
Automata Mista

Gérard Huet

INRIA Rocquencourt,
BP 105, 78153 Le Chesnay Cedex, France,

Gerard.Huet@inria.fr,
http://pauillac.inria.fr/~huet

Abstract. We present a general methodology for non-deterministic pro-
gramming based on pure functional programming. We construct families
of automata constructions which are used as finite-state process descrip-
tions. We use as algorithmic description language Pidgin ML, a core
applicative subset of Objective Caml.

Dedicated to Zohar Manna for his 26th birthday

1 Introduction

We assume well-known the theory of finite-state machines, as presented in e.g.
[11, 1, 5, 4]. Constructions of such machines, defined by compiling regular rela-
tions or other compositional formalism, typically alternate descriptions of deter-
ministic automata and non-deterministic ones, using possibly ε moves, since the
well known subset construction relate the two. Similarly, deterministic automata
may be assumed minimal or not. Then more complex finite machine construc-
tions may be obtained from high-level formalisms such as string rewrite rules or
reactive programs.

However, in practice it is important to minimize the number of conversions
between the various automata formats, as well as the minimization operations,
if one wants to obtain tractable compilers on real-scale descriptions.

The traditional representation of the state space of finite automata and trans-
ducers is some kind of graph datatype, allowing arbitrarily crossing or looping
transitions, but suffering from the dangers of explicit pointer reference mutation.

We shall give in this paper a number of purely applicative datatypes, and
show how to use them for the description of finite-state machines in a way which
facilitates reasoning, since induction over these structures is available, and which
minimizes the cost of maintenance and debugging, since these datastructures are
static. Furthermore such structures may be minimized as dags uniformly. We
propose a formalism of mixed transducers (it. automata mista), which merge
a deterministic skeleton with decorations by possibly non-deterministic transi-
tions. Such transducers admit minimal representations, by shrinking their state
space to a dag. We give applicative interpreters for such machines, which gener-
ate all possible transductions by resumption coroutines.

II

We give a termination argument for an important subclass of such finite
machines, which uses the Dershowitz-Manna multiset ordering [3] in a natural
way, and which is invariant by choice selection, allowing arbitrary selection tac-
tics such as preference by weights obtained by training on annotated samples or
other stochastic automata descriptions.

All our constructions use the algorithmic description language Pidgin ML, a
core applicative subset of Objective Caml [10, 2]. A useful reference for the basic
datatypes and algorithms is our description of the Zen toolkit [7, 9, 8].

2 Finite-state Machines

2.1 Simplistic Automata

We use as alphabet the natural numbers provided by the hardware processor:

type l e t t e r = in t
and word = l i s t l e t t e r ;

Simplistic automata have their state graph expressed as a lexicon tree, or
trie:

type t r i e = [Trie of (bool × a rc s)]
and a rc s = l i s t (l e t t e r × t r i e) ;

For instance, the trie storing the set of words {[1; 2], [2], [2; 2], [2; 3]} standing
for the strings {AB, B, BB, BC} is represented as

Trie (False , [(1 , Tr ie (False , [(2 , Tr ie (True , []))])) ;
(2 , Tr ie (True , [(2 , Tr ie (True , [])) ;

(3 , Tr ie (True , []))]))]) ;

Membership in a trie is expressed by a simple recursion:

(∗ mem : word → t r i e → boo l ∗)
value rec mem w = fun

[Tr ie (b , l) → match w with
[[] → b
| [n : : r] →

try mem r (L i s t . a s soc n l)
with [Not found → False]

]
] ;

Remark 1. We assume, but do not enforce, that for every letter there is at most
one arc labeled with it from any trie node. We do not assume that arcs are listed
in increasing order of the letters. More efficient implementations may use this
assumption, implement the list of arcs as a binary search tree, etc. Many such
variations exist, which may be justified by the actual application aimed at. As
usual, we consider that such optimisations ought to be studied at a late stage
in the design, after careful benchmarking on real-scale data. For the moment,
think of our arcs a-lists as simple implementations of finite maps letter → trie.

