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ABSTRACT Consider for instance the two terms
'b1 = f(X)
and t, = A
A refutational system of logic for a language 2~
of order w 1is presented. This lsngage is 3 where f 1is a (second-order) variable, x a
slight modificstion of Church's A-calculus with variable and A a constant. The following sub-
types. The system is complete, in the sense stitutions axe two independent unifiers of t1
that a refutation of a set of sentences exists and t2 g
if and only if this set does not possess a gene- o, ={f « Au-4}
ral Henkin model. The main rule of inference is
a generalization of Robinson's resolution to Oy ={f « ANuru, X & 4}
type theory, which zllows us to get rid of the
substitution rule. We may even need to consider an infinity of

unifiers. Iet us say that substitution o is
less general than substitution p with respect
to a finite set of variables V, if there exists

INTRODUCTION n such that :
CoX = MoPox for every x in V.
During the last decade, a lot of effort in We shall denote this relation (which is re-
automatic thecrem proving has been devoted to flexive and transitive) by : p < p-

izi first— ic. T in achie- ¥ :

ﬁgggiﬁlia?gbeeilfiz gzgiiiifiicév*geA?;égiigggi Now we call a comp%ete generatog of wrifiers for
= v S s S entle terms 1+, and + CGU in short) any set of

of a now well-known refutational first-order o { 2 2

: : X substitutions such that :
system. Its unigue rule of inference, called

resolution, is an elegant way of combining the yo s o

X : o o} ¢ o unifies t, rand *t,.
substitution and cut rules. The other familiar L €z ! 2

i s implicitly t AP

rules of inference are implicitly taken care of 2° v o unifier of t, and %, : mpel such
by Skolemization and the set representation that o < p whe}e V céntains s1l
(clauses) of the corjunctive normsl form of the p oy
set of sentences one wants to refute. More pre- variables free in t1 and t2.

cisely, resolution permits us to select just the .
substitutions which are necessary for the cut of Gould has remarked that certain pairs of

two or more literals. Moreover, if this cut is terms t, ., t2 do not possess a finite CGU.
possible at all, only one such substitution is Consider fou- instance : g
sufficient, celled the most general unifier of t, = £(x,A)
the two litersls., This existence of a most gene- 17 :
ral unifier tetween two terms in first-order lo- , t. = £(x,B)
gic is fundamental %o the resolution method. 2~ ?

. L where X is a (variable) function and f is a
Meny a theorem_prov1ng program'was wr}uﬁen bas?d (variable) functional. Now let 3 = {c.li =01,
on the resolution rule, embodying various heuris- with : 1
tics to speed up the search for a refutation. P Auve h(u)}
However, results obtained sc far are still very 0 =& 4

limited without human help. To remedy this situa-
tion, some workers in the field, notably n
Robinson’® have argued for the exploration of o-’u(hn(usv)))s

m : y ' Ly
more poYerful systems of logic such as Church's X « Moz} (n > 0)
A—calculus.

o, ={f « XuV°gn(u,u(h?(u,V))v~

and let V= {x,f} .

The proof can be sketched as follows :
e ¥ .is a CGU for +t, and t

HIGHER ORDER UNIFICATION

1 2
209 o5 < Gi+1 vi>0
The situation in higher-order logic is quite v
different from first-order. Most gerersl uni- 3° not o, ,< 0o. vi>0
s st - =K i+ 4
fiers do not exist =any more (Gould?®). v
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o T 1
‘4 not (00 $ oy or o, $ LO) v i> 0,
150 suppose X' is a finite CGU for t1 and tz
By 1°, this implies that there exists " < I

finite CGU for +t, and t,. This obviously con-
tradicts 3° and 44. (Con§ider Oppq with

k = max{ilo, € z"}). *

Thus, although any finite subset of ¥ can be
gencrzted by only two elements (using 2°), we
cannct find a finite set of generators for the
unifiers of t1 and t2.

