
Math. Struct. in Comp. Science (1998), vol. 00, pp. 1–11 Copyright c© Cambridge University Press

Regular Böhm Trees

Gérard HUET†

INRIA-Rocquencourt

BP 105, 78153 Le Chesnay Cedex, France

Received December 1996

Introduction

We give a decision procedure for the extensional equality of total Böhm trees presented

by regular systems of recursion equations.

1. Böhm trees presentations

Böhm trees are the natural infinite generalisations of normal forms in pure λ-calculus.

They arose from the work of Böhm on separability (Böhm 1968), and were first identified

by Barendregt, who devotes chapter 10 of his book (Barendregt 1980) to their study, and

relates denotational models such as D∞ to appropriate quotients over Böhm trees.

There is however no generally agreed presentation of Böhm trees, and the various

partial orderings considered on them make this topic a difficult one (Lévy 1993). We

shall adopt here the point of view that Böhm trees are potentially infinite computational

objets similar to the streams studied in the theory of communicating processes, and treat

them accordingly as maximal solutions to systems of recursive definitions.

1.1. Systems of guarded combinators

Definitions. We assume given two disjoint denumerable alphabets of symbols: X =

{X1, X2, ...} is the set of combinator symbols, U = {u1, u2, ...} is the set of parameter

symbols. Intuitively, combinators name Böhm trees, whereas parameters name bound

λ-variables.

We call Böhm tree presentation with respect to these two alphabets any denumerable

system of guarded equations: E = {E1, E2, ...}, with

Ei : Xi u1 u2...uni
:= uki

(M1, ..., Mpi
)

where 1 ≤ ki ≤ ni, 0 ≤ pi, Xi ∈ X , and for ∀j ≤ pi Mj = Xki,j
(v1, ..., vli,j

) with

1 ≤ ki,j ≤ ni and {v1, ..., vli,j
} ⊆ {u1, ..., uni

} ⊆ U .

Email: Gerard.Huet@inria.fr



G. Huet 2

We assume furthermore the system to be deterministic, in the sense that every X ∈ X

possesses at most one defining equation in E . We shall then call arity of Xi in E the

natural number ni, and we shall denote it by arE(Xi). We say that it is total when every

X ∈ X possesses exactly one defining equation in E .

1.2. Completeness

Whatever is your favorite formalism for Böhm trees, you ought to be able to convince

yourself that any Böhm tree T containing only a finite number of free variables {v1, ..., vm}

is definable as X(v1, ..., vm) in a suitable Böhm tree presentation. Indeed, if T is the

undefined Böhm tree, define it as ⊥ in the presentation ∅ over X = {⊥}, U = ∅. If T

is of the form λ u1 u2...un · w(T1, ..., Tp) and its set of free variables is {v1, ..., vm}, then

let Tj be represented by Xj(vj,1, ..., vj,m) in Ej for 1 ≤ j ≤ p where we assume that

the parameter sets Xj of the Ej ’s are disjoint. Note that vj,1, . . . , vj,m are included in

v1, . . . , vm, u1, . . . , un. Now choose a new parameter X0, and consider the new equation:

E0 : X0 v1...vm u1 u2...un := w(M1, ..., Mpi
)

with Mj = Xj(vj,1, ..., vj,m). Now with E0 = {E0} and X0 = {X0}, we consider the

presentation
⋃p

i=0
Ej over X =

⋃p

i=0
Xj . In this presentation, T may indeed be defined as

X0(v1, ..., vm). This construction may be made rigorous as a limit construction, defining

T as the ideal of its finite approximations, as usual.

Let us remark at this point that this shows that Böhm tree presentations are general

enough to represent arbitrary families of finitely generated Böhm trees, which is enough

for instance to represent Böhm trees of any λ-term. But they permit to do more, in that

we may represent dags and looping structures.

