
Validation and Normalization of DCS corpus and Development
of the Sanskrit Heritage Engine’s Segmenter

Sriram Krishnan1, Amba Kulkarni1, and Gérard Huet2
1 Department of Sanskrit Studies, University of Hyderabad

2 Inria Paris Center
sriramk8@gmail.com, apksh.uoh@nic.in, gerard.huet@inria.fr

Abstract

The Digital Corpus of Sanskrit records around 650,000 sentences along with their mor-
phological and lexical tagging. But inconsistencies in morphological analysis, and in pro-
viding crucial information like the segmented word, urges the need for standardization
and validation of this corpus. Automating the validation process requires efficient analyz-
ers which also provide the missing information. The Sanskrit Heritage Engine’s Reader
produces all possible segmentations with morphological and lexical analyses. Aligning
these systems would help us in recording the linguistic differences, which can be used
to update these systems to produce standardized results and will also provide a Gold
corpus tagged with complete morphological and lexical information along with the seg-
mented words. Krishna et al. (2017) aligned 119,000 sentences, considering some of the
linguistic differences. As both these systems have evolved significantly, the alignment
is done again considering all the remaining linguistic differences between these systems.
This paper describes the modified alignment process in detail and records the additional
linguistic differences observed. It also proposes a modification to the existing Heritage
segmenter where an additional ranking algorithm is introduced to rank solutions based on
joint probabilities calculated from statistical data generated from the results of the align-
ment process. And finally, the datasets generated during this process are also released
publicly.1

1 Introduction

Computational processing of Sanskrit is challenging due to sandhi, compounding and the free
word order. Sandhi is mandatory between the components of a compound. While the sandhi
between words in a sentence is left to the discretion of the speaker, due to the oral tradition,
we find a greater tendency to use sandhi even in the written texts. The last decade has seen
emergence of several computational tools for analysis of Sanskrit texts at various levels ranging
from identification of sentence boundary (Hellwig, 2016), segmentation (Huet, 2005; Hellwig
and Nehrdich, 2018), compound analysis (Gupta, 2012), morphological analysis (Kulkarni
and Shukl, 2009; Huet, 2005) to sentential parsing (Kulkarni, 2019). The complexity of the
sentential parser is reduced if it receives a morphologically analysed segmented text as an
input. A collaborative effort between the developers of Sanskrit Heritage (SH) Platform and
Saṃsādhanī team (Huet and Kulkarni, 2014) permitted to share efforts on these problematics.
The Sanskrit Heritage Platform concentrated on the segmentation guided by the word forms
validated through the lexicon. The Saṃsādhanī team focussed on the development of a parser
(Kulkarni, 2019). The segmentation algorithm of SH Platform uses a novel approach to
finite state technology, through Effective Eilenberg machines (Huet and Razet, 2015). The
non-determinism involved in segmentation as well as during the morphological analysis results

1The Dataset can be accessed in the following github link: https://github.com/samsaadhanii/datasets
under dcs_sh_alignment/

in multiple possible segmentations of the given input string. The main reason behind the
non-determinism is the absence of semantic compatibility check during the process of segmen-
tation. The segmenter produces billions of possible segmentations with all relevant linguistic
details such as morphological analysis, and links to the dictionary entry. In order to display
these billions of solutions, an efficient compact shared representation of these solutions using
tabulated display interface was developed (Goyal and Huet, 2016). Krishnan and Kulkarni
(2019) enlisted these solutions by ignoring the linguistic details which are irrelevant from the
segmentation point of view, merging the solutions that have same word level segmentation and
prioritizing the solutions with the help of statistical information from the SHMT corpus.2

Some requirements of Sanskrit computational tools are very specific. Sanskrit has a vast
literature spreading over several knowledge domains. Most of the important Sanskrit literature
is already translated into several languages.3 In spite of this, scholars want to have access
to the original sources. Thus development of the computational tools with convenient user
interfaces that allow seamless connectivity to and from the lexical resources, generation engines
and analysis tools becomes meaningful. Though the user would like to have an access to all
possible interpretations, it is desirable to rank the solutions and display a few of them. Only
when none of the displayed solutions is correct, all other solutions should be made available to
the user. In order to rank the solutions, one needs some annotated corpus which can be used
to learn the priorities.

For this, Heritage segmenter is required to be facilitated with statistical analysis. Recently
the digitization of Sanskrit manuscripts shot up. But the amount of annotated data available
for Sanskrit is very small compared to the size of the texts available in it from ancient times.
An effort towards having such an annotated data was initiated and resulted into the Digital
Corpus of Sanskrit (DCS) (Hellwig, 2010 2019).4 This data, being of reasonable size, can be
used for both statistical analyses and machine learning algorithms.

This paper focuses on how DCS’s data can be used along with the Heritage Engine’s analysis
so that we get a proper morphologically tagged and segmented corpus. It starts with describing
the annotation schemes of the two systems, their advantages and limitations and the need
for alignment. A similar effort towards aligning the DCS annotated data with the analysis
of Heritage Engine’s data was already reported by Krishna et al. (2017). This work is briefly
described in section 3, along with some issues related to the alignment. Looking at the limitations
of the previous work, an effort towards building a better dataset was started. A proper alignment
between the representations of these systems was done. The alignment process is described in
section 4. But there were some additional difficulties due to the differences in the design decisions
of the two systems. These difficulties were recorded systematically and are discussed in section
5. The observations are put down in section 6. Statistical information was extracted from the
segmented and morphologically tagged corpus. With the help of these statistical information,
the Heritage Segmenter was updated with an additional ranking algorithm which is described in
section 7. Testing the modified Heritage Segmenter using Bhagavad Gita verses and comparing
the performance of the different statistical information, the different metrics, and with the model
proposed in Hellwig and Nehrdich (2018) are under the same section.

2A corpus developed by the Sanskrit-Hindi Machine Translation (SHMT) Consortium under the funding from
DeItY, Govt of India (2008-12). http://sanskrit.uohyd.ac.in/scl/GOLD_DATA/tagged_data.html

3Most of the literature is in poetry. In spite of having proper translations for these, the true essence of such
poetry can be appreciated only in the original!

4http://www.sanskrit-linguistics.org/dcs/

2 Resources
Before going into the discussion, let us take a look at the morphological annotation and the
segmentation annotation of The Digital Corpus of Sanskrit, and The Sanskrit Heritage Engine.

2.1 The Digital Corpus of Sanskrit
The DCS is a sandhi split corpus of Sanskrit texts with full morphological and lexical analysis.
There are about 650,000 sentences with more than 4,500,000 word references and 175,000 unique
words. All this data was collected from around 400 Sanskrit texts. For every word reference,
the following list of attributes is present in DCS:
1. lemma
2. morphological class
3. case, number and gender for nouns along with a combined value termed CNG5

4. tense, person, and number values for verbs
5. prefix (optional)
6. finite verb form (optional)
7. infinite verb form (optional)
8. position in sentence, position inside chunk
9. meaning of the lemma
Krishna et al. (2017) represented this data as objects containing the sentence details like

chunks, lemmas, and CNG values. A glimpse of what an object looks like is depicted in table
1. This object was used for alignment with the analysis done by Heritage Engine.

