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2 INRIA-Roquenourt, BP 105, 78153 Le Chesnay Cedex, FraneLu.Maranget�inria.frAbstrat. We aim to provide information hiding support in onurrentobjet-oriented programming languages. We study this issue both at theobjet level and the lass level, in the ontext of an objet-oriented ex-tension of Join� a proess alulus in the tradition of the π-alulus.In this extended abstrat, we fous on the lass level and design a newhiding operation on lasses. The purpose of this operation is to preventpart of parent lasses from being visible in lient (inheriting) lasses. Wede�ne its formal semantis in terms of α-onverting hidden names tofresh names, and its typing in terms of eliminating hidden names fromlass types.1 IntrodutionObjet-oriented onepts are often laimed to handle onurrent systems better.On one hand, objets, exhanging messages while managing their internal statesin a private fashion, model a pratial view of onurrent systems. On the otherhand, lasses, supporting modular and inremental development, provide an ef-fetive way of ontrolling onurrent system omplexity. Numerous fundamentalstudies suh as [6, 11℄ proposed aluli that ombine objets and onurreny.By ontrast, ombining lasses and onurreny faes the well-known obstaleof inheritane anomalies [9, 10℄, i.e., traditional overriding mehanism from se-quential settings falls short in handling synhronization behavior reuse duringinheritane. Reently, Fournet et al. have proposed a promising solution to thisproblem [5℄. The main idea is to extend the Join alulus [3℄ with objets andlasses, and more importantly to design a novel lass operation for both behav-ioral and synhronization inheritane, alled seletive re�nement.However, Fournet et al.'s model still su�ers from several limitations, mainlyin typing. Brie�y, their type system is ounter-intuitive and signi�antly restritsthe power of seletive re�nement. In prior work [7℄, we takled this problem bydesigning a new type system. We mainly enrihed lass types with omplete syn-hronization behavior to exploit the full expressiveness of seletive re�nement.However, doing so inevitably impaired the other dual role of lass types, i.e.abstration. More spei�ally, it was unlikely for two di�erent lasses to possessthe same type. How we an regain abstration beomes a subsequent interest-ing question. We manage to ahieve this goal by enabling programmers withinformation hiding apability in this paper.



Information hiding by itself is already a key issue in large-sale programming.Generally, information hiding allows programmers to deide what to export inthe interfae (whih we assimilate to types) of an implementation. This prini-ple brings advantages, suh as removing irrelevant details from interfaes andproteting ritial details of the implementation. As regards objets, one aneasily hide some omponents by delaring them to be private, as Fournet et al.and many others do. These private omponents do not appear in objet inter-faes. By ontrast, information hiding in lasses is more involved, espeially inthe presene of synhronization inheritane. The di�ulty resides in that syn-hronization introdues ertain type dependeny among names, while arelesslyhiding some of them would result in unsafe typing. We are aware of no work onthis issue. Spei�ally, if we lassify users of a lass into two ategories: objetusers who reate objets from the lass; and inheritane users who derive newlass de�nitions by inheriting the lass, the simple privay poliy applies solelyto objet users while always leaving full aess to inheritane users.We address the issue of information hiding towards inheritane users in thispaper. We do so by introduing a new expliit hiding operation in the lass lan-guage. This amounts to signi�ant hanges in both the semantis and the typingof lass operations. Theoretially, hiding a name in a lass an be expressedas quantifying it existentially. In pratie, we α-onvert hidden names to freshnames in the operational semantis and remove hidden names from lass types intyping. We believe that our proposal ahieves a reasonable balane of semantialsimpliity and expressiveness, and that it yields a pratial level of abstrationin lass types, while preserving safety. Moreover, our surprisingly simple idea ofhiding by α-onversion should apply equally well to other lass-based systems,provided they rely on strutural typing as we do.In this short paper, we fous on intuition, while making available a omple-mentary tehnial report [8℄ for omplete formalism.2 Classes, objets, and hidingBasi lass de�nition onsists of a join de�nition and an (optional) init proess,alled initializer (analog to onstrutors or makers in other languages). As anexample, we de�ne the following lass for one-plae bu�ers:
class _buffer =put(n,r) & Empty() ⊲ r.reply() & this.Some(n)

or get(r) & Some(n) ⊲ r.reply(n) & this.Empty()
init this.Empty()and instantiate an objet from it:

obj buffer = _bufferSimilar to Join, four hannels are olletively de�ned in this example andarranged in two reation rules disjuntively onneted by or. We use the twohannels put and get for the two possible operations, and the two hannelsEmpty or Some for the two possible states of a one-plae bu�er, namely, being2



empty or full. We here follow Fournet et al.'s onvention to express privay:hannels with apitalized names are private; they an be aessed only throughreursive self referenes; and the privay poliy is enfored statially.Eah reation rule onsists of a join pattern and a guarded proess, separatedby ⊲. Join patterns speify the synhronization among hannels. Namely, onlyif there are messages pending on all the hannels in a given pattern, the objetan reat by onsuming the messages and triggering the guarded proess. Asa result, this one-plae bu�er behaves as expeted: the (optional) init proessinitializes the bu�er as empty; we then an put a value when it is empty, oralternatively retrieve the stored value when it is full.By ontrast with Join� whose values are hannels, objets now beome thevalues of the alulus. As an important onsequene, hannel names are no longergoverned by the usual rules of lexial soping (objets names are). Channel namesan be seen as global, as method names are in any simple objet aluli. Fromnow on, hannel names are alled labels.The basi operation of our alulus is asynhronous message sending, butexpressed in objet-oriented dot notation, suh as in proess r.reply(n), whihstands for �send message n to the hannel reply of objet r�. Also note that weuse the keyword this for reursive self referenes, while other referenes are han-dled through objet names. Compared with the design in [5℄, this modi�ationsigni�antly simpli�es the privay ontrol in objet semantis.2.1 Inheritane and hidingInheritane is basially performed by using, i.e. omputing with, parent lassesin derived lasses. At the moment, all labels de�ned in a lass are visible duringinheritane. However, this omplete knowledge of lass behavior may not beneessary for building a new lass by inheritane. Moreover, exposing full detailsduring inheritane sometimes puts program safety at risk, and designers of parentlasses may legitimately wish to restrit the view of inheritane users.As an example, an inheritane user may attempt to extend the lass _bufferwith a new hannel put2 for putting two elements:
class _put2_buffer = _buffer

or put2(n,m,r) & Empty() ⊲ r.reply() & this.(Some(n) & Some(m))Unfortunately, this naïve implementation breaks the invariant of a one-plaebu�er. More spei�ally, the put2 attempt, one it sueeds, sends two messageson hannel Some in parallel. Semantially, this means turning a one-plae bu�erinto an invalid state where two values are stored simultaneously.In order to protet lasses from (deliberate or aidental) integrity-violatinginheritane, we introdue a new operation on lasses to hide ritial hannels.We reah a more robust de�nition using hiding:
class _hidden_buffer = _buffer hide {Empty, Some}The hiding lause hide {Empty, Some} hides the ritial hannels Empty andSome. They are now absent from the lass type and beome inaessible during3



inheritane. As a result, the previous invariant-violating de�nition of hannelput2 will be rejeted by a �name unbound� stati error. Nevertheless, program-mers an still supplement one-plae bu�ers with a put2 operation as follows:
class _put2_buffer_bis = _hidden_buffer

or put2(n,m,r) ⊲ class _join =reply() & Next() ⊲ r.reply()
or reply() & Start() ⊲ this.Next()
init this.Start() in

obj k = _join in this.(put(n,k) & put(m,k))In the ode above, the (inner) lass _join serves the purpose of onsuming twoaknowledgments from the previous one-plae bu�er and of aknowledging thesuess of the put2 operation to the appropriate objet r. One may remark thatthe order in whih values n and m are stored remains unspei�ed.2.2 Hiding only private hannelsWe here restrit our hiding mehanism only to private hannels. Suh a deisionoriginates in the problems between hiding publi hannels and supporting ad-vaned features, suh as selftype (also known as mytype) and binary methods [1℄.As observed in [13, 2℄, these two aspets do not trivially get along without en-dangering type soundness. More spei�ally, a problem manifests itself whenselftype is assumed outside the lass and we hide a publi hannel afterwards.As an example, onsider the following lass de�nitions.
class 0 = f(x) ⊲ x.b(1)
class 1 = a() ⊲ obj x = 0 in x.f(this)