It seems therefore that an extension of re-
solution to type theory would require genera.
ting a possibly infinite number of resolvents
at every application of the resolution rule.
One solution to this problem would be to order
these resolvents (for instance according to
some complexity of the unifier selected) and
to "dovetail" the generation of resolvents with
the refutation search algorithm. This method
has Teen proposed and proved complete by Pietr-

zykowski and Jensen® .

However the inefficiency of such dovetailing
processes is well known and their practical im-
plementztion seems difficult. We shall present
here a method which, although it ultimately
leads to a double enumeration too, delays the
generation of unifiers as much as possible and
thus minimizes the number of irrelevant choices.

CONSTRAINTS

The idea is to represent the set of unifiers
cf two literals L, and I, as a condition tag-
ging the resolven% obtained by cutting 1 and
L, in their respective clauses. Such a céndi—
tgon is expressed as a set of "constraints" of
the form {+%,,t,} where t, and t, are subterms
of L1 and L,. NMore generslly, a“constraint will
be a set of“terms which we want to unify. A
clause tagged by a set of constraints will be
represented as

c

L L2, eeay 15/01,02, cee s G

11
where the Iﬁfs are the literals of the clause
and the C.'s are constraints. Such a 'constrai-
ned clzusé" (CC in short) represents the set
of all clauses ooL,, 0oL, , .. , GoL such
¢ unifies sim&ltanedusly every constraint

that
C; 3 d.e., if Ci={e1, €ps eees QH} ?he?
Ocey = Ooe, = ... = Ooeg; (1 <1 <7).

In many cases we will be able to decide if a
constraint is not unifiable at all, in which
case the corresponding CC is not generated.
We mzy also know a most general unifier o for
the constraint, in which case o is applied to
the corresponding resolvent, tagged with the
union of the constraints in the CCs resolved
upon. Ctherwise we generate the CC obtained by
tagging the resolvent with the union of the
parent's constraints plus the new one. In the
last two cases we check that the set of cons-
traints is not obviously inconsistent. Iet us
now give an example.

We
o for truth values and
shall use the following atoms,
their type :

suppose that we have two basic types
for individuals. We
indicated with

Wy, A L

V,¥,B,C (v—= )

X5 %50 ((t=1) =)

£ (G v) =) =)
P, R (v=0)

Q (by(Cu=>1)> 0)

By convention, all lower case letters deno-
te variables, all capitals denote constants.
(a1,a2,...,a - B) denotes the type of functions
of " n” argu ments of types «,s...,a_ and with
values of type 8. We consider the se S
clauses :

of

1 P(£(x)),Q(z(C),C),R(£(z))

2° TP(4)
3° 7Q(y(4A),v)
4° R(B(w))

We shall prove by constrained resolution
that this set is unsatisfiable (the precise
statement of the rule of constrained resolution
iwill be given below).

First we resolve the P's in 1° and 2°. We
‘are trying to unify P(f(x)) and P(A), and this
implies the unification of f(x) and A. These
terms do not possess a most generzl unifier, so
we generate a constraint {f(x),A} which is tag-
ged to the resolvent :

5° Qzlc), 0}, B(elz)}/(2(x),4}.

Now we resolve the Q's in 5° and 3°, which

implies the simultaneous unification of

y(4A) and z(C)
v and C .

firstly
and secondly

Fortunately in the second pair {y « C} is a most
general unifier. This unifier transforms the
first condition into the unification of C(A4)
and z(C). Here too there is no MGU, so we gene-—
rate the resolvent :

6° R(f(z))/{f(x),4}, {C(A),2z(C)}.

Finally we get the empty clause, resolving 6°

and 4°, and generating one more constraint

{B(w),f(z)} :

70 @/i£(x), A}, {C(A),z(C)}, {B(wW),T(z)}.
Now, in order to wvalidate our refutation,

we must find a unifier satisfying simultaneous-
ly every constraint in 7°. However any unifier

will do here, we do not need to generate a
complete set of them. Actually, we just need to
check for the existence of a unifier. Unfortu-
nately there is no decision procedure for this
task if we allow quantification over third-or-

der functionals, as shown in Huet'.
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A1l we can do here is to use a semi-decision
algorithm of rezsonable efficiency developed
for this problem in Huet' . We shall not pre-
sent this algorithm here, but merely indicate
that for our exemple it would return sn affir-
mative answer, with the unifier :

f « Au-u(B)
Z « Avev(A)
W{-A

X ¢ AVeA

The reader will check that this substitution
(together with y « C) applied to S gives a
contradictory set of ground clauses.