Sentence Id 83
Sentence mauktike yadi saṃdehaḥ kṛtrime sahaje’pi vā
Chunks [‘mauktika’, ‘yadi’, ‘saṃdeha’, ‘kṛtrima’, ‘sahaja’, ‘api’, ‘vā’]
Lemmas [[‘mauktika’], [‘yadi’], [‘saṃdeha’], [‘kṛtrima’], [‘sahaja’], [‘api’], [‘vā’]]
Morphological Class (CNG) [[‘171’], [‘2’], [‘29’], [‘171’], [‘171’], [‘2’], [‘2’]]

Table 1: An example DCS Object data

DCS presents a lemma for each segment along with its morphological analysis. In some cases
the derived stem is chosen as a lemma, and in some cases the underived one is chosen. The
system is not uniform in deciding the lemmas. This might be a result of context-specific analysis,
but in the absence of any tagging guidelines, we do not know the reason for such inconsistency.
This corpus is curated single-handedly. Thus we can assume consistency in tagging. However,
every human is prone to error. The quality of this data tested on a small sample (Hellwig and
Nehrdich, 2018) revealed that around 5.5% of the compound splits are doubtful and around
2% errors are due to segmentation. The recently released data by Hellwig and Nehrdich (2018)
contain the split points and sandhi rules proposed by the tagger, but these data are not easy to
align with the DCS data.

2.2 The Sanskrit Heritage Engine
The Sanskrit Heritage Engine is a platform that hosts a lexicon (The Sanskrit Heritage
Dictionary) and various tools like reader, lemmatizer, declension and conjugation engines. The
Reader analyses any given text and segments it into all possible splits and displays them in a
graphical interface where the user has the option to choose the required split. In addition to the
graphical interface, it also enlists the solutions if the number of solutions is less than a threshold,
say 100, also providing the sentential analysis. It closely follows Pāṇini’s system i.e., all the
rules governing the concept of sandhi that occur in Aṣṭādhyāyī are taken into consideration.

5A value denoting the case, number, and gender of the given word, for nouns. Or the tense, aspect, person,
number, and gaṇa (present system class) for verbs.

This segmentation is lexicon directed, using forms systematically generated from its own lexicon.

Additionally, the morphological analyses (inflectional and if applicable derivational as well)
are also provided for all the segments. This helps the user to disambiguate and correctly pick
the intended split and prune the solutions that are not required. Such information also helps
in the further stages of sentential analysis like parsing, disambiguation, and discourse analysis.
Another advantage is that, this system combines a fast segmentation algorithm using finite-state
transducers and dynamic programming with a first-pass of chunking that limits the inherently
exponential complexity to small-length chunks, making the whole segmentation analysis fast
enough in practice to be usable interactively.
One limitation of this system is that, it cannot arrive at a single solution mechanically. This

owes to the fact that the current version does not take into account the meaning compatibility
between various segments, which involves processing at sentential level. Another limitation is
due to the Out of Vocabulary words. Though the dictionary contains high frequency words, as
is the case with any NLP system, Heritage engine also suffers from automatic handling of Out
of Vocabulary words. However the interactive interface allows the user to suggest the lemma for
such words, which get stored in the local dictionary provided the lemmas are available in the
Monier-Williams dictionary. And for some nominal words with certain prefixes like su, vi, dur
and for words with taddhita suffixes, an explicit entry is required to be added in the dictionary.

This paper deals with the ways in which the DCS Gold data is aligned with one of the
solutions of SH. This is an extension of the effort by Krishna et al. (2017) which is described
in the next section. In addition to that, statistical information containing the frequencies for
words, compound components, and sandhi rules are to be generated which are then used for:
1. updating the existing Segmenter in the Heritage Engine, and
2. testing the performance of the updated ranking algorithm and the frequencies

3 A Dataset for Sanskrit Word Segmentation

3.1 Description
Around 119,000 sentences from the originial DCS corpus were considered and an alignment be-
tween the DCS and the Heritage Engine was done by (Krishna et al., 2017). This lead to a huge
dataset which had the input sequence, ground truth segmentation, and morphological and lexical
information about all the phonetically possible segments. This was done primarily for the Word
Segmentation task but is also useful for subsequent tasks. The main concern was to make this
annotated corpus available for the use of statistical techniques and Machine learning algorithms.

Since there are differences in design decisions between DCS and Heritage Reader, the
candidate segments provided by the Heritage Reader had to be adapted and a few additional
segments were added so as to match the entries in DCS. The XML based GraphML format
was used to represent the candidate space segments. The GraphML files consist of graph
structures, G(V,E) as the representation for the analyses of each of those sentences. The
nodes, V , are the possible splits, and the values in the edges, E, denoting whether the partici-
pating nodes can co-exist in a solution or not i.e., whether or not they have an overlap in the
position relative to the sentence, and that the overlapped portion does not follow any sandhi rule.

To match the two systems, the data from the Heritage Reader’s analysis was scrapped and
certain parameters such as word, lemma, position, morphological information, chunk number,
word length, and pre-verbs were extracted. Corresponding to the morphological analysis the
CNG was generated for the ease of alignment. With all these parameters as attributes of each
of the nodes, graphs were built for each sentence. Standard graph processing libraries were used
to extract the data from these graphs.

3.2 Issues already handled
The lemma provided by DCS and the CNG value are the attributes that help in mapping the
two systems. Although direct mapping produced some results, there were multiple issues when
the actual mapping was experimented with. Krishna et al. (2017) discusses these issues in detail
and provides solutions for each of them. A short summary of the issues is presented below.

• One of the issues was with the compounds and Named entities. The DCS provided the
lemma based on the context. If in a given context the compound has non-compositional
meaning, then the compound was not split into its components. If the meaning in the given
context is compositional, then the compound was split into components. The Heritage
Reader’s analysis is guided by the lexicon. If the lexicon contains a compound entry due
to its non-compositional meaning or on account of being a Named entity, then the Reader
in addition to producing all possible segmentations, also produced an entry without any
segmentation. Deciding non-compositionality is a complex issue (Hellwig and Nehrdich,
2018).

• Another issue was with the derivative affixes, especially the secondary derivatives. These
were treated separately in Heritage Reader, but DCS joins them.

• Third, there were inconsistencies while dealing with anusvāras which should have actually
been the anunāsikas when followed by their respective class consonants.

• Fourth, in DCS, some of the non-final (iic) components of compounds have the same word-
form as their stems. For example, mahā. But the Heritage Reader sticks to the Pāṇinian
rules and produces the base stem (mahat in this case).

3.3 Issues yet to be handled
In addition to the above mentioned differences, we noticed following discrepancy at the level of
analysis between the two systems.

• Use of homonymy index
One important aspect of the Heritage Reader is that the dictionary has different entries for
homonymous stems, and the morphological analyser provides the homonymy index of the
stem. For example, the word siddham is analysed by Heritage Engine as shown below.

[siddha_1 { pp. }[sidh_1]]{n. sg. acc.| n. sg. nom. | m. sg. acc}
[siddha_2 { pp. }[sidh_2]]{n. sg. acc.| n. sg. nom. | m. sg. acc}

If we look at the meanings of these two senses, we find that they are almost opposing each
other.

siddha_1 [pp. sidh_1] a. m. n. f. siddhā
(French) accompli, réalisé ; gagné, obtenu ; parfait

qui a atteint son but, réalisé son objectif
(English) accomplished, realized; won, obtained; perfect

who achieved his goal, achieved his goal
siddha_2 [pp. sidh_2] a. m. n. f. siddhā
(French) empêché, écarté, repoussé.
(English) prevented, pushed aside, pushed back

In DCS annotated data, homonymy of stems is available but mapping the sense of the stems
found in the Heritage Reader with those in the DCS is not trivial. Hence Krishna et al.
(2017) collapsed these two analyses into one ignoring the sense information. Although it is
not used now, such distinctions would definitely be of greater use for sense disambiguation
of such homonymous words.

• Level of analysis
The engine provides both the inflectional as well as the derivational analysis for some
kṛdantas (primary derivatives) i.e, participles, absolutives and infinitive forms. For example,
the word hitam is an inflected form of the base root hita which can be derived in two different
ways. This results in two different analyses for the word hitam as shown below.