or b(n) ⊲ out.print_int(n)Channel f of lass 0 expets an objet with a hannel b of type integer. Thisondition is satis�ed when typing the guarded proess of hannel a in lass 1,beause the self objet this does have a hannel b of type integer. However, laterinheritane may hide the hannel b (in lass 2), and then de�ne a new hannelalso named b but with a di�erent type string (in lass 3).
class 2 = 1 hide {b}
class 3 = 2 or b(s) ⊲ out.print_string(s)Apparently, although the above ode is typed orretly, the following proesswill ause a runtime type error: providing an integer when a string is expeted.
obj o = 3 in o.a()A simple solution adopted in the ommunity is not to support both. Fol-lowing OCaml, we hoose to support the notion of selftype and limit hiding toprivate hannels. By ontrast, Fisher and Reppy in their work for MOBY [2℄hoose the reverse: not to provide selftype and instead provide omplete ontrolover lass-member visibility. Nevertheless, a more omprehensive solution is stillpossible [13℄, however, more ompliated as well.4



3 The semantis of hidingClass semantis is expressed as the rewriting of lass-terms, while objet se-mantis by the means of re�exive hemial mahines [3℄. Class redutions alwaysterminate and produe lass normal forms, whih are basially objet de�nitions,plus an (optional) initializer, plus a a list of abstrat labels. In ases where thelatter is empty (whih an be statially ontrolled by our type systems), objetsan be reated from suh lass de�nitions in normal form. Hene, our evaluationmode is a strati�ed one: �rst rewrite lasses to objet de�nitions; then feed theresulting term and an initial input into a hemial abstrat mahine.How to hide labels? The semantis of hiding in lasses is governed by two on-erns. On one hand, hidden labels disappear. For instane, rede�ning a new labelhomonymous to a previously hidden label yields a totally new label. On the otherhand, hidden labels still exist. For instane, objets reated by instantiating thelass _hidden_buffer from Set. 2.1 must somehow possess labels to enodethe state of a one-plae bu�er.The formal evaluation rule for hiding appears as follows:Eval-Hide Γ � C ⇓C Cv (fi de�ned in Cv, hi fresh) i∈I

Γ + (c 7→ Cv{hi/fi
i∈I}H) � P ⇓P Pv

Γ � class c = C hide {fi
i∈I} in P ⇓P PvThe above inferene rule is part of the lass redution semantis (see [8℄). Judg-ments express the redution of lasses to lass normal forms, under an environ-ment Γ that binds lass names to lass normal forms (all-by-value semantis).Hiding applies only to lass normal forms (Cv), and only at lass bindingtime. The hiding proedure {hi/fi

i∈I}H is implemented by α-onverting thehidden hannels {fi
i∈I} to fresh labels {hi

i∈I}, whose de�nition is withoutsurprise. Suh a semantis makes sense beause labels are not soped. The α-onversion should apply to both de�nition ourrenes (in join patterns) andreferene ourrenes (in guarded proesses and in the init proess) of the hiddenlabels in the normal form. Thanks to the restrition to only hide private labels,the reursive self referenes in the normal form already inlude all the refereneourrenes of hidden labels. Moreover, we do not rename under nested objetde�nitions beause they re-bind this. To give some intuition, the normal formof lass _hidden_buffer from Set. 2.1 looks as follows:
class _hidden_buffer =get(r) & Some′(n) ⊲ r.reply(n) & this.Empty′()

or put(n,r) & Empty′() ⊲ r.reply() & this.Some′(n)
init this.Empty′()Here, we assume Empty′ and Some′ to be the two fresh labels that replae Emptyand Some respetively.This design meets the two onerns desribed at the beginning of this se-tion: on one hand, freshness guarantees hidden names not to be visible during5



inheritane; on the other hand, hidden names are still present in lass normalforms but under fresh identities.4 The typing of hiding4.1 Class types and objet types, athing upTypes are automatially inferred. Following our prior work [7℄, a lass type on-sists of three parts, written ζ(ρ)BW , where B lists the set of hannels, de�nedor delared in the lass, paired with the types of the messages they aept, and
W re�ets how de�ned hannels are synhronized, i.e. the struture of the joinpatterns in the orresponding lass normal form. The row type ρ ollets thepubli label-type pairs from B for the type of objets reated from this lass.To avoid repetition, in onrete syntax, ρ is usually inorporated in B that isenlosed between object and end, as in the type of lass _buffer from Set. 2:

class _buffer: object

label get: ([reply: (θ); ̺℄); label put: (θ,[reply: (); ̺′℄);
label Some: (θ); label Empty: ();