The general case is a little more complica-
ted because, when resolving two CCs, each of
which has a non-empty set of constraints, we
have to merge these two sets.

Note also that when we apply a substitution
to a CC we must apply it to. its constraints
as well, which may induce some possible simpli-
fications, merging of constraints and rejec-
tions.

A more serious complication arises with the
use of predicate variables. A literal whose
predicate is a variable may be transformed in-
to several literals by substitution of a dis-
Jjunction for the variable. For instance the
clause p(4A), S(B) becomes

a(a), r(a), s(B)

after the substitution

P« Au-(q(u)vr(u))
and passage to normal form. Similarly, the
substitution of & corresponding conjunction
would produce two clauses :

a(a), s(B)
r(4), s(B) .

and

Also, substituting a quantified formula for
p would oblige us to Skolemize during the
proof.

For these reasons, we are obliged to intro-
duce a second rule of inference, called split-
ting, which in effect simulates all possible
ways of effecting these substitutions for pre-
dicate variables, using the mechanism of the
constraints.

We shall now give a more precise formula-
tion of our rules of inference.

REFUTATIONS

We shall not state formally the definitions
of terms, literals, etc... The precise defini-
tions are stated in Huet'™" . Iet us just
recall that our langusge is basically Church's
A—calculus with types (Church?). Bvery term
possesses a normal form :

Xu1...un‘d(e1,...,ep)

where the ui's are distinct variables, Z is an
atom(called” the head of the term) and the e.'s

are terms (see Andrews' ). Functional extensio-
nality is an option in the system. We chall

distinguish three special constants 7V and =
of the appropriate types.They will denote res-—
pectively negation, disjunction and universal
quantification. For the last one, we represent
v x-d by mw(Ax-Z). Actually for each itype «
there is a ®©_ of type ((a = o)— o), denoting
quentification over variables of type « .

We suppose moreover that the set of senten-
ces one wants to refute has been reduced to
clause form. This means in particular that we
have Skolemized as much as we could. O0f course,
it is forbidden toc reduce propositions which
are hidden inside the arguments of some literal,
Our Skolemization consists in.replacing (at the
top level) :

-7 (d) by ¢(x) where X is a new varia-
ble of type «

-qnaoﬂ) by”Td(Ea(d)) where Ea is a special

constant (called a paremeter) of type ((o —o)—a).

every clause will be repre-
ented as a finite set of literals, each literal
being of the form- A or 1A, where A 1is a term
P(e1,ez,...,e ) and P is an atom different
from 73~ V ana Te

After reduction,

Iet us now give more precisely the definition
of CC.

A constraint is any finite set {e,s€,5..5¢
of terms of the same type. A substitutidon o
is said to unify this constraint if and only if
¢ 1is a unifier for ,e s aems BLw L6 A8 Said
to unify a set of cons%rqlnts {Cys Cos .e. ,C
if and only if it unifies every C; (1 g i
A constrained clause B/C consists of a cla
E and of a finite set of constraints C
If C=¢ we have an initial CC, if B = ¢ 5
we have a terminal CC, O = @/¢ is the empty CC.

In order to refute a set of sentences S5 , we
first reduce it to clause form as explained
above, then we tag to every clause the empty
set of constraints ¢@.

A refutation is any derivation from this set
of initial CCs, using the three rules of infe-

o}

rence defined below and ending with the empty CC.

If such a refutation exists, we say that S 1is
refutable.

The first two rules of inference, constrai-
ned resolution and splitting, apply to non-ter-
minal CCs whereas the third one, unification,
applies to terminal CCs. Constrained resolu-
tion is binary, splitting and unification are
unary rules.

