Theoretical Computer Science 1 (1975) 27-57. © North-Holland Publishing Company

A UNIFICATION ALGORITHM FOR TYPED A-CALCULUS

G.P. HUET
IRIA~Laboria, 78150 Rocquencourt, France

Communicated by R, Milner
LReceived December 1973
Revised August 1974

Abstract. A semi-decision algorithm is presented, to search for unification of formulas in typed
w-order A-calculus, and its correctness is proved.

It is shown that the search space is significantly smaller than the one for finding the most
general unifiers, In particular, our search is not redundant, This allows our algorithm to have
good directionality and convergence properties.

1. Introduction

Given two well-formed formulas e¢; and e, of a logic .2, any substitution o for the
free variables of ¢, and e, such that se; = oe, is called a unifier of e, and e,. (If these
free variables are supposed to be independent in e; and e, we assume that we have
renamed them so that independent variables are distinct.) The computation of unifiers
is a very basic process in automatic theorem proving or proof checking since it
gives us the basic pattern-matching capability by which we can recognize whether
a rule of inference is applicable to one or several formulas by some substitution for
their free variables. It is well-known that in first-order logic, for any terms e, and e,
which can be unified at all, there exists a most general unifier (MGU) of these terms,
such that every unifier of ¢, and e, can be obtained from ¢ by composition with
some other substitution. A simple algorithm computing this MGU (or reporting
on the failure of unification) was independently given by Guard [7] under the name
of matching and Robinson [18]. It was used by Robinson to formulate a complete
refutational system for first-order logic whose unique rule of inference, called reso-
lution, can be described as a “cut modulo unification”, Unification can thus be seen
as an elegant way of getting rid of the substitution rule. Similarly, Robinson and
Wos [17] defined a rule of inference called paramodulation which uses unification
to recognize possible equality substitutions.

The situation is more complex in higher-order languages, since most general
unifiers do not exist any more. The problem was first investigated by Guard [7]
and then by Gould [6], who unfortunately restricted himself to the search for common

28 G. P, HUET

instances of terms. Gould noted that in some cases one needs to consider infinite
sets of unifiers. A few incomplete algorithms were given by Darlington [3, 4] for
second-order logic (f~matching) and Ernst [5] for w-order logic. Then Pietrzykow-
ski [5] gave a complete enumeration algorithm for second-order logic, which was
later extended to w-order logic in Jensen and Pietrzykowski [13].1n this last algorithm,
unifiers are computed by composition of five elementary rules, called elimination,
iteration, projection, imitation and identification.

In this paper, we shall present an algorithm which searches for the existence of
unifiers in w-order logic. Although this problem is undecidable as shown in Huet [11]
and Lucchesi [14], so that if two terms are not unifiable then our algorithm may
never stop, we show here that this problem is much easier than the enumeration of
maximal general unifiers. In particular, we need only compose two elementary rules,
similar to imitation and projection. The very prolific rules of iteration and identi-
fication are not used, and our search seems to have good convergence properties.
Most importantly, we show that there is no redundancy in our search for unification.
This contrasts with the fact that any search for most general unifiers has to be
redundant, as shown in Huet [10].

This algorithm is used in a refutation-complete system generalizing resolution
to w-order logic described in Huet [9, 12] for which we only need know the possi-
bility of unification, and not the actual computation of unifiers. It should be noted
however that whenever unification is possible we actually obtain an explicit unifier
with our algorithm. .

We shall first describe briefly the language we use (a slight modification of Church’s
typed A-calculus). Then we describe our algorithm, prove its correctness and discuss.
a few heuristic improvements.

2. An overview of typed A-calculus
Notation: [#] = {1, 2, ..., n}.

2.1 Types

Our language is derived from Church’s simple theory of types (Church [2]).
Every well-formed expression (term) of the language possesses a unique ¢ype, which
indicates its position in a functional hierarchy.

We choose a finite set T, of elementary types, and the set T of types is defined as
the smallest superset of T, closed by:

oPfelT=>(x—>PeT

(T is therefore a context-free language over To U {(,), - }.)

If 4 is a set of elements of type « and B a set of elements of type B, then (x — §)
denotes the type of functions with domain 4 and range B. We designate types by
the Greek letters a, B, 7.

TYPED A-CALCULUS 29

2.2, Terms

Terms are composed of atoms, applications and abstractions.

2.2.1. Atoms :

We have a denumerable set ¢}, of variables of type & for every « € T, and an at
most denumerable set @ of constants of arbitrary given types. All sets <V, and C are
pairwise disjoint, and the set of of atoms is defined as:

A =CuY, where VW= JY,.
aeT

We designate variables by lower case letters x, y, ..., f; ¢, ..., constants by capitals
4, B, ..., F, G, ... and atoms by the symbols @, @', ...; the type of atom @ is denoted

by 7(@)-

2.2.2, Applications
If e, is a term of type (¢ —) and e, a term of type «, then the application (e, e;)
is a term of type B.

2.2.3. Abstractions
If e is a term of type f and x € Y, then the abstraction Axe is a term of type (¢ — B).
The set of terms is therefore defined as the smallest superset of of closed by
application and abstraction. We designate terms by e, ¢/, ..., E, E’ ... perhaps with
subscripts. The type of term e is denoted by < (e).
We define the relation subterm of as the reflexive and transitive closure of:

{e, and e, are subterms of (e, e,)
e is a subterm of Axe.

2.3, Conversion

2.3.1. Notations

We use here the conmfext notation, denoting by € [e] a term having a subterm e
Then € [¢'] denotes the term obtained from it by replacing the distinguished occur-
rence of e by & (if 7 (¢') = 7 (e)).

Let E = € [Axe]. All the occurrences of x in Axe are said to be bound in E. Any
non-bound occurrence of x in E is said to be free in E, We denote by & (E) the set
of variables having a free occurrence in E. We denote by J;(E), where 7 (e) = 1 (x),
the term obtained by substituting e for every free occurrence of x in E.

Finally, we define a relation ‘® by:

R (x,y, E)<> Ve (E = & [Aye]
=> every occurrence of x in e is bound in E),

where 7 (x) = 7(y).

30 G. P. HUET

The intuitive meaning of ‘R (x, y, E) is that free x’s can be replaced by terms
containing y’s in £ without confusion of bound variables. For instance, R (x, y,Ayy),
R (x, y, Axp), R (x,y, AxAyx) and R (x, y, ApAxx), but 71 R (x, y, Ayx). Note that,
when 7(x) = 7(»), ‘R (x, y, E)iff all the introduced occurrences of y in 5} (E) are free.

2.3.2, Rules of A-conversion
We use two rules of A-conversion: a-conversion which renames the bound variable
in an abstraction, and B-reduction which is the evaluation rule of our A-calculus,
i.e. it replaces the formal argument by the actual one in an application. We shall
use ¢-conversion only when needed to permit an application of the B8 rule.
a-conversion. Let E = £ [Axe]. For any y ¢ (e) such that 7(y) = z(x) and
R (x, y, e), we say that € [1y Jj(e)] follows from E by a-conversion.
B-reduction. Let e = € [(Axe’E)]. If Vye F(E): ‘R (x,y, €’'), then we say that
€ [Se(e’)] follows from e by B-reduction.
A-conversion is the transitive and reflexive closure of a-conversion and B-reduction.
Note that it is a type-preserving transformation.
We shall not use for the moment a rule of #-conversion. However our results
apply as well (and actually the unification algorithm is simplified) in the A-B-y
calculus. This will be explained in 4.5 below.

2.3.3. Normal form

A term is said to be in normal form iff it is not of the form € [(Axe, e,)]. Guard [I]
and Sanchis have proved that for every term e there exists a term ¢’ in normal form
derivable from e by A-conversion. By the Church-Rosser property this term e’ is
unique modulo a-conversion, and we call it the normal form of e:

Abbreviations. We shall take the usual #-ary notation for functions by using the follow-
ing abbreviations:

ei(es, €3, ..., €,) for (..((ey ;) €3) ...€,)
Axy Xy ... Xpo€ for Axy 2x, ... Ax, e provided x,, x,, ..., x,, are distinct.