[hita_1 { pp. }[hi_2]]{n. sg. acc. | n. sg. nom. | m. sg. acc.}
[hita_2 { pp. }[dhā_1]]{n. sg. acc. | n. sg. nom. | m. sg. acc.}

The dictionary entries for these two stems show the meaning difference.

hita_1 [pp. hi_2] a. m. n. f. hita
(French) envoyé, lancé, émis.
(English) sent, launched, issued
hita_2 [pp. dhā_1] a. m. n. f. hita
(French) placé, mis, disposé | convenable, avantageux ;

utile, propre à, bon pour <dat. g. loc.> ;
salutaire | amical, bienveillant ; qui fait le bien
avantage, profit, intérêt ; bien, chose utile ; bien-être.

(English) placed, put, disposed | suitable, advantageous;
useful, suitable for, good for <dat. g. loc.>;
beneficial | friendly, caring; who does good
advantage, profit, interest; well, useful thing; well-being.

The analyses of DCS data is dependent on the context or the meanings involved. So,
DCS stores the analysis of the derived form sometimes and the analysis of the base form
otherwise. As Heritage Reader proposes all possible analyses, it is thus challenging to map
the Heritage Reader’s analysis with the DCS’ analysis due to the involvement of meaning.
In the case of hitam, DCS chooses only the inflectional analysis according to the intended
meaning in the sentence.
In the case of causative forms of the verbs, DCS chooses the causative form of the verb
bhojay as the stem for the word bhojanīyāḥ. But the Heritage Reader provides the following
analysis for the same word.

[bhojanīya {pfp. [2] }[bhuj_2]]{f.pl.acc. | f.pl.nom | m.pl.nom.} (1)
[bhojanīya {ca. pfp. [2] }[bhuj_2]]{f.pl.acc. | f.pl.nom | m.pl.nom.} (2)
[bhojanīya {pfp. [2] }[bhuj_1]]{f.pl.acc. | f.pl.nom | m.pl.nom.} (3)

Of the three analyses provided by the engine, (2) has the causative form. Here one needs
to construct the causative form bhojay from bhuj+ca in order to align the morphological
analysis, which is not trivial and involves the rules from grammar. Additionally, the Her-
itage Engine analyses privative compounds like anivṛttam as a-nivṛtta, but is also updated
regularly to lexicalize such compounds to have non-compositional meaning. Since DCS’
analysis depends on the compositionality according to the context, the analysis might not
map with Heritage Reader’s analysis.

• Enhancement in the Heritage engine
The Heritage Reader’s Engine and the dictionaries have evolved in many ways in the past
three years, and hence using the same GraphML files would neglect the improvements
carried over during the last few years. One such change was with the way the Named
Entities have been handled. In the earlier version, the compounds were always split into
possible segments even if it represents a Named Entity. Another modification was regarding
the pre-verbs. Earlier only the pre-verbs with derivational lemmas were joined, but in the
current version the inflectional lemmas also have the pre-verbs attached alongwith.

In view of the above changes, and in order to resolve the problems with homonymy, we decided
to align the Heritage Reader’s analysis with the DCS afresh with modifications in the alignment
process. This alignment of the manually tagged analyses of DCS with one of the analyses
produced by the Heritage Engine would provide us with:
1. Identifying wrong annotations from DCS,
2. Consistent uniform analysis,
3. Probable compounds with non-compositional meaning,
4. Constituency analysis of compound words, and
5. Parallel corpus of segmented-unsegmented texts

4 Alignment Process
The DCS objects for the sentences are used in the same way they were used earlier. GraphML
files are used for the representation of the mapped data. The same process of scrapping was
used with a slight modification to scrap the derivational information, sense, and the correct
representation of the morphological analysis.
The Mapping for every sentence was done in three stages:
1. Representing Heritage Reader’s analysis as a graph,
2. Aligning the DCS annotation with Heritage Reader’s analysis, and
3. Handling compounds with non-compositional meaning and words with derivational mor-

phology

4.1 GraphML files creation
4.1.1 Scrapping
The first stage corresponds to scrapping data from the Heritage Reader’s website and creation
of GraphML files for each of the sentences from the DCS corpus. During this stage, CNG values
corresponding to each morphological analysis are also obtained, and added as an additional
attribute to help in connecting the Heritage Reader’s analyses with the DCS entries (Krishna
et al., 2017).

4.1.2 Graph Construction
The next part of this stage was creating graphs with nodes having the following form.

(id, { color_class, position, chunk_no, word, lemma, sense, cng, pre_verb,
morph, length_word, der_pre_verb, der_lemma, der_sense, der_morph, der_cng,
char_pos })

All these values are extracted from the scrapped data. lemma, sense, pre-verb, morph and
cng denote respectively the word’s prātipadika/dhātu (stem/root), sense (based on different
meanings), upasarga (pre-fix for verbs), morphological details, CNG - (case number and gender
value) corresponding to the morphological information. der_lemma, der_sense, der_pre_verb,
der_morph, der_cng correspond to the information pertaining to derivational morphology.
color_class is an attribute for the interface and it denotes a particular color depending on
the phase6. For example, iics have yellow, substantive/adjective forms have blue, indeclinable
forms such as adverbs, conjunctions, prepositions have pink colors, etc.
Except for the derivational details, the sense information and the position based on character,

all the others were created by Krishna et al. (2017). As in Krishna et al. (2017), the graph edge
values are used to identify the co-existence of two nodes (segments) in a single solution. The
edge value ‘1’ indicates that the two nodes can be a part of a solution. The value ‘2’ indicates
that the two corresponding nodes cannot be in a single solution. For example, in the compound
pātālabhāsuram (Figure 1), pātāla and bhāsuram are non-conflicting nodes and hence their edge
is labeled ‘1’. But bhā and bhāsuram are separate nodes which are conflicting, and hence their

6Phases are the lexical categories like substantive, vocative, finite verbal forms, etc.

Figure 1: Heritage Reader’s analysis of the compound pātālabhāsuram

Figure 2: Heritage Reader’s analysis of the compound padmavirājitam

edge is labeled ‘2’. Later, the value ‘3’ will be stored for the edges in the correct segmentation
solution.
As another example, let us consider the sentence bindusthānaṃ madhyadeśe sadā padmavirāji-

tam. There are 2 possible ways in which the word padmavirājitam (Figure 2) can be analysed as
depicted in table 2. So, the word virājitam is in conflict with the part virāji since they cannot
co-occur together, and hence they will have an edge labeled as ‘2’. The nodes with virāji and
padma will have an edge with label ‘1’ since they can co-occur. Currently the edge information
is not used but could be of use later.

Solution Analyses

padma-virājitam padma [padma]{iic.}
virājitam [vi-rājita { pp. }[vi-rāj_1]]{n.sg.acc. | n.sg.nom. | m.sg.acc.}

padma-virāji-tam
padma [padma]{iic.}
virāji [virāj_2]{m.sg.loc. | n.sg.loc. | f.sg.loc.}
tam [tad]{m.sg.acc.}

Table 2: Analysis of the chunk padmavirājitam

4.1.3 Handling Homonymy
This involves merging the nodes with the same lemma and other parameters (like word, chunk,
etc.) but different senses. Since it is not trivial to align DCS’ sense analysis with Heritage

Engine’s sense analysis, the individual nodes, having different senses, but the same lemma and
same CNG value lead to multiple mappings with the DCS. Such nodes are collapsed into one,
suppressing the information of senses. It was mentioned in section 3.3 that Krishna et al. (2017)
collapsed all these nodes into one. As we have an additional attribute in ‘sense’, all the sense
indices are temporarily stored in this attribute. New graphs were formed with the new nodes.

4.2 Comparison of DCS data and Heritage Reader’s graph to analyze the
parallels

The second stage of the alignment process deals with the actual analysis for creating the merged
parallel database. First, both systems are normalized so that both of them have a uniform
representation of the texts. Then the mapping process is initiated.

