
Design of a Lexical Database for Sanskrit

Gérard Huet
INRIA-Rocquencourt

BP 105,
78153 Le Chesnay CEDEX

France
Gerard.Huet@inria.fr

Abstract

We present the architectural design rationale
of a Sanskrit computational linguistics plat-
form, where the lexical database has a cen-
tral role. We explain the structuring require-
ments issued from the interlinking of grammat-
ical tools through its hypertext rendition.

1 Introduction

Electronic dictionaries come into two distinct
flavours. First, dictionaries and encyclopedia,
meant for human usage, have converted to com-
puter typesetting in the 80’s, and to structured
editing and various other kinds of computer in-
terface facilities for lexicographers in the 90’s.
Major computer projects, using specific algo-
rithm libraries, were endeavoured for the man-
agement of large dictionaries, such as the New
Oxford Dictionary, or the Trésor de la Langue
Française. Progressively, hypertext technology
was systematically used, together with the pro-
gressive standardisation of the philology tech-
nology on the SGML norm. This allowed dic-
tionaries and encyclopedia to develop hypertext
versions for the end customer, with search soft-
ware and other interface facilities. With the
introduction of the Web technology in middle
90’s, relying on SGML and its successor XML,
more sophisticated hybridations between elec-
tronic books and the Internet could take place
– sometimes endangering the very existence of
traditional reference works.

In parallel, computational linguistics research
developed the need for lexical databases, pro-
gressively storing grammatical information such
as part of speech category or subcategoriza-
tion valencies, and even more sophisticated data
about syntax, with the general tendency to
modularize the formal descriptions of syntax
with lexicalized grammars. The next step was
to store semantic information, a good exam-
ple of which is the Wordnet structure. The
progressive development of controlled treebanks

and the availability of large digitalised corpuses
opened the way to the systematic development
of linguistic resources such as lexical databases,
using automated acquisition technology. They
reflect linguistic usage in a statistically relevant
way, as opposed to the previous introspection
based ad-hoc methods. The need to develop
multilingual platforms pushes furthermore the
integration of generic semantic knowledge into
pivot formalisms.

It is somewhat surprising that the two lines
of development of electronic dictionaries did
not interact significantly. The different require-
ment needs for the two applications is often al-
luded to for making this separation unavoidable,
but such arguments are not wholly convincing.
Rather than technical divergences, it appears
that it is sociological considerations (intellectual
and commercial interests, cultural differences,
etc) that prevent such cooperation. Indeed,
information retrieval technology may usefully
take advantage of information implicit in ma-
chine readable dictionaries, and conversely cor-
pus analysis may reveal incompleteness or other
other defects in lexicological structure (Krovetz,
1994; Krovetz and Croft, 1992). In the long
run, linguistic technology is obviously of great
potential application to the human information
needs, and traditional dictionaries will need to
take advantage of it to stay competitive. We
shall argue, in this communication, that a lex-
ical database may be used for both purposes,
in a win-win cooperation. We base our opin-
ions on a concrete experiment on the design of
linguistics resources for the Sanskrit language.

2 From book form to web site

2.1 A Sanskrit-French paper dictionary

The author started from scratch a Sanskrit to
French dictionary in 1994, first as a personal
project in indology, then as a more structured
attempt at covering Sanskrit elementary vo-
cabulary. A systematic policy was inforced

along a number of successive invariants. For
instance, etymology, when known, was followed
recursively in relevant entries. Any word could
then be broken into morphological constituents,
down to verbal roots when known. This “et-
ymological” completeness requirement was at
first rather tedious, since entering a new word
may require the acquisition of many ancestors,
due to complex compounding. But it appeared
that the acquisition of new roots slowed down
considerably after an initial “bootstrap” phase.
When the number of entries approached 10000,
with 520 roots, new roots acquisition became
quite exceptional. This phenemenon is simi-
lar to the classical “lexical saturation” effect
witnessed when one builds a lexicon covering
a given corpus (Polguère, 2003). Progressively,
a number of other consistency constraints were
identified and systematically enforced, which
proved invaluable in the long run.

At this point the source of the lexicon was
a plain ASCII file in the LaTeX format. How-
ever, a strict policy of systematic use of macros,
not only for the structure of the grammatical
information, and for the polysemy representa-
tion, but also for internal quotations, ensured
that the document had a strict logical struc-
ture, mechanically retrievable (and thus consid-
erably easier to process without loss of informa-
tion than an optically scanned paper dictionary
(Ma et al., 2003)).

Indeed, around 2000, when the author got
interested into adapting the data as a lexical
database for linguistic processing, he was able
without too much trouble to reverse engineer
the dictionary into a structured lexical database
(Huet, 2000; Huet, 2001). He then set to work
to design a set of tools for further computer
processing as an experiment in the use of func-
tional programming for a computational linguis-
tics platform.

The first design decision was to avoid stan-
dard databases, for several reasons. The first
one is portability. Many database formats are
proprietary or specific to a particular product.
The second reason is that the functionalities of
data base systems, such as query languages, are
not well adapted to the management of lexi-
cal information, which is highly structured in a
deep manner - in a nutshell, functional rather
than predicative. Thirdly, it seemed best to
keep the information in the concrete format in
which it had been developed so far, with spe-
cific text editing tools, and various levels of an-

notation which could remain with the status
of unanalysed comments, pending their possible
later structuring. After all, ASCII is the most
portable format, large text files is not an issue
anymore, parsing technology is fast enough to
render negligible compilation times, and the hu-
man ease of editing is the really crucial factor –
any tool which the lexicographer has to fight to
organise his data is counter-productive.

A detailed description of this abstract syntax
is available as a research report (Huet, 2000),
and will not be repeated here. We shall just
point to salient points of this abstract structure
when needed.