1. Constrained resolution.

Iet B, = A1/B1 be two

non-terminal CCs.

Tet {X,,Xp5...,% } be all the variables that
appear frée fn both™ B and B, , and

s Wosaney W } be new variables of the same
tyﬂes which do not appear in either E1 or E2.
We define the substitution :

«w |1 <1i<n]
Now we distinguish p positive literals in A1
and q negative literals in A2. That is, using

|J to denote disjoint union :

[ —



Ap = {Mys Mgy eewy M3 W £y P
Ay = f1N1I1N2,.-{TNq} Ay a=1
Now let

By ={{My, Mpyeuey M 00N, 0Ny, .uu, 00N }]

1!
We say that the CC :

By = Az U 60A4/B1 U 6B, U By
follows by constrained resolution from CCs E1
and E2.

2. Bplitting.

Iet B, = A/C be any non-terminal CC, such
that A contains a literal 1 whose predicate
is a variable ; i.e. A= B|(J {1}. We have the
-following cases :

1 if T is a positive literal :

1-1 Deduce B, = By {a,r}/C U{{L, aVr}}

where gq and r are new variables of
type o.
1-2 Deduce E, = B {Ta}/C U {{I, Ta}}
where q dis a new variable of type o.
1-3 Deduce B, = By {a(z)}/Cy {{T,m, a}}
where 2z 1is a new variable of type « ,

g a new variable of type (o — o).

2° if 1 dis a negative literal ; i.e. L =7IM :

2-1 Deduce E, = B {'1(1}/(71
end b, = B U{"(r}/C1
where C, = C U{{M, aVr}}, ¢ and r are
new variables of type o.
2-2 Deduce B, = B U{a}/C U{ {M,7a}}
where q dis a new variable of type o.
2-3 Deduce B, = B U {Ta(B (a))}LUi{M, =a}}
where q is a new variable of type (a = o).

Any of the above CCs is said to be deducible

from B by splitting.
Rulés 1-3 and 2-3 depend on some arbitrary
type a . In practice we shall implement ithem

by restricting «
of types.

to some small initial segment

3. Unification.

Iet E = ¢/C be a terminal CC. If C is
unifiable, we can deduce O from E.

This rule too is not directly mechanizable,
since in the general case unification is nct
decidable. We can make it so by putting a bound
on the number of steps of our unification algo-
rithm. For this reason our method may ultimate-
ly lead to a double enumeration.

SOUNDNESS AND COMPIETENESS

It is well known that higher-order logic is
not complete, under the usual semantic characte—
rization (G8del models). However, Henkin?® has

shown that a different characterization yields

completeness in w-order logic. The trick is to
interpret predicate variables of type (o - o)
(for instance) over domains which may be proper
subsets of 2 Py s where B, is the domain of
interpretation of objects of type a . We only
impose that these domains be closed under opera-
tions corresponding to the different constructs
of the languagze (for instance complementation,
projection, etc...). In the same way ﬁ( ~8)
may be a proper subset of ﬁa - 36. Ll

This enlarged semantic characterization
(general Henkin models) permits us to restrict
validity to just those formulas which are deri-
vable in the logic.

In the following, we shall therefore use
satisfiable as an abbreviation for "has a gene-
ral Henkin model".

Definition : A property T of finite sets of
propositions is called an analytic consistency
property if and only if, for any finite set &
of propositions, we have (y1) to (y7) below.

(Y1) if T'(8), then there is no literal #
such that @-€ § and7 1@ € §.

if T(8 U{@}), then I'(8 U {2'}), where
@' is the A normal form of ¢.

if T(s U {T1g}), then I'(S Uia}).

if T'(s y {@VB}), then I'(S U{7}) or

(s yisl).

if T(s y {7(@VB)}), then T'(s U{z,18}).
if T(s | {® #}), then for every term B
of type a, r(s y {m A, a(B3)}).

if T(8 U {= @}), then T'(s U{12(X)}) for
any constant%r varisvle X of typre a
which does not occur free in ¢ or S.