4.2.1 Normalization
Both the DCS data as well as the Heritage output are normalised to account for the variations
in the use of anunāsika and doubling of consonants (dvitva). For example,

śrīśaṃkaraḥ to śrīśaṅkaraḥ
satvena to sattvena

4.2.2 DCS and Heritage Reader comparison
A comparison between the modified DCS data and modified Heritage Engine analyses was done
in the following sequence in order to align them:
1. Mapping the base lemma, derived lemma (optional) and CNG.
2. Different conventions

In the case of pronouns, both DCS and Heritage Engine follow different conventions while
assigning the stem. For example, DCS analyses tvam as tvad, and the Heritage output
following Pāṇini produces yuṣmad as the stem. These are treated as special cases with
normal table lookup.

3. Mapping compound iics7

In the case of iics (non-final components of compounds) of the DCS, the word-form and the
stem for some segments are the same. But the Heritage Reader produces the original stem
different from the word-form. For example, mahādeva is analysed as mahā-deva in DCS,
but as mahat-deva in Heritage Reader. To handle this difference, the word-form (segment)
is taken into consideration instead of the stem.

It was then observed that there were mappings with exactly one match, more than one match,
at least one lemma not matched, and mappings with both multiple matches and unmatched
lemmas.

So the results are categorized into 4 groups:
1. Single parallel mapping obtained for all lemmas in the sentence
2. Sentences that have at least one lemma with multiple parallels
3. Sentences that have at least one lemma without any parallel
4. Sentences that have at least one lemma with multiple parallels and at least one lemma

without parallels
The unmapped sentences (3 and 4) are then sent for further modifications.

4.3 Modifications
Three kinds of modifications are done:

• Direct mapping of lemmas of verbs in the tenth gaṇa (class), having causative suffix ṇic.
Eg, pūjayati is analysed in Heritage Engine as ‘[pūj]pr. [10] ac. sg. 3’, but DCS has the
lemma as pūjay. A separate list of such pairs like pūjay-pūj, bhūśay-bhūś, etc, was prepared.
Additional nodes are created using such matching entries.

7in initio compositi

• The preverbs are sandhied with their corresponding lemmas, and derivational lemma is
sandhied with its corresponding preverb labeled as der_pre_verb
Eg, praśaṃsanti is analysed as ‘[pra-śaṃs]pr. [1] ac. pl. 3’ in Heritage Reader, but DCS has
the lemma praśaṃs. In this case, a new node with lemma praśaṃs is created by performing
sandhi between the preverb pra and lemma śaṃs. Care should be taken when such sandhi
is done, since there are certain required tranformations such as retroflexion of n (ṇ) and s
(ṣ). For example, pra and nam become praṇam. Finally these new nodes are added to the
graph.

• Merged possible components of compounds to form individual lemmas
Eg, śaṅkhaśuktyudbhavam is analysed in Heritage Reader separately as śaṅkha-śukti-
udbhavam, but śaṅkha-śuktyudbhavam is the expected solution according to DCS. So, for
this chunk, all possible compounds are constructed and then each of it is compared to the
DCS analysis. If the correct one is matched, a new node with the modified lemma, word
and other information is created in the graph. The value for the attribute word, is kept as
a hyphen-separated compound instead of the sandhied compound for future usage in con-
stituency analysis. We should also make a note here that the total number of combinations
is a Catalan number. So, generating all possible combinations for a given compound results
in exponentially slow algorithm.

After these modifications, the second stage of analyzing the parallels is done for the modified
graphs. Together with the previous results, the number of sentences with single parallels and
multiple parallels is taken into consideration for observations.

5 Additional Problems
After the modifications, the mapping resulted in a reasonable amount of success. In the first
phase, we were able to map 73,000 sentences and around 18,000 sentences had multiple possibil-
ities. After the proposed modifications, 56,000 sentences were aligned and 66,000 sentences had
multiple possibilities. Further results are available in Section 6. There were still issues regarding
the lemmas that didn’t match at all, and those which had multiple mappings. Let us first look
into some of the issues that lead to the lemmas having multiple mappings.

Mapping for the CNG values is not one-to-one. For a given CNG value, there could be multiple
morphological analyses. For example, the CNG value of -190 has morphological analyses as ‘ca.
pp.’, ‘des. pp.’, and ‘pp.’. We find multiple analyses being mapped for the same lemma. For
the sentence vasur ādyaṃ śivaṃ cādyaṃ māyābinduvibhūṣitam, the lemma that had multiple
parallels was vibhūṣay. On observing the morphological information, the difference between the
multiple solutions was in the morphological analyses of the Heritage Engine. There were two
entries with the same lemma - vibhūṣay. One had the morph as ‘pp.’ and the other had it as
‘ca. pp.’ (causative pp.). The DCS clubs both of them and assigns the CNG value as -190.
The DCS sticks with a single CNG value for primary and secondary derivatives but The

Heritage Engine produces two levels of morphological analysis where the first level has the base
stem and its analysis and the second level has the derived stem and its analysis. Considering
the sentence śrutaṃ vede purāṇe ca tava vaktre sureśvara, the Heritage Engine’s analysis for the
word śrutaṃ is:

{[śruta { pp. }[śru]]{n. sg. acc. | n. sg. nom. | m. sg. acc.}}

The first level analysis is (śru, { pp. }), and the second level analysis is (śruta, n. sg. acc. |
n. sg. nom. | m. sg. acc.). The CNG value for { pp. } is -190, and the CNG values for “n. sg.
acc.”, “n. sg. nom.” and “m. sg. acc.” are 31, 71, and 69, respectively. Although DCS refers to
both the primary and secondary analyses, the CNG value assigned in DCS is -190. This lead to
multiple mappings of DCS’ analysis with the Heritage Reader’s analysis.

The assignment of DCS’ lemmas is also not uniform. Sometimes, even when the derivational
lemma is available, it uses the inflectional lemma if the inflectional lemma is apt according to
the context. For example, in the sentence nīlaṃ nīlaṃ samākhyātaṃ marakataṃ haritaṃ hitam,
the analysis for hitam is provided as the inflectional form hita, and not it’s derivational form hi
or dhā. So, it is hard to map them because there is some amount of information missing.
Let us now look at an issue with compounds. For the sentence ata eva hi tatrādau śāntiṃ

kuryād dvijottamaḥ, the compound dvijottamaḥ has its lemma as dvijottama in the DCS. But
the compound modifications done to Heritage Reader’s solutions leads to multiple entries with
the same lemma. There are four possibilities: dvija-uttamaḥ, dvi-ja-uttamaḥ, dvijā uttamaḥ,
and dvi-jā uttamaḥ. Of these, the last two are analysed as two words, and not a compound,
and hence neglected but the first and the second are both possible compounds. In many such
compounds, the differences are due to the combinations of the components.
In the Heritage Engine’s analysis for the sentence vada me parameśāna homakuṇḍaṃ tu

kīdṛśam, the word parameśāna is analysed as parama-īśāna. There are three analyses for the
word īśāna. Two have participial forms generated from the root īś, and the other is generated
from the lexicon entry īśāna [agt. īś_1] which states that it is an agent noun of the root īś.
The participial forms and the agent noun belong to different phases (lexical categories) in the
analysis - Krid and Noun, respectively. This distinction is present in the Heritage Reader be-
cause pre-verbs are not attached to general nominal entries but attached to participles. So, the
nominal entry needs to be treated separately, and hence Noun is more preferred than being
analysed as derived from the root īś. Since DCS has a single analysis which depends on context,
and the Heritage Reader produces the possible distinctions, we arrive at multiple alignment.
But, in this case, the agent noun, being derived from īś, is indeed a kṛdanta and should be
present alongwith the other two.
In the sentence kāraṇena mahāmokṣaṃ nirmālyena śivasya ca, the word mahāmokṣaṃ’s anal-