2.2 Grinding the abstract structure

The main tool used to extract information from
this data-base is called the grinder (named after
the corresponding core processor in the Word-
Net effort (Miller, 1990; Fellbaum, 1998)). The
grinder is a parsing process, which recognizes
successive items in the data base, represents
them as an abstract syntax value, and for each
such item calls a process given as argument to
the grinder. In other words, grind is a para-
metric module, or functor in ML terminology.
Here is exactly the module type grind.mli in
the syntax of our pidgin ML:

module Grind : functor
(Process : Proc.Process_signature)

-> sig end;

with interface module Proc specifying the ex-
pected signature of a Process:

module type Process_signature = sig

value process_header :
(Sanskrit.skt * Sanskrit.skt) -> unit;

value process_entry :

Dictionary.entry -> unit;
value prelude : unit -> unit;

value postlude : unit -> unit;
end;

That is, there are two sorts of items in
the data base, namely headers and entries.
The grinder will start by calling the process
prelude, will process every header with rou-
tine process_header and every entry with rou-
tine process_entry, and will conclude by call-
ing the process postlude. Module interface
Dictionary describes the dictionary data struc-
tures used for representing entries (i.e. its ab-
stract syntax as a set of ML datatypes), whereas

module Sanskrit holds the private represen-
tation structures of Sanskrit nouns (seen from
Dictionary as an abstract type, insuring that
only the Sanskrit lexical analyser may construct
values of type skt).

A typical process is the printing process
Print_dict, itself a functor. Here is its inter-
face:

module Print_dict : functor
(Printer:Print.Printer_signature)

-> Proc.Process_signature;

It takes as argument a Printer module, which
specifies low-level printing primitives for a given
medium, and defines the printing of entries as a
generic recursion over its abstract syntax. Thus
we may define the typesetting primitives to gen-
erate a TEX source in module Print_tex, and
obtain a TEX processor by a simple instancia-
tion:

module Process_tex =

Print_dict Print_tex;

Similarly, we may define the primitives to gener-
ate the HTML sources of a Web site, and obtain
an HTML processor Process_html as:

module Process_html =

Print_dict Print_html;

It is very satisfying indeed to have such shar-
ing in the tools that build two ultimately very
different objects, a book with professional typo-
graphical quality on one hand, and a Web site
fit for hypertext navigation and search, as well
as grammatical informer, on the other hand1.

2.3 Structure of entries

Entries are of two kinds: cross-references and
entries proper. Cross references are used to list
alternative spellings of words and some irregular
but commonly occurring flexed forms (typically
pronoun declensions). Proper entries consist of
three components : syntax, usage, and an op-
tional list of cognate etymologies in other lan-
guages.

The syntax component consists itself of three
sub-components: a heading, a list of variants,
and an optional etymology. The heading spells
the main stem (in our case, the so-called weak
stem), together with a hierarchical level. At
the top of the hierarchy, we find root verbs,
non-compound nouns, suffixes, and occasional

1http://pauillac.inria.fr/~huet/SKT/

declined forms which do not reduce to just a
cross reference, but carry some usage informa-
tion. Then we have subwords, and subsub-
words, which may be derived forms obtained
by prefixing or suffixing their parent stem, or
compound nouns.

Compound words are specially common in
Sanskrit, and it would be absurd to merge them
all in one big alphabetic list. Thus they are
usually grouped under the entry of their left
component (which may itself be a compound,
and so on, until we reach a root word). San-
skrit dictionaries may push more or less far this
structural point of view, making their actual
use more or less easy for beginners, since the
alphabetic ordering of compounds may be fur-
ther complicated by phonetic glueing (‘sandhi’)
at the junction of the components. We shall
not develop further this point here, but remark
that sometimes the first component is merely
a comment on the second component. This is
true in particular of compounds starting with a
numeral, indicating a classification of the sec-
ond component into several subsorts. Thus the
‘four noble truths’ by which the tradition ex-
plains the teachings of Buddha should better
be listed in the compound ‘noble truth’, where
they constitute a detailed explanation of this
notion, rather than under the numeral ‘four’,
under which it is hopeless to list all such four-
fold classifications. Thus we reserved a special
kind of entry for such specific left-forming com-
pounds, which are listed in the lexicon under
their right component, where their explanation
logically belongs.

Other entries which are subordinate to a more
principal one (vocable) are idiomatic locutions
and citations. Thus we have a total of ten sorts
of entries, classified into three hierarchical levels
(to give a comparison, the much more exhaus-
tive Monier-Williams Sanskrit-to-English dic-
tionary has 4 hierarchical levels).

Let us now explain the structure of the us-
age component of our entries. We have actu-
ally three kinds of such usage structure, one
corresponding to nouns (substantives and adjec-
tives), another one corresponding to verbs, and
still another one for idiomatic locutions. We
shall now describe the substantives usage com-
ponent, the verbs one being not very different
in spirit, and the idioms one being a mere sim-
plification of it.

The usage structure of a substantive entry
is a list of meanings, where a meaning con-

sists of a grammatical role and a sense compo-
nent. A role is itself the notation for a part-of-
speech tag and an optional positional indication
(such as ‘enclitic’ for postfix particles, or ‘iic’
[in initio composi] for prefix components). The
part-of-speech tag is typically a gender (mean-
ing substantive or adjective of this gender), or
a pronominal or numeral classifier, or an unde-
clinable adverbial role, sometimes correspond-
ing to a certain declension of the entry. The
thematic role agent is also available as tag, typ-
ically for nouns which may be used in the mas-
culine or the feminine, but not in the neuter.
This may sound a little bit hairy, but it actually
corresponds to a fairly flexible concrete syntax
at the disposal of the lexicographer, put into a
rigid but rigorous structure for computational
use by the data base processors.