III

Every trie t defines the state graph of a simplistic automaton, whose initial
state is the top node, and accepting states are the trie nodes with a True flag:
Trie(True, l). Acceptance of a word w by the simplistic automaton t is simply
mem w t.

Simplistic automata are exactly the acyclic deterministic finite-state au-
tomata, with sharing of initial common paths. They recognize the finite lan-
guages.

2.2 Minimal Simplistic Automata

Proposition 1. Every simplistic automaton admits a unique equivalent mini-
mal simplistic automaton.

Proof. Share the lexical tree as a dag, using the Share functor[6, 8].

Remark 2. The minimal simplistic automaton recognizing a given language rep-
resents the minimal deterministic finite-state automaton which recognizes its
language. We leave the proof of this simple fact to the reader.

3 Mixed Automata

3.1 Non-deterministic Transitions

We now add a zest of non-determinism, together with potential loops in the state
space. But since we want to stay in the applicative programming paradigm of
inductive structures, we do not want to have state graphs built with mutable
references. We use a notion of virtual address, where states are named by a word
defining a path from the initial state; such a word may not be unique, in case of
sharing.

type address = [Path of word] ;

type auto = [State of (bool × dete r × cho i c e s)]
and dete r = l i s t (l e t t e r × auto)
and cho i c e s = l i s t (word × address) ;

The nondeterministic part of an auto node represents a multiset of transitions
guarded by a word. Since these guard words may be empty, we accommodate
the traditional notion of ε move from finite automata folklore, but the general
notion of a non-deterministic finite automaton as well. Indeed, the deterministic
part is optional in this respect. The only problem is that virtual addresses must
indeed point to locations accessible from the top node, whereas there exist non-
deterministic automata which have no deterministic sub-automaton spanning
the whole space set. In that case, we may still represent faithfully the non-
deterministic automaton by considering a forest of trees, rather than a single tree.
Let us assume that this forest is represented as an auto array. Since addresses
may not be local to a tree, but may point to another tree in the forest, we shall
represent them as a pair of an integer giving the tree index, and a word giving
the local path in the indexed tree; thus we replace the address type above by:

IV

type address = [Path of (i n t × word)] ;

The rest of the construction is the same as above, but now an automaton
is given as an array of auto structures, together with the address of its initial
state:

type auto = [State of (bool × dete r × cho i c e s)]
and dete r = l i s t (l e t t e r × auto)
and cho i c e s = l i s t (word × address) ;

type automaton = (array auto × address) ;

3.2 Minimal Mixed Automata

Mixed automata have minimal representations as well, obtained uniformly by
sharing their structure. However, in general such minimal representations may
not be unique. Indeed, there may be other ways of representing an equiva-
lent mixed automaton yielding smaller structures in terms of numbers of nodes
and/or edges.

Furthermore, our simplistic virtual address mechanism will prevent the recog-
nition of equivalent terminal sub-automata. Consider for example the automaton
corresponding to the regular expression AC∗ + BC∗. Representing it as (in the
unique-tree setting)

State (False , [(1 , State (True , [] , [([3] , Path [1])]))
; (2 , State (True , [] , [([3] , Path [2])]))] , []) ;

does not allow any opportunity for sharing, even though the two internal nodes
represent equivalent looping automata recognizing C∗, like in the recognizer for
(A + B)C∗ represented as

State (False , [(1 , State (True , [] , [([3] , Path [1])]))
; (2 , State (True , [] , [([3] , Path [1])]))] , []) ;

where now sharing will factor the C∗ automaton.

3.3 Bottom-up Addressing

In order to facilitate such terminal sharing, and avoid the inefficient traversal
of the state space from the root of the initial trees in the forest, we enrich our
virtual addresses with local addresses, represented with differential words [6, 8].