(o)

(YB)
(Y4)

(Y5)
(vg)

(Y7)

We are interested in analytic consistency proper—
ties because they provide a sufficient condition
for satisfisbility, as gxpressed by the follo-
wing lemma from Andrews™ , which extends results
by Smullyan .

Iemma I. If T dis any analytic consistency
property and 8§ is a finite set of propositions
such that I'(8), then 8§ is satisfiable.

For any set € of propositions, let ' be the
set of sentences (closed propositions) obtained
from C by replacing free variasbles by new cons-
tants in a one to one fashion. Obviously if &
is unsatisfigble then €' is unsatisfiable too.
Now we define the following property I' of sets
of propositions :

T'(e) if and only if @' is not refutable.

Iemmg I, T' is an analytic consistency property.
Tne proof of this lemma is given in Huet' .

The idea is to prove eagh of (Y1) to (y,) by -~
proving the contrapositive statement about refu-
tations. For instance, to prove (y,), let us
assume that there exists g literal ¢« such that
a € 8§ and 17 € & This implies that in the clause
form of §' there are clauses {7'} and {77'}.
Therefore from §' we can deduce CC ¢/{{#',7'}},
from which we deduce OO by trivial unification.

§' being refutable, we have not I'(8) by defini-
tion of I . Taking the contrapositive statement

[ v
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we get (y,).
Now lel 8 be any unsatisfiable set of sen—
tences. By Temma I and Lemma II : not I'(8) and

g

I, is refutable.
the completeness of

by definition of
This gives us our system:
of senten-

is refuta-

Theorem 1. JTIet S be any finite set
es, If 8§ is unsatisfiable then it
ble.

The soundness is obtained by mapping refuta-
tions in our system into refutations in Andrews'
R system (Andrews4), which is known to be sound
if one assumes the axiom schema of choice. Iet
us call axiom of choice for type o the formula:

gievp-[ (Fx.p(x)) 2 p(i(p))]

where the types of the variables are

7(x) =a, 7(p) = (¢ » 0) and v(i)=((a = 0)=0a)

Theorem 2. JIet S be any finite set of senten-
es. If S is refutable, then there exists a
inite set € of axioms of choice such that

U e is unsatisfiable.

In our formal presentation of the rules of infe-
rence, we have supposed that we were not trying
to unify at all when resolving, instead we just
generated constraints. The processing of the
literals wkich are candidates for unification
and the checking for consistency of the cons-
traints obtained is not necessary in theory, and
it was more convenient to use this formalism
for our proofs. However, as was shown in our
examrple sbove, it is highly desirable in prac-
tice to do some amount of processing when apply-
ing constrained resolution. Of course, this does
not affect the soundness of completeness of the
modified system, as long as we suppress only
clauses with ununifigble constraints. There is

a trade-off here between many useless but fast
derivations and few useless but slow ones, and
it is difficult to estimate how much processing
of canstraints should be done until the system
is implemented.

In the case where the set of initial clauses
is first-order, it is possible to process com-
pletely every constraint, and splitting is not
applicable. Our modified system reduces exactly
to resolution in this case.

It should be noted that we have not assumed
extensionality so far since Henkin models may
not be extensional, as shown by Andrews?
However we have in option a unification algo-
rithm which assumes the weak extensionality
axiom :

f=Axf(x) .

We shall now present a few examples/of
refutations. We have replaced the cumbersome
existential parameters E(Ax.d) by the usual
Skolem functions X(y1,...,y ), where the y.'s
are the free varigbles of ¢ "and X 1is a new
constant of the appropriate type.

 —

EXAMPLES

NN is not denumerable.

Cantor's theorem

Jet v be the type "integer", n,f and h be
variables, with types <(n) =uv, T{f)=(—>1 )
and T(h) = (v, v—=1).

We shall refute the negatién of Cantor's theo-
rem : "it is possible to enumerate the functions
of integer to integer", i.e.

Th ¥f @n h(n) = £ .