The sense component is itself a list of elemen-
tary semantic items (representing polysemy),
each possibly decorated by a list of spelling vari-
ants. Elementary semantic items consist in their
turn of an explanation labeled with a classi-
fier. The classifier is either ‘Sem’, in which case
the explanation is to be interpreted as a sub-
stitutive definition, or else it is a field label in
some encyclopedic classification, such as ‘Myth’
for mythological entries, ‘Phil’ for philosophi-
cal entries, etc, in which case the explanation
is merely a gloss in natural language. In ev-
ery case the explanation component has type
sentence, meaning in our case French sentence,
since it concerns a Sanskrit-to-French bilingual
dictionary, but here it is worth giving a few ad-
ditional comments.

The first remark is that French is solely used
as a semantic formalism, deep at the leaves of
our entries. Thus there is a clear separation be-
tween a superstructure of the lexical database,
which only depends on a generic dictionary
structure and of the specific structure of the
Sanskrit language, and terminal semantic val-
ues, which in our case point to French sentences,
but could as well point to English, German,
Hindi, etc representations within a multilingual
context. Or more interestingly could be an in-
termediate semantic universal structure of the
WordNet (Fellbaum, 1998) kind (i. e. synsets).
Thus all the structuring work which gave rise to
the superstructure may be one day reused in a
multilingual setting – assuming some consensus
on grammatical roles standard of course.

The second comment is that the type ‘sen-
tence’, seen as an abstract type in the dictio-

nary module, may be itself refined to a finer
analysis in the French manager module. Let
us briefly describe what is the current state of
this refinement. For the moment, we do not at-
tempt to parse French sentences according to
some grammatical notion of French syntax, we
merely recognize punctuation symbols and a few
specific notations. Thus a sentence is a list of
utterances separated by semicolons; an utter-
ance consists of a mood (affirmative, interroga-
tive or exclamative) coloring a phrase, where a
phrase is a list of subphrases separated by com-
mas. Finally, a subphrase is a list of words,
where words are classified as ordinary French
words, strings denoting numbers, strings denot-
ing Sanskrit references, strings representing spe-
cific notations for dates, mathematical expres-
sions, botanical or zoological species, etc. In
other words, we have a precisely tagged French
discourse. Some of these tags are useful for
specific linguistic processing, such as antonyms
or synonyms. Some tags are governance pat-
terns, used to represent schematic phrases such
as ‘acheter qqc. <acc.> à qqn. <gen. abl.>’.
Such a governance patterns provides a gram-
matical valence (subcategorization) to the (ver-
bal) phrase, stating that this verb use needs two
(noun) subphrases: one in the accusative case,
of typology (buyable) object, and the other in
the genitive or ablative case, of typology per-
son. Such valence could be used at parsing as a
subtyping coercion, selecting the corresponding
features from the tagging of the current verbal
phrase, and at translation as a concrete syntax
rewriting pattern.

The strings denoting Sanskrit references are
specially important, since they determine the
hypertext links in the HTML version of the dic-
tionary. There are two kinds of possible ref-
erences, proper nouns starting with an upper
case letter, and common nouns or other San-
skrit words. For both categories, we distinguish
binding occurrences, which construct HTML
anchors, and used occurrences, which construct
the corresponding references. In order to dis-
cuss more precisely these notions, we need to
consider the general notion of scoping. But be-
fore discussing this important notion, we need
a little digression about homonymy.

2.4 Homonyms

First of all, there is no distinction in Sanskrit
between homophons and homographs, since the
written form reflects phonetics exactly (if one

neglects the vedic accent). As in any language
however, there are homonyms which are words
of different origin and unrelated meanings, but
which happen to have the same representation
as a string of phonemes. They may or may
not have the same grammatical role. For such
clearly unrelated words, we use the traditional
solution of distinguishing the two entries by
numbering them, in our case with a subscript in-
teger. Thus we distinguish entry aja1 ‘he goat’,
derived from root aj ‘to lead’, from entry aja2

‘unborn’, derived from privative prefix a to root
jan ‘to be born’.

Actually, directly derived words, such as sub-
stantival root forms, are distinguished from the
root itself, mostly for convenience reasons (the
usage structure of verbs being superficially dif-
ferent from the one of substantives). Thus the
root dís1 ‘to show’ is distinguished from the sub-
stantive dís2 ‘direction’, or jñā1 ‘to know’ is dis-
tinct from the feminine substantive jñā2 ‘knowl-
edge’.

Apart from this basic typing distinction be-
tween roots and atomic nouns, it might have
been hoped that derivations leading to iden-
tity of forms would preserve the meaning, i.e.
postulate semantic confluence. Alas, this is nor
the case, for instance because of ambiguity be-
tween absolutives and gerundives for verbs de-
rived by preverbs. Thus we have to distinguish
between the gerundive (also called passive fu-
ture participle) pragr.hya1 ‘to be taken’ of verb
pragrah ‘take’ and its absolutive (undeclinable
past participle) pragr.hya2 ‘having taken’. Of
course the second undeclinable may be taken as
an adverbialisation of the adjectival gerundive,
with a tense shift. This identity modulo the
time reference frame point of view is evident in
the now obsolete naming of the absolutive as
the ‘gerund’, and thus the duplication of such
entries is debatable to say the least, since an-
other option would be to group them and list
their different roles. On the other end, it may
be argued that they are two distinct formations,
the origin of the absolutive being the instrumen-
tal of a verbal noun. Furthermore, confluence
could obtain only for prefixed verbs, since roots
admit an absolutive in -tvā.