A differential word is a notation permitting to retrieve a word w from another
word w’ sharing a common prefix, as follows.

type de l t a = (i n t × word) ;

We compute the difference between w and w’ as a differential word (|w1|,w2)
where w=p.w1 and w’=p.w2, with maximal prefix p. In ML, we compute diff w
w’, where:

V

value rec d i f f = fun
[[] → fun x → (0 , x)
| [c : : r] as w → fun

[[] → (L i s t . l ength w , [])
| [c ’ : : r ’] as w’ →

i f c = c ’ then d i f f r r ’
else (L i s t . l ength w,w’)

]
] ;

Now w’ may be retrieved from w and d=diff w w’ as w’=patch d w, with:

value patch (n ,w2) w =
l et p=truncate n (L i s t . rev w) in unstack p w2 ;

where truncate n w is a list library function, truncating the initial prefix of length
n from a word w, and unstack appends the reverse of its first argument to its
second.

Differential words denote the shortest path between two nodes in the span-
ning tree of the structure, as an integer telling how many steps up is the closest
common ancestor, coupled with a word giving the path down. Now we authorize
both global and local virtual addresses:

type address = [Global of de l t a | Local of de l t a] ;

The mixed automaton type is defined as above, using this new address type.
Global plays the rôle of Path above, and its argument type is recognized as
isomorphic to delta, but different operations apply to global and local addresses.

Thus the automaton above may now be represented as the tree:

State (False , [(1 , State (True , [] , [([3] , Local (0 , []))]))
; (2 , State (True , [] , [([3] , Local (0 , []))]))]) ;

which may then use a shared representation:

l et loop = State (True , [] , [([3] , Local (0 , []))])
in State (False , [(1 , loop) ; (2 , loop)]) ;

But using local addresses together with sharing raises the proper interpre-
tation of such virtual addresses, since going up in a dag is not a well-defined
notion. We need to keep a stack of accesses in the current deterministic state
space, while we traverse it. This stack may be implemented as a list of auto
nodes, or as an array of such values. In this last case we remark that global and
local addresses are accessed by the same mechanism: indexing an array of state
nodes, and then navigating down a local deterministic state space. For global
addresses the array is the forest of mixed automata dags, for local addresses it
is the local stack keeping the access context in the current dag. However, it is
not clear that an array is better than a list, since when we store the state in
a resumption set for non-determinism backtracking, we would have to copy the
local access vector and not just store a reference to a unique mutable object. In
the following for simplicity we choose the list implementation.

VI

4 A Recognizer for Mixed Automata

4.1 Basic Operations

Let us sum up the current datatypes:

type de l t a = (i n t × word)
and address = [Global of de l t a | Local of de l t a] ;

type auto = [State of (bool × dete r × cho i c e s)]
and dete r = l i s t (l e t t e r × auto)
and cho i c e s = l i s t (word × address) ;

type automaton = (array auto × address) ;

The second component of an automaton is the (global) address of its initial
state; by convention we could impose it to be (0, []), i.e. the top node of the first
dag in the array, but for ease of composing automata descriptions it is better to
leave the generality of addressing any state node.

We assume that our automata are well-formed, in the sense that addresses
are meaningful: global addresses index within the size of the automaton array,
and local addresses index the stack within its depth.

We assume given an automaton value (forest,init address) with forest an
auto array, and init address=Global(init root,init path). The current state is
represented as the current auto state node, plus the list states stacking the
access path to it from the current root node.

Here is the way we access the automaton in its deterministic component,
given an input letter:

value ac c e s s s t a t e l e t t e r =
match s t a t e with

[State (, deter ,) → L i s t . a s soc l e t t e r de te r] ;

Two operations on the access stack are provided: pop, which takes as argu-
ment a natural number, and push, which takes as argument an access word:

value rec pop s t a t e s t a t e s n =
i f n=0 then (s ta te , s t a t e s) else match s t a t e s with

[[] → raise Path er ror
| [s : : up] → pop s up (n−1)
] ;

value rec push s t a t e s t a t e s = fun
[[] → (s ta te , s t a t e s)
| [l e t t e r : : r e s t] →

l et new state = acc e s s s t a t e l e t t e r in
push new state [s t a t e : : s t a t e s] r e s t

] ;

VII

The next function executes a transition defined by its address argument:

value t r a n s i t i o n s t a t e s t a t e s = fun
[Global (n ,w) → push f o r e s t . (n) [] w
| Local (n ,w) → l et (s , l s) = pop s t a t e s t a t e s n

in push s l s w
] ;

Note that we assume that the automaton description is consistent, in the
sense that all addresses are meaningful (i.e. access will never fail).