end W = {{get, Some}, {put, Empty}}We see that messages onveyed by hannels are polyadi. The type of a hannelarrying k objets of types τ1, . . . , τk is written (τ1, . . . , τk). Objet types arealways enlosed in square brakets. The type of objets of this lass is:
[get:([reply:(θ); ̺]); put:(θ, [reply:(); ̺′])]Channels Some and Empty do not show up beause they are private. Finally, Wis organized as a set of sets of labels. Two labels appear in the same member setof W if and only if they are synhronized in one join pattern.Following ML type systems, polymorphism is parametri polymorphism, ob-tained essentially by generalizing free type variables. However, suh generaliza-tion is ontrolled for objet types. More spei�ally, any type variables that areshared by synhronized hannels should not be generalized. Detailed rationalefor doing so is disussed in all kinds of Join typing papers, suh as [7, 4℄. Thebasi reason is for type safety. As an example, type variable θ should not bepolymorphi in the objet type above, beause following the lass type it isshared by two synhronized hannels get and Some (i.e. appearing in the samemember set of W ). Otherwise, its two ourrene in get and put ould then beinstantiated independently as, for instane, integer and string. This then wouldresult in a runtime type error: attempting to retrieve a string when an integer ispresent. By ontrast, θ is safely generalized in the lass type, whih allows us toreate two objets from it, one dealing with integers, and the other with strings.The two trailing row variables ̺, ̺′ are both generalizable. They an be instan-tiated as more label-type pairs, thus introduing a useful degree of subtypingpolymorphism by struture. 6



4.2 How to type hiding: ideasThe most straightforward idea is to remove hidden names from lass types. Asa onsequene, lass _hidden_buffer from Set. 2.1 has type:
class _hidden_buffer: object

label get: ([reply: (θ); ̺℄); label put: (θ,[reply: (); ̺′℄);
end W = {{get}, {put}}The two hidden hannels Some and Empty are eliminated from both the B listand W . Unfortunately, suh a naïve elimination has a side-e�et, whih mayendanger safe polymorphism in the orresponding objet type. Plainly, the non-generalizable type variable θ has now falsely beome generalizable, beause a-ording to this lass type, the only two hannels that share θ are not synhronized(i.e. get and put oming from two di�erent member sets of W ).To takle the problem, we then deide to keep trak of suh dangerous typevariables aused by hiding in lass types, alled V . More preisely, before elimi-nating, we �rst reord all the non-generalizable type variables of hidden namesin V . For this example, the type of lass _hidden_buffer then evolves to:

class _hidden_buffer: object

label get: ([reply: (θ); ̺℄); label put: (θ,[reply: (); ̺′℄);
end W = {{get}, {put}} V = {θ}Right before hiding, the type variables in a hidden hannel are of two kinds:non-generalizable or generalizable. The modi�ation above solves perfetly theproblem of losing information about non-generalizable ones. If type variablesthat are generalizable before hiding would always be kept so, we here alreadyreah a working way of typing hiding. Unfortunately, it is not the ase. Some gen-eralizable type variables of hidden hannels may later beome non-generalizableduring inheritane, even though the hannels are already hidden. Consider thefollowing lass de�nition in whih hannel Ch′ is hidden:

class 1 = a(x) ⊲ 0 or b(y) & Ch′(n1, n2) ⊲ this.(a(n1) & b(n2))The orresponding lass type is:
class 1: object label a: (θ); label b: (θ′) end W = {{a},{b}} V = {θ′}The hidden hannel Ch′ is of type (θ, θ′). Aording to the de�nition, θ′ is non-generalizable (beause shared by the synhronized hannel b) thus is put in V .By ontrast, θ is generalizable. However, the following inheritane of lass 1easily onvert θ into non-generalizable:
class 2 = match 1 with b(y) ⇒ b(y) & d(z) ⊲ this.a(z) endThis seletive re�nement operation mainly replaes �b(y)� by �b(y) & d(z)� injoin patterns and omposes the orresponding guarded proesses with �this.a(z)�in parallel. As a onsequene, lass 2 has the following normal form:
class v2 = a(x) ⊲ 0

or b(y) & d(z) & Ch′(n1, n2) ⊲ this.(a(n1) & b(n2) & a(z))The new hannel d is of type (θ). It synhronizes and shares θ with Ch′. Howeverit is already too late to update the non-generalizable information to re�et this,7



beause hidden names are already eliminated from lass types thus out of ontrolof the type system. A simple solution we adopt is to treat already all the freetype variable of hidden names as dangerous, non-generalizable and generalizable,in ase the non-generalizable ones inrease. To sum up, the �nal type of lass 1is:
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