After reduction to normal form we get, using
N and H as Skolem functions, T(N) = ((v=u1)=1),
T(H) = (L, 1 =)

1 Nf = £
We shall need the following property of equa-
lity :
[t(g) = (v-)]

and the existence of a successor function S
satisfying :
3 Tln=8n [z(8) = (L=u)].
The refutation goes as follows

2 TIf =g, fn=gn

R(1,2) 4 H(Nf,n) = fn
R(4,3) 5  @ffn,SH(Nf, )}
u(5) 6 O by substitution :

{f «AueSH(u,u), n «N(\u-SH(u,u))}
Note that the constraints coming from the
first constrained resolution can be completely

processed, so that = ¢. This short proof

(3 steps) is due to = ‘concise representation of
the problem. In particular, the use of type
for integers gives us implicitly restricted
quantification over integers without having to
carry additional literals.

6]
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Example 2.

The pigeonhole principle : if we distribute
m objects into n holes, with m > n ; there
is at least one hole which contains more than
one object.

We choose'type o for the set A
and type B for the set B of holes.
thesis is :

of objects
The hypo-

1B] <|a] <w

e [Bl < |A| : there exists a one-one mapping
(fwnite se¥s) ' from B to A, not onto.

2° lAl < W : every one-one mapping from A to
A is onto.

The conclusion is there is no one-one

mapping from A to B.

Using the following atoms
o(F) = (B = a)

7(G) = (o = B)

t(h) = (a0 = «)

T(u) = ©(v) = B

©(B) = 1(x) = ©(¥) = «

7(X) = (YY) = ((¢ - a) = «)



wW(Z) = ((a = a), a = a)

©(=) = (a¢,a = 0) or (B,B - o) according to

the context, we get, after reduction to normal
form :
1 u=v, Puf P }F is one-one B = A
2 FPuf£E not onto
3 Xh # Yn, hz(h,x) = ervery one-one h
A—- A
4 hXh = hYh, hZ(h,x)= x)is onto
5 x=1y, 6Gx £ Gy G is one-one A —» B

We get the following refutation :

R(3,2) 6 Xh # Yn/{h%(h,E),Fu'} = C
R(4,2) 7 hXh = h¥h/C,

R(7,1) 8 u=v/Cc+ (hXh,Fu} + {h¥h,Fv}
R(8,5) 9 x = y/Cg+ (IXh,FGx}+ {hYh, FGy}

6

I

R(9,6) 10 @/{h2(h,E),Fu'}, {nXh, FGXn'},
{h¥h, FGYh'}, {h'Z(k',E),Fu"}
U(10) 11 O by substitution :

{h « Ax-FGx, ‘u'e GZ(Ax°FGx,E),
h' same as h , u" same as u'}.

When the theorem prover gets a refutation, it
is trivial to give the user a2 more natural
proof in Andrews$! system, chaining back the
substitutions. :
We shall demonstrate this technique here ; now
S(n) means substitution in clause n and C(n,m)
means cut of clause n and clause m. H is an
abbreviation for Ax-IGx.

s(2) 6' TFGZ(H,E) £ B

s(3) 7' XH # YH, FGZ2(HL,E) = B
c(6',7") 8 XH £ YH

S(4) 9' FGXH = FGYH, FGZ(H,E) = B
c(6',9910" FGXH = FGYH

s(1) 11" GXH = GYH, FGXH ¥ FGYH
c(10%119 12" GXH = GYH

S(5) 13" XH = YH, GXH £ GYH
Ccl2L 13 14" XH = YH

c(8,14M5' ®

Example 3.

We shall now give a completely detailed refuta-
tion of a less trivial proposition. We are
going to prove Knaster-Tarski's theorem :

"Any function monotone over a complete lattice
possesses a fixpoint". Iet (A,<) be the comple-
te lattice considered.

We use the types : o for truth values

v for the elements of A.
We represent a subset of A by its characteris-

tic function, of type (1 - o). We use the follo-
wing axioms

(yvxvz)[x g x a((x <y ey <x)ox=y%) &

((x<vyev<gz)ox<gz)]
[ < is a partial ordering]

R
¥

(vxn)[(hx 5N b < x) & ((y¥)(hy 5 x € ¥)=x <nh)]
{ [every subset h of A vossesses a glb N h]

:We want to prove :

(D) [(yxy)(x &y o fx < fy) o (32)(fz = 2)] .