Any term in normal form e can thus be abbreviated (possibly via some «-con-
versions) into an expression of the form:

AXL Xy vs Xy @ (e, €3, ..y €) .
where:
@ € ol is called the head of e

n 2= 0; if n = 0 we suppress A-
p=0; if p =0 we suppress ()
{*1s ey X} is a set of n distinct variables, called the binder of e

TYPED i-CALCULUS 31

Yie[p] e, is an expression of the same form, called an argument of ¢

Vie{n], Vje[p] x; does not occur bound in e;.

Note that our notation is unambiguous for terms in normal form. Thus Au-u (v)
abbreviates Au (uv) and not (Auuv), which would be B-reduced to v. When we use
this notation for non-normal form terms, we shall use extra square brackets.

We shall regard as identical terms which differ only by renaming of their bound
variables. Therefore from now on “=" between terms will denote the equivalence
generated by a-conversion. For instance:

at A (Lveu, Avew) = Av- A (Aw+ v, At-w)

but: Au-A4 (v) # Av-A4(v)

and: f# Ax-f(x).
Definition 2.1. We call Aeading of a term e in abbreviated normal form as above
the term Axy X3 .. X, @. If @ € C U {x,, ..., X,,}, we say that e is rigid; otherwise,
we say that e is flexible.

Finally,” we denote by = (¢) the number of applications in e; i.e.

P
T (AX] oo X0 @ (€4, -or €,)) = D+ _Zl 7 (e).

Similarly to the abbreviation for terms, we shall abbreviate type
(a1 = (@2 ... (@, — B)..)) into (ay, &y, ..., &y~ B),

where Vie[n] ;€ T and Be T,

2.4. Substitutions

A substitution pair is a couple {x,e) where xe Y, e # x and 7(x) = ¢ (e). It is
said to pertain to x. We suppose e reduced to normal form.
A substitution is a finite set of substitution pairs pertaining to distinct variables:
.0' = {<xi3 ei>‘ie[n]} Viaje[n] Xe =xj=>i=j'
Let 7 denote the set of terms in normal form. Defining ox as
Ie if {x,edeo
| x otherwise
we can interpret a substitution as a type-preserving mapping from <) to 7, equal

to the identity almost everywhere. We extend it to a mapping from Jto 7 as follows:
the application of o to E, written as o, is defined as the normal form of the term:

[Axg .. Xpe E] (€4, €3, -.., €0).
It is easy to show that this definition is independent of the order in which we take
the pairs {x;, ;> in ¢. For instance, if
o = {{x, F()),{y, G(x))}, and E = A4 (x,), then
o€ = [Jxy-A (x,] (F(»), G (x))

32 G. P. HUET

= [Auv-A (u, V)] (F(3), G (x))
= A(F (), G (x)).

For complete proofs of properties of substitutions, see Huet [10].
We shall use Greek letters o, p, #, £ to designate substitutions and substitution
pairs (we shall often confuse the pair {x,) with the unit substitution {(x, ed}).
If V is any set of variables, we denote by oV the restriction:

{Kx, edKx, e & xe ¥V},

and we define an equivalence = between substitutions by:
o= ¢' = olV =d'lV.

We have the following easy property:
Vo,e oe = [a]'F(e)]e.

From which we get:

Lemma 2.2. A rigid term keeps its heading unchanged under application of any subs-
Stitution.

The composition of two substitutions ¢ and p is defined as the substitution:
po = {{x, p [oxP| xe Y &p [ox] #* x}.

This is precisely the composition of ¢ and p considered as mappings in 7> G
and it is therefore associative. We can thus dispense with parentheses, and write poe

and pon.
We say that ¢ is less general than p on V, and write ¢ < p, if and only if there

LA
exists n such that
g —;— np.

Finally, two substitutions p and p’ are said to be independent on V, and we write
plp', iff n,u'snp = n'p’,
.

3. The unification algerithm

3.1. Outline

Definition 3.1. Let ¢, and e, be two terms of the same type. We call unifier of o
and e; any substitution ¢ such that oe, = gej,.

We are interested in the existence of unifiers for e, and e;. For this purpose we
are going to construct a tree, called a matching tree, for e, and eg.

TYPED A-CALCULUS 33

In first-order logic this problem is decidable, and the search for a most general
unifier can also be represented as the growing of a tree of pairs of terms. This is
basically an AND tree, and at every step the set of terminal leaves, (called the
disagreement set), contains all the pairs of subterms that are yet to be matched.
There are no OR nodes, because of the existence of at most one most general match
at every leaf. This is not the case in typed A-calculus, since for instance f(4) and 4
can be unified by the two independent unifiers:

oy = {f dudy}, oy = {f uwd).
This is why our matching trees will rather be OR trees, whose nodes are labelled

with the current disagreement set. More formally:
We call disagreement set any finite set of pairs of terms of the same type:

{Ce}, €| ie[n]} with Vie[n]:t(g) = ().
Such a set is said to be reduced if n > 0 and:
Vie[n]: e} is flexible, and 3Jie[r]: e} is rigid.

Our matching trees are trees whose nodes are either terminal nodes, labelled S
(for success) or F (for failure) or non-terminal nodes, labelled with reduced disa-
greement sets, and linked to a finite number of successors by arcs labelled with
substitution pairs.

Example 3.2. Let e, = f(x, A), e5 = B with:
@ =t@=1tB)=7v, (f)=0G7r~7)
Fig. 1 shows a matching tree for ¢, and eg.

S (x, 4), B}
M v>l <f, duv+ BY
ix 8y} F S
<x, B)
\)
Fig. 1

From now on we shall identify a node with its associated disagreement set.

Definition 3.3. A substitution ¢ is said to unify a non-terminal node N iff it simulta-
neously unifies every pair in N. The set of unifiers of node N is denoted by QU (N).
U ({<eo, €op}) is abbreviated in U (eg, ep). Finally, we define:

FWN) = U {F (e, F(ezx) | {e1, €20 eN}.

34 G. P. HUET

Our unification algorithm consists in growing progressively a matching tree,
searching for a terminal success node.

3.2. Construction of a matching tree

The construction of a matching tree ¥ for two terms e, and e§ of the same type
is based on two procedures described below:

SIMPL, which takes as argument a disagreement set and returns as result a node,
either- terminal or not.

MATCH, which takes as arguments a flexible term e,, a rigid term e, of the same
type and a finite set of variables V; it returns a finite set X~ of substitution pairs.

The initial node in <N is SIMPL ({<eg, e5)})-

Let N be the current node in ¥(. If N is S or F it has no successor. Otherwise,
let us choose a pair {e,, e,) in N such that e, is rigid and let ¥ = MATCH (e,, e,
F (N)). If Z = @, replace N by F. Otherwise, for every ¢ in %, grow an arc, labelled
with o, from N to a new node:

N’ = SIMPL ({<oey, oe,) [{e;, e;> € N}).

This construction is cousistent with the properties of SIMPL and MATCH
given above. It is non-deterministic because of the arbitrary choice of the pair
given to MATCH. As we shall see, we do not need impose any way of making this
choice, and furthermore ali matching trees constructed as above are complete.
This permits us to use any heuristic considerations in picking up a pair in the current.
node.

A unification algorithm can thus be described as any algorithm searching for
a success node S in a matching tree, using level saturation for instance. Its complete-
ness could be proved using our completeness theorem below and the fact that
every matching tree is finitely generated. Again, heuristic considerations can be
used to direct this search.

Note that our construction also applies to the simultaneous unification of any
finite number of pairs of terms, by taking the (SIMPLified) set of these pairs as the
initial node of the tree. It therefore applies also to the unification of a finite number
of terms ey, e,, ..., &, For instance, unify the set of pairs {{ey, €,), ..., {e1, €,>}.