Other non-confluence situations arise,
though, between words sharing commun roots.
For instance, the adjective nirvācya1, derived
by the negation prefix nis from the gerundive
vācya, means ‘blameless’, as someone who
should not be spoken (badly) of, whereas the

gerundive nirvācya2 of verb nirvac ‘explain’
means ‘what should be explained’. Here
confluence of the two formations would be
natural, since nirvac is derived from root vac
‘to speak’ by preverb nis ‘out of’, whereas
vācya ‘to be said’ is itself a gerundive form of
vac. If we strive at precise semantic indexing,
we have to distinguish the two entries. But if
we understand that nirvācya1 is issued from
the semantic slipping of vācya from ‘to be
spoken of’ into ‘to be denounced’ (with sub-
stantival form ‘blame’), we see that confluence
could be restored in this case through explicit
indexing of word senses. Thus etymology could
be explained on a more precise structure on
‘notions’ as word senses (sememes) as opposed
to just on words (lexemes).

It remains that the frontier between
homonymy and polysemy is thin indeed.

2.5 Scoping

There are two notions of scoping, one global,
and the other one local. First, every refer-
ence ought to point to some binding occurrence,
somewhere in the data base, so that a click on
any used occurrence in the hypertext document
ought to result in a successful context switch-
ing to the appropriate link (and not to some
error message ‘404 not found’ in your browser);
ideally this link ought to be made to a unique
binding occurrence. Such binding occurrences
may be explicit in the document; typically, for
proper nouns, this corresponds to a specific se-
mantic item, which explains their denotation as
the name of some human or mythological fig-
ure or geographical entity. For common nouns,
the binding occurrence is usually implicit in the
structure of the dictionary, corresponding either
to the main stem of the entry, or to some aux-
iliary stem or flexed form listed as an ortho-
graphic variant. In this sense a binding occur-
rence has as scope the full dictionary, since it
may be referred to from anywhere. In another
sense it is itself within the scope of a specific
entry, the one in which it appears as a stem
or flexed form or proper name definition, and
this entry is itself physically represented within
one HTML document, to be loaded and indexed
when the reference is activated. In order to
determine these, the grinder builds a trie data
structure of all binding occurrences in the data
base, kept in permanent storage. A second pass
in a checking mode permits to verify that each
used occurrence is bound somewhere. The pre-

cise page in which it occurs is determined by a
prefix of its encoding string. This whole pro-
cess is very similar to cross-reference analysis in
a software package.

Actually, things are still a bit more elaborate,
since each stem is not only bound lexicograph-
ically in some precise entry of the lexicon, but
it is within the scope of some grammatical role
which determines uniquely its declension pat-
tern. This is easy to explain by way of a repre-
sentative example. Consider the following typi-
cal entry:� �������

kumāra m. garçon, jeune homme; fils
| prince; page; cavalier | myth. np. de Kumāra
‘Prince’, épith. de Skanda — n. or pur — f.
kumār̄ı adolescente, jeune fille, vierge.

There are actually four binding occurrences in
this entry. The stem kumāra is bound initially
with masculine gender for the meaning ‘boy’,
and rebound with neuter gender for the mean-
ing ‘gold’. The stem kumār̄ı is bound with fem-
inine gender for the meaning ‘girl’. Finally the
proper name Kumāra is bound in the mytholog-
ical subentry, the text of which contains an ex-
plicit reference to proper name Skanda, bound
in its own entry.

3 The grammatical engine

We are now ready to understand the second
stage in our Sanskrit linguistic tools, namely
the grammatical engine. This engine allows the
computation of inflected forms, that is declen-
sions of nouns and conjugations of finite forms
of verbs. For nouns, we observe that in San-
skrit, declension paradigms are determined by
the ending of the stem and its grammatical gen-
der. Since we just indicated that all defined oc-
currences of substantive stems occurring in the
dictionary were in the scope of a gender dec-
laration, this means that we can compute all
inflected forms of the words in the lexicon by it-
erating a grammatical engine which knows how
to decline a stem, given its gender (i. e. by
computing a table of declined forms indexed by
number and case).

Similary, for verbs, conjugation paradigms for
the present system fall into 10 classes. Ev-
ery root entry mentions explicitly its (possibly
many) present classes.

3.1 Sandhi

Given a stem and its gender, standard gram-
mar paradigm tables give for each number and
case a suffix. Glueing the suffix to the stem is

effected by a phonetic euphony process known
as sandhi (word meaning ‘junction’ in Sanskrit).
Actually there are two sandhi processes. One,
called external sandhi, is a regular homomor-
phism operating on the two strings representing
two contiguous words in the stream of speech.
The end of the first string is modified according
to the beginning of the second one, by a local eu-
phony process. Since Sanskrit takes phonetics
seriously, this euphony occurs not just orally,
but in writing as well. This external sandhi
is relevant to contiguous words, and compound
formation.

A more complex transformation, called inter-
nal sandhi, occurs for words derived by affixes
and thus in particular for inflected forms in de-
clension and conjugation. The two composed
strings influence each other in a complex process
which may influence non-local phonemes. Thus
prefixing ni (down) to root sad (to sit) makes
verb nis.ad (to sit down) by retroflexion of s af-
ter i, and further suffixing it with na for forming
its past participle makes nis.an. n. a (seated) by as-
similation of d with n and further retroflexion
of both occurrences of n.

While this process remains deterministic (ex-
cept for occasional cases where some pho-
netic rules are optional), and thus is easily
programmable for the synthesis of inflected
forms, the analysis of such derivations is non-
deterministic in a more complex way than the
simple external sandhi. This in our opinion
determines where morphology analysis should
split in Sanskrit: morphology analysis of de-
rived words and inflected forms ought to be
done by table look-up in the full lexicon of in-
flected forms of simple words, whereas morphol-
ogy analysis of compounds ought to be done
within syntactic analysis, where inversion of ex-
ternal sandhi has to be done anyway. This is
consistent with the fact that derived forms of a
given word are finite in number, whereas com-
pounds may be formed at any depth by recur-
sive embedding, yielding a potentially infinite
generative lexicon.