The next service routine checks the prefix relation between words; the fol-
lowing one advances the input tape by n characters;

value rec p r e f i x u v =
match u with

[[] → True
| [a : : r] → match v with

[[] → False
| [b : : s] → a=b && p r e f i x r s
]

] ;

value rec advance n w = i f n = 0 then w
else advance (n−1) (L i s t . t l w) ;

4.2 The Reactive Engine

We represent the input as a word and a backtrack state as a tuple storing a
partial input, the current state, the access stack of states, and a list of nonde-
terministic choices. Finally, a resumption is a set of backtrack states, which in a
first approximation we represent as a list:

type input = word and s t a t e s = l i s t auto ;

type backtrack = (input × auto × s t a t e s × cho i c e s)
and resumption = l i s t backtrack ;

exception Fin i shed ;

The reactive engine takes as arguments an input tape, a resumption, the
current state, and its access stack.

value rec r e a c t input r e s s t a t e s t a t e s = match s t a t e with
[State (b , det , c ho i c e s) →

(∗ we t r y the d e t e rm in i s t i c space f i r s t ∗)
l et dete r cont = match input with

[[] → backtrack cont
| [l e t t e r : : r e s t] →

VIII

try let s ta te ’ = L i s t . a s soc l e t t e r det
and s t a t e s ’ = [s t a t e : : s t a t e s] in
r e a c t r e s t cont s tate ’ s t a t e s ’

with [Not found → backtrack cont]
] in

let res ’ = i f cho i c e s =[] then r e s
else [(input , s ta te , s t a t e s , c ho i c e s) : : r e s] in

i f b then i f input =[] then res ’ (∗ s o l u t i o n ∗)
else dete r res ’

else dete r res ’
]

and backtrack = fun
[[] → raise Fin i shed
| [(input , s ta te , s t a t e s , c ho i c e s) : : r e s] →

choose input r e s s t a t e s t a t e s cho i c e s
]

and choose input r e s s t a t e s t a t e s = fun
[[] → backtrack r e s
| [(w, addr) : : ch] →

l et res ’ = [(input , s ta te , s t a t e s , ch) : : r e s] in
i f p r e f i x w input then

let input ’ = advance (L i s t . l ength w) input
and (s ta te ’ , s t a t e s ’) = t r a n s i t i o n s t a t e s t a t e s addr
in r e a c t input ’ res ’ s ta te ’ s t a t e s ’

else backtrack res ’
] ;

Now, recognizing an input word is just calling the reactive engine on the
appropriate initial situation:

value r e c ogn i z e w =
l et (i n i t s t a t e , i n i t s t a t e s) =

push f o r e s t . (i n i t r o o t) [] i n i t p a t h in
try let = reac t w [] i n i t s t a t e i n i t s t a t e s in True
with [F in i shed → False] ;

It is an easy exercise to prove that recognize always terminate, provided there
is no ε move in the automaton description, i.e. if every choice (w, a) is such that w
is not empty. Furthermore, it will return True if and only if its argument belongs
to the language generated by the automaton, using the standard notions. We
shall actually see stronger versions of these properties below, when we extend
the recognizer to a generator of transductions.

We remark that the automaton favors the deterministic transitions over the
non-deterministic ones; this is significant for the following extension. We also
remark that returning the resumption as the final result is useless when one is
just interested in recognition, but is needed when one wants to enumerate all
solutions, as we shall see.

IX

5 Mixed Transducers

It is easy to extend our mixed finite automata to mixed transducers, equipped
with an output tape in addition to the input tape. Output words label the non-
deterministic transitions. We give the corresponding datatypes and algorithms
below. The type address is the same as above, as well as the service routines
prefix, advance and transition.