3.3. The procedure SIMPL

3.3.1. Algorithmic description of SIMPL(N)

Step 1: If there does not exist in N a pair {e,, e,) such that e¢, and e, are both
rigid then perform step 2, otherwise let us write:

N ol {<el, 82>} o N’, With:
ey = Aug uy ...ty ~@,(ef, ..., e,l,,) n=20 p, =20,
ey = Avy Uy ... 0y, @,(e3, ..., ef,z) n,=0 p, =0

TYPED A-CALCULUS 35

We now check that heading (e;) = heading (e,):

if n; # n, then return “F” else let n = n, = n,,
if @; # [Avg 03 ... v @,] (uy, 4, ..., u,) then return “F~,

otherwise let p = p; = p, [it has to be true since 7 (e;) = 7 (e,)]; then do:
N« {K&, &> |ie[p]} v N’, where:
& = Augu, ... u e %,
& = 2v; v, ... v,-ef; repeat step 1.
Step 2: Replace in N every pair {e,, e, where e, is rigid and e, is flexible, by the
pair {e,, e,); perform step 3.

Step 3: If there exists in N a pair {e,,e,) such that e, is rigid then return N, else
return «“S”; end of SIMPL.

3.3.2. Examples of applications of SIMPL(N)
(1) N = {{4 (Au+ B (x, u), C), 4 (Av- B (3, v), f (C))>}. The different values assumed
by N are, successively:

stetp 1 N= {(lu'B (x’ u)s Av-B (y» v)>s <C,f(C)>}3

step 1 N = {{Au-x, Av-yD, (Au-u, Av-v), C, F(C))},

step 1 N = {{Au-x, Av-3),<{C, f(CH},

step 2 N = {(Au-x, Av-p), {f(C), C)} which is returned in step 3.

(2) N = {{4 (Au- B (x, u)), 4 (2v- B (y, v)))>}. After three applications of step 1
as above, we get N = {{Au-x, 2v-y>}, and after step 3 we return «S$”,

€)) N = {{Auv+ A (u, Aw+v), Avw+ 4 (v, Au-v))}.

step I N = {{Auv-u, Avow-v), (Quvw- v, Aowu- vd}.

step 1 N = {{Auvw-v, lvwu-v)}.

step 1 we return “F”,

3.3.3, Correctness of SIMPL
First we need to define a measure of complexity of nodes as follows. Let N =
{Cel, ¥y | i€ [n]} be any disagreement set. We define

AN = n+ t_flﬁ ().

Let N be any node input to SIMPL. We shall prove that SIMPL will stop after
a finite number of steps and will return as result » node N’ such that:

Lemma 34, N’ = “F’ = QYU (N) = 8.

*If €} = AWy o. W @ (...) then €] = Auty ... #y Wy ... W@ (...) and by inspecting our de-
finition on can check that every ‘e is going to be in reduced normal form assuming e, was:
conflicts of variables cannot arise

36 G. P. HUET

Lemma 3.5. N' = “S” = Q (N) # 8.

Lemma 3.6. N’ not terminal = U(N") = U(N).

Proof of Lemmas 3.4. to 3.6. Let N, be the set obtained after k successful appli-
cations of step 1, k > 0. We assume that Y (N,) = U (N), which is trivially true
for k = 0. If there exists a rigid-rigid pair in N, let e, e;> be.the pair selected.
If e, and e, have distinct headings the algorithm stops with answer F, but then we
know by Lemma 2.2 that Q4 (M) = @, and therefore U (N) =0 which proves
Lemma 3.4. Otherwise, let ¢ be any substitution, and let (using the notations of
the algorithm):

oy = o} (V—-{ulie[n]})
o, = o} (Y—{vli e [n]}).

We can assume that Vxe F(e) Vie[n] u ¢ F (o, x). (Otherwise we rename u,).
Similarly, we assume that Vx e F (e,) Vi€ [n] v; ¢ F (g, x). Then:

gey = Aty oo Uy @ (0 €1, oons O €3)

ge, = Avy ... U @2(02 €1, s 02 €3). .
Now

oe, = e, < Vie[pl:duy ... i[04 el] = Avy ... v,-[0, €71,

i.e. going in the reverse direction iff: 08! = ¢&f. Since Ni4, differs only from N
by the replacement of {e,, ;> by the pairs (&}, &}, this proves that U (Ni+y) =
= QUN,) = U (N). Furthermore, we check that 4 (Ni+y) = A (N)—1, which
proves that we shall stop after a finite number of applications of step 1. If F has not
been returned, we shall enter step 2 with a set N, such that Qf (N,) = U (N). Since
unification is symmetric this property is preserved by step 2, and this proves Lemma 3.6.
To conclude Lemma 3.5 it is left to show that a node containing only flexible-
flexible pairs is always unifiable.

Notation. For every elementary type a € Tp, let us choose a varjable h, e <Y, For
every type a € 7T, we construct a term E, of type « by:

—ifaueT, E,= h,
otherwise, Writing & = (&g, 0z, .., %y —> B) With f € T, we take E, = Awy ... Wk
where the w,’s are distinct variables different from 4, such that 7 (w) = a;.

Now we define { = {{x, E.dlx € VY. L is a generalized (since infinite) substitution

Let N be any disagreement set containing only flexible-flexible pairs. We prov:
that the substitution {y = {[% (X) unifies N.

TYPED A-CALCULUS 37

Proof. Let us consider any pair {e,, e,> in N. Let us write:
ey = Aty ...ty f(E}, ES,..n ED)
e, = AUy ... Up, g (EZ, E,..., E})
We get:
{ney = Ay .oty Wery .. Wy by, (assuming u; # kg Vie [m,])
{n ey = A0y ... Oy, Wepy oo Wy, (assuming v, # hg, Vie [m;])

and since 7 (e;) = 7 (e;), we must have
m1+n1“—'r = m2+n2‘—'s

K2 (ul) =1 (01), ceey T gwng) =7 (w:tz)
B, = T(hy,) = ‘l'(hﬁ, =B,
and therefore {ye; = {ye,. [

This concludes the proof of correctness of SIMPL. Note that we are able to give
explicitly a unifier for any success node; however, this node will represent in general
a whole set of unifiers. We shall come back to this remark in 4.3 below.

3.4. The procedure MATCH

We shall present MATCH in a loose algorithmic fashion, with many comments
to explain and justify every step.

3.4.1. Algorithmic description of MATCH (e,, e,, V)

e; is a flexible term and e, a rigid term of the same type. Vis a finite set of variables
The motivation behind ¥ is purely technical. ¥ will contain all the free variables in
the node in which the pair {e,, e,) is selected, so as to avoid conflicts when choosing
new variables. Let us write:

1 1 1
€y = ;{'ul oo un;'f(eh €25 ey epl) n > 0’ D1 > 0;
2 2 2
€y = A'vl e vnz'@ (81, €25 ey epz) ny = 0, D2 2 0’

with 7 (f) = 6y, %o, ey Xy ys Xy 415 ooy O, = B)s gy = Dy .

Since e, is rigid, its heading cannot be changed by substitution, whereas the
heading of ¢, may be adjusted to that of e, under certain conditions. First, to adjust
its binder, we need have n; < n,, since the binder of a term can only increase in
length by substitution. Therefore, if n; > n, we return X = g; else let n =
ny—ngy = 0.

Let us introduce p; variables wy, ..., w,, such that Vie [p,] v (w,) = «,. In order
to avoid conflicts, we impose w; ¢ {v,,41, -y Uy, }. :

To adjust the heading of e;, we shall consider substitutions for f of a term
Azy ..z, @'(...). The head @’ will be either @, and the most general such substitution
will be given by the rule of imitation below, or z, 1 < k < r, which corresponds
to the rule of projection below. :

38 G. P. HUET

As we shall see it is sufficient to consider these two cases. The result ~ will be the
union of the results obtained using the two rules. In each case the possible values
of r are found by type considerations.

3.4.1.1. Imitation rule. We want to “imitate” e, by e,, substituting for fa term with
head @. If @ is some v, with i € [n,], it will not be possible to introduce directly the
corresponding u, by substitution for f, since it is protected by the binder of e,.
It is only possible to introduce it indirectly if it appears in one of the arguments
of e;, and then the rule of projection will cover this case. So we limit the application
of the rule of imitation to the case where @ € C or @ = v, with n, < i < n,.