We thus embarked on programming internal
sandhi, a not-so-simple task in the view that
existing western grammars differ in their listing
of phonetic rules and respective priorities. The
problem is complicated by the fact that some
phonemes obey different rules according to the
historical origin of certain words. We identi-
fied two situations in which a morpheme had to
be split into two in order to have correct deter-

ministic sandhi; thus j1 combines with follow-
ing t to become kt like in bunakti, whereas j2 in
the same situation yields s.t. like in mārs.t. i; sim-
ilarly, phoneme h has two variants. In the last
resort, a return to the systematic presentation
in the manner of the grammatical treatises of
the Paninean tradition may turn out to be nec-
essary, but even in this native tradition there
are discrepancies. For external sandhi, a pre-
cise phonetic presentation exists (Kessler, 1992;
Kessler, 1995), but for internal sandhi an exact
definition in terms of finite state transducers is
still wanting.

3.2 Declensions

Once internal sandhi is implemented, system-
atic declension tables may be written down to
drive a declension engine. Here too the task
is not trivial, given the large number of cases
and exceptions. At present our nominal gram-
matical engine, deemed sufficient for the cor-
pus of classical Sanskrit (that is, not attempting
the treatment of complex vedic forms), operates
with no less than 86 tables (each describing 24
combinations of 8 cases and 3 numbers). This
engine may thus generate all declensions of sub-
stantives, adjectives, pronouns and numerals. It
was found convenient to accrue the 3 grammat-
ical genders with a fourth pseudo-gender ‘Any’,
which is a pseudo gender attribute of words
which inherit their gender from the context,
such as the deictic pronouns aham (I) tvad (you)
and ātman (self), and numerals greater than 4.

It is to be remarked that this grammatical en-
gine, available as a stand-alone executable, is to
a certain extent independent of the current state
of the lexicon, and thus may be used to tell the
declension of words belonging to a larger corpus.
However, the only deemed correctness is that
the words actually in the lexicon get their cor-
rect declension patterns, including exceptions.
No warranty should be expected when submit-
ting arbitrary stems to the engine, since we do
not know good consistency checks for Sanskrit
stems, and exceptions have to be taken care of
specifically anyway.

This grammatical engine is accessible online
from the hypertext version of the lexicon, since
its abstract structure ensures us not only of
the fact that every defined stem occurs within
the range of a gender declaration, but con-
versely that every gender declaration is within
the range of some defined stem. Thus we made
the gender declarations (of non-compound en-

tries) themselves mouse sensitive as linked to
the proper instanciation of the grammatical
CGI program. Thus one may navigate with a
Web browser not only within the dictionary as
an hypertext document (thus jumping in the ex-
ample above from the definition of Kumāra to
the entry where the name Skanda is defined, and
conversely), but also from the dictionary to the
grammar, obtaining all relevant inflected forms.

Similarly for roots, the present class indica-
tor is mouse-sensitive, and yields on demand the
corresponding conjugation tables. This under-
lines a general requirement for the grammatical
tools: each such process ought to be callable
from a concrete point in the text, correspond-
ing unambiguously to a node in the abstract
syntax of the corresponding entry, with a scop-
ing structure of the lexicon such that from this
node all the relevant parameters may be com-
puted unambiguously.

In order to compute conjugated forms of non-
root verbs, the list of its relevant preverbs is
available, each preverb being a link to the ap-
propriate entry (from which the etymological
link provides the return pointer). Other de-
rived stems (causative, intensive and desider-
ative forms) act also as morphology generators.

3.3 Inflected forms management

One special pass of the grinder generates the
trie structure of all declensions of the stems ap-
pearing in the dictionary. This trie may be it-
self pretty-printed as a document describing all
such inflected forms. At present this represents
about 2000 pages of double-column fine print,
for a total of around 200 000 forms of 8200 stems
(133655 noun forms and 55568 root finite verbal
forms).

Verbal morphology is specially complex. Here
is the type structure of verbal forms in the lex-
icon:

type voice = [Active | Middle]
and mode =

[Indicative | Imperative

| Optative | Imperfect]
and tense = [Present of mode

| Perfect | Aorist | Future]
and nominal =

[Past_part

| Pres_part of voice
| Prft_part

| Futu_part
| Gerundive

| Absolutive

| Infinitive

| Periph_future

| Periph_perfect
| Stem

]
and secondary =

[Causative

| Intensive
| Desiderative]

and verbal =
[Tense of tense and voice

| Passive

| Nominal of nominal
| Derived of secondary and verbal

];

In the above structure, the single tense
‘aorist’ abstracts the 7 different ways of forming
aorist conjugation.

3.4 Index management

Another CGI auxiliary process is the index. It
searches for a given string (in transliterated no-
tation), first in the trie of defined stems, and
if not found in the trie of all declined forms.
It then proposes a dictionary entry, either the
found stem (the closest stem the given string
is an initial prefix of) or the stem (or stems)
whose declension is the given string, or if both
searches fail the closest entry in the lexicon in
alphabetical order. This scheme is very effec-
tive, and the answer is given instantaneously.
This shows that the trie datastructure is appro-
priate for this use, even the rather bulky declen-
sion one. After all, a trie may be thought of as
the spanning tree of a finite automaton graph,
and it would be hard to get more sharing from
a recognizing graph, since our tries carry infor-
mation at their leaves (i.e. they represent maps
of strings into feature structures, not just sets
of strings).

An auxiliary search engine searches Sanskrit
words with a naive transcription, without dia-
critics. Thus a request for panini will return the
proper link to pān. ini.

