
The Pāṇini Machine

Gérard Huet

Emeritus, Inria Paris Center

Distinguished Lecture, University of Hyderabad

November 7th 2019

Paninian myths and fake news

• Pāṇini’s grammar is perfect
• It is written in Sanskrit
• Natural language understanding is a big AI challenge
• Thus Sanskrit is the ultimate programming language for AI

applications
• NASA is working secretely on this paradigm (conspiration

theory)
• This was explained in Forbes Magazine in 1987 (fake news)

Origin of the myth

• Rick Briggs’ article, AI Magazine 1985
• Suggests the use of Nyāya for knowledge representation
• Interesting reading, śāstrically correct, innovative, relevant
• But not substantiated by concrete development so far
• Rick Briggs vanished
• Thus it is hard to stop the rumors

Pāṇini deserves better credit
• Sanskrit is not really a natural language
• Neither vernacular nor mother-tongue
• It is a high-register learned language for rational

argumentation, refined from Prakrits current in North
India at the time

• Classical Sanskrit is co-extensive with Pāṇini’s grammar
• Descriptive versus prescriptive
• Sanskrit evolved only within the de facto prescriptive

grammar
• and thus the grammar precision paradoxically improved

over time!
• Pāṇini’s grammar is not written in Sanskrit
• It is not a computer program per se
• It is a formal document prescribing mechanical operations
• Similar to the operations manual of an abstract machine

What kind of computer are you talking about ?

Computers are number-crunching machines. Grammars concern
speech production, syntax, meaning, etc. How could Aṣṭādhyāyī
be compared to a computer ?
Computers are universal computing machines, they can operate
on any symbolic material, that may represent any natural
phenomenon. Machines are more specialized automata.
Jacquard machines automate textile design production.
Automatic pianos automate music production. Here Pāṇini
machines automate Sanskrit speech production.

Actual concrete Pāṇini machines
People may object to my terminology, and ask: “What machine
are you talking about? Show me a concrete Pāṇini machine.”
My answer to this objection is easy. Any competent paṇḍit is a
biological Pāṇini machine. By learning by rote the grammar,
paṇḍits are able to physically realize the Paninian operations,
at least in the following sense: they teach their students how to
operate the grammar, and demand of their students to be able
to give the precise sequence of sūtras justifying their linguistic
productions. Furthermore, if the student produces a prakriyā
sequence that either invokes illegally a sūtra or results in a
non-intended meaning of the enunciation, they are able to point
out the precise point where the student has erred. In this sense,
they are living Pāṇini machines!
Note that this does NOT suggest that paṇḍits have developed a
neuronal structure in their brain that emulates a Pāṇini
machine, but just that they have internalized the grammar
enough to explain proper linguistic production accordingly.

More objections
A more subtle objection is that pandits may be using all kinds
of additional knowledge about the language, and somehow use
hidden meta rules (paribhāṣā) not explicitly stated in
Aṣṭādhyāyī. This suggests that a software implementation
executing actual electronic hardware which emulates the
machine should definitely settle the matter.
We shall come back to electronic Panini machines later. For the
moment we shall use the automatic piano analogy, and imagine
the pandit as an organ player. The organ has many complex
keyboards, one for the sūtras, one for the dhātupāṭha, one for
the uṇādisūtras, etc. The organ is not speaking Sanskrit in real
time, though, only at the end of a sentence do we have speech
production. Then we’ll replace the pandit with a tape input.
We have to keep in mind the 18th century mechanical Turk
automaton that claimed to play chess automatically: we have to
make sure that no pandit is hidden inside the machine.

Debunking the Turk Automaton fraud

Figure: Sanskrit varṇamālā

Overview of Pāṇini’s grammar

• Is it a generative grammar ?
• Is it a dependency grammar ?
• In a nutshell, it is both: generative morphology,

dependency sentence structure
• Morphology generation uses string rewriting in the manner

of Post systems
• Sentential consistency deals with dependency constraint

analysis: kāraka = semantic role, ākāṅkṣā = dependency
• Semantics is Situation theory
• Language is symbolic: it is more theater than describing

reality
• Loop pada formation, then kāraka assignment, the final

phonetic smoothing in tripādī section

Generative in what sense ?