() n > 0. This determines completely the heading of the term we must substitute
for f. The rest of the term is filled in the most general way, by introducing.new vari-
ables. Precisely, we return as unique solution in this case:

0 = {f,AW1 oo Wy, Up ity oo Un, @ (Ey, By, oy B,),

where E; = h(Wy, ..., Wy, Un 41, -.» Un,) i€ [p,], the h;’s being distinct variables of
the appropriate type not in V. (Note: no conflict may arise, even if some v, (7, <
k < n,) appears free in e;; also there is no risk of conflict of A, with some w,
or v, because they have different types.) .

(ii) n=0. Considering the remark above, we must have here @ € ©. The heading of
the term substituted for f is going to be some Aw, ... w,* @, with 0 < k < p,. How-
ever, any such & will not do, because we have a type condition on the remaining
arguments of e;. More precisely, we must be able to complete the term with a number
of arguments = p,—(p;~k) > 0 which gives the first condition:

(1) max (0, p; —p;) < k < p;.
Also, the unchanged argument of e, must be type-compatible with the ones of e,:
@ @ =tlegp) Yk <J<py)

Conversely, these conditions are sufficient for the substitution below to be legi-
t mate, Therefore, for every k satisfying (1) and (2), we include
in 2

o= <f; Awl soe wk'@ (EI’ EZ, soey Epz—p,+k)>’

where E; = hy(wy, ..., w), ie[p,—p,+k], the ks being distinct variables of the
appropriate type not in V. In this subcase, we have therefore at most min (p,, p,)+1
solutions. Note that conditions (1) and (2) are always satisfied with & = p,, which
guarantees at least one solution. But we cannot restrict ourselves to this case unless
we admit the z-reduction rule:

C[Au-e(m)] = E[e] if u¢ Fe). .
For instance, consider e, = f(B(4)) and e, = A(B(f)), with 1(f) =1(4) =
(@—>a), ©(B) = ((a - o) »). The unique unifier of e, and e, is {{f, 4D},
corresponding to p; = p, =1, k = 0.

TYPED A-CALCULUS . 39

3.4.1.2. Projection rule. We want to project £ on one of its arguments. The possible
headings for the term we may substitute for f are:

() Awy ... weew, ke[p,], ielk],
(i) Awg o Wy, Up 41 eon Un b W keln], ie[p],
() AWy oo Wy, Up 41 oo Un bt Un gt ke[n], ie[k].

However in case (iii), after substitution of the term for f, we would have to unify
Gey = AUy . Up, Up 41 oo Un ot Unpiens)
with
O'ez = lvl oo v,“ Un1+1 “re vnz.@ (no),
and this will be rejected by SIMPL unless
k=nand @ = v+
which case we have already considered in 3.4.1.1(i), and so we can limit our-
selves to cases (i) and (ii). We shali include in 2’ the union of their solutions.
(i) Headmg Awi oo WieWy
D kel pd,ielk], (e 1<i<k<py).
Here we have a supplementary condition on the type of w,, so that the term we
construct be of the same type as f. Precisely, there must exist m > 0 such that:
(2) o = ('yi’ Y25 coes Vims Lt ooes U, — B)

for some 7y, ..., ¥m € T. (This condition is satisfied by m = Q if ¥ = ¢, and o; = B.)
For each i and k satisfying (1) and (2), we take as solution in X

g = <f, lwl ver Wk‘wi(El, Ez, ceey Em)>

where E;, = hw;, ..., W), j € [m], the h;’s being distinct variables of the appropriate
type not in V.

Note that, given i and k, m is completely determined from (2). This gives us at
most p;(p,+1)/2 solutions, '

(ii) Heading Aw; ... Wy, Un,+1 «. Unx Wi This case is very similar to the previous
one, changes are just notational,

(1) ke [n]’ i€ I:pl]
and similarly:
(2) oy = (?1’ P25 oees Vms Op jtit1s o005 G, ﬂ)

(As above, this condition is satisfied by m = 0 if p;+k = g, and o, = B.)
The solutions in this case are all the:

g = <j; 1wl eos Wpl 'Un1+1 .os v,,l-;.k‘ Wz(En Ez, ey Em)>

where E; = B,(Wy, ..., Wy 5 Un,+15 - Un i), J € [m], the h)’s being distinct variables
of the appropriate type not in V. Here we have at most nx p, solutions.

40 G.P. HUET

This completes our analysis of the projection rule. Note that we have at most
P1(py+2n+1)/2 solutions. In practice of course we shall get fewer solutions because
of the conditions (2). End of MATCH.

3.4.2. Example of application of MATCH
Let e; = f(x, B), e; = A (B), with

TN r=Dr=> X =0r>9, tB) =9, (4 =G>
With the notations of the algorithm, we have:

d1=(')),}"—)‘}’), a =9, B= > My =n2=0’ Ppr=q1 =2, p=1L
We call MATCH (e, e,, {x,f}).

3.4.2.1. Imitation. n = n,—n,; = 0 and so we are in case 3.4.1.1(i). p,—p, =
1 <k <p; =2, so we have two choices:

+k = 1 for which condition (2): &, = 7(B) = y holds, and we take o, = {f; Aw,+ 4);
note that x will be eliminated here.

+k = 2 for which condition (2) is vacuous, and we take

oy = f, Awy wyo- A (hy(wy, wo))>
with 7 (1) = (v, 7y~ .?), Y= 9.

3.4.2.2, Projection. Since n =0 we consider only case 3.4.1.20), 1<k <2.
With k =1, condition (1) forces /=1, and condition (2) is satisfied for
m = 1, which gives the solution:

03 = {fs Awyg wihy (W), with z(h) = ((y, 7 = v = 9).

The h, here is of course distinct from the one in o,, since they have a different
type. But the only constraint we impose on the “new variables” 4, is that they should
not appear free in the node of the matching tree from which we call MATCH,
and so we could use the same “new” variables for distinct successors of a node,
With k = 2, we have two choices for i:

«i=1; then m = 2 and we take:

o4 = {f, Awy wywi (B (wy, w), Ay(wy, wo))),
with 7 (k) = 7 {(hy) = 1 (f).
«i = 2; then m = 0 and we take:
Og = (f,lwi W2’WZ>.
The reader will check that ¢; to o5 are independent substitutions. If the node

from which we called MATCH was N = {{e,, e,>}, then its corresponding succes-
sors would be:

N, =8§
N, = {(hl(x’ B), B)}
N3 = {{x (hy(x), B), 4 (B))}

TYPED A-CALCULUS 41

Ny = {{x (hy(x, B), hy(x, B)), 4 (B))}
N 5 = F'

3.4.3. Correctness of MATCH
Let us first introduce a complexity measure for substitutions. Let ¢ = {<u, e)|
ie[r]} be any substitution. We define:

8(8) =r+ 2‘1 r(e).

Lemma 3.7. For any terms e, and e, of the same type, where e, is flexible and e, rigid,
and for any finite set V of variables, if there exists p € U (eq, €,), then MATCH
(ey, €s, V) returns a non-empty set X' in which there is a unique substitution pair ¢ such
that p < 6. Moreover we can find an n such that p =10 with 8 (n) < 6 (p).

v

Proof. Let f be the head of e;, @ that of e,. If p unifies ¢, and e,, there must exist
in p a pair pertaining to f. Let us write:

pf= 2'21 eoe Zk'@'(Eia erey El,)
and we define p=p | (V-{f}.