5.1 A Transducing Engine

type input = word and output = word ;

type t rans = [State of (bool×dete r× cho i c e s)]
and dete r = l i s t (l e t t e r× t rans)
and cho i c e s = l i s t (input×output×address)
and s t a t e s = l i s t t rans ;

type t ransducer = (array t rans × address) ;

type backtrack = (input×output× t rans× s t a t e s× cho i c e s)
and resumption = l i s t backtrack ;

exception Fin i shed ;

The reactive engine takes as arguments an input tape, an output tape, a
resumption, the current state and its access stack;

value rec r e a c t input output r e s s t a t e s t a t e s =
match s t a t e with
[State (b , det , c ho i c e s) →

l et dete r cont = match input with
[[] → backtrack cont
| [l e t t e r : : r e s t] →

try let s ta te ’ = L i s t . a s soc l e t t e r det
and s t a t e s ’ = [s t a t e : : s t a t e s] in
r e a c t r e s t output cont s tate ’ s t a t e s ’

with [Not found → backtrack cont]
] in

let res ’ =
i f cho i c e s =[] then r e s
else [(input , output , s ta te , s t a t e s , c ho i c e s) : : r e s] in

i f b then i f input =[] then (output , res ’)
else dete r res ’

else dete r res ’
]

and backtrack = fun

X

[[] → raise Fin i shed
| [(input , output , s ta te , s t a t e s , c ho i c e s) : : r e s] →

choose input output r e s s t a t e s t a t e s cho i c e s
]

and choose input output r e s s t a t e s t a t e s = fun
[[] → backtrack r e s
| [(inp , out , addr) : : ch] →

l et res ’ = [(input , output , s ta te , s t a t e s , ch) : : r e s] in
i f p r e f i x inp input then

let input ’ = advance (L i s t . l ength inp) input
and (s ta te ’ , s t a t e s ’) = t r a n s i t i o n s t a t e s t a t e s addr
and output ’ = unstack out output in
r e a c t input ’ output ’ res ’ s ta te ’ s t a t e s ’

else backtrack res ’
] ;

Now, transducing an input word is just calling the reactive engine from the
appropriate initial situation:

value transduce w =
l et (i n i t s t a t e , i n i t s t a t e s) =

push f o r e s t . (i n i t r o o t) [] i n i t p a t h in
let (out , r e s) = reac t w [] [] i n i t s t a t e i n i t s t a t e s
in L i s t . rev out ;

This algorithm returns an output word if its argument is recognized by the
transducer; otherwise it raises the exception Finished.

5.2 A Transducing Coroutine

Of course there may be several solutions to the transducing problem, and this
is the rationale of the resumption component res’ returned by react.

The process backtrack may thus be used in coroutine with a solution printer.
Assuming a service routine print out which prints solutions with their rank, we
thus define

(∗ resume : resumption → i n t → resumption ∗)
value resume r e s n =

l et (output , res ’) = backtrack r e s
in do { pr i n t ou t n (L i s t . rev output) ; res ’ } ;

value i n i t t r a n s w =
l et (i n i t s t a t e , i n i t s t a t e s) =

push f o r e s t . (i n i t r o o t) [] i n i t p a t h in
let (output , r e s) = reac t w [] [] i n i t s t a t e i n i t s t a t e s
in do { pr i n t ou t 1 (L i s t . rev output) ; r e s } ;

value t r a n s du c e a l l s entence =

XI

try let r e s = i n i t t r a n s sentence in r e s t o r e r e s 2
where rec r e s t o r e r e s n =
l et res ’ = resume r e s n in
r e s t o r e res ’ (n+1)

with [F in i shed → ()] ;

Many variations are possible. For instance, the choose routine may choose at
wish among its choices multiset, instead of using a stack discipline. Indeed this
choice may be guided by a priority weight associated with the non-deterministic
transitions of the automaton, possibly computed by a training pre-processing;
similarly, backtrack may choose among the backtrack multiset according to some
selection strategy.