For instance, the λ-term in normal form λu1 u2 ·(u1 λv ·(v v) λw ·w) may be presented

as X in the system

X u1 u2 := u1(D, I)

D v := v(I(v))

I w := w

with sharing of combinator I . Whereas the single equation Z u := u(Z) defines as Z the

infinite tree λu1 · u1(λu2 · u2(...)). Another example is the fixpoint combinator Y , with

Y f := f(Y (f)). Still another example, also denoting an infinite Böhm tree, is J presented

by the system: J x y := x(J(y)). It is the Böhm tree of λ-term (Y λj λx λy (x (j y))),

for Y any fixpoint combinator such as Curry’s.

Indeed we shall call regular any finitely definable Böhm tree (in analogy with regular

languages).

Definition. We call regular any finite Böhm tree presentation. Such presentations

define Böhm trees which are regular in the sense of admitting only a finite number of

distinct subtrees, up to variable renaming. Of course not every Böhm tree is regular.



RBT 3

2. Semantics

We just saw that arbitrary finitely generated Böhm trees were definable by Böhm tree

presentations. Conversely, let us show that any Böhm tree presentation defines a unique

Böhm forest.

2.1. Parameterization of Böhm trees

We start with a few auxiliary technical notions.

If T is the (defined) Böhm tree

λ u1 u2...un · w(T1, ..., Tp)

and x is a variable, we define (T x) as the Böhm tree

λu2...un · w
′(T ′

1
, ..., T ′

p)

if n > 0, with w′ = x if w = u1 and w′ = w otherwise, and T ′
j is obtained from Tj

by substituting every free occurrence of u1 by x. If n = 0 it is just the Böhm tree

w(T1, ..., Tp, x). Finally, when T is the undefined Böhm tree ⊥, we define (T x) as ⊥.

The top node of the defined Böhm tree

T = λ u1 u2...un · w(T1, ..., Tp)

is the triple (n, w, p). The head variable w may be encoded as a de Bruijn index, or as a

pair of indexes as in (Huet 1993), or in any way which is invariant by variable renaming.

A path u in tree T is a list of integers addressing a node T/u in the tree. If u is the

empty list T/u is the top node of T . If u = q; v with q ≤ p then T/u is Tq/v.

Two trees T and T ′ are different if and only if there exists a common path u such that

T/u 6= T ′/u. In this case we define the distance d(T, T ′) between T and T ′ as 2−h, where

h is the minimum of the lengths of such differentiating paths, otherwise d(T, T ′) = 0.

The set of (finite and infinite) Böhm trees equipped with distance d has the structure of

a complete metric space.

2.2. Constructing the Böhm forest

Now every X -indexed family of Böhm tree T is mapped into an X -indexed family E(T )

as follows. If X has no defining equation in E then E(T )X =⊥.

If it has the defining equation:

X u1 u2...un := uk(M1, ..., Mp)

with Mj = Xj(v1, ..., vl) then

E(T )X = λ u1 u2...un · uk(T1, ..., Tp)

with Tj = (TXj
v1, ..., vl) as defined in the previous section.

This defines a contracting map T 7→ E(T ), in the sense that if for all trees T, T ′, we

have d(E(T ), E(T ′)) ≤ 1

2
d(T, T ′). We leave this easy proof to the reader. By the Banach



G. Huet 4

fixpoint theorem it has a unique fixpoint associating a Böhm tree TX to every combinator

X in X . These trees are all total when E is total.

Remark that when X has no defining equation in E we could alternatively define

E(T )X = X . We would get a slight generalisation of Böhm trees with (parameterized)

constructors, whose leaves are of the form X(v1, ..., vl) for X ∈ X with no definition in

E .

2.3. Alternative formulations

Many variations on the formulation of systems of recursive combinators are possible.

What is essential is that our combinator definitions are guarded, in the sense that the

head variable is explicit in the definition of each combinator, which guarantees that every

defined combinator is solvable, in the sense of having a head normal form. It is the guard

indeed that guarantees that the defining map is contracting.