3.5 Lemmatization

The basic data structures and algorithms de-
veloped in this Sanskrit processor have actually
been abstracted as a generic Zen toolkit, avail-
able as free software (Huet, 2002; Huet, 2003b;
Huet, 2003d).

One important data structure is the revmap,
which allows to store inflected forms as an
invertible morphological map from stems, with

minimal storage. The Sanskrit platform uses
this format to store its inflected forms in a
in such a way that it may directly be used
as a lemmatizer. Each form is tagged with a
list of pairs (stem, features), where features
gives all the morphological features used in
the derivation of the form from root stem.
A lemmatization procedure, available as a
CGI executable, searches this structure. For
instance, for form devayos it lists:

{ loc. du. m. | gen. du. m. |

loc. du. n. | gen. du. n. }[deva]

where the stem deva is a hyperlink to the cor-
responding entry in the lexicon. Similarly for
verbal forms. For pibati it lists:
{ pr. a. sg. 3 }[paa_1], indicating that it
is the 3rd person singular present form of root
pā1 in the active voice.

3.6 The unique source requirement

The present relative independence of the gram-
matical engine from the lexicon follows actually
from pragmatic considerations. Many excep-
tions are recorded directly in its source code,
as opposed to being fetched from the lexicon.
Actually, in the lexicon abstract syntax, there
are slots for listing special grammatical forms
and other irregularities: the type for ortho-
graphic variants contains a constructor ‘Declen-
sion’ which takes as argument declension direc-
tives such as special stems. Some of these di-
rectives are used in the computation of inflected
forms; for instance, the feminine stem of adjec-
tives is indicated there. For completely irregular
words, the full declension tables may actually be
listed, but usually a few caracteristic cases are
shown, the other being inferable by similarity.
At present most of this information is ignored
(besides being printed in the text version), be-
cause it is a non-trivial task to design a meta-
language of grammatical annotations usable to
describe minimal parameters to a grammatical
engine.

For instance, in the Monier-Williams dictio-
nary, an adjective whose masculine and neuter
stem ends in a while its feminine stem ends in ā
is listed as mf(ā)n, whereas it is listed as mf(̄ı)n
if the feminine stems ends in ı̄. But a word
such as bālaka (childish) is annotated mf(ikā)n,
meaning that its feminine stem is bālikā. And
śveta (white) is listed as mf(ā or śven̄ı)n, a fine
notation for humans, but a processing headache

for machines. It is not clear where the line
should be drawn between defining specific nota-
tion for irregular but frequently occurring cases,
and rejecting a case as a plain specific exception.

The same holds true of listing compound
words: when listed as a subentry of its left
component, the right component ought to be
enough to infer the compound, whose spelling
may be computed as sandhi of its two compo-
nents. But difficulties have to be expected of
beginners, who may not easily spot say tejoliṅga
as a compound of tejas and liṅga. And if the
full form is written, it is not obvious to under-
stand what is the second component of the com-
pound, since sandhi analysis is ambiguous. For
instance, satyājñā could be analysed as satyā-
jñā (knowledge of truth), satyā-ajñā (ignorance
of truth), or satyā-ājñā (authority of truth). In
order to resolve such ambiguity, specially fre-
quent since ā is a common preverb (indicat-
ing movement towards the locutor), while a is
the privative prefix, Monier-Williams invented
a special diacritic notation, where a long ā may
be written with a circumflex notation â, where
the two slopes of the circumflex accent may be
independently put in plain or bold face. Need-
less to say, this subtelty demands sharp eyesight
and high quality printing, and is out of reach
for current optical scanning software. It should
be recognised where it belongs, as specific nota-
tion for sandhi analysis, which does not easily
extend to say the very frequent decomposition
of o as as-a. The proper treatment of such ab-
breviations will have to wait for the design of
unambiguous notation generating regular trans-
ducer operations, under which prefixing, but
also hopefully pattern-matching modulo sandhi,
will be treated.

Notwithstanding these difficulties, which de-
mand compromise solutions with some redun-
dancy in the lexicon, it should be recognised as
long-term goal that the lexical database should
hold all the morphological and grammatical in-
formation in a non-redundant minimal form.
This is the well-known software engineering de-
sign requirement of unicity of source, which
reduces the risk of inconsistency by indepen-
dent updates, and optimises storage manage-
ment. This requirement may be obtained by the
usual abstraction tools of literate programming:
good data structures, procedural encapsulation,
modularity, etc., and by the proper algorithm li-
braries (finite state transducers notably). This
does not preclude redundancy for proper ergon-

omy in the presentation of the linguistic mate-
rial to a non-expert user to be actually com-
puted out.

We end this section by remarking that we did
not attempt to automate derivational morphol-
ogy, although some of it is fairly regular. Actu-
ally, compound formation is treated at the level
of segmentation, since classical Sanskrit does
not impose any bound on its recursion depth.
Verb formation (which sequences of preverbs are
allowed to prefix which root) is explicit in the
dictionary structure, but it is also treated at
the level of the segmentation algorithm, since
this affix glueing obeys external sandhi and
not internal sandhi, a peculiarity which may
follow from the historical development of the
language (preverbs derive from postpositions).
At present, noun derivatives from verbal roots
are explicit in the dictionary rather than be-
ing computed out, but we envision in some fu-
ture edition to make systematic the derivation
of participles, absolutives, infinitives, and pe-
riphrastic future and perfect, as well as the de-
rived verbal stems of causative, intensive and
desiderative.

4 Syntactic analysis

4.1 Segmentation and tagging

The segmenter takes a Sanskrit input as a
stream of phonemes and returns a stream of so-
lutions, where a solution is a list of (inflected)
words and sandhi rules such that the input is
obtainable by applying the sandhi rules to the
successive pairs of words. It is presented, and
its completeness is proved, in (Huet, 2004). Fur-
ther details on Sanskrit segmentation are given
in (Huet, 2003a; Huet, 2003c).