ysis, according to DCS, has its lemma as mahāmokṣa with the CNG as 31. Such compounds’
contexts need to be checked whether they are to be treated as compounds with non-compositional
meaning, or whether they are to be split further.
Now, looking at the unmatched lemmas, we encounter the following difficulties. Some words

are not analysed by the Engine at all either due to the absence of its prātipadika (stem) or
dhātu (root) in the dictionary or, the engine fails to analyse the words. For example, the word
prameyatvam is analysed by DCS as having the lemma prameya and tvam, but the Heritage
Engine produces only parasite segmentations, in the absence of a lexical entry for prameyatva.
Similarly certain taddhitāntas (secondary derivatives) like nirguṇatvam are not analysed in the
Heritage Engine. Further modifications to the engine to analyse the secondary derivatives would
help in aligning these words.
The secondary derivatives are treated like compounds in DCS. For example, in the sentence

prakuryāt tu dvijenaiva tadā brahmamayī surā, the word brahmamayī is analysed as a compound
of brahman and maya. The Heritage engine analyses it with the lemma as brahmamaya. Since
DCS does not differentiate between compounds and words with secondary derivative suffixes, it
is not possible to align such words with the Heritage Engine’s analysis.
There is another issue with the way indeclinables like api are handled. The Heritage Reader

analyses it as ‘conj.’ and ‘prep.’. But DCS marks it as ‘ind.’ and assigns the CNG as 2.
A normalization is required to classify properly such indeclinables under ‘conj.’, ‘prep.’ etc.
The Heritage Reader has various classes for indeclinables like ‘adv.’(adverb), ‘abs.’(absolutive),
‘part.’(particle), ‘prep.’(preposition), ‘conj.’(conjunction), etc. And api is stored both as ‘prep.’
and ‘conj.’ in the Heritage Reader. Either these are to be clubbed together or a mapping needs
to be made from these two with the ‘ind.’ of DCS.
Sometimes the distinctions are present in the way certain pūrva-padas (non-final components)

of compounds are analysed. For example, the component rūpya has the analysis as rūpya with
the morphological analysis as ‘iic’. But the Heritage Reader provides the lemma as rūpya with

morphological analysis as ‘pfp. iic.’.
These are just a handful of examples of the issues encountered. Further analysis of the missed

alignments will bring out more such difficulties, but will also provide an opportunity to modify
the corpus and the two systems.

6 Observations

Observations were recorded in three phases. In the first phase, the existing dataset from Krishna
et al. (2017) (107,000 aligned sentences) was taken into consideration and the parallel corpus
for unsegmented and segmented sentences was extracted. In the second phase, the alignment
process was run by considering only the sentences from Krishna et al. (2017), and in the third
phase, all the sentences from DCS which have proper analysis were considered for the alignment
process. Similar to the first phase, the parallel corpora of unsegmented and segmented sentences
were extracted.

Type Phase II Phase III
Overall Sentences 119,004 621,445
Aligned 65,699 130,439
Aligned (with multiple analyses) 36,755 84,469
Not aligned (with missed analyses) 4148 103,808
Not aligned (with both multiple analyses and missed lemma) 4265 110,760
Not aligned (modifications could not be done) 6925 165,456
Not aligned (due to other reasons) 1212 26,513

Table 3: DCS-SH Alignment Observations

The observations are noted in table 3. The problems discussed in section 5 were encountered
in phase II, where the sentences from the existing dataset (Krishna et al., 2017) were passed to
the alignment process, and 16,550 sentences have to be checked for issues either in the Heritage
Segmenter or in the analyses present in DCS. In Phase III, where all the sentences from DCS
had been considered for alignment, 406,537 sentences were not aligned and have to be analysed
individually for such issues. If the issue is found to be in Heritage Engine’s analyses, then those
are solved systematically. In this way, the DCS acts as a tool to improve the Heritage Engine.
Currently, only the aligned sentences are considered to form the parallel corpus of unsegmented-
segmented sentences. From all the three phases of alignment, these parallel corpora are built
and are used to extract the frequency lists which are described in the next section.

7 Modification to Heritage Segmenter

7.1 Statistics Generation
As seen previously, having obtained the aligned sentences, three different parallel corpora of
unsegmented and segmented sentences were extracted as follows:
1. The parallel corpus from the alignment done by Krishna et al. (2017) (Phase I)
2. The parallel corpus obtained from the modified alignment done on the DCS sentences used

by Krishna et al. (2017) (Phase II)
3. The parallel corpus obtained from the modified alignment done on all the DCS sentences

(Phase III)

The following frequencies were obtained from these parallel corpora:
1. word
2. compound component
3. sandhi between words
4. sandhi between compound components

Additionally, frequencies from the SHMT corpus was used. The total list of frequencies is as
follows:
1. Frequency list from SHMT corpus
2. Frequency list from DCS-SH aligned parallel corpus (130,000 aligned sentences - Phase III)
3. Frequency list obtained from modified alignment on sentences from Krishna et al. (2017)

(70,000 aligned sentences - Phase II)
4. Frequency list obtained from Krishna et al. (2017) (107,000 aligned sentences - Phase I)

7.2 Updated Dovetailing Algorithm
The Sanskrit Heritage Engine’s Reader enlists all solutions based on a dovetailing ranking algo-
rithm. A threshold of 100 was used to enlist the best solutions based on the ranking algorithm.
But it produces all possible solutions taking into consideration the phase (lexical category) and
transition details of each of the segmented forms. Krishnan and Kulkarni (2019) proposed a
modification to the Reader where the information about phase and lexical analyses is removed,
and the segmented word forms alone are considered for the solutions. Also, an algorithm was
introduced which ranks the solutions based on a joint probability calculated from word and tran-
sition frequencies of the SHMT corpus. The first metrics used to calculate the joint probability
value was:

Ctotal =
n∏

i=1

Pwi × Pti (1)

which is word_probability × transition_probability of every segment. The unigram prob-
abilities of the segments (words) and the bigram probabilities of the transitions (sandhi) are
taken into consideration and their cumulative product across all the segments is the the overall
product presented above.
The second metrics considered the word_probability alone where the resultant value is the

product of unigram probabilities of the segments/words:

Ctotal =
n∏

i=1

Pwi (2)

These metrics of joint probabilities of the segments and transitions are similar to First Order
Markov Model except that the segments are not states and hence the probability of the segment
does not depend on the previous segment. And the frequency list had unigram frequencies for
the words and bigram frequencies for the transitions. The ranking of the solutions is based
on the joint probability of the solution and also the number of segments in the solution. The
solutions with higher joint probabilities combined with the least number of segments are ranked
higher. These probability values were calculated from the statistical data mentioned in section
7.1. The frequency list that is chosen for the updated segmenter is mentioned in section 7.3.
The performance comparison of these two metrics are shown in section 7.4.1.
Having obtained all the solutions, the sentences were ranked using the first metrics. Around

21,000 sentences (from SHMT corpus) with at most three split locations in each of them, were
chosen for testing. Although it resulted into 98% recall, the algorithm increased the response
time of the segmenter tremendously for long sentences and sentences with huge compounds.
So, the algorithm was shifted to the graphical Segmenter that generates a graphical interface
where the user can choose or reject specific segments. An example is shown in Figure 3. The
sentence is initially divided into chunks based on sandhi rules. Each chunk is analysed further
where segmentation and morphology recognition are done parallely and only if the segment
obtained after the split is present in the lexicon of the Heritage Engine and is morphologically
correct, it is registered into the graphical interface. This process developed by (Goyal and Huet,
2016) is now modified by adding a dovetailing algorithm to rank the solutions and maintain

Figure 3: Heritage Segmenter Analysis for Bhagavad Gita 1.1

a bucket of best n solutions8 based on the probabilities calculated from the frequencies. This
value is calculated for every segment registered in the graph. For every chunk, a number of
segments will be registered resulting into a number of segmentations each forming from non-
overlapping segments in sequence. For each of the segmentations of the chunk, probabilities are
also calculated cumulatively. After every chunk is segmented to form various segmentations,
these are saved into a global list of chunk segmentations. And once the generation of the
graphical interface is done, this list of chunk segmentations is run over the new dovetailing
algorithm which traverses through this list and forms the entire list of solutions. And it keeps
a bucket of the best n solutions based on the total joint probability of each solution. Finally,
only these n solutions are displayed along with the graphical interface.

