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ABSTRACT

A refutational systen of logic for a language
of order o is presented. Ihis ia:rgage is a
slight modifical;ion of Cnr:.rchts À-ca1cu1us with
tlpes. fne system is complete, in the sense
that a refutatlon of a set of seniences exists
if and only if this set does not possess a gene-
ra1 Henki-n mode1. fhe nain ru-1e of inference 1s
a generalization of Robinsonts resol-ution to
type theory, ',','hi-ch al-fows us to get rio of the
substitution ru1e.

I}TTRODUCTTON

Durlng the last decade, a lot cf effort in
automatic theoi'em proving has been devoted to
mechanizing first-orcler 1ogic. he naj-n achie-
vement has been the definition by J.A.Robinson'u
of a now well-known refutational first-order
system. Its u:'riclue ru.Le of inference, ca11ed.
resofution, is arr elega:tt way of corbining the
substitution a:id cut Tul-es. T]le other familiar
rules of inference ar'e implicitl_y taken care of
by SkoJ-emizetion anC. the set representation
(clauses) of the cor:j'unctive norrle.t fonn of the
set of sentenees one rva:rts to refu-ue. More pre-
cisely, resolution pernj-ts us to select just the
substitutions idrich a-re ltecessary for the cut of
two or rirore li-teral-s. Ivloreover, if this cut is
possible at aJ-J-, onl-y one such subsiitutj-on is
sufficient, ca11eo the mosi general_ unifier of
the two literal.s. Iiiis existence of a most gene-
ra1 unifier .r:etrrèen tv/o terms in fi_rst-order Lo-
gic is fundamental, io the resolution method..

Many a theorero prorring progrFrn lvas r.rritten based.
on the ::esol-uilon ruJ-e, enbodlfing various heuris-
tics to speed. up the search for a refutation.
Ho't.1ever, resufts obtained sc far are sti]l very
linited without human lre1p. To remeoy this situa-
tion, some workers j-n the field, notably
Robinsonrt ha.,'e ar€lued for the exploration of
more powerful- systens of logic such as Churchts
À-calcul-us

HIG}IER ORDER I,'IIIFTCATTON

fLre situation in iri-ghcr-order logic is qulte
d.ifferent fron iilst-o:.Cer. Most general r:ni-
f iers rlo :rot exist alry niol'e (Gou1C ").

Consider for i-nstalce the two terus :

t,=f(x)
anal I

t2=A
where f is a (second-order) variable, x a
',/afiable aild A a constant. fhe following sub-
stitutions az'e two independent unifiers of t,
and t' ' o- ={ f p l,u.Ài

or=lfçÀu.u,x*Âl
lTe, may even neetl to consider a.i1 infinity of

unifiers. let us say that substitution o is
less general than substj-tuti-orr p wiih respeci
to a finite set of variables V, i.f there exists
q such that :

6ox = 4oPox foreverY x in II

lVe sha11 denote this relation (which is re-
flexive and transitive) by : p < p.

llow we caJ.J. a complete generatoY cf u:rifiez's for
terios t, and i" (CGU in shott) any set D of
substiiutions suôh that :

1o yo€E:6urrifies tl'a-nal t2.

variables free in t, and tZ.

Gouldt has remarked ihai certain paiis of
terms t, , t. do not possess a finite CGU.
Consi-der'f c:-' - insta.nce :

t, = f (x,A)

t, = f (x,B)

20 V o unifier
thatofp,

of t, a:rd t, : gp6X sueh
vihet'e Y côntains all

t., artd t2
Ti>0
vi>0

where x is a &ariable) function and f j-s a
(veriable) functional. Now 1et X = loili >Ol,
with :

and. 1et

lhe proof

oO ={f r À.uv. tr(u) }

on =[f r- Àuv'8rr(u, u(n!(u, v) )- '
. ., u(nf,(u, v) ) ),
i i- rrl'zl (n > o)

y = {xrf}
can be sketchecl as foll-ows :

1o

2o

20

X - is a CGII for
o:- 

f; 
oi*t

not oi*tf; oi

tl{l
t:!l

I'i
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o, o" oi. 
f, 

.tO) v i> 0,

5" suJipose Xt is a fj-nite CGU fol t, and. t,
By 1 ", this inplies that thcre exists Xrr c X

firrite CGU for t, and to. frris obviously con-
trai.icts 3o and. 4ô. (Con6ider o, .. , with
k = maz{ilo. ç x"}). n+r

lttus, a] thoùgh any finite subset of X can be
generated by only tvro elements (using 2o), we
cannci find- a finite set of generators for the
unifiers of t., and tr.