• Grammarians do not agree on what is generated from what
• arthapakṣī: generate the form from its meaning
• śabdapakṣī: generate its meaning from the form
• Both points of view are wrong, but each is half-true, there

is mutual recursion between form and meaning in the
grammar

• What is generated is a pair ⟨śabda,artha⟩
• Thus the relevant notion is a Sanskrit sign in the sense of

de Saussure

But then, what is the input ?

• Language is a coin with two sides: speaking and
understanding

• Pāṇini’s grammar gives rules on how to speak meaningfully
• It defines śabdasṛṣṭiḥ rather than explaining śabdabodhaḥ
• Thus the input is the locutor’s communicative intention:

vivakṣā
• The locutor intends to communicate meaning, but its form

also matters
• denotation (abhidhā) versus connotation (vyañjanā)
• choice of a synonym (e.g. to fit meter) also benefits from

connotations of its homonyms for dhvani

Constructive sign elaboration

Using the grammar has the general form of elaborating a sign
recursively from the signs of its components. The primitive
signs are the verbal roots given with their (atomic) meaning,
both components being extracted from root tables
(dhātupāṭhaḥ). Morphology elaborates words from their
component bases (prakṛtiḥ) and suffixes (pratyayaḥ). Thus, on
the nominal side, we get kṛdanta stems (prātipadika) from
dhātu roots and kṛt suffixes, taddhitānta stems from previous
stems and taddhita suffixes, inflected nominal forms (subantas)
from stems and sup suffixes. Similarly, we get conjugated verbal
forms (tiṅantas) from roots, lakāras and tiṅ suffixes. In all
cases, these pratyaya suffixes bear all the information to
compute mechanically both the resulting compound form
(śabda) and its meaning (artha) expressed as a canonical prose
paraphrase (vigraha).

Mechanical computation

All these elaboration procedures are really exact computing
processes. This justify considering Aṣṭādhyāyī not just as a
grammar, but actually as the operating manual of an abstract
computer, which we name the Pāṇini Machine. We are going to
look at one example of computation of this machine, and on the
way understand the basic data and control structures designed
by Pāṇini.
As an initial step we must better understand both the data
component and the meta-descriptive formalism of the machine.

Basics of Paninian calculus

The object language of the machine is Sanskrit represented at
the phonemic level, which is the discretization of articulated
speech. This level is of a finer granularity than the syllabic level,
explicit e.g. in writing in syllabic alphabets such as devanāgarī.
Thus the relevant notion is varṇa (roughly corresponding to the
modern notion of phoneme). The varṇamālā is the Sanskrit
alphabet, as a list of 50 varṇas, carefully arranged in an
algebraic manner, first with vowels, then with consonants, each
represented as 5 layers corresponding to articulation points,
each layer giving the cross product of two phonetic boolean
features (surd/voiced, unaspirated/aspirated), plus one nasal.

Putting to shame the English alphabet

Figure: Sanskrit varṇamālā

Metalanguage

This well-thought-out algebraic structure of the discretized
speech domain probably predates Pāṇini, since prior
grammarians had studied phonetics (zikṣā) in the framework of
the prātiśākhya treatises. But a brilliant innovation of the
grammar is to duplicate the standard alphabet to serve as a set
of meta-linguistic markers, usable to denote the micro-code
operations of the machine and various meta-linguistic
parameters such as the it markers in root description. These are
called anubandhas.

Example: Śivasūtras
The grammar starts by giving another view of the varṇamala:

a i u ṇ |
ṛ ḷ k |
e o ṅ |

ai au c |
ha ya va ra ṭ |

la ṇ |
ña ma ṅa ṇa na m |

jha bha ñ |
gha ḍha dha ṣ |

ja ba ga ḍa da ś |
kha pha cha ṭha tha ca ṭa ta v |

ka pa y |
śa ṣa sa r |

ha l ||

anubandhas are marked in red.

Condensed definitions

The Śivasūtras are used to define abbreviations for the families
of phonemes sharing common treatment in the grammar, called
pratyāhāras. Each pratyāhāra is of the form ‘XaY’, where X is
a varṇa and Y is an anubandha, and it denotes the set of
phonemes between X and Y (markers excluded). For instance,
nasals are denoted by ñam, vowels are denoted by ac,
consonants are denoted by hal.
This is a very compact representation of all subsets of varṇas
that are needed as characteristic properties for the machine
operations.
Please note that there is only one redundancy in the above
sūtras: phoneme h appears twice. Actually, Wiebke Petersen
proved that this redundancy is unavoidable, and that this
listing is thus optimally compact.