First case. @' is @, or some z; (i € [k]). We saw that we considered in MATCH all
possible cases of such headings, which means that there exists in 2 = MATCH
(ey, €2, V) some:

o = {f, Awy Wy . Wi @"(Eys .o0s E1),
where:

t(w) =1(z) Vielk]

@" = [2z3 .. 2°@"] (Wyy ey Wi)

E; = hjwy, ...w) b ¢V Vie[l]

Moreover, such a ¢ is unique, since no two terms constructed in MATCH have
the same heading (note the remark concerning case (iii) in 3.4.1.2), Now let

n = {<hy Az, ...z Epy | je [I]} U ps
n is a legitimate substitution, and we check that: p = 0.
Finally:
' 1
0(n) = 9(‘5)+12; n(Azy .z ED+I=0(p [V)-1 < 0(p).
Second case. @' is neither @ nor some z;. Then, we get:

. {lul oty @) if k <py,
pé /{ul see u,,1 Z;,l-{-l v ZL‘@N(H.) if &> P

where @ is distinct from @, u, and z, (je[n,], p, < i < k) and therefore cannot
be equal to pe, = Av; ... v,,*@ (...). This case will never arise, which shows that the

42 G. P. HUET

two rules of imitation and projection are sufficient for our purpose. This concludes
the proof of Lemma 3.7. [J

In the case of interest to us, ¥ = F (N), where {e,, e,) € N and therefore we can
conclude that no unifies e; and e,.

Actually, the minimal ¥ would be F(N)—{f}, but in practical implementations
it is simpler to have MATCH generate totally new variables for the A,’s (using
the GENSYM operator of LISP, for instance).

3.5. Examples of matching trees

3.5.1.
eo = f(f(x)), e = 4(4(B)) witht(x) =7(B) =7,
() =) =(@-p

Here we get a unique matching tree, and it is finite. See Fig. 2.

KIS @), 4 (4B}
M e s <N>
{<x, B>} {<h (4 (h‘(x))). A(BY} | {<x, A {4 (B}
“¢{x, B) <h, Au- A (b)) <h, Au-u) Lx, A
<h, A

S {w(Aa(AreN)). B} F {<x, B>} {<y,‘14 (B)>}

h, Aue 17 \(h’, Aucuy {x, B) l <y, Az)
S . F $ {<z,“B>}
1 <z, B>
Fig. 2

This is the same as Example 1 in Pietrzykowski [15]. However, note that we get
more solutions because here we do not have the n-reduction rule. We shall come
back to this in 4.5.

3.5.2.
eo = A(y, x(B)), e; = A(x(u-y), B()),

with
tM=t@=y tB=F-=1 t@Q=((—>7->7)
T(4) = (3,9 = 7).

TYPED A-CALCULUS 43

Here we get a unique infinite matching tree, with a unique success node at level 1;
the pair input to MATCH is underlined in its node. See Fig. 3.

{<r, x (Au-y)), <x (B), B ()}

——————————————,

<x, Aw‘B(h(uV wa(h O
S

{<y, B(h(Au-y))>, <h (B), >}

[<y, B2
{<z, b (Au: B(2))), <h (B), B(2)>}

<h, Aw-B (WV w w (A'(w))>

Kz, B(h'(u- B (), <K'(B), 25} {<z, B2, <H'(B), 2}

l l

these branches repeat indefinitely similar nodes
Fig. 3

Note that the success node is cbtained directly from SIMPL applied to the se

{<r, y>,{B (h (B)), B(y))}. Note also that, in the nodes with two pairs, only one
of these pairs is flexible-rigid, but which pair it is keeps alternating.

3.5.3.

e =X, e = u-u(Av-w, x(e), x(f)) where e = Ju'v'w'+ 4 (u'(v'), W),
with:

TW=t(N=(G->00rr=>7, t@X)=(O->97=>7)-7)
TW)=@G->NtW=tW=10)=y t@)=(>Fy-7.
Here we get a unique finite tree. See Fig. 4. Note that the first substitution step is an
imitation, not a projection.

{<x, du-u (Av-w, x{e), x (f))>}
<x, Auea (hyay, haC), ha())>
{<Au by, Auve w), CAue hao(u), Au- A (h,(e, ha(e)), /:s(em L hs(uy, 2 S Ba(0) BsCODS

Chay Au A (halu), hs(u))> V;ﬂ- u (holu), + u), hglin))s

S F
Fig. 4

44 G.P. HUET

We leave to the reader to check that the following substitution, obtained by the
method in 3.3.3 composed with the substitutions on the path to the success node,
is indeed a unifier of e, and e§:

o = {Cx, Auru (Av-z, 4 (z, 2), 2)), {f, ' v'w' 2>, {w, z>}.

This example exhibits a good convergence. It demonstrates that the new variables
introduced by MATCH (the 4,’s) do not complicate the unification search, since
they are never considered in “don’t care” situations.

4. Correctness of the unification process

We shall now prove that our unification process is correct. First we prove a sound-
ness theorem, stating that if any matching tree for e, and e} possesses a success
node then e, and eg are unifiable. Then we prove a completeness theorem, stating
that if e, and ej are unifiable, then every matching tree for e, and e} prossesses
a success node at a finite level.

4.1. Soundness

Let us suppose that we have constructed a matching tree for e, and e/ which
possesses a success node on some branch:

Oy Oz Op

No-» N —»>..-oN,=S p=>=0,

Let &, be defined as a substitution which unifies N,, as constructed in the proof
of Lemma 3.5 above: &, = {n,.* Now, we define:

Si=Cl oy p>iz0,

and prove by (descending) induction on that ¢, unifies N;. The base step has been
shown in Lemma 3.5. For the induction step, assume that &4, unifies Nyvy. Let
Ny = {{Ou+1 €, 0141 €50 | ey, 2> € N} By induction hypothesis and Lemma 3.6,
since Nyiy = SIMPL (Ny+y), &+, unifies N,4,; that is, for every {ey, ;) € N;:

$iv1 04y €4 = $i1 Opty €3,

i.e. ¢, unifies N,, which concludes the induction step.

As a particular case, we get that &, = £, 0,0, ... 0, unifies N, = SIMPL
({<eo, €57}) and therefore by Lemma 3.6 again, &, unifies e, and e;. Whence, de-
fining oy, = 6, 0y ... 54, We get:

* Strictly speaking, CN' should be written {y, where N is the disagreement set from which N,
derives: N, = SIMPL (N).

TYPED A-CALCULUS 45

Theorem 4.1. Let O be a matching tree for e, and e}. For any success node N in),
{y oy unifies e, and ey.
4.2. Completeness

Let us assume that terms e, and e; are unifiable by substitution p. Let us consider
an arbitrary matching tree for ¢, and ¢j. We shall construct a branch

No 91 'kNl %2 > aee il ;Ng
of this tree, together with a sequence of substitutions &,, &4, ..., & such that
Vi>0 Eie%(Ng) or Ni-':S,

and of complexities strictly decreasing. We prove this by (ascending) induction on i.
The base step is obvious, taking &, = p, since if N, = SIMPL ({Ceo, egD}) # S
then by Lemma 3.6 p € U (Ny).

For the induction step, we assume that &, € U (N,;). Now either N, = S, in which
case we stop the construction, or in N, we are considering a pair {e,, e,) such that e,
is rigid. N, cannot be a failure node by Lemma 3.4, since by hypothesis &, € U/ (N)).
Using Lemma 3.7, we know that MATCH (e,, €;, ¥ (N;)) returns some o such
that there exists n with

éi 9(7%) no,

and therefore there exists a branch N, Z+ N’ in the tree.

Choose: 51-{-1 =1 Gy =0, N‘+1-=-' N'.
By construction: N,+; = SIMPL (N+,),
where Nt+1 = {{Gy+1 €1, G141 €20 [ey, €0 € N}

For every {e,, ¢,> in N;: &, e, = & e, by hypothesis, and therefore
lit1 01164 = fz+1 Oi+1 €2,

since F (N,) contains all the free variables of ¢, and e,. This shows that 4, unifies
N+, and thus either Nity = S, or &4, unifies N4+, by Lemma 3.6. Finally, we
know by Lemma 3.7 that 8 ({.4;) < 6 (&), which concludes the induction step.
Thus our construction will generate a success node S at a level at most equal to & (o).
This completes the proof of our completeness theorem:

Theorem 4.2. If U (ey, eb) # B, then every matching tree for e, and ey possesses a suc-
cess node at a finite level.

Of course if U (ey, €5) = & then we may build an infinite tree. This may happen
even for first-order pairs such as {x, 4 (x)), which we could easily recognize as
failure nodes. We shall discuss in Section 5.3 a few heuristics for such special cases.