ït seems therefore that an extension of re-
solutiorr to t1rye theory vroul-<i rerluire generaF
ting a possibly infini-te number o1- resol-vents
at ewery appl-ication of the resolu,tion ru1e.
One soLution to this problem would be to order
these resolvents (for instance according to
sorne conplexity of the unifier selected) and
to rrd.ovetailrr the generation of resol-vents with
the refutation search algorithm. [ris nethod
has been proposed and p::oved complete by Pietr-
zyko-lski and Jensent" .

I{owever the inefficiency of such do-retailing
processes 1s viel-l krrouryr and. their practical fuo-
pleneniation seems difficult. lVe sha1l present
here a nethod v,àich, although it ultirrately
1ead.s to a double enumeration too, delays the
genexation of u:rifiers as much as possible and
thus mj-ninj-zes the number of irrelevant choi-ces.

CONSTRAINTS

We .suppose that we have ti'io basic types :
o for truth values and u for individuals. IIIe

sha11 use the following atoms, indicated with
their type :

wrA r

vryrB,C ( u* u)

xtzrl). ((r,*u) * s)
f (((r.-u)-r);")
?rR ( u- o)

a (t,(;* u)- o)

By convention, all lower case letters deno-
te variables, all- capitals denote constants.
(d"ro'n,...,o- * p) denotes the type of functions

^ I L JIof 'n- arguirients of types cri,...,û_ arrd with
values of t1rye p. We consicler'rthe set S of
clauses :

1o ?(f(x)),Q(r(c), c),R(f(z))
' 2" l?(À)

3" l Q(v(A), v)
40 I R( 3(w) )- :

ïIe shal1 prove by constrained resolution
that this set is unsatisfiable (the precise
staternent of the rul-e of cons-brained resolution
.wil-l be given below).
I First we resolve the Prs in 1o and 20. 'fVe

iare trying to ir:'rify P(f (x) ) ana ?(l), a:id thi-s
inplies the -.rnification of f (x) and A. fhese
teius clo not possess a most general unifier, sc
we generate a constraint {f (x),4} ivhicir j-s tag-
ged to the resol-,reni :

5" Q(z(c), c), R(f(z) )/{l(x),1} .

Now we resofve the Qts in 5o arrd Jo, vrhich
inpl-ies the simul,ta-neous unification of :

firstly v(n) ano z(C)
and second ly y a.nd C

Sbrtulately in the second pair [y e C] is a most
general unifier. ltris unifier tra:isforns the
first cono.ition into the unification of C(A)
ana z(C). Here too ihere j-s no XIGU, sc v/e gene-
rate the resolvent :

60 n(r(z))/{r(x),a}, I c(A), z(c)1.

Finally we get the enpty clause, :'esolving 60
and {o, and generating one more consiraint
{B(w),f(z)} :

't" Q/lf (x), Al , { c(À), z(c)l , { 3(w), t(z)l .

Now, in order to validate ou-r refutation,
we must find a unifier satisfying sinultaneous-
fy every constraint in 7". However any u:rifier
will- d.o here, vre do not need. to generate a "

conplete set of then. Âctua11y, we just need to
check for the exi-stence of a unifier. Unfortu-
nate.l-y there is no decision procedure for thls
task if we allow quantlfication over third-or-
der functionals, as shor',rn ln Huet tl,

flre id.ea is to represent the set of unifiers
cf tz;o 1.iterals L, and Lo as a condition tag-
ging the resofvent obtaified by cutting l. a,ncl
l, in their resçective crauses. Such a cdnd"i-
tlon is expressed as a set of trconstraj-ntsil of
the jo:'m {i.,tr} wirere tn and to are subterns
of l, and, L). fiore generâl-l-y, a'constraint vrill-
be a'set of'terrns which we walt to unlfy. À
clau-se iagged by a set of constraints wil-l- be
represerrted. as

L1,L2, ...' LJCI'C2' ... ' Cn

where the l.ts are ihe l-iterals of the clause
and -l}le C .t s aare corrstraints. Such a tbonstrai-
ned c]-ausè" (CC in short) represents the set
of al-1 clauses 6o.Ln, ooLo , ... , ooï:-^ such
that o r.:nifies similitane6,til-y ".ré"y c8nstraint
C:_ i i.e., if C.={ . j, "2, 