A worked-out example

Let us show quickly how to derive the stem kāraka in the sense
of actor, i.e. ‘agent of acting’. This stem is a primary derivative
(kṛdanta) obtained by root kṛ (to act), with morpheme aka
affixed to morpheme kār, obtained by raising root kṛ to its
second grade by the vṛddhi operation. Here is the (simplified)
Paninian derivation.
First, we retrieve the sign for root kṛ, by looking up the roots
table (dhātupāṭhaḥ). At entry kṛ, we get: ḍukṛñkaraṇe. We
first peel off the morphological parameters ḍu and ñ of the root,
record them, and extract the sign components: kṛ (the śabda
phonetic component) and acting its artha meaning component
(since the locative karaṇe means “in the sense of acting”). Thus
we start with sign ⟨kṛ,acting⟩.

A worked-out example (continued)
Next, since we intend to express the notion of agent, we go to
the section of the grammar concerning agent nouns, starting
with sūtra (3.1.133): ṇvultṛcau, i.e. “both (kṛtpratyayas) ṇvul
and tṛc (are applicable to any root)”. By selecting the first
component ṇvul we are now licensed to affix pratyaya ṇvul to
the current prakṛti ‘kṛ’, yielding string kṛṇvul. Now the string
rewriting proceeds. The first operation is denoted by
anubandha ṇ, which is microcode for the vṛddhi operation,
rewriting ‘kṛ’ into ‘kār’. Next the anubandha string vu invokes
an abbreviation mechanism, which expands into śabda ‘aka’,
which is thus appended to ‘kār’ to yield string ‘kāraka’. The
last anubandha l indicates that the accent precedes the suffix,
yielding accented śabda ‘kā́raka’. And since the sūtra is in the
section of agent nouns, the new computed sign is

⟨kā́raka,agent of acting⟩.

We may then use sup-pratyayas etc to get an inflected pada

A worked-out example (end)

If you think this trivial example is complex, please consider
that it has been considerably simplified, since a lot of
book-keeping administration has been omitted, such as checking
that the invocation of the sūtra is not barred by possible
application of rules having higher priority.
In fact, it is not complex, it is just very-low level programming
of the machine at its micro-code level. This is similar to
programming in machine-language in the early days of
computer science. In contrast, the conflict-resolution rules that
manage the relative priority and mutual blocking/feeding of the
rules (anuvṛtti) are rather hairy, to say the least. We shall not
discuss these rules, nor the meta-rules that direct the general
control flow of the machine, and restrict our attention to the
actual data-processing prescriptive rules (vidhi sūtras).

Some terminology

Let us call script the sequence of vidhi rules necessary to
derive a Sanskrit sign. We say the script is Paninian if it is
correct with respect to the conflict resolution rules. The
analogy with computer programming is that the scripts are the
programs of the machine, and that checking that they are
Paninian is analogous to compile-time type-checking and other
sanity checks of the compiler.

In search of a Paninian programming language

Our scripts are actually close to the prakriyā explanations of
the grammatical tradition - condensed invocations of the sūtras
such as ḍukṛñ-ṇvul-su. Organizing them systematically in
hierarchical manner would lead to some kind of abstract syntax
of a somewhat esoteric programming language. It would be an
interesting research program to exactly define this formal
language, and use it as the conceptual basis for a software
implementation of Pāṇini’s machine, with the following
ingredients.

Paninian programming framework

• Design of core microcode interpreter ‘Pāṇinīyam’
• Design of a formal ‘Prakriyā’ machine language
• Compilation of Prakriyā scripts into Pāṇinīyam
• Decision procedure for recognizing a script as Paninian
• Design of a high-level language ‘Vivakṣā’ for expressing

clear statements of the locutor’s communication intention
• Writing of a compiler for Vivakṣā, generating Prakriyā

scripts that are Paninian by construction
This tentative modular research program sketches a complete
chain of production, from Vivakṣā statements to executable
Paninian Prakriyā scripts

Paninian variations

The sketch above concerns pada construction. The
sentence-level realization could be realized in more of a
constraint programming methodology.
Also, this bottom-up production of the script could be reversed,
partially or totally, by top-down synthesis. Seen from a proof
theory angle, this would be analogous to synthesis of proofs by
backward reasoning in sequent calculus rather than forward
reasoning from axioms in natural deduction. This would be
more natural from the angle of expressing meaning. Operating
the machinery would be analogous to logic programming à la
Prolog rather than functional programming.
The design could also be modularized by using dictionaries,
where stems could be stored with their pre-computed signs.
Let us now turn at previous attempts at making Pāṇini
machines, starting with hardware.