Our definition is minimal in the sense that we define the Böhm tree one layer at a

time: each immediate subterm Mj starts with a combinator symbol. We may relax this

condition by simply requiring that a right hand side is a head expression u(M1, ..., Mp)

where the Mj ’s are either formed with a combinator applied to parameters (as above),

or else are themselves head expression.

Another variation is to be on the contrary more restrictive, by demanding that each

Mj is a linear pattern X(v1, ..., vm) where the vk ’s are distinct variables. Obviously both

variations have the same expressive power, but differ in the number of combinators needed

to define a given Böhm tree.

2.4. Operational Semantics

Systems of recursive combinators admit a straightforward operational semantics, by view-

ing each definition as a rewrite rule. This is similar to combinatory reduction, the recur-

sive nature of our systems does not introduce extra difficulty. In terms of λ-calculus, as

usual, one gets a notion of weak reduction, i.e. a reduction which does not occur below

λs. In order to get a more interesting equational theory, one has to allow η-expansion,

leading to a notion of extensional equality.

3. Extensional equality

In the following we assume given alphabets X and U as well as a regular Böhm tree

presentation E . We saw that Böhm trees could be represented as linear patterns of the

form X(v1, ..., vm) with X ∈ X and the vj ’s distinct variables in U . Let us now relax the

linearity requirement.

Definition. A pattern is any expression X(v1, ..., vm) with X ∈ X and vj ∈ U for

1 ≤ j ≤ m. The pattern is said to be saturated if m ≥ arE(X).

A head expression is an expression u(M1, ..., Mp) where u ∈ U and the Mj ’s are simple

expressions for 1 ≤ j ≤ p, where a simple expression is either a pattern or a head

expression.



RBT 5

We define the notion of shape of a simple expression as follows. The shape of the head

expression u(M1, ..., Mp) is (−p, u). The shape of pattern X(v1, ..., vm), with X defined

by equation:

E : X u1 u2...un := uk(M1, ..., Mp)

is defined as (n−p−m, v) where v is vk if k ≤ m, and wj if k = m+j, where w1, w2, ... is

some denumerable set disjoint from U . Finally, the shape of pattern X(v1, ..., vm), with

X undefined, is defined as some default value ⊥.

We say that two simple expressions are similar when they have the same shape, dis-

similar otherwise.

We shall now define extensional equality as the largest bisimulation consistent with E

which separates dissimilar expressions. More precisely, we define mutually an inductive

relation ≡E and a co-inductive relation ∼E between simple expressions by the following

closure conditions:

Consistency : Mi ≡E Ni (1 ≤ i ≤ p) =⇒ u(M1, ..., Mp) ∼E u(N1, ..., Np)

Inclusion : M ∼E N =⇒ M ≡E N

where M and N are patterns.

Extensionality : M(x) ≡E N(x) =⇒ M ≡E N

Here M and N are unsaturated patterns where parameter x does not occur.

Definition : M := N ∈ E =⇒ M ≡E N

Renaming : M ≡E N =⇒ σ(M) ≡E σ(N)

where M and N are patterns and σ is a parameter substitution (not necessarily one-one).

The renaming rule could be dispensed with if we impose the linearity of patterns (at the

cost of increasing the number of combinators); it would then be reduced to α-conversion,

which may be made implicit provided a proper canonical representation of parameter

variables.

If E is not total, when we want to consider undefined combinators as representing

the undefined tree rather than free constructors, we could single out one such undefined

combinator, say ⊥, and add the following extra closure conditions:

Undefined : X ≡E ⊥

where X ∈ X has no defining clause in E .

Saturation : ⊥(x) ≡E ⊥

Finally, we take the closure conditions for ≡E to be an equivalence relation (Reflexivity,

Symmetry, Transitivity), and a congruence with respect to application:



G. Huet 6

Congruence : M ≡E N =⇒ M(x) ≡E N(x)

where M and N are patterns and x a parameter.