46 G. P. HUET

4.3. Complete unification

Theorem 4.1 leads us to wonder whether our algorithm could be used to find all
unifiers of e, and ep, by enumerating all success nodes in a matching tree.

Definition 4.3. 4 complete set of unifiers (CSU) of e, and el on V is any set 2 of sub-
stitutions such that: :

1) & = U (eo, €0);
2) Vp €U (e, €p), Jo € 2: p < o, where ¥ is any finite set of variables containing
1 4
F(eo) U F(eh).

For instance, if one wants to use £ to compute resolvents [18, 15] of literals e,
and—eg in normalized clauses C and C’, then we ought to take ¥ = F(C) U F ().
From now on we consider ¥ given, and containing F (e,) U F (e}).

Now let us say a complete matching tree for e, and ey, on V is a matching tree N
constructed as above except that the third argument given to MATCH at node N
is now Vy, defined recursively as:

[vV if N= N,

lve UF@ if 22 N in o,

i.e. ¥y contains ¥ and all new variables introduced on the branch leading to N.
This rules out such branches as:

(I 9, 4 B} L2221, 4By} BAOD, (), gy} 9B
Axex(h , A(h ‘h, B
{fQuey), AB)y S2EXEDD | (0 4 (B} LA (. gy B g
For instance, in the second example, where types are:

W =a tN=4 (f)=(x-p)—p,
TB)=tW={@->phH~>o, (A=~ —u—p,

the variable % is used in two independent occasions, and the final unifier obtained,

On f {f; y} = {<f; Ax-x (B (X))>, .4 (B)>}a

is not as general as

{2 x (B O, <y, A (B},

which we obtain if we construct a complete matching tree on {f; y}.

Note that the trivial implementation of matching trees, forgetting the third ar-
gument to MATCH altogether and generating totally new variables, always constructs
a complete matching tree. We are now able to prove a stronger completeness
statement.

VN=

Theorem 4.4. Let) by any complete matching tree for e, ‘and eq on V. For any
p € Uleo, €o) there exists in W at a finite level a success node N such that p < oy
14

TYPED A-CALCULUS 47

Proof. We just adapft the proof of Theorem 4.2, adding p = ¢, oy, to the induction

hypothesis.
For the base step we have &, = p, oy, = £, trivially satisfied.
For the induction step we have now

& =&y Optye
VN:

We now remark that
Vix,e)eoy, Fle) = Vy,
since this property is true of o4, 63, ..., 6;. This implies that

& Oy, 1;—; i1 01ty ON, = Ei1 ONy,,o
{

and therefore that
Pj &y ONyyy

since ¥ < Vy, which concludes the induction. Therefore, for the success node N,
found by this process, we get

P f & Oy, O

Now Theorem 4.1 and Theorem 4.4 combined together indicate to what extent we
can compute a CSU with our algorithm; by enumerating all success nodes in a com-
plete matching tree we get a complete set of “initial segments” of unifiers, and each
such segment can be extended to a unifier by £.

Still, this does not give us a way of compiiting a complete set of remainders,
i.e. a CSU for the set of flexible-flexible pairs forming the success node before sim-
plification. Actually, these pairs represent the most difficult cases to treat for general
unification, and to enumerate this CSU we would need supplementary rules similar
to Pietrzykowski’s elimination, iteration and identification. This is rather satisfactory,
since it shows that our algorithm is taking great advantage of the fact that we are
looking only for the possibility of unification.

4.4. Elimination of redundancies

It has been proved [10] that it is not always possible to impose on CSU’s a third
condition of independence:

3) Vo,06,el oy #0,=> 10,0,
v

This implies that any search enumerating a CSU must be redundant, since if X~
is a CSU containing oy and o, such that ¢; < o, then X—{¢,} is a CSU too. By
v

contrast, we shall show that the search for the existence of a unifier need not be
redundant.

48 G. P. HUET

N, g = F N. 5 == S
LA <K, Au /
No = {Kf(B), A(C (B} = {<h'(B), B)}

LS, Au- A (h (W))) <h, Au- C(hV (R, ll\

Ny = {<h(B), C (B)>}

Lk, i.u-u}
<h, O Ny =F
N; =$

Fig. 5

First, we need to restrict further our MATCH algorithm. A simple example wlil
show why. Consider the matching tree of Fig. 5, -with:

TBy=1W=19 t@=7()=(Fp->a),
(O =1 =1)=G-7, V={f}

From the viewpoint of complete unification, N, is not redundant, since o, ;é o,

whereas N, is, since oy, = = Oy, From the strict point of view of existence of uni-

fication, even N, is redundant because {f, Au- 4 (# (u))> is more general than {f, A
in the context f(B). We shall now describe the modifications in the construction of
matching trees that eliminate these respective redundancies. First, we need some new
notations.

Definition 4.5. A maximal subterm of a term e in normal form is a subterm of e which
is not in the left part of an application; i.e. in € [(e, €,)] e, is maximal and e, is not.
Maximal subterms are the subterms of the abbreviated notation and so are easy to
recognize. For instance in (4, B), only 4, B and f(4, B) are maximal subterms;
S and f(4) are non-maximal subterms.

Let e be any term in normal form, fe F (e). We call degree of f in e, and write
0.(f), the smallest i such that there exists a maximal subterm in e with head fand i
arguments. For a node N, we define d,(f) as

min {6,(f) | <e, &’y € N or (¢, e) &€ N}.

Now we define a reduced matching tree for e, and e} as a matching tree modified
as follows:

(i) MATCH is given a fourth argument: in node N, we call MATCH ({e,, e,,V,
On(x)), where x is the head of e,.

(iiy MATCH only constructs terms with a binder of size at least dy(x).

TYPED 2-CALCULUS 49

Theorem 4,1 is still true, of course. Although Lemma 3.7 may fail, Theorem 4.2
still holds. The proof is tedious and technical, and we shall omit it.

For example, in the matching tree in Fig. 5, nodes N, and N; would not be gen-
erated. Generally, reduced matching trees will have a very low degree of branching,
This allows a more efficient search, although the lowest level of success nodes may
increase a little. For instance in Fig. 5, we now have to go down to level 3 to find
a success node.

To get an equivalent of Theorem 4.4, we can define in the same way a reduced
complete matching tree for e, and ep on V. Defining Vy as in 4.3, at node N we call
MATCH (e, e,, Vy, 6) where, denoting by x the head of ey:

0 if xeV [ie. xe F(e) U F (e)]
d = 138.(x) if x has been introduced by MATCH in term e, on the branch
leading to N.

For instance, we get a reduced complete matching tree for f(B) and 4 (C (B))
on {f} by suppressing N5 in Fig. 5. Note that now reduced complete matching trees
may be larger than reduced matching trees.

The argument of Theorem 4.4 can now be easily adapted to reduced complete
matching trees. We shall not give the details here, but we merely justify the com-
plicated definition above by remarking that it would not be sufficient to take é =
don(x) in case x ¢ V. For instance, consider the following counter example:

eo=f(x,4), es = B(A),

with
A=y tB=0->9, t@XN)=Q(->7r>7.
() ==y 97—7)

Suppose we consider the unifier:

o = {{f, Au-u (B)), {x, Av-vD}
with
T@) =1t = (>
The corresponding branch of the reduced complete matching tree is going to be:

{{f(x, 4), B(4)}
l S Aw-u (R ()
{(x (R (x), 4), B{A))}
{<h (Avev, A), B(4)} = N
l <h, Au- B
S

50 G. P. HUET

If in N we take § = 4(h) = 2 we shall not generate the pair <4, Au-B) and so
we shall miss o. But we choose rather to take 6 = §,(h) = 1, since here e is
Au-u (h (w).

We shall now motivate our introduction of reduced complete matching trees by
provinga strong independence result for these trees. Let us call two nodes independent
if one is not the ancestor of the other.