..., ti} then
ocei = 6oër=... = o,oêqi (1 <i <p).
In nany cases we will be able to decj_de if a

constraj-nt is not unifj-abl-e at al.l, in which
case the correspondlng CC is not generated-.
T{e malf also knolv a nost general unifier o for
the eor:strai-nt, in vrhich case o is applied to
the corresponding resolvent, tagged with the
union of the constraints in the CCs resolved
upon. Ottrerlvise lve generate the CC obtaineti by
tagej:ie ihe resolvent with the union of the
parer:t?s constraints plus the new one. In the
last +.',.;o cases ',ve check that the set of cons-
trair:ts is not obviously inconsistent. Iet us
now give an example.



A]-l vie can do here is to use a seni-decision
algorithm of reasonabLe efficiency developed
for this problem in Huet'o . lTc siral1 not pre-
sent tiris algorithm ?rere, but rnerely ind.icate
that for ou'r example it would re turrr s:r a-ffj-r-
nati-ve aJrsrver, lvith the urlif i er :

f .- Àu.u(B)
z r- Àv.v(A)
wr-A
x r- Àv.A

the reader ',vil'l check that this substituti-on
(together with y {- C) applied to S gives a
contrad.ictory set of grould. clauses.

fLre general case is a little more conplica-
ted. because, when resolving two CCs, each of
vthich has a non-empty set of constraints, vre
have to merge these 1r,vo sets.

Note al-so that when we apply a substitution
to a CC vie must apply it to, its constraj-nts
as we1l, which may induce some possible simpli-
fications, ioerging of constralnts and Tejec-
tions.

À more serious complication arises with the
use of predicate variabl-es. A 1j-teral vrhose
pred.icate i-s a variable rnay be transforrned j-n-
to several literal-s by substitution of a dis-
junction for the variable. For instance the
clause p(À), S(B) becomes

q(À), r(A), sG)
aJter the substitution

P e Àu'(q(u)'rr(u) )
and passage to noriial- form. Sjmilarly, the
substitution of a corresponoing conjwrction
would produce tlvo clauses :

dlstinguish three special constants 1 V a.nd 1E

of the appropriate tlæes.They vri11 denote res-
pecti-veiy negation, disjuirction and universal
quantification. For the l-ast one, we represent
y x-d by rî\x.A). Actuall-y for each 'oype a
there is a lr^. of type ((o * o)* o), d.enotj-ng
qualtificati8n over- variabl-es of type a .

We suppose moreover that the set of senten-
ces one wa-nts to refute has been red.uced. to
clause form. TLris means in particular that we
have Skolenized as much as l','e coLrld. 0f course,
it is forbidden to reduce pr'opositi-ons which
are hidden inside the a-r'gr;.nents of some l-iteral .
Our Skolenj-zaiuj*on consists in,-replacing (a.t the
top level-) :

---no(d) by aG) where x is a new varia-
b]-e of type o

-1no(a) byld(Ea(a)) where Eo is a special

constant (called a paraneter) of type ((a -o)-a).

After realucti-on, every cl-ause wj-l-l- be repre-
ænted as a finite set of l-iterals, each l-i-teral
being of the form - À or -l A, where A is a terrn
P(e,re.r...re.^) and" P is an aton oifferent
froÉ l' V ant r.

let us now give more precisel-y the definj-tion
of CC.

A constrai-nt is any finite set {e1reer..eê-}
of tefrs or ttre same t1rpe. À substitrjti6n o tt'
is said to rlrrify this constraint if and onl-y if
o is a unifier for errêD,..., e-. It is said.
to unify a set of constraÎnts I Cl,' C2, . . . , C-l
if a^nd only if i-t unifies everi C; ( 1 < f < i).
A constrainecl clause_ E/C consists of a clause
r ffit of constraints c .
If C = @ we have a-n initial- CC, if E = Ô ,
we have a terminal CC, n = 6/A is the empty CC.

In order to refute a set of sentences S , we
first reduce it to cl-ause form as explained
above, then we tag to every clause the enpty
set of constraints @.