This ends the mutual definition of relations ∼E and ≡E .

Lemma 1. M ≡E N only if M and N are two similar expressions.

Proof. Similarity is an equivalence relation. It is straightforward to check that it is pre-

served by rules Extensionality, Renaming, and Congruence. By definition, rules Defini-

tion, Undefined and Saturation introduce as equivalent only similar expressions. Finally,

since Consistency relates only similar expressions, and is the only introduction rule for

∼E , similarity is also enforced by rule Inclusion. Assume that M ≡E N ; by induction on

its proof, we get that M and N are similar. Inversely, M ∼E N =⇒ False for any two

dissimilar simple expressions.

Remarks. Note that∼E is not defined inductively. It is rather a co-inductive definition,

in the sense of Pitts (Pitts 1994). It has the flavor of defining truth as consistency, in the

spirit of inductionless induction (Huet and Hullot 1982). For instance, with

EY = {Y f := f(Y (f)); Z f := f(Z ′(f)); Z ′ f := f(Z(f))}

we may prove by co-induction that Y ∼EY Z.

On the other hand, ≡E is an inductively defined equivalence relation. ∼E and ≡E are

mutually defined in the same recursion. Such mixtures of inductively and co-inductively

defined objects are explained in (Giménez 1995); a corresponding proof package, allowing

such definitions and the mechanical checking of formal proofs about such objects, is

available in the Coq proof assistant (Giménez 1996).

From the semantics point of view, M ∼E N corresponds to equality in D∞ of the

Böhm trees defined by M and N in E (Wadsworth 1976).

Many equivalent variations are possible. For instance, we do not need the closure by

reflexivity, which may be proved to be an admissible rule. Similarly, Symmetry may be

dispensed with, if we add the symmetric rules of Definition and Undefined. On the other

hand, remark that we cannot dispense with transitivity, for instance to chain applications

of Extensionality. And thus we are obliged to have an interplay between an inductive and

a co-inductive relation (the co-inductive closure by transitivity being trivial).

If, on the other hand, we were interested in intensional equality (i.e. equality of the

underlying Böhm trees), we would need to restrict the Extensionality rule to unsaturated

patterns, in the spirit of Section 9-C of (Hindley and Seldin 1986).

4. Decidability of Regular Systems

The main result of this paper is to show that extensional equality is decidable for regular

systems.

Theorem. It is decidable whether M ≡E N for any regular total E and simple expres-

sions M and N .

We shall now prove this theorem, by exhibiting a completion algorithm which com-

pletes a finite set of equations into another one which either equates two dissimilar head



RBT 7

expressions, or else is closed by the closure conditions above. The theorem follows from

its termination proof. This algorithm is inspired from a similar one in recursive program

schemas (Courcelle et al. 1974).

4.1. The algorithm

Each recursion combinator Xi is either undefined or it has a unique recursion equation

Ei defining it in a given regular system:

Ei : Xi u1 u2...uni
:= uki

(M1, ..., Mpi
).

We decide sets of equations of the form E : M = N where M and N are simple

expressions.

The algorithm manages two sets CON and HY P of such formulas. Initially, the set of

conjectures is put in HY P , and CON is initialised as empty. The algorithm terminates

with YES when HY P is empty.

Here is one step of the algorithm, when HY P is non empty: let HY P = REST ∪{E},

with E of the form above. If E is already in CON modulo equivalence and renaming, we

just iterate with HY P := REST and CON unchanged. Otherwise, let us unfold M and

N to head normal form, in case we do not have them already in head variable form, by

using the defining equation for their governing combinator. This may need replacing M

by (M z1... zk) and N by (N z1... zk), where z1, ..., zk are new variables not occurring

already in M or N , in order to have the X ’s have enough arguments to match their arity.