'The types of our atoms are, respectively

Xy Vs Z % 1
h: (v=o0)
£ (v= 1)

= < (1, L= 0)
N: ((v=0)->1).
tWe negate the theorem and put =11 the proposi-

tions in clause form. We use again the usual
form of Skolem functions, replacing

EMyhy o x <y¥) by Y(x,h) and

Bl L) (Gyxy) (x < ¥ 2 £x < £y) o (g2) (£2=2)))
by F , where 7Y and F are new constants of types
respectively (i, (v=> o) =) and (u—-t).

This gives us the following set of clzuses :

1 X <X

2 X<y, 71y<X, X =73
3 Ix<gy,]y<z, X5
4 Thx, Nhgx

5 hY¥(x,h),xg<N h

6 Ix g ¥Y(x,h),x <Nk

7 Ix<gy, Fx g Fy

8 IFx = x

First we resolve 2 (on its last literal) and 8.
As the constraint {X =y, Fx' = x'} possesses a
most general unifier {x « Fx', ¥ «x'} we just
substitute without generating any constraint, to
get @

R(2,8) 9 IPx < x, Ix < Fx

Similarly, resolving 4 on its second literal
with 9 on its second literal, we get
R(4,9) 10 Fnh<nh, ThFN h
[The last literal is a shorthand for I(h(Fn (n)))}
Next, we resolve the second literal of 7 with
the second of 10. Here we do not know a most
general way of unifying the two literals, and a
constraint is added to the resolvent :
R(7,10)11 1PN h < b, lx < ¥{hP O b, Fx < Fy}
(This constraint id obviously unifiable, for
instance by {h « Au.Fx < Fy})
We shall now resolve both literals of 11 with
the second literal of 6. We have to unify :

. Tirstly {FPN h, x,x'}

. secondly {N h, y, Nh'} and sgain we know
a most general unifier :
fx « PN h,x' « FN h, ' « h, ¥ « N h}

and therefore we get

s

T ——



R(6,11) 12HWﬁlgdeﬂhJﬂ/Umﬂh,FRm< FNhl.
Notice that the substitution has been effecte@
in the constraint from 11 as well as in the li-
terals. We shall denote this new constraint by
C.
The rest of the refutation is pretty straight-

forward, no new constraints being generated
R(3,12) 1371FN h < v,y < ¥(F Ng,h)/C
R(7,13) 14 nh<y 1F < ¥(FN h,h)/C
R(4,14) 15 7l hy, JFy < ¥Y(FP N h,h)/C

R(5,11) 16 hY(F N h,h)/C

This last CC dis the analogue of 12, 5 and 6

having one literal in common due to the initial
reduction to clause form.

Next we resolve both literals of 15 with 16, ob-

taining therefore a terminal CC :

R(16,15) 17 @/C' where C' consists of the
following constraints :
{(hFN h, FFNh < FN h} ,
{h'F N h', FFN h' < FN h'},
{hy, Fy < Y(F N h,h), h'Y(FN h‘,h')}.
Vle then apply our unification process to C',

which terminates with answer "yes", correspon-—
ding to the unifier :

o {h - Au-Fu
n'e Au-Fu

Y(FN AusFu < u, AurFu < u)}.

< Uy
<u

3

Y ¢«

The refutation is now completed, and it is tri-
vial to go back in the proof, substituting o
and the substitutions derived from it by compo-
sition with the unifiers already detected, to
get a ground refutation.

In particular, we shall substitute N Au-Fu gu
for x in 8swhich gives us explicitly a fixpoint
of F, namely N({u|Pu < u}), which is precise-
ly its least fixpoint.

Notice that splitting was not necessary here
either, and that the refutation is pretty short
and does not involve huge constraintse.