Â refutation is aly d.erivation fron this set
of inj-tial- CCs, using the three rules of infe-
rence defined below and ending with the enpt:r CC.
If such a refutation exists, we say that S is
refutable.

the first two rules of iderence, consirai-
ned resolution and splittj-ng, apply to non-ter-
minal CCs whereas the third one, unification,
appfies to terminal CCs. Constrainecl resol-u-
tion is binary, splitting and unification are
unaxy rufes.

1. Constrained resolution.

I-et E, = A.r/8, ancl E2 = Ay'B2 be two

non-terrninal CCs.
let {xr 2x2t...rx-} be af1 the variables that

appear frée r-n both'" E. and E^ , and

lw,,t w2t..., w.] be ne* variabl6s of thc sene
tlrfes frhich do-'not appear in either E, or 82.
IiVe d.efine the substituti-on :

e=[xi*w,lt<i<r]
Now we distinguish p positive literals in A1

arrd. q negative l-iterals in Ar. Tlrat is, using
LJ to denote disjoint union :

ald

Also,
p would
proof.

s(A), s(B)

r(Â), s(B)

substituting a quantified forrnula for
oblige us to Skolenize during the

For these reasons, we are obli-qed to intro-
d.uce a second rule of inference, called split-
ti-ng, which in effect simul-ates all possible
ways of effecti-ng these substitutj_ons for pre-
dicate variables, using the necha:rism of the
constraints.

V[e sha1l now give a more precise fomula-
tion of or.rr rules of inference.

REFUTATIONS

We shal-l- not state formafly the definitions
of terms, 1itera1s, etc... ltre precise defini-
tions are stated in Huetto,tt . Let us just
recall- that our 1a:-rguage is basical-ly CYnrchts
À-cafculus with types (C?nrcht). Rvery tern
possesses a normal form :

Àr1 . . .un 0(e i, . . ., ep)

where the u.r s a:'e distinct variables, d is an
atom(calledathe head of the temr) and the e.rs
are terns (see .Andrews, ). Functional "xten"Jio-nality is an option in the system. 'rVe shall-

'ljl
il
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I
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Al = lMl, M2,..., tn] U À: 9 )- 1

À2 = FN1,-lN2, ..'JNql trÂ+ 9>1
Now Let

33 ={ {1I1 , M2,..., Mn,0oN., , O"Nr,...,e"Nn} }

ïIe say that the CC :
13 = A3 g t"\/n, U eoB2 U Bf

follows by constrai-ned resolution frorL CCs n.,
and Er.

z. Eplrllrle.
let E1 = -VC be a:ry non-terninal CC, such
that Â contains a flteral I whose predi-cate
is a variable ; i.e. À = B L, {f} " We have the
followi-ng cases :

10 if L is
1-1 Deduce E,

where q
t:fpe o.

1-2 }educe n,
where q

a positi-ve literal :

- 3 U ls.,rl /c g{ [], qvr] ]

and r are new variables of

= B LJ llsl /c t.J { {r, rs} }

is a new variabl-e of type o.

compl-e'reness in ur-order logic. Tne trj-ck is to
interpret predi.cate variabl-es of type (a - o)
(for' lnstance)^over dornains wliich may be proper
subsets of 2 la , ivhere -Do is the donain of
interpretation of objects of type a . ll/e only
impose that ihese dorcalns be closed under opera-
tions correspond"ing to the dlfferent constructs
of the language (for instance conplementation,
pro jectloir, etc. . . ) . ftr the same rva;' A

may be a proper ""i,""1--oi---r-:-r;.'" 
"("* P)

fnis enlargeci senantic characterizaticn
(general- Henkin n:odel-s) pernits us to rcstrict
validity to just those fornulas rvhich are deri-
va.ble in the logic.

In the follovring, lve shal1 therefore use
satisfi-ab1e as aJr abbrevi-ation for 'rhas a gene-
ral Henkin model-'r.

Definition : A property I of finite sets of
propositions is ca11ed an a:r.alytic consistency
p::operty if and only if, for any finite set S
of propositions, ive have (yr) to (tr) tetow.

(y,) if I(s), tnen there is no literal 4
' such tnat d- € S andlA e g.

(vz) i{ r(s U{a}), rhen r(s U la,l), where
' A' is the À nornal- form oi A'.

Q) ff I'(s U l-nal), then r(s U[a]).
,r*) 

il*tjT#)l.avll 
), then r(s u{a}) or

(rr) ir t(s u l1@,{B)} ), tnen r(s UFa,-16} ).
(y") rf r(s t_l 1n-al), then for every 'ue]j'û B" of type o, * r(s U ln(, a(n)l).
(r") ir r(s U l1n"/i), then r(s U{la(x)i) ror

' any constamt*or varigble K of type a
which does not occirr free in d or 8.