Combined with the lemmatizer, we thus ob-
tain a (non-deterministic) tagger which returns
all the (shallow) parses of an input sentence.
Here is an easy example:

process "maarjaarodugdha.mpibati";

Solution 1 :

[maarjaaras
< { nom. sg. m. }[maarjaara] >

with sandhi as|d -> od]
[dugdham

< { acc. sg. m. | acc. sg. n. |

nom. sg. n. }[dugdha] >
with sandhi m|p -> .mp]

[pibati
< { pr. a. sg. 3 }[paa#1] >

with sandhi identity]

This explains that the sentence
mārjārodugdham. pibati (a cat drinks milk) has
one possible segmentation, where maarjaras,
nominative singular masculine of maarjara (and
here the stem is a hyperlink to the entry in
the lexicon glosing it as chat i.e. cat) combines
by external sandhi with the following word by
rewriting into maarjaro, followed by dugdham
which is the accusative singular masculine of
dugdha (draught) or the accusative or nomi-
native singular neuter of dugdha (milk - same
vocable), which combines by external sandhi
with the following word by rewriting into its
nasalisation dugdham. , followed by pibati ...
(drinks).

4.2 Applications to philology

We are now at the stage which, after proper
training of the tagger to curb down its over-
generation, we shall be able to use it for scan-
ning simple corpus (i. e. corpus built over the
root forms encompassed in the lexicon). The
first level of interpretation of a Sanskrit text is
its word-to-word segmentation, and our tagger
will be able to assist a philology specialist to
achieve complete morphological mark-up mean-
ingfully. This will allow the development of con-
cordance analysis tools recognizing morpholog-
ical variants, a task which up to date had to be
effected manually.

At some point in the future, one may hope
to develop for Sanskrit the same kind of in-
formative repository that the Perseus web site
provides for Latin and Classical Greek2. Such
resources are invaluable for the preservation of
the cultural heritage of humanity. The consid-
erable classical Sanskrit corpus, rich in philo-
sophical texts but also in scientific, linguistic
and medical knowledge, is an important chal-
lenge for computational linguistics.

Another kind of envisioned application is
the mechanical preparation of students’ read-
ers analysing a text at various levels of informa-
tion, in the manner of Peter Scharf’s Sanskrit
Reader3.

4.3 Parsing

The next stage of analysis will group together
tagged items, so as to fulfill constraints of sub-
categorization (accessible from the lexicon) and
agreement. The result ought be a set of consis-
tent dependency structures.

2http://www.perseus.tufts.edu/
3http://cgi-user.brown.edu/Departments/

Classics/Faculty/Scharf/

Many ambiguity problems are to be expected,
such as the possible use of accusatives as ad-
verbs, or the possible use of genitives as noun
complements in noun phrases as well as verb
complements for certain verbs. Verbs admitting
double accusative slots will require some kind of
semantic ontological classification. Sharing of
arguments across clauses, a peculiarity of San-
skrit, will also raise non-linearity issues.

It is to be expected that these issues will
need statistical training on a treebank. Such
a resource is under construction, in cooperation
with Brendan Gillon from Mac Gill University,
a specialist in Sanskrit syntax (Gillon, 1996).

5 Corpus and lexicon interactions

5.1 Citations and Corpus

In the current structure of the lexicon, slots are
provided for occasional citations. This should
be systematised, in the following way. First of
all, some precise criterion must be coined to dis-
tinguish idiomatic locutions of generic enough
scope from specific usage utterances which are
best presented as actual citation from some
well-defined corpus. This is not obvious, spe-
cially for languages such as Sanskrit, whose
recorded usage spans at least 30 centuries.
What is a frequent vedic idiom may be unknown
in classical Sanskrit, and conversely. This is
true in general of meanings, which must be dis-
criminated by diachronic notations - vidyut is
modern electricity as well as ageless lightning.

Concerning bona fide citations, they must be
attested in a mechanically verifiable manner.
That is, not only the precise work (and its au-
thor when known) must be identified, but the
precise reference must be given, not just in a
verse number notation, but as an hypertext link
in a concordance corpus. This sounds crazy at
first: should we wait to have a given work com-
pletely digitalised and tagged in order to make
the first citation to it in our lexicon ? Should we
wait for a full concordance of the critical edition
of the Mahābhārata (90000 stanzas of 32 sylla-
bles) before giving any citation from the Bha-
gavadḡıtā ? Of course not, and actually there is
an intermediate solution: it is simply to design a
structure of corpus skeleton in which this index-
ation will take place. That is, within all San-
skrit litterature, a section epic will contain as
subsection the Mahābhārata, within which, as
sixth of its eighteen major books, will be listed
the Bh̄ıs.maparvan, within which, as its third
episode, is found the Bhagavadḡıtā, within the

41 sections of which we shall find the relevant
one, again a list of ślokas, which may all be non-
instanciated, except the one of interest, along
with its tagging, within which the proper hy-
pertext anchor will be ready to be indexed from
the lexicon citation index. All this is rather
straightforward, since the appropriate technol-
ogy and standards are now mature (XML, Uni-
code, TEI).

Now this clearly defines new consis-
tency/completeness invariants, in the mutual
relationship between the lexicon, the corpus,
and the grammatical tagging tool: the tag-
ger ought to succeed on the śloka, thus all
words within it ought to appear in the lexical
database, where in some deep substructure
the corresponding concordance indexes should
be remembered. When the syntax tools will
permit the analysis of this piece of text as a
deep structure, indexed with a presupposition
context given by a synthetic abstract (stating
for instance who Arjuna and Kr.s.n. a are, con-
sistently with the corresponding encyclopedic
entry of the lexicon), then we shall be able
to enrich the corpus with its first layer of
interpretation.