This is the analogue of η expansion. We thus get two applicative forms x(M1, ..., Ml)

and y(N1, ..., Nm). Now if either x 6= y or l 6= m the algorithm stops with answer NO.

Otherwise, we iterate, with HY P := REST ∪ {E1, ..., El} where Eq : Mq = Nq and

CON := CON ∪ {E}.

When the governing combinator of M is undefined, then if governing combinator of N

is also undefined we iterate with HY P := REST and CON unchanged, and otherwise

we stop with answer NO.

4.2. Its proof

Remark that, without loss of generality, we may assume that HY P and CON contain

only equations between patterns; an initial query containing a head expression may be

reduced to pattern queries by one initial pass; thereafter head expressions occur only in

temporary conjectures in the processing step.

Lemma 2. The algorithm always terminates.

Proof. There is a finite number of candidates for CON , since all patterns X(v1, ..., vm)

stored in CON (except possibly the ones given in the initial query) have a number of

parameter arguments m bound by the maximum of such arguments in all X-patterns

used in right hand sides of the system E .

Lemma 3. When the algorithm stops with YES, M ≡E N for every initial conjecture

M = N .

Proof. Every initial conjecture ends up in CON ultimately. Let us consider the set of



G. Huet 8

pairs CON as a relation ρ between simple expressions, and let σ be the closure of ρ by

rules Extensionality, Definition, Renaming, Equivalence and Congruence (plus Undefined

and Saturation if we allow undefined combinators). By construction of the algorithm,

the rule Consistency holds when we replace ≡E by σ and ∼E by ρ. Thus, by bisimula-

tion/coinduction, we have that ρ ⊆∼E and σ ⊆≡E . Thus in particular M ≡E N for every

initial conjecture M = N .

Lemma 4. When the algorithm stops with NO, the set of initial conjectures is incon-

sistent.

Proof. The steps of the algorithm correspond to inversion schemas of the various closure

conditions. Thus all the formulas placed in CON are logical consequences of the initial

conjectures. When the algorithm stops with NO, one such formula equates two dissimilar

expressions, from which a contradiction may be derived by lemma 1.

Equivalently, the algorithm may be interpreted in this case as a successful search for

a separating path (in the sense of section 4.4 below) in the Böhm trees denoted by two

members of one initial equation.

Note. We provide in this paper only informal proofs. It is hoped that fully formal

proofs, mechanically verified by the Coq proof assistant, will be soon available.

4.3. Example: I=J

Here is a simple, but generic, example of the procedure.

Let E = {J x y := (x (J y)); I x := x}. We show that I ≡E J .

Initially CON0 = {}, HY P0 = {I = J}.

We select E0 : I = J . We introduce new variables x and y, η-expand to (I x y) =

(J x y), and substitute I and J by their definitions, obtaining (x y) = (x (J y)). Since

shapes fit, we generate the subgoal y = (J y) (Note that we get rid of the useless x, this

is important.) Thus we get: CON1 = {I = J}, HY P1 = {y = (J y)}.

We now select E1 : y = (J y). We η-expand to (y z) = (J y z), substitute J , and

get (y z) = (y (J z)). Since shapes fit, we generate the subgoal z = (J z), and get

CON2 = {I = J, y = (J y)}, HY P2 = {z = (J z)}.

We now select E2 : z = (J z). But this equation is equivalent by renaming to one in

CON2, and thus we stop with CON3 = {I = J, y = (J y)}, HY P3 = {}. Thus we have

shown that I ≡E J , i.e. that λx · x = (Y λj λx λy (x (j y))) in D∞.

As exercise for the reader, we suggest trying the algorithm on proving Y ∼EY Z in the

presentation EY above.