Theorem 4.6. Let)il be any reduced complete matching tree for e, and ¢§ on V. If N,
and N, are two independent nodes in VWi then oy | oy,, where F = F(eg) U F(eb).
F

Proof. Let N be the closest common ancestor to N, and N, in (:

_ =N,
Ny ..» NI
N ve = N,

Let us define, for any node N in the branch N, — ... - N, p(N) as the composition
of the substitution pairs from N to Ny, p,(N) as the composition of the substitution
pairs from N to N,, and v (¥) as the variable substituted for in node N. Now we
define property P by:

P (N) < 211, 12:m0 ps(N) v (N) = 5, po(N) v (N).
Let us call N-* the ancestor to N in ff which introduces v (N) as a new variable,
if such a node exists. In this case, we prove that: P (N) = P (N-1). Let us write:
&

- S S

N-1 o —+N->..- N,
with
o0 (N1 = 2wy oo W @ (o 0 (N) (Wy, ey W), 220),
and assume 1P (N-1),ie. Iy, n5:0; p(N-Y) 0 (N-1) = 5, po(N-1) v (N-1). Using
p1(N=Y) = p,(N) &, p,(N-*) = p,(N) é6 and the fact that ¢ does not pertain to
v (N), we get:
11 P1(N) [AWy cee W @ (...r 0(N) (Wy, ..o, W), W] =
= 12 p2AN) [Awy . W @ (ovr 0 (N) (W, ey W),)]
Since v (N) # w, Vie[n] and @ € @ U {w,, ..., w,}, this implies:
Awy . W [[11 p((N) v (N)] Wy, .., wp)] =
= Awl eoe Wn'[['h pZ(N) v (N)] (WI’ esry W,,)].

Now, by definition d(v (N)} = n, and therefore ¢'v (N) has a binder of length
at least », for any substitution pair ¢’ given by MATCH in N. Therefore this property
is also true of n; p;(N) v (N) and #, p,(N) v (N) by Lemma 2.2, using for ¢’ the

TYPED A-CALCULUS 51

first components of g,(N) and p,(N) (which are equal 1f N # N). Using a-con-
version, we easily get:

N1 P1(N} v (N) = 1, po(N) v (N)
ie.1 P (N).

By contraposition we get P (N) = P (N-!) which proves the induction step.
The basis of the induction is P (N), obtained easily because MATCH does not
construct two rigid terms with the same heading.

Using the least number principle of induction, we get that there exists a node N
between N, and N which has no N-2, i.e. such that v (N) € F, and such that P (N).
Now, for any 1,4’;

non, v (N) = 1p(N) v (N) # 1'p(N) v (N) = noy, v (N),
and therefore oy, | oy, [
F

We can sum up the previous results as follows:
Let e, and eg be any two terms of the same type, V be any finite set of variables
containing F = ¥ (e,) U F (eg), and Y be the set of unifiers of ¢, and ef. Let Wt
be any reduced complete matching tree for e, and eq on V, and Z (M) = {ox]
N =S in 9/(}. Then:

Voye Z(N):{yoneU {Theorem 4.1);
VoeU loeZ() p <o (Theorems 4.4 and 4.6);
%
Yoy, on € Z (N oy | on (Theorem 4.6).
N#N’ F

We can conclude that using our algorithm to enumerate success nodes is as close
as possible to enumerating a CSU without redundancies. In other words, the redun-
dancy implied by a search for complete unifiers can be pushed into the flexible-
flexible cases which we never examine. This gives a strong efficiency argument in
favor of theorem proving methods based on unifiability [12] as opposed to methods
based on CSU’s.

4.5. The n-rule

We have not so far assumed the p-rule of the l—ca]culus:;
E [Ax (ex)] = € [e] where x¢ F (e).

This rule is implied by the axiom of functional extensionality:
Vg (Vx f(x) =g (x) = f=g).

Since one does not always want to assume this axiom, we formulated our unification
algorithm without the 5-rule, following Andrews [1]. However if this rule is valid,

52 G.P. HUET

our algorithm can be greatly simplified, because now many cases will become redun-
dant. The necessary changes affect only the definition of normal form and the al-
gorithm MATCH.

4.5.1. n-normal form

The n-normal form of a term is obtained from its normal form by replacing every
subterm of the abbreviated form

Ay o Uy @ (245 o0s €5),

where

T(@) = (X5 U2y vues Oy euey g =) qg=p,
by the term:

ARy o U We oo Wampp* @ (15 vy €y Wy oeny Wyp)

where the w;’s are new distinct variables of the appropriate type.

4.5.2. Changes in MATCH

First we note that we have always n; = n,, and that therefore we can suppress
3.4.1.1()) and 3.4.1.2(ii). Also, we now have p; = ¢,. In cases of 3.4.1.1(ii) and
3.4.1.2(i) we shall restrict ourselves to the only solution k = p,. The justifica-
tion is obvious: now the other possible solutions construct terms which are instan-
ces of the one kept. For instance, if

er=f(4) e;=B(4) witht(@)=y, 1()=1(B) =7,

then B = Au-B () is an instance of Au-B (h ()} by the substitution {(&, Au-ud}.
In the same way in the example in 3.4.2, we do not generate &, and ¢, which are
less general than o, and o, respectively. Generally, we shall consider at most one
case of imitation and p, cases of projection. This is to be compared with the possible
min (p;, p;)+1 cases of imitation and p,(p; +2nr+1)/2 cases of projection we had
before; the MATCH algorithm is much simpler with #-conversion than without, and
the degree of the matching tree is sharply reduced.

However, note that we may now get solutions where we failed using only the «
and f rules, for instance for the pair {Au-f (1), A, where T (u) = y, 1 (f) = 1 (4) =
(y = y). This simpler algorithm would therefore be neither sound nor complete
for non-extensional theories in which the n-conversion is ruled out.

Assuming #-conversion valid, Theorems 4.1 and 4.2 are still true, Theorem
4.4 is true if we give to MATCH sets ¥y as in 4.3. But now #-matching trees
are non-redundant without any further modifications: we easily get Theorem 4.6, since
every variable has its maximum degree in every term because of the #-normal form,
For instance, in the example of Fig. 5, N; and N; would not be generated.

TYPED A-CALCULUS 53

5. Heuristic improvements

5.1. Selection of the pair given to MATCH

Let N be a node containing several flexible-rigid pairs. Our algorithm does not
impose any condition on the selection of the pair we give to MATCH, when we want
to compute the successors of N. As proved in Theorem 4.1, if ¢, and e; are unifiable
at all, this selection is indifferent, in the sense that any matching tree will possess
a success node at a finite level. However, if U (e,, €5) = @ certain strategies pertain-
ing to this selection could lead to a finite (failure) tree, while others could lead to
an infinite tree. For instance, consider:

N = {{f(4), F(f ()}, (Auv-g (v), uv-ud}
) =t@=a 1@=4 (f)=@~>Pp,
1(F)y=@B~p), t(g) =~ a).

If we input the second pair to MATCH, we get as result & = g since no rule
applies and therefore we can replace N directly by a failure node F. If on the contrary
we input the first pair, we may get an infinite tree:

N
l fs du-F (R (w)))

N' = {<h(A), F (k(A)), (uv-g (v), Auv-ud}
l <k, 2+ F (B (u)))

where

To avoid this kind of situation, it may be preferable to process the pairs in some
kind of first-in first-out fashion.

5.2. Recognition of cycles

A useful heuristic to incorporate in the unification process would be to suppress
branches that lead to infinite repeating cycles. That is, ifabranch Ny —» Ny — ... = N,
is such that for some n < p, N, is identical to NV, up to a one to one type-preserving
renaming of their free variables, then N, can be safely replaced by F.

For instance, in the previous example in 5.1, we would recognize N’ identical to N
up to renaming of f by 4 and therefore stop at N’ with failure.

Note that replacing N, by a failure node F does not mean that N, is not unifiable,
but merely that if it possesses a success descendant, then so does N, but at a lower
level on some other branch, The proof of completeness of this heuristic is straight-
forward if each ncde contains a unique flexible-rigid pair since then there is a unique
way of constructing the subtrees from N, and N,, and therefore these subtrees are

54 G.P. HUET

identical; the proof follows easily. In the general case the proof is more complex
and we omit it here.