7.3 Choosing the correct frequency list
To compare the performance of the frequencies generated as shown in section 7.1, Bhagavad
Gita Chapter Three’s verses were run on the updated Segmenter with these four frequency lists.
Of the four frequencies, SHMT performed the best by producing the correct solution (in the top
50 ranks) for 33 out of 43 verses. With the other frequencies, 29 out of 43 verses were analysed.
Table 4 shows the distribution of solutions based on position for these four frequency lists.

Solution Rank SHMT Phase III (DCS-SH) Phase II Phase I
1 10 11 9 5
<= 2 15 13 11 5
<= 3 17 14 12 8
<= 4 19 15 12 9
<= 5 21 16 13 9
<= 10 23 20 17 13

53.48% 46.5% 30.7% 39.53%

Table 4: Cumulative Position Distribution - Bhagavad Gita

Since there could be overlap of Bhagavad Gita in the lexical resources of SHMT, Meghadhūta9

was chosen for the performance comparisons. 60 pādas from 15 verses were tested with all the
four frequency sets and the results are shown in table 5.
It is clear from this observation that DCS-SH performs the best where the correct solution

was found to be present in 55% of the sentences tested. Comparing both Bhagavad Gīta’s and
8n is temporarily fixed as 100
9Meghadūta is a poetry text written by Kālidāsa.

Solution Rank SHMT Phase III (DCS-SH) Phase II Phase I
1 21 21 21 21
<= 2 27 28 27 27
<= 3 29 30 30 30
<= 4 30 31 30 30
<= 5 30 32 31 31
<= 10 31 33 32 32

51.66% 55.0% 53.33% 53.33%

Table 5: Cumulative Position Distribution - Meghadūta

Meghadūta’s observation would bring us to a conclusion that both the SHMT and DCS-SH
have similar observations, but the scope of development of DCS-SH is high since more sentences
might be added with annotations in the corpus. Around 400,000 sentences are to be checked
for issues for not being aligned properly. If the issues in the missed sentences are solved, then
the number of aligned sentences would increase. So, the statistical data obtained from DCS-SH
aligned corpus was considered for calculating the probabilities of the segments.

7.4 Experiments with Bhagavad Gita corpus
7.4.1 On Heritage Segmenter
The unsegmented-segmented verses from Bhagavad Gita were used as development corpus on
the updated Segmenter. For 278 verses, additional segmented solutions were added because
of the differences in the way Heritage Segmenter deals with compounds. For example, named
entities could be analysed as both standalone words as well as compounds with compositional
meaning. For some of the compounds, the compositional analyses weren’t present and had to be
added. For the remaining verses, only one segmented solution was kept. The analysed sentences
were put under three categories:
1. found the correct analysis and it is in the top 100 solutions (FOUND)
2. found the correct analysis and it is not in the top 100 solutions (MISSED)
3. could not find the correct analysis (WRONG)
Testing was done in two stages. The first stage was used for development of the Segmenter.

Using the feedback from the first stage of testing, the segmenter was updated and the second
stage was conducted. For the first stage only the first metrics described in section 7.2 was
used. For the second stage, the performance of the ranking was checked with both the metrics
separately and a comparison of the two stages was noted as given in table 6.
After the first stage of testing, the verses under MISSED and WRONG categories were anal-

ysed manually for possible issues in the Heritage Segmenter. Those under the WRONG category
had the following reasons, predominantly:
• unrecognized words
• issue in sandhi
• improper compounding
Those under the MISSED category had solutions beyond the 100-mark. The joint probability

had to be checked individually for each of the segments. Also, the issue was with the composi-
tional analyses of compounds by the Heritage Engine. For some, the parallel corpus had to be
modified. For the remaining verses, the issues were reported for updating the Segmenter.
The precision and recall values were calculated per sentence where the criteria for precision is

to get the ratio of the number of sentences for which the correct solution was found to the total
number of sentences. And recall was calculated as the ratio of the number of sentences for which
solutions were obtained without leaving any word/chunk unrecognized to the total number of
sentences. The precision increased from 74.28% to 98.28% (and 98.85%) from stage 1 to stage 2
while the recall remained the same. Also, there were 4 verses which couldn’t be analysed in top

Category Stage 1 Stage 2 (Metrics 1 - word * transition) Stage 2 (Metrics 2 - word)
FOUND 520 688 692
MISSED 84 4 0
WRONG 94 6 6
TIMEOUT 2 2 2

Table 6: Bhagavad Gita on the updated Segmenter

100 solutions when the first metrics was used. The position difference between the two metrics
is given in table 7.

Position Metrics 1 - word * transition Metrics 2 - word
1 308 364
2 89 118
3 51 48
4 32 40
5 39 (74.14%) 28 (85.42%)
6 20 18
7 12 9
8 11 9
9 13 5
10 10 (83.57%) 7 (92.28%)
11-20 58 28
21-30 16 8
31-40 12 4
41-50 8 5
51-100 9 1
> 100 4 0

Table 7: Bhagavad Gita on the updated Segmenter

With the first metrics, 74.14% of the verses had the correct solution in the top 5 ranks. With
the second metrics, 85.42% of the verses had the correct solution in top 5 ranks. With both
metrics, 6 verses could not be analysed at all. These are the reasons for such cases:

• periphrastic perfect forms: like darśayāmāsa, āśvāsayāmāsa, etc., are recognized as two
segments instead of one. These aren’t a combination of preverbs and verbs but are verbal
compounds where the components are not strongly bound. Hence, it is difficult to glue
them together to make them form a single segment.

• Since Bhagavad Gita is a part of the epic Mahābhārata, it is bound to contain certain
words which were in use prior to Pāṇini’s Aṣṭādhyāyī. Some of these are referred to as
ārṣaprayoga (usage from ṛṣis. One such example is priyāyārhasi). It should actually be
split into priyāyāḥ and arhasi according to the meaning, but the sandhi between these two
words does not produce these splits.

7.4.2 Comparison with the model from Hellwig and Nehrdich (2018)
For comparing with similar models, the model from Hellwig and Nehrdich (2018) (rcNN) was
chosen because it was also trained with DCS sentences. And the model used character level
recurrent and convolutional neural networks for segmentation. Since DCS sentences were used
for the alignment to generate the frequencies, a comparison was done between these two keeping
in mind the following differences:

• The rcNN produces only one solution, whereas the updated Heritage segmenter produces
the top n solutions, and

• rcNN is trained with DCS which has non-compositional analysis for the compounds, accord-
ing to the context, while the Heritage Segmenter’s compounds have compositional analysis
predominantly.

