bad for automatic or semi-automatic parallelization since they inhibit

easy program decomposition into parallel tasks and introduce new dependencies

between tasks which can be difficult or impossible to disentangle without using

explicit parallel control.

Because a purely functional program has no side-effects, it is relatively easy

to partition programs so that sub-program can be executed in parallel. Any com-

putation which is needed to produce the result of the program may be run as a

separate task. The control dependencies which are implicit in the language serve

to enforce any sequential behaviour, and may also be used to limit the creation of

excess parallelism.
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8.1.4 Implicit versus Explicit

In the context of parallelism, parallel control can be distinguished into several

levels, depending on the involvement of programmers.

1. pure implicit approaches

2. restricted implicit approaches

3. controlled approaches

4. explicit approaches

Fully implicit approaches rely on the compiler and run-time system while fully

explicit approaches would specify all behavioural details, with overall control in

the hands of the almighty programmer. In implicit approaches, the system tries

to exploit parallelism that is inherent in the reduction semantics. For example, in

the case of data parallelism, we heavily exploit the parallel semantics of a set of

special operations. In languages with explicit parallelism, there is often a notion

of a standalone process and there are also language constructs for the definition of

process systems.

The most implicit approaches, which require least programmer effort for par-

allelization; are exemplified by pH [30] or evaluation transformers [4, 5]. The pH

language is a parallel, eagerly-evaluated variant of Haskell with syntactic provisions

for loops, barriers, and I and M storage structures. The arguments to a function

are evaluated in parallel and each iteration of the parallel loop-construct is simi-

larly executed as a separate task. Evaluation transformers exploit the properties of

non-strict languages, but rely on the system being able to generate good strictness

information. Each function is provided with a set of evaluation transformers, one

for each formal argument. Each transformer is a forcing operation that will evalu-

ate an actual argument to the extent required by the function, perhaps evaluating
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it to weak head normal form, or forcing evaluation of the spine of a list. In any

context where the function is used, these transformers can be applied in parallel

to the corresponding actual arguments.

Restricted implicit approaches match certain language characteristics with de-

sirable program properties. For example, in the skeleton approach, certain patterns

of computation are recognized and matched with suitable templates of parallel be-

haviour. Other examples of restricted implicit approaches include the data parallel

language NESL [3], SAC [19] and SISAL [14]. All three languages are strict, purely

functional languages, and they obtain parallelism from bulk types such as lists or

arrays. NESL provides nestable data parallel operations over lists; SISAL uses

parallel loop-constructs over arrays; while SAC uses control parallel with-loops.

Annotation-based approaches may be classified on either side of the implicit/explicit

divide. If an annotation is a directive to the compiler, then this is clearly an ex-

ample of explicit parallelism. If the annotation is a suggestion, however, that

may perhaps be checked by the compiler or even ignored entirely, then the con-

struct lies more in the realm of implicit parallelism. Besides annotation-based

approaches, controlled approaches include evaluation strategies [40] and first-class

schedules [27]. In these systems, functions are used to control parallel behaviour.

These functions are higher-order functions that manipulate sequential or parallel

program components to yield a more complex parallel program behaviour, but

whose definition is entirely within the normal semantics of the sequential program-

ming language.

In explicit approaches, not only is every detail of the parallel execution under

the programmer’s control, but it must be specified in the parallel program. In

principle, this allows a skilled programmer to produce a highly optimized parallel

program for target system architecture. This is usually achieved by providing new

parallel control constructs to deal with data partitioning, communication, and
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task placement etc. Concurrent ML [31] and Concurrent Haskell [24] fall into this

category.

8.2 Comparison with other Works on Type Sys-

tem

Type-based analysis has traditionally been used to support both program safety

and optimization. More recently, it has also been used to support program trans-

formations, such as useless variable elimination [26, 2].

[26] formalizes Useless Variable Elimination (UVE) as a type-preserving, source-

to-source transformation that replace some subterms with an void value (). In or-

der to support this particular transformation, Kobayashi formulated a type-system

which can safely determine when a particular sub-expression is useless. Coupled

with an inference algorithm for this type-system, it is possible to now formulate a

useless variable elimination transformation.

The reader may notice similar utility between our PType system and UVE type

system. However, the UVE type system is still based on the evaluation rules of the

underlying language. In contrast to the usual type system based on the underlying

language, our PType system is constructed and proven correct from a set of meta-

rules that are used for transforming programs into skeletal forms. We believe

such a bond between type meta-system and program transformation is novel, and

can help open up more sophisticated type-based analysis for computation at the

meta-level.



Chapter 9
Conclusion

Murray Cole’s characterization of algorithmic skeletons [11] through the use of

higher-order functions has inspired several prominent research effort into parallel

functional programming [36]. These research projects have investigated how im-

portant the algorithmic skeletons are, as well as, how they could be specified and

applied.

In this thesis, we have introduced a fresh alternative view to parallelization

- a transition system where initial state is the user-defined sequential program,

final state is the algorithmic skeleton and each transition is a transformation rule

(specifiable as a normalization rule). We have also introduced a PType system,

which is a novel type system for detecting parallelism for recursive functions. A

well-PTyped program is guaranteed to be parallelizable (i.e. from initial sequential

state, it is guaranteed to reach its final parallel state.)

Besides the type system, we have also given an informal description of the

algorithm (i.e. strategy) to automatically obtain parallel code from a normalized

well-PTyped sequential program and proved the correctness of the derivation. A

prototype has been implemented and a web interface has been provided for users

to test out the system. The system frees the user from the hassle of performing
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normalization (which is required in [10]) and parallelizability checking (which is

required in [23]).

The present work has several avenues for further enhancement. So far, we

assume a non-recursive function is not considered for parallelization. However,

as mentioned in Chapter 1, functions defined using higher-order skeletons are all

non-recursive functions and are parallelizable. Thus, having an enhanced type

system that can capture parallelism of both non-recursive functions and recursive

functions is desirable. Furthermore, the idea of using invariants to assist the context

preservation of expression, as described in [9], enables the detection of an evenly

broader class of parallelizable functions. To bring this idea into the framework of

type inference, it requires a new approach to discover such invariants in a inductive

manner.
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