We are in'terested in analytic consistency proper-
ties because they provi-de a sufficient conditj-on
for satisfia.bility, as expï'essed by the follo-
wing lenma from Àndrelvs- , which extends results
by Srnuflyan .

Ieroa ï. If I i-s any analytlc consi-stency
property ald S is a finite set of propositions
such that l(S), ttien S is satisfiable.

f'or a:ry set 'O of propositions, 1et Cr be the
set of sentences (closed propositions) obtained
from C by replacing free variabfes by new cons-
ta:rts in a one to one fashion. Obviously if e
is unsatisfiable then @r i-s rinsaiisfiabl-e too.
Now we define the following property I of sets
of propositj-ons :

f(O) if and only if C' is not refutable.

Iænna II. f is an analytic consistency property.
mô prôf of this 1emm61 is given in lIuet'o 

-

The iriea is to prove eath of (yr) to ("y") bv.
proving the contr.apositi-vc ctatément abôut refu-
tations. For instance, to pr"ove (y.), 1et us
assume that ther.e exi-sts a llteral' 4 sucl. 1.hat
A e g and.1 d € S. lhls iruplies that in the clause
for.ro of 3t there are clamses l4rl and [1dtl ,

from lùich we deduce ! by trivial unlfication.
It belng refutable, lve ha're not f(g) by defini*
ti-on of f ..Takiirg the contraposj-ti_ve statenent

'l-J Deduce E, = B U {s"(z)l/c f: {{l,rûq}}
where z is a new variable of tlæe d t
q a new variab]e of type (a * o).

20 if I' is a negative l-itera]-; i.e. I =-lM :

2-'l Deduce 
"2 

= 
"U {10},/C,

and oj=ugllrtl/c,
where Cr = C g{ {M, qvr} }, q a].ld r are
new variâbles of type o.

2-2 Decluce 
", = u U{s}/c U{{M,ls.}}

where q is a new variable of tlrpe o.
2-3 Ded.uce E, = B g {To(Eo(o))}ÉLtl{M, rds}}

where q. is a new variable of type (s * o).

Any of the above CCs is said to be ded-ucible
from E, by splitting.

Rulés 1-3 and 2-3 depend on some arbitrary
tyBe a . In practice we shal1 i-mplement ,them
by restricting s to some smal-l- initial- segment
of types.

3. Unification.

I,et E = ô/C be a terminal CC. If C is
unifiable, we cat'r deduce tr from n.

lhis rul-e too is not directly mechanizable,
since in the general case u-nification is nct
decid.able. lYe can nake it so by putting a bound
on the number of steps of our unlficatlon algo-
rithm. tr'or this reason our nethod. may ultimate-
ly lead to a doubl-e enr:meration.

souNpNEss x_It-r qgu?.-t-trjE1inÊg

It is well knovm that higher-ordcr logic is
not complete, und.er the usual semantic charactc-
rization (COaet urodels). Hor,riever, Henkln e has
shown thitt a different ch.gracterizal,j.on yiel-c1s
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we get (y{).
Now let 3 be a:ry unsatisfiable set of sen-

tences. By Tæmma I and T,emna f f : not f (S) and
by deflnition of I', s is refutabLe

this gives us the completeness of our system:
&reorem I. IÊt S be arly finite set of senten-
Gs. ÎT-s i-s unsatlsfiabie then it is refuta-
lot".

ILre soundness is obtained by mapping refuta-
tions in our systen into refutations in An<irews t

R system (Andreu'sa), which 1s knoir.n to be sound
i-f one assumes the axiorn schema of choice. Iet
us call a"xiom of choice for type s the fornula:

si.rp.l(sx-p(x)) = p(t(p))l
where the types of the variables are :

t(x) = a , t(l) -- (a - o) arid r(i)=((o - o)*a)

treorem 2. IÊt S be arry finite set of senten-
F:-lT--s is refutable, then there exlsts a
pinite set C cf axioros of cholce such that
FUeisuasatisfiable.