Wrong Pāṇini machines

Harkare’s hardware Pāṇini machine

Harkare’s Pāṇini machine demonstrated
The machine was presented at the International Sanskrit
Computational Linguistics Symposium in Hyderabad (2009):

Sri Gunde Rao Harkare
Quoting from “Languages and Literary Cultures in
Hyderabad”, ed. Kousar.J. Azam, Routlege 2018 (chapter 10):
Sri Gunde Rao Harkare (1887-1979) was an eminent scholar, a
multilinguist, eminent critic and a multifaceted genius. He was
fluent in Persian, Arabic, Telugu, Marathi and English. He
acted as a translator in the Special Criminal Court of
Hyderabad and toured extensively in the dominion of the
Nizam, then became p.a. to the Chief Judge at the High Court,
then District Judge, Deputy Collector, and Sessions Judge at
Gadwal. He developed a passion for learning Sanskrit, obtained
the title of Vacaspati at the Academy of Navadvip, and Vidya
Bhushan at Ayodhya and Belgaum, Vidya Bhaskara, Pandit by
Tirupati Devasthanam, Certificate of Honour by Rashtrapati.
In his later life he worked on a teaching aid scheme called
“Sanskrit Grammar Made easy” ‘in a technological form’ and
composed a guide ‘How to Handle the Machine’.

Software attempts at implementing Aṣṭādhyāyī
• Shivamurthy Swamiji Gaṇakāṣṭādhyāyī
• Peter Scharf & Malcolm Hyman LIES
• Pawan Goyal, Lakshmidhar Behera & Amba Kulkarni

Computer Simulation of Aṣṭādhyāyī 2008
• Anand Mishra PhD thesis Heidelberg 2009
• Wiebke Petersen & Oliver Hellwig 2009
• Sridar Subbanna & Srinivasa Varkhedi Conflict resolution

techniques 2009
• Amba Kulkarni, Pawankumar & Rāmakṛṣṇamācāryulu

WSC 2015
• G. Huet. Sanskrit signs and Pāṇinian scripts WSC 2015
• Dhaval Patel & Shivakumari Katuri Prakriyāpradarśinī

Subanta generator WSC 2015
• Sarada Susarla, T. M. Rao & Sai Susarla PAIAS WSC 2018
• Samir Sohoni & Malhar Kulkarni Computational

Aṣṭādhyāyī WSC 2018

Software attempts (following)

The above contributions have discussed various problems in
software representation of Paninian concepts, such as conflict
resolution techniques. Some have succeeded in emulating vidhi
portions of the grammar. But a comprehensive solution still
seems far away.
Actually, some scholars have expressed doubts about the whole
endeavour. Peter Scharf explains difficult points in conflict
resolution, which will need specific additional research. In his
recent monograph “Modeling the Pāṇinian system of Sanskrit
Grammar” (Heidelberg University Press, 2019), Anand Mishra
expresses doubts at direct simulation of Aṣṭādhyāyī devices.
Thus a full emulator of Pāṇini’s machine is still an open
problem, but we see no theoretical impossibility at
implementing a software implementation reasonably consistent
with Aṣṭādhyāyī.

Fundamental contributions of Pāṇini to informatics

No matter how long it will take to write a software simulation
of Aṣṭādhyāyī, it remains that Pāṇini made important
contributions to informatics and information theory, 25
centuries before the first investigations of recursive function
theory in mathematical logic, and the advent of electronic
computers, as already remarked by Saroja Bhate & Subash Kak
in “Pāṇini grammar and Computer Science”, Annals of the
Bhandarkar Oriental Research Institute, vol. 72 (1993).
Thus it is not an overstatement that Pāṇini should be
considered as an Informatics pioneer.

Pāṇini as Ādigaṇakaḥ

• meta-linguistic markers
• record notation encoding
• formal string rewriting
• hierarchical scope
• selection by pattern-matching
• conflict resolution for non-determinism
• object-oriented descriptions (taddhita suffixes)
• keen information theory awareness, compaction by sharing

Thank you for your attention