4.4. Distances, separability, apartness

We recognize as equal combinators defining Böhm trees which are indeed quite different

as trees, since I has a finite Böhm tree, whereas J ’s is infinite. And note that these Böhm

trees do not correspond to equivalent λ-terms in the sense of βη-conversion; intuitively

an infinite number of η expansions is necessary to transform I into J . However, these

trees are not separable in the sense of Böhm’s theorem.

The equality between Böhm trees which is here in question corresponds to trees being



RBT 9

hereditarily of the same shape, where the shape of λ u1 u2...un ·u(T1, ..., Tp) is (n−p, u),

and ‘hereditarily’ means recursing in the Ti’s, after possible η-expansion to the same

prefix. Equivalently, we may define equality as non-separability, with two trees being

separable if their distance is greater than 0, where now the distance between two Böhm

trees is 2−h where h is the length of a minimum separating path for the two trees, in

the sense of (Huet 1993). Intuitively, a separating path is a virtual path through η-

expansions of the two trees, where the corresponding subterms are of different shapes.

Böhm’s theorem, in the slightly different context of λ-calculus, shows that a separating

path permits to construct a uniform context which separates the two original λ-terms,

in the sense of β-reducing to respectively λ x y · x and λ x y · y.

The idea of defining equality as non-separability has a long history. This notion is

already implicit in Leibniz’ equality. More recently, the idea was systematically applied

to von Plato’s treatment of constructive geometry (von Plato 1995). This conforms to the

view of mathematical modelling of reality up to the precision of measuring instruments.

It is thus quite natural to define separability with some measure d:

X 6= Y =def dXY > 0.

Remark that if d is an ultrametric, i.e. if dXX = 0 and dXZ ≥ max{dXY, dY Z}, then

separability is an apartness relation, that is: ¬X 6= X and X 6= Z ⇒ ∀Y X 6= Y ∨Y 6= Z

and its opposite (i.e. equality) is by construction an equivalence relation. This gives a gen-

eral methodology for constructive mathematical modelling, from measure to separability

to equality.

5. Applications and further investigations

The formalism of guarded combinators is extremely simple, but powerful, since it com-

bines in one notion combinatory logic and recursion (as opposed to indirectly coding up

recursion by a fixpoint combinator). Furthermore it accomodates (mutually recursive)

definitions. It has the flavor of machine code, with combinators playing the role of pro-

gram addresses, and parameterization the role of register transfer. The notion of guard

gives to its execution a dataflow flavor: at each combinator invocation, when enough

arguments are provided for it to fire, one grain of information is computed.

This formalism is thus a good candidate for a sort of basic programmming language

for communicating processes: overall computation may be infinite, but no process may

loop without producing information, in sharp contrast to pure λ-calculus, or non-guarded

recursion. For instance, it would be interesting to investigate closely in what way it relates

to applicative programming languages proposed for describing reactive processes. Lustre

is a particularly good candidate. Recently, Caspi and Pouzet have shown that a functional

extension to Lustre could be implemented in a kernel of recursively defined primitives

for stream manipulations (Caspi and Pouzet 1995). This kernel can be represented in a

rather direct way as a set of regular combinators.

Many further investigations are needed to make practical such an application. For

instance, there are several alternative ways to represent data structures or more complex



G. Huet 10

control structures. An exemple is given in (Huet and Laulhère 1997) which considers the

encoding of finite-state transducers as regular Böhm trees.

The algorithmic aspects of the decision procedure remain to be investigated. If no

constraint is put on the way combinators mutually recurse, in the worst case the number

of parameters of such calls may be of the same order as the size of the system, in

which case the algorithm may have exponential behaviour. If mutual recursion is checked

with further devices, such as local sections with hierarchical scoping we may hope to

improve the bounds and obtain an algorithm which will scale up to realistic sizes. Sharing

techniques from BDD technology may also prove useful in this context.

Finally, application of this formalism to typed systems, in particular to proof assis-

tants where Böhm trees may represent sequent calculus partial proofs, in the manner of

(Herbelin 1995), remains to be investigated. In particular, the Extensionality rule needs

to be constrained (for instance with a notion of η-long normal form).