CONCLUSION

It is difficult to make any efficiency
assertion from searchless examples. However,
one of the most important heuristic rules to
use in this system would be to throw out clauses
with constraints which are obviously not unifia-
ble. In practice of course most clauses will be
recognized as such, thereby reducing sharply the
number of possible derivations.

Types in this logic play a multiple role.
PFirst, they permit us to have A normal forms
for all terms. Second, they can be used to sort
objects of different nature, and so we get res-
tricted quantification without adding cumberscme
additional literals. Finally, as a consequence
they restrict the search for unifiers.

This system uses the constraints mechanism to
delay as much as possible the process of unifi-
cation. This has two advantages. First, the dee-
per we go in a refutation, the more infeormation
we gather about the structure of the terms we
need to substitute. This reduces our search
space for unifiers (intuitively, the more argu-
ment-value pairs we know, the less functions
exist whose graphs contain these pairs)

Second, we just need to check for the exis-
tence of some unifier, we do not need most gene-
ral ones., This permits us never to consider the
unification of two terms whose heads are varia-—
bles, such as :

f(A1, A2,...,An) and g(B1,

~or
f(A1, AZ""’Ah) and f(01, 02,...,Cn).

B2,..., Bp)

These cases are the most difficult ones to
onsider for most genersl unification, but they
are trivial when we need only check for exis-
tence of unifiers (take any constant function).
Actually we need to compose only two elementary
unification processes (called imitation and
projection), wheréas to get most general uni-
fiers Pietrzykowski and Jensen™ need four, the
other two being the most prolific ones indeed.
This is because when we consider a pair such as
f(A,, Apseeesh ) and F(B1, B.syeeesB ), we know
something definite about the “structbre of +the
common instance (it must begin with an F) and
so we have a "handle" on the unification pro-
cess.

A disadvantage of the delaying of unifica-
tion is that we may generate clauses whose cons
traints cannot be satisfied and this is why
some processing of these constraints is neces-—
sary. In many cases we will know a most general
unifier of some constraint and this wnifier
should be gpplied to the clause. In other cases
we may know that no substitution will unify the
constraints, and then we should delete the
clause. There is a trade-off here in the amount
of unifying while seerching which should be done.

Automatic theorem proving is undoubtedly
more difficult here than in first-order logic.
However our higher-order language permits us
to state many theorems in a more concise way,
and refutations tend to be a lot shorter. For
instance, in our examples, we used set varia-
bles in a very natural way (using their charac-—
teristic predicates). We could get all the
properties of ¢ with application, of comple—
mentation with 1 and of union with V . Also the
abstraction mechanism of A-calculus replaces in
a nice way cumbersome comprehension axioms.

However we might still need use some axioms
of descriptions, to assert the existence of
certain functions :

gi yo[(g!x p(x)) o plilp))].

When we need to substitute non-atomic propo-
sitions for predicate variables (via splitting)
refutations tend to become messy and unnatural.
The system should be improved on this point,
maybe by replacing splitting by rules closer to
natural deduction. This would also allow us to
get rid of the initial reduction te clause form,
which is not always desirable, and to use well-
known techniques to decrease the complexity of



refutations (Brnst’ ). Only then can we hope to
deal with proofs by induction in a satisfactory
wWaye.

In conclusion, we have presented in this
paper a system of logic which is a generaliza-
tion to Church's type thecry of Robinson's reso-
Jution. This system seems well suited to mecha-
nizing proofs which require complex substituti-
ticns for function variables, as shown in a few
hand-simulated exemples. Substitutions on non-
atomic propositions for predicate variables are
not dealt with in a very satisfactory way yet,
and some improvement is needed there. Our sys-—
tem without extensionality is equivalent to
MAndrews' system. However it is amenable to auto-
matic treatment because the substitution rule
has disappeared. Our system with extensionality
ought to be equivalent to Pietrzykowski's sys-
tem, and it is conjectured that it is more effi-
cient. A partial implementation is in progress
at IRIA, mechanizing constrained resolution
without splitting. The emphasis will be put on
the heuristic rules for processing constraints
during the refutation.
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