So, the comparison was restricted to word level segmentations where the compound compo-
nents were considered similar to the other words in the sentence. Thus, the parallel corpus
generated earlier was modified to exhibit only the segmentations without differentiating the
word splits with the compound component splits. And only the first solution was taken into
account for comparison. 254/700 verses were analysed correctly by rcNN. In the case of the
Heritage Segmenter, it was 308 with the first metrics and 364 with the second metrics.
Additionally, 1000 sentences from the test set of Hellwig and Nehrdich (2018) were tested on

both the models (rcNN and the updated Segmenter). The Heritage Segmenter was unable to
recognize at least one word in 385 of those sentences. So, the remaining 615 sentences were
considered for a fair comparison. The rcNN was able to identify the ground truth segmentation
for 371/615 sentences. The updated Heritage Segmenter was able to identify 295/615 sentences
correctly. On observation, it was noted that the difference in the performance was predominantly
due to the compositionality of the compounds in the Heritage Segmenter. While the ground
truth segmentation in the test set has the non-compositional analysis, the Heritage Segmenter
produces the components separately. A few such examples of the compounds are presented in
table 8:

No. Ground Truth Segment Segment from Heritage Segmenter
1 kṣīramadhurā kṣīra madhurā
2 tiktabījā tikta bījā
3 mahārājaphalaḥ mahārāja phalaḥ
4 pañcavidham pañca vidham
5 ātmaka tvam ātmakatvam
6 pañcarājiphalaḥ pañca rāji phalaḥ
7 avakīrṇa vat avakīrṇavat

Table 8: Comparison of Compositionality

As compositionality depends on context and cannot be finalised at the level of segmentation,
and the Heritage Engine’s lexicon has a limitation on many of the non-compositional lexicon
entries of the compounds, the Segmenter specifies the compound components in the analysis.
Hence, in the ground truth segmentations of the sentences that weren’t segmented correctly, the
compounds were split into their components for having compositional analysis in addition to
the non-compositional analysis.
This increased the performance in both the systems. 401/615 sentences were analysed cor-

rectly by rcNN and the Heritage Segmenter was able to analyse 498/615 sentences of which 421
were analysed in the first position. The observations are presented in table 9.

615 test sentences with ground truth compounds with compositional analyses of compounds
rcNN Updated Segmenter rcNN Updated Segmenter

FOUND 371 295 401 421
WRONG 244 320 214 117

Table 9: Comparison of rcNN vs Updated Segmenter

From the observations and the comparison of the compositionality, it is observed that the
necessity of non-compositional analyses of certain compounds is questionable in the ground
truth. In the same way, certain compounds which could have both compositional as well as
non-compositional analyses (like named entities), are to be lexicalised in the Heritage engine’s
lexicon.

Thus, the differences in the way compounds are analysed in DCS and Heritage Segmenter is
one of the main reasons for this performance difference. And that is the major obstacle to solve
while trying to align these two systems to produce a proper dataset for segmentation tasks in
Sanskrit.

8 Inferences and Conclusion

The alignment process and the experiments with the dataset obtained thereafter provided
us three important cues to proceed forward towards the development of Heritage Segmenter.
Several anomalies of the Segmenter were discovered and corrected with the help of the results
from the experiments.

8.1 Improvement to the Heritage Engine
First, the lexicon was updated by the addition of words that went unrecognized by the engine.
The Bhagavad Gita verses were used here as a development corpus to provide feedback for the
Segmenter. As discussed in section 2.2, such entries were added to the lexicon to handle out of
vocabulary words. Mostly, taddhitas with suffixes tva, tā, vat, compounds with prefixes sa, su,
vi, dus, etc. and those agent nouns and action nouns which were encountered in the verses and
which are not generated systematically by the engine were added.
Second, certain combinations of preverbs with root forms and kṛdantas were not permitted,

which prevented the recognition of corresponding forms. The segmenter has a table, fixing for
any root and gaṇa what voices are allowed for a given sequence of preverbs. Adding entries to
the table allowed the recognition of the missing padas.
Third, to handle the words with suffixes cit, cana (refer section 7.4.1), the corresponding

pronomial forms were glued with the suffixes and made to be generated by the engine.
Fourth, lexicalised compounds were treated as a whole even if they could be generated

as a combination of component pieces (for the named entities whose meanings are non-
compositional).
Having added these words, we were able to obtain better results (24% increase in precision).

As discussed in 7.4.1, the engine couldn’t produce solutions for 94 verses in stage 1 as each of
the verse had at least one unrecognized word. In the second and third stages, solutions were
found for 88 of these.
Also, the engine couldn’t find the correct solution in the best 50 solutions for 84 verses because

of the compounds which had their components split by the engine (not recognized as named
entities). These were recognized after adding the lexical entries for these compounds.
Fifth, the dovetailing algorithm was also modified to make it consistent with the graphical

interface. This was faster, produced more accurate results than the algorithm that was built
for the Reader. Since the graphical interface does not narrow down to a single or a limited
number of possible solutions, it requires additional effort from the user for providing the correct
segmentation, although it is efficient and user-friendly. The updated ranking algorithm helps in
truncating the entire list of possible solutions to a limited set (say, 5, 10, or 50), without any
significant loss of recall. It is observed in table 7 that 85% of the verses have their solutions in
top 5 ranks, and more than 90% of the solutions are found in the top 10 ranks owing to the
improvement in the lexicon and the modified ranking algorithm.
Sixth, the frequencies were provided as a list in Krishnan and Kulkarni (2019) where accessing

the frequencies delayed the process. To make it consistent with the data structures used in the
engine and also to speed up the access rate, the frequencies were integrated into the newly
formed decorated trie structure which holds both the words and frequencies by sharing the
suffixes, similar to the trie structures built for the lexicon. Instead of populating the frequencies
in the generated trie structure that holds the existing lexicon, a separate trie structure was built
for these frequencies, making it a separate module.

Seventh, when only the word probability was used, correct solutions were produced in the top
10 ranks for 92% of the verses. The other metrics, where both the word probability and the
sandhi probability of each of the segments was used, produces correct solutions in top 10 solutions
for 83%. The metrics is similar to first order Markov model except that the current probability
does not have any dependence on the previous state’s probability because the segments are not
considered as states as these segments are taken all at once. And the probabilities are calculated
for each of the segments and cumulatively their product is obtained.
Finally, the alignment process provides for every word in the sentence, its base lemma, derived

lemma, CNG value, preverb and morphological analysis. Currently, only the word and its
frequency are being used by the algorithm. Experiments with other parameters should be tried
for better results. Also, these could be used in further stages of sentential analyses.

8.2 Integrating the updates with Saṃsādhanī tools
The collaborative effort between the Sanskrit Heritage Engine and Saṃsādhanī team (Huet
and Kulkarni, 2014) enables cross-platform analyses of sentences. Currently, it is left to the
user to choose the correct or intended solution in the Heritage segmenter, and then send it
to the Anusāraka in the Saṃsādhanī for parsing the sentence. With the help of the ranking
incorporated in the engine, it is now possible to narrow down to the best n solutions, and choose
from those. Again, looking at the performance comparison of the Bhagavad Gita corpus, 85%
of the verses had their solutions in the top 5 ranks making it easy for the users to redirect to
the Saṃsādhanī. So, the Heritage Segmenter acts as the front end to segment the sentence, and
provide the best solution(s) where the user chooses one solution (instead of individual segments
as in the original segmenter’s interface), to parse with the help of the Anusāraka in the back-end.
With the development of the statistical data, the value of n should decrease gradually. As

around 400,000 DCS sentences have to be dealt with further for analysing the issues in alignment,
the number of aligned sentences is bound to increase. The frequencies of words and transitions
also increases along with new words being added to the lists.