Acknowlegment. We thank Martin Abadi and Gilles Dowek for their judicious re-

marks.

References

H. Barendregt. The Lambda-Calculus: Its Syntax and Semantics. North-Holland (1980).

C. Böhm. Alcune proprietà delle forme β − η−normali nel λ − K−calcolo. Pubblicazioni

dell’Istituto per le Applicazioni del Calcolo N. 696, Roma, 1968.

C. Böhm, M. Dezani-Ciancaglini, P. Peretti and S. Ronchi della Rocca. A discrimination algo-

rithm inside λ− β-Calculus. Theoretical Computer Science 8 (1979), 271–291.

C. Böhm, A. Piperno and E. Tronci. Solving equations in Lambda-Calculus. In Logic Collo-

quium’88, Eds Ferro, Bonotto, Valentini and Zanardo, North-Holland (1989).

P. Caspi and M. Pouzet. A functional extension to Lustre. International Symposium on Lan-

guages for Intentional Programming, Sydney, May 1995.

M. Coppo, M. Dezani-Ciancaglini and S. Ronchi della Rocca. (Semi-)separability of finite sets

of terms in Scott’s D∞ models of the λ-calculus. In Proc. 5th ICALP, Eds G. Ausiello and

C. Böhm, LNCS 62 (1978), 142–164.

C. Coquand and T. Coquand. On the definition of reduction for infinite terms. C. R. Acad. Sci.

Paris, t. 323, Série I, p. 553–558 (1996).

B. Courcelle, G. Kahn et J. Vuillemin. Algorithmes d’équivalence et de réduction à des ex-

pressions minimales dans une classe d’équations récursives simples. Proceedings ICALP 74,

Springer-Verlag.

R. David and K. Nour. Une preuve syntaxique de l’équivalence opérationnelle de deux λ-termes.

Private communication.

E. Giménez. Codifying guarded definitions with recursive schemes. Proceedings of the 1994

Workshop on Types for Proofs and Programs, LNCS 996 (1995) 39–59. Extended version of

the paper available by ftp at lip.ens-lyon.fr:/pub/Rapports/RR/RR95/RR95-07.ps.Z.

E. Giménez. Co-inductive types in Coq. Documentation included in the release of Coq V6.1.

Available by ftp at ftp.inria.fr:INRIA/Projects/coq/coq/V6.1.beta.

H. Herbelin. Séquents qu’on calcule : de l’interprétation du calcul des séquents comme calcul de

λ-termes et comme calcul de stratégies gagnantes. Thèse, U. Paris 7, 1995.

J. R. Hindley and J. P. Seldin. Introduction to Combinators and λ-Calculus. Cambridge Uni-

versity Press.



RBT 11

G. Huet. An analysis of Böhm’s Theorem. In To C. Böhm: Essays on Lambda-Calculus and

Functional Programming. S. Ronchi della Rocha, M. Dezani-Ciancaglini and M. V. Zilli (eds.).

Also Theoretical Computer Science, 121 (1993) pp. 145–167.

G. Huet and J. M. Hullot. Proofs by Induction in Equational Theories With Constructors. JCSS

25,2 (1982) 239–266.

G. Huet and H. Laulhère. Finite-state Transducers as Regular Böhm Trees. Proceedings of

TACS’97, Sendai, Japan (Sept. 1997).

J. J. Lévy. Böhm trees and Extensionality. Private communication (1993).

A. Pitts. A Co-induction Principle for Recursively Defined Domains. Theoretical Computer

Science 124 (1994), 195–219.

von Plato. The axioms of constructive geometry. Annals of Pure and Applied Logic 76 (1995)

169–200.

C. Wadsworth. The relation between computational and denotational properties for Scott’s

D∞-models of the lambda calculus. SIAM J. Comput. 5 (1976), 488-521.