This beuristic will not avoid other kinds of sterile infinite branches. Consider for
instance e, = f(f(A4)), et = F(f(f{4))) with types as above:

LS @), FUAU M)
l Sy Aue F (B (u)))
{<h (F (R (A))), F (h(F (R (AP}

2

Actually we cannot hope to be able to recognize all such cases, since unification
is undecidable in languages of order three or more. If we restrict our language to
order two, i.e. allow only variables of types («;, a5, ..., &, =) with Vie [n] o, € Ty,
B € Ty, then the result is not known. In the monadiccase (i.e.n < 1 above) the problem
reduces to finding a solution to a system of equations in a free monoid. (It is not equi-
valent, since the possibility of having constant functions Au-v amounts to having
a zero element in the monoid.) The monoid problem is still unresolved in the general
case,

5.3. The fixpoint problem

We shall now look at the special case of unification of a variable x with a term
e of the same type. This case is specially important since it occurs often in practice.
First we note that this is the same problem as finding a syntactic fixpoint of an
expression of our language. .

We call fixpoint of a term Ax-e, where 7 (e) = 7 (x), any term &’ of type 7 (x)
such that [Ax-e](e’) = ¢'. If ¢ is a fixpoint of Ax-e, then {(x, ¢'>} is a unifier
of x and e. Conversely, if we write a unifier ¢ of x and e as ¢ = {{x, ¢'>} wp,
then ¢’ is a fixpoint of p [Ax-e].

For instance, let e = Aw-u(x (Aow-v), f(x)) with 1 () =t(W) =a, 7)) =
(wa—a),7(x) =, x> o) > o) and (f) = (o, « > &) — &) - &). A unifier
of x and e is ¢ = {Kx, lu-u(y, 2)), {f;, Ax-2z)}, where T (¥) = 7 (2) = o. Then ¢’ =
Au-u (y, z) is a fixpoint of Axu-u (x (Avw-v), 2).

Lemma 5.1. If x ¢ T (e), then o = {{x, €)} is a most general unifier of x and e.

Proof. Let p € U (x,). We prove that p = po.
Case 1. px = E # x. There must exist in p a pair pertaining to x, i.e.:

p = {{x, E)} wp. px = E = pe by hypothesis, and therefore po = {{x, E)} Up = p,
Case 2. px = x = pe; then again po = p. [

TYPED A-CALCULUS 5§

This lemma, which is a generalization to typed 2-calculus of a well-known property
of first-order unification, could be used by SIMPL to suppress such pairs {x, e}
by effecting the corresponding substitution in the node. However, its converse is
not true any more; i.e.,, x may appear free in e and still be unifiable with e. For
example, if e = f(x), by substitution {(f, Au-x>} or {(f, Au-u)}. This may happen
even if there is no free variable such as f above to eliminate x. For instance, take:

e = Au-u(x(iv-v)) with 7(v) = 3,7 (@) = (y = y),
TX)=(y=>~->s

o = {{x, Au-u (y))} unifies e and x, with 7(y) = y. Example 3.5.3, where we had
a combination of the two phenomena, is similar.
Let us call rigid path for x tn e a sequence of terms:

€ = €4, €3y e.cp €y, Cpiq nz=1

such that:

Vie[n] e;+, is an argument of e; ,

Vie[n] 3je[i] such that the head of e, is a constant or a variable in the binder
of some ¢;

the head of e,+; is an occurrence of x free in e,

If there exists no rigid path for x in e, then e and x are easily unifiable. However,
the converse is false, as shown in 3.5.3 for instance. We can conclude partially in
two special cases: :

if e has an empty binder and there exists a rigid path for x in e, then U {e,x) =0

if there exists a rigid path for x in e such that its last element e,+, has no arguments,
then U (e, x) = 8.

In particular, in the case of first-order terms, we get the well-known result that
U (e, x) = @ if x appears in e. Since this case occurs often in practice, it is important
to incorporate it in SIMPL.

6. Conclusion

We have presented in this paper two algorithms which search for the existence
of unifiers for sets of formulas in w-order typed A-calculus. The first one assumes
the « and B rules of A-conversion. The secord one, which assumes in supplement
the n rule, is significantly simpler and is more appealing for practical computer
implementation purposes.

These algorithms exhibit very good convergence properties. This is due to the
fact that we perform only substitutions which are absolutely mandatory, when we
match two terms one of which is rigid. This condition gives us a good directionality,
since the heading of the rigid term is used as a handle on the unification process.
We never search in “don’t care” situations since our algorithm does not examine
the formulas in a left to right fashion, but rather tests pairs according to an easy-

56 G.P. HUET

first-hard-last criterion. Finally situations which can be described as “don’t care in
all positions” are recognized directly as successes. This permits us to ignore the most
complex cases of general unification (the flexible-flexible cases) and to get rid of
the rules of elimination, iteration and identification. These last two rules are very
prolific, since not directional.

This study gives strong efficiency arguments in favor of theorem-proving methods
based on unifiability rather than complete sets of unifiers. This work is part of

a case study in such a method, applied to higher-order logic based on typed A-cal-
culus [12].

The algorithm with «-f conversion has been implemented at IRIA for experiments
on higher-order deduction.

Acknowledgments

The author thanks P. Andrews, G. Kahn, T. Pietrzykowski and G. Plotkin for
their belp in preparing this paper.

References

[1] P. B. Andrews, Resolution in type theory, J. Symb. Logic 36 (3) (1971) 414-432,

[2] A. Church, A formulation of the simple theory of types, J. Symb. Logic 5 (1)(1940)
56-68.

[3]1 J. L. Darlington, A partial mechanization of second-order logic, Machine Intelligence 6
(American Elsevier, New York, 1971) 91-100.

[4] J. L. Darlington, Automatic program synthesis in second-order logic, Proceedings of 3rd
Intern. Joint Conf. on Artificial Intelligence (1973).

[5] G. W. Ernst, A matching procedure for type theory, Personal Communication (1971).

[6] W. E. Gould, A matching procedure for w-order logic, Scientific Report No. 4, AFCRL
(1966) 66-781, AD 646 560.

[7]1 J. R. Guard, Automated logic for semi-automated mathematics, Scientific Report No, 1.
A F CR L (1964) 64-411, AD 602 710.

[8] J. R. Hindley, B. Lercher and J. P. Seldin, Introduction to Combinatory Logic, London
Mathematical Society Lecture Note Series 7 (Cambridge University Press, 1972).

[8] G. P. Huet, Constrained resolution: a complete method for type theory, Jennings Com-
puting Center Report 1117. Case Western Reserve University (1972).

[10] G. P. Huet, Unification en théorie des types, Séminaire IRIA Théorie des Automates, des
languages et de la programmation, volume 1973.

{11] G. P. Huet, The undecidability of unification in third order logic, Information and Control
22 (3) (1973) 257-267.

[12] G. P. Huet, A mechanization of type theory, Proceedings of 3rd Intern, Joint Conf. on
Artificial Intelligence (1973).

{13] D. Jensen and T, Pietrzykowski, Mechanizing w-order type theory through unification,
Report CS-73-16, Dept. of Applied Analysis and Computer Science, University of Waterloo
(1973).

[14] C. L. Lucchesi, The undecidability of the unification problem for third order languages,

TYPED A-CALCULUS 57

Report C S R R 2059, Dept. of Applied Analysis and Computer Science, University of
Waterloo (1972).

[15] T. Pietrzykowski, A complete mechanization of second order logic, J. Assoc, Comp. Mach.
20(2) (1971) 333-364.

{16] T. Pietrzykowski and D. Jensen, A complete mechanization of w-order type theory, Assoc.
Comp. Mach, Nat, Conf, 1972, Vol. 1, 82-92.

{17] G. A. Robinson and L. T. Wos, Paramodulation and theorem proving in first-order theories
with equality, Machine Intelligence 4 (American Elsevier, New York, 1969) 135-150.

[18] J. A. Robinson, A machine-oriented logic based on the resolution principle, J. Assoc.
Comp. Mach. 12 (1) (1965) 23-41.