8.3 Improvement to the reference corpora
As discussed in section 2.1, there are a few limitations of DCS like the inconsistencies in the
analysis, errors due to segmentation and compound splits. The alignment process helped in
managing these issues and avoiding these in the resultant dataset. These are discussed here
along with the state of the other corpora used - SHMT and Bhagavad Gita.
First, in some of the cases, the anusvāras were converted to corresponding anunāsikas.
Second, the inclusion of both the base and derived stems in the dataset with the help of

the analyses from Heritage Engine, modifying the iics of certain compounds which were in the
lemma format to the iic format, handling pre-verbs by gluing them to their corresponding word
forms, etc were additionally done to modify the analyses of DCS.
Third, the analyses produced by the Heritage Segmenter has details like homonymy index

which denotes the word sense. Mapping these with the senses of DCS words is a tedious task,
as the mapping is one to many from DCS to Heritage’s lexicon and hence, different senses of
the same lemma were clubbed together in the analyses of the SH engine.
Fourth, many of the compounds which had non-compositional meaning were analysed as a

whole entity. Sometimes, they have to be changed to components (iics and ifcs) depending on
the context, which is out of the scope of current research.
Fifth, the main advantage of SH platform is the availability of morphological constructs which

is obtained with the help of the generative tagset of the platform. And DCS provides abstract
entities like CNG values which could have multiple analysis possibilities. The alignment pro-
cess helped in mapping these CNG values with the morphological analyses, thus providing the
resultant dataset both parameters.
SHMT corpus was used for comparisons of the performance of the Segmenter over different

metrics, and different ranking algorithms. With the help of these comparisons, we can infer

that the improvements to the alignment process would result into an improved dataset, which
would then provide us better statistics. In section 7.3, the closeness of the three generated
corpora with respect to the recall of the engine was discussed (29/43 verses producing results).
SHMT stood out with 33/43 verses producing correct results. But in table 4 the closeness of
the SHMT corpus with the dataset generated from overall alignment was shown (53% of the
verses obtained the correct solution with SHMT corpus; 46% with the latest dataset from latest
alignment). Two thirds of the DCS sentences are to be analysed for issues. Also, amongst the
aligned sentences, 130,000 had single solution possibilities. The remaining 85,000 sentences had
multiple mappings. Truncating these into a single solution is beyond the scope of the current
research as the different possibilities arise mostly due to compound formations and contextual
differences.
In section 7.4.1, it was mentioned that out of 700 verses of the Bhagavad Gita, 278 verses

were provided with additional segmentation solutions because of the unmatched named entities
or compounds which either require compositional analyses or non-compositional analyses. This
is again beyond the scope of the current research as the differences are present in the meanings
of the verses and also it depends on the design decisions of the systems under use.
Finally, the comparison with the model from Hellwig and Nehrdich (2018) (section 7.4.2)

provided us clear distinctions on how this updated segmenter is better with respect to differen-
tiating the segmentation within compounds and that between different words, providing limited
multiple solutions owing to the different meaning possibilities, etc. The updated Segmenter did
outperform the model with more number of verses analysed correctly for the Bhagavad Gita test
verses. Although the neural network model performed better for the test sentences from Hellwig
and Nehrdich (2018), when the compositionality of the compounds was included amongst the
ground truth segmentations, the updated Segmenter did perform better. This showed the im-
portance of compositionality at the segmentation level and how the Heritage Segmenter needs
to handle the compositionality of the compound words. It also brought out the necessity of up-
dating the lexicon with the unrecognized words. Other computational parameters like response
time, training time and space, etc are also to be considered to propose a strong comparison of
these two systems.
The intention behind this work was to provide a dataset which is rich in morphological and

lexical analyses, and which provides as much details as possible regarding the sentences and
words. The alignment process did pave the way to building such a dataset which was used on
the existing Segmenter to improve it further. Thus, the resultant dataset could give rise to a
homogeneous gold corpus which could in turn be used for various further tasks of sentential
analysis.

References
Sushant Dave, Arun Kumar Singh, Prathosh A. P., and Brejesh Lall. 2021. Neural compound-word

(sandhi) generation and splitting in sanskrit language. In CODS-COMAD 2021: 8th ACM IKDD
CODS and 26th COMAD, Virtual Event, Bangalore, India, January 2-4, 2021, pages 171–177. ACM.

Pawan Goyal and Gérard Huet. 2016. Design and analysis of a lean interface for Sanskrit corpus
annotation. Journal of Linguistic Modeling, 4(2):117–126.

Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph Bunker. 2012. A distributed
platform for Sanskrit processing. In COLING, pages 1011–1028.

Anilkumar Gupta. 2012. Sanskrit Compound Processor. Ph.D. thesis, University of Hyderabad, Hyder-
abad.

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit word segmentation using character-level recurrent
and convolutional neural networks. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2754–2763, Brussels, Belgium, October-November. Association for
Computational Linguistics.

Oliver Hellwig. 2009. Sanskrittagger, a stochastic lexical and pos tagger for Sanskrit. In Lecture Notes
in Artificial Intelligence.

Oliver Hellwig, 2010–2019. The Digital Corpus of Sanskrit (DCS).

Oliver Hellwig. 2016. Detecting sentence boundaries in Sanskrit texts. In Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Technical Papers, pages 288–297,
Osaka, Japan, December. The COLING 2016 Organizing Committee.

Gérard Huet and Amba Kulkarni. 2014. Sanskrit linguistics web services. In Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics: System Demonstrations, pages
48–51.

Gérard Huet and Idir Lankri. 2018. Preliminary design of a Sanskrit corpus manager. In Gérard Huet
and Amba Kulakrni, editors, Proceedings of Computational Sanskrit and Digital Humanities, 18th
WSC.

Gérard Huet and Benoît Razet. 2015. Computing with relational machines. Mathematical Structures in
Computer Science, pages 1–20, October.

Gérard Huet. 2003. Lexicon-directed segmentation and tagging of Sanskrit. In XIIth World Sanskrit
Conference, Helsinki, Finland. Final version in Themes and Tasks in Old and Middle Indo-Aryan
Linguistics, Eds. Bertil Tikkanen and Heinrich Hettrich., pages 307–325, Delhi, August. Motilal Ba-
narsidass.

Gérard Huet. 2005. A functional toolkit for morphological and phonological processing, application to a
Sanskrit tagger. J. Functional Programming, 15,4:573–614.

Amrith Krishna, Pavankumar Satuluri, and Pawan Goyal. 2017. A dataset for sanskrit word segmen-
tation. In Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural
Heritage, Social Sciences, Humanities and Literature, page 105–114. Association for Computational
Linguistics, August.

Amrith Krishna, Bishal Santra, Sasi Prasanth Bandaru, Gaurav Sahu, Vishnu Dutt Sharma, Pavanku-
mar Satuluri, and Pawan Goyal. 2018. Free as in free word order: An energy based model for word
segmentation and morphological tagging in Sanskrit. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pages 2550–2561, Brussels, Belgium, October-November.
Association for Computational Linguistics.

Amrith Krishna, Ashim Gupta, Deepak Garasangi, Pavankumar Satuluri, and Pawan Goyal. 2020a.
Keep it surprisingly simple: A simple first order graph based parsing model for joint morphosyntactic
parsing in Sanskrit. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4791–4797, Online, nov. Association for Computational Linguistics.

Amrith Krishna, Bishal Santra, Ashim Gupta, Pavankumar Satuluri, and Pawan Goyal. 2020b. A graph-
based framework for structured prediction tasks in Sanskrit. Computational Linguistics, 46(4):785–845,
December.

Sriram Krishnan and Amba Kulkarni. 2019. Sanskrit segmentation revisited. In Proceedings of ICON
2019, the International Conference on Natural Language Processing, Hyderabad, December.

Amba Kulkarni and Devanand Shukl. 2009. Sanskrit morphological analyser: Some issues. Indian
Linguistics, 70(1-4):169–177.

Amba Kulkarni. 2019. Sanskrit Parsing based on the theories of Śābdabodha. IIAS, Shimla and D K
Printworld.

Amba Kulkarni. 2021. Sanskrit parsing following indian theories of verbal cognition. ACM Transactions
on Asian and Low-Resource Language Information Processing, 20(2):1–38, April.

Peter Scharf and Malcolm Hyman. 2009. Linguistic Issues in Encoding Sanskrit. Motilal Banarsidass,
Delhi.