Also remark that we chose to make output transitions only on the non-
deterministic arcs. This is in keeping with the view that the main part of our
transducers consists in the deterministic automaton skeleton, but certain appli-
cations may warrant to allow output actions on the deterministic transitions as
well. Also note that the output word is a stack, which should be reversed to yield
the word result as a list of characters. Actually, the update

output ’ = unstack out output

could be replaced by a more informative construction of an output list docu-
menting the output events and not just linearizing their trace:

output ’ = [out : : output]

but this introduces an asymmetry between input and output which suggests
extending our construction to tree automata. We shall not develop further this
remark in the current paper.

5.3 Termination

Definition 1. If res is a resumption, we define χ(res) as the multiset of all
χ(back), for back a backtrack value in res, where χ(in, out, st, sts, ch) = 〈|in|, |ch|〉.

χ defines a well-founded ordering, with the standard ordering on natural num-
bers, extended lexicographically to triples for backtrack values and by multiset
extension [3] for resumptions.

We now associate a complexity to every function invocation. First
χ(react in out res st sts) = {〈|in|, κ〉}⊕χ(res), where ⊕ is multiset union, and
κ = 1 + |P |, with P the maximum number of non-deterministic transitions over
all nodes. Then χ(choose in out res st sts ch) = {〈|in|, |ch|〉} ⊕ χ(res). Finally
we take χ(backtrack res) = χ(res).

We say that the transducer is strict iff there is no ε move in its description,
i.e. every choice (w, a) is such that w is not empty.

Proposition 2. If the transducer is strict, every call to backtrack(cont) either
raises the exception Finished, or else returns a value (out, res) such that χ(res) <
χ(cont).

XII

Proof. By nœtherian induction over the well-founded ordering computed by χ.
It is easy to show that every function invocation decreases the complexity, we
leave the details to the reader.

Corollary 1. Under the strictness condition, resume always terminates, either
raising the exception Finished, or returning a resumption of lower complexity
than its argument. Therefore transduce all always terminates with a finite set
of solutions.

Corollary 2. Since we used a multiset complexity, invariant by permutation of
the backtrack values in resumptions, we have actually proved the above results
for a more abstract algorithm, where resumptions are not necessarily organized
as sequential lists, but may be implemented as priority queues where elements
are selected by an unspecified strategy or oracle. Thus these results remain for
more sophisticated management policies of non-deterministic choices, obtained
for instance by training on some reference annotated corpus.

We believe the use of multiset ordering is an important general technique for
proving the termination of non-deterministic processes.

5.4 Remarks

Sharing the state space consists in iterating bottom-up traversal with the Share
functor [6] for all the roots of the forest. Remark that because of local addresses,
such sharing goes beyond building an explicit smaller state graph, since local ad-
dresses are really description functions for the corresponding transitions, rather
than mere pointers. This is reminiscent of the BDD techniques for representing
succinctly boolean diagrams.

The variable states holds the access stack in the current state component. We
could also keep the sequence of letters defining the current transition context in a
companion path stack. This is useful for instance for generating output of copy-
ing transducers. It is shown for instance in [6] how to recognize the language
L+ of sequences of words from a lexicon L, with a transducer which outputs
all “unglueing” solutions. Here the backtrack stack holds pairs (input,output),
where output keeps the local transition context. Another example is lemmatiza-
tion. We may for instance store all plural forms in a trie, with accepting nodes
holding as annotation the differential word addressing the singular form. Note
that when we share this structure, all regular plurals (in a language such as
French or English, where regular plurals just affix an ‘s’ to their singular stem)
are shared as one success node saying “my singular form is one level up on this
access path”.

More generally, we may define automata structures with various decorations,
augmenting the acceptance boolean and the non-deterministic transitions with
other values. And the reactive engine may recurse with other parameters. In this
way we get away from the simple paradigm “automaton as a machine” to a more
general paradigm “automaton state space as a pattern for a reactive process”.

XIII

An important extension of the present construction would be to abstract
from the simple view of an automaton as a pair of its state space with the ad-
dress of its initial state to a more modular view adding as third component a
context continuation. There could be several continuation constructors: one used
to start an automaton, another one to iterate the current automaton, the outer
one to check that the input tape is exhausted. The reactive engine would get an
extra argument, keeping the current automaton descriptor. On encountering the
acceptance boolean, the current continuation would give rise to adding appro-
priate resumptions to the backtrack stack. This generalisation is crucial to the
design of a modular compiler from regular expressions to mixed automata. We
shall not develop this idea further in the current paper.