When the full critical edition of the
Mahābhārata will be issued by the Bandharkar
Institute, proper links to it will be propagated in
the corpus skeleton structure. Thus the work of
scholars the world over will progressively accrue
this digital corpus, by proper linking mecha-
nisms such as correspondance tables, finite-state
transducers to account for different standards
of translitteration, etc. Furthermore, the cor-
pus itself will not be just a big set of sentences,
but it should be full of cross-references, espe-
cially within Sanskrit, where a strong tradition
of commentaries exist. Of course this shall not
happen instantly, but one may hope that stan-
dards such as the TEI may make this dream
come true one day.

5.2 Lexicon acquisition

Another important interaction between the cor-
pus and the lexicon is that progressively the
lexicon ought to be completed in order to en-
compass the actual use of words in the corpus.
This is not an easy requirement, since our cur-
rent tagger is lexicon-directed. A robust version
must be designed, which will recover gracefully
from missing chunks. The analysis of the un-
known chunks will require a stand-alone lem-
matizer, a difficult task since internal sandhi is

a complex non-local process. It is expected that
approximate heuristic solutions will be sufficient
to help Sanskrit scholars better than elusive ex-
act solutions.

The proper encompassing of the corpus, in a
language which spans 25 centuries over a sub-
continent, will demand the design of an appro-
priate diachronic architecture. Statistical com-
putations on the digitalised corpus will help ad-
just frequency indexes within the lexicon, lead-
ing to adjustment of its diachronic structure
by unbiased computation. Scholarly questions
such as “what is the frequency of the absolute
genitive construction in the epic litterature” will
be answerable by mechanised corpus crawlers,
and so on.

6 Conclusions

The computational linguistic tools should be
modular, with an open-ended structure, and
their evolution should proceed in a breadth-first
manner, encompassing all aspects from pho-
netics to morphology to syntax to semantics
to pragmatics to corpus acquisition, with the
lexical database as a core switching structure.
Proper tools have to be built, so that the an-
alytic structure is confronted to the linguistic
facts, and evolves through experimentally ver-
ifiable improvements. The interlinking of the
lexicon, the grammatical tools and the marked-
up corpus is essential to distill all linguistic in-
formation, so that it is explicit in the lexicon,
while encoded in the minimal way which makes
it non-redundant.

We have argued in this article that the de-
sign of a hypertext interface is useful to refine
the structure of the lexicon in such a way as
to enforce these requirements. However, such
a linguistic platform must carefully distinguish
between the external exchange formats (XML,
Unicode) and the internal logical structure,
where proper computational structures (induc-
tive data types, parametric modules, powerful
finite-state algorithms) may enforce the consis-
tency invariants.

References

Christiane Fellbaum, editor. 1998. WordNet:
An Electronic Lexical Database. MIT Press.

Brendan S. Gillon. 1996. Word order in classi-
cal Sanskrit. Indian Linguistics, 57,1:1–35.

Gérard Huet. 2000. Structure of a San-
skrit dictionary. Technical report, IN-

RIA. http://pauillac.inria.fr/~huet/

PUBLIC/Dicostruct.ps

Gérard Huet. 2001. From an informal textual
lexicon to a well-structured lexical database:
An experiment in data reverse engineering. In
Working Conference on Reverse Engineering
(WCRE’2001). IEEE.

Gérard Huet. 2002. The Zen computational
linguistics toolkit. Technical report, ESSLLI
Course Notes. http://pauillac.inria.fr/
~huet/ZEN/zen.pdf

Gérard Huet. 2003a. Lexicon-directed segmen-
tation and tagging of Sanskrit. In XIIth
World Sanskrit Conference, Helsinki.

Gérard Huet. 2003b. Linear contexts and the
sharing functor: Techniques for symbolic
computation. In Fairouz Kamareddine, edi-
tor, Thirty Five Years of Automating Mathe-
matics. Kluwer.

Gérard Huet. 2003c. Towards computational
processing of Sanskrit. In International
Conference on Natural Language Processing
(ICON), Mysore, Karnataka.

Gérard Huet. 2003d. Zen and the art of sym-
bolic computing: Light and fast applicative
algorithms for computational linguistics. In
Practical Aspects of Declarative Languages
(PADL) symposium. http://pauillac.

inria.fr/~huet/PUBLIC/padl.pdf

Gérard Huet. 2004. A functional toolkit
for morphological and phonological pro-
cessing, application to a Sanskrit tagger.
Journal of Functional Programming, to ap-
pear. http://pauillac.inria.fr/~huet/

PUBLIC/tagger.pdf.
Brett Kessler. 1992. External sandhi in classi-

cal Sanskrit. Master’s thesis, Stanford Uni-
versity.

Brett Kessler. 1995. Sandhi and syllables in
classical Sanskrit. In D. Farkas E. Duncan
and P. Spaelty, editors, Twefth West Coast
Conference on Formal Linguistics. CSLI.

Robert Krovetz and W. Bruce Croft. 1992.
Lexical ambiguity and information retrieval.
Information Systems, 10(2):115–141.

R. Krovetz. 1994. Learning to augment a
machine-readable dictionary. In Proceedings
of the EURALEX ’94. Amsterdam, Holland,
pages 107–116.

Huanfeng Ma, Burcu Karagol-Ayan, David Do-
ermann, Doug Oard, and Jianqiang Wang.
2003. Parsing and tagging of bilingual dictio-
naries. Traitement Automatique des Langues,
44,2:125–149.

G. A. Miller. 1990. Wordnet: a lexical database
for English. International Journal of Lexicog-
raphy, 3,4.

Alain Polguère. 2003. Lexicologie et sémantique
lexicale. Presses de l’Université de Montréal.