6 Applications

Finite-state methods are ubiquitous in computing; they are used in compilation,
in circuit design, in computational linguistics, among other applications. In this
last area, transducers are used to implement various regular relations in phonol-
ogy and morphology toolkits. Our simplistic automata may be used to represent
computer lexicons. The idea of differential words is used in [6] to represent in a
compact way a flexed forms lexicon, in such a way that morphological functions
are reversible, yielding directly a lemmatizer.

It is explained in [6] how to describe finite state automata and transducers as
lexicon morphisms. As an instance, a sandhi analyser for the Sanskrit language
is presented. It is shown that the method is sound and complete, and generates
a finite number of solutions, using multiset ordering for its termination [3]. This
example exhibits an impressive compression rate, since an automaton of 200000
states is shrunk to a shared structure of 7500 nodes.

We have abstracted from that work the present methodology of mixed au-
tomata and transducers. We believe that these structures are useful compromises
between deterministic automata and non-deterministic transducers, amenable to
uniform minimization by sharing, since their state spaces are completely applica-
tive inductive datatypes.

Conclusion

We presented a methodology for describing finite-state automata and transduc-
ers in a completely applicative fashion, where a deterministic trie skeleton is
decorated by attributes which store non-deterministic choice points, loops, and
output transitions. There are no explicit references, and virtual addresses are
of two kinds, bottom-up local references through an access stack, and top-down
global accesses through the vector holding the state forest.

We believe that this structure is a useful compromise between completely
deterministic, and general non-deterministic automata representations. In ap-
plications to computational linguistics, specially, there is a natural underlying
main deterministic automaton, namely lexicon lookup. Many phonological and

XIV

morphological processes may benefit from the separation of concern between
deterministic lexicon lookup and specific non-deterministic transducers imple-
menting regular relations for phonological or morphological purposes.

We leave it to further research to define a language of regular expressions and
relations, appropriate for the modular composition of mixed automata, and thus
usable as a high-level interface for compiling finite-state processes into mixed
transducers.

References

1. R. S. Alfred V. Aho and J. D. Ullman. Compilers - Principles, Techniques and
Tools. Addison-Wesley, 1986.

2. G. Cousineau and M. Mauny. The Functional Approach to Programming. Cam-
bridge University Press, 1998.

3. N. Dershowitz and Z. Manna. Proving termination with multiset ordering. Com-
mun. ACM, 22:465–476, 1979.

4. M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
5. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.
6. G. Huet. Transducers as lexicon morphisms, phonemic segmentation by euphony

analysis, application to a sanskrit tagger. http://pauillac.inria.fr/~huet/

FREE/tagger.pdf, 2002.
7. G. Huet. The Zen computational linguistics toolkit. Technical report, ESSLLI

Course Notes, 2002. http://pauillac.inria.fr/~huet/ZEN/zen.pdf
8. G. Huet. Linear contexts and the sharing functor: Techniques for symbolic compu-

tation. In F. Kamareddine, editor, Thirty Five Years of Automating Mathematics.
Kluwer, 2003.

9. G. Huet. Zen and the art of symbolic computing: Light and fast applicative algo-
rithms for computational linguistics. In Practical Aspects of Declarative Languages
(PADL) symposium, New Orleans. LNCS 2562, Springer-Verlag, 2003.

10. X. Leroy, D. Rémy, J. Vouillon, and D. Doligez. The Objective Caml system,
documentation and user’s manual – release 3.00. INRIA, 2000. http://caml.

inria.fr/ocaml/

11. D. Perrin. Finite automata. In Formal Models and Semantics. Handbook of Theo-
retical Computer Science, Volume B. Elsevier and MIT Press, 1990.

12. E. Roche and Y. Schabes. Finite-State Language Processing. MIT Press, 1997.