Beeellg.
In orr formal presentatlon of the rules of in-fe-
rence, we have supposed. that we were not trying
to unify at a1l- vrhen resol-ving, instead vre just
generated constraints. The processing of the
].iterals whi,ch are canoidates for i:rrification
and the checking for consistency of the cons-
traints obtained is not necessary in theory, and
it vras more conveni.ent to u-se this fornal.ism
for our proofs. However, as sras sho,nzr j-n our
exanple above, it i-s highl-y desirable in pra.c-
tice to do some amount of processi-ng when apply-
ing constrained. z'esolution. 0f course, this d.oes
not aJfect the solmd.ness ol completeness of the
modified. system, as long as we suppress only
clauses wi-th irnunifiable constraints" ftrere is
a trade-off here between many useless but fast
d.erivations and fev.i usel-ess but slolv ones, and
it is difficult to estirnate how much processing
of constraints should be done unti-l- the system
is implenented.

In the case where the set of initlal cl-auses
is fi-rst-ord.er, it is possj-b1e to process con-
pletely every constraint, a:rd. splitting is not
ap1ll-icab1e. Our modified system reduces exactly
to resolution in this case.

It should be noted that vre have not assrmed
extensionality so fa:: since Henhin model-s may
not be extensional, as sho,r.m by -And.rews2 .
However we have in option a u:rificati-on algo-
rithn which assunes the weak exiensionality
axiom :

f = 
^x.f 

(x) .

We shal1 now present a few exanples-of
refutations. ï/e have replaced. the cumbersome
existential para.meters E(Àx.d) by the usual
Skolem fr.rnctions X(y1,...ry-), lr,here.the Jrts
are the free variabled of A ttand, X rs a new
constant of the appropriate t1pe.

q4!Pl,E!_

*crplg t.
Cantorts theorem : NN is not denumerabl-e.

Ie t u be the type trintegerrr, nrf a:rd. h be
variables, with types r(n) = u , 'u(f )=(6* r ;
and r(ti) = (u, u- u).

'iVe shal-l refute the negation of Caltorrs theo-
rem : Iit is possible to enunerate the furctions
of integer to integer'r, i.e.

lJter
N an<l H
.u(H) =

ShVfsnh(n)=f.
reduction to normal- fozu we get, using
as Skolem functions, 'u(N) = (( u * u)- r, ),(u, u -u) :

1 lINf =f
We sirall need-

lity :

2 -1f=
the followi-ng property of equa-

Et fn=Bn lt(g) = (u-u)]

and. the existerce -of a successor function S

satiqfving :

3 ln = Sn lt(s) = (u-r)1.
The refutation goes as follovrs :

R(1,2) 4 H(Nf,n)=fn
R( 4, 3) 5 dfn, sH(Nf , n) l
U(5) 6 E by substitution :

{f +Àu.SH(u,u), n +-lf(l.u.SH(uru) )}

Note that the constraints coming fron ttre
firsi constra"inco. resolutron ca.rt be conpletelli
processed, sc thet C, = Ô. flris short proof
(l steps) is due to aqconclse representation of
the problem. In particular, the use of type r
for integers gives us jmplicitl-y restricted
quantification over iniegers without having to
carry aclditional literal-s.

Etcsplg z-

fhe pigeonhole principle : if we distribute
m objectsinto n holes,wi-th n>n;there
i-s at least one hole which contains more than
one object.

Yfe choose type a for the set A of objects
and type p for the set 3 of hol-es. I1e hypo-
thesis is :

lll .lÀl < '
: there exists a one-one napping
from B to À, not onto.
: eYery on.e-one napping from A to
A i-s onto.

''el.l,l" :*Lf t

e'lll < o

lLre concl-usion is : there is no one-one
mappj-ng from A to B.

Using the fol-l-ovring atoms :

1(I')=(p-s)
r(G)=(a-9)
'u(h)=(s-s)
t(u)=t(v)=P
T (B) = r(x) = 'c(y) = g

t(X)=t(r)=11o *c)ro)
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a(Z) =((s-a), q*s)
'r(--) = (a,a - o) or (p, F * o) according to

the eontext, vre get, after reduction to normal-
form :

(vxrr)[(trx 
= t h < x) a ((vv)(hy = x ( v):x <nh)]

, [every subset h of À possesses a glb n h]
I

l\Ie lva-nt 'bo prove :

1yr)l(vxv)(x $ = fx ç fv) = (sz)(tz -- z)l
rTne types of or;r atoms are, respectively :

x, yt z , L

h: (u*o)
f : ( u* u)

i =,<, (r,,u-o)
i n:((t-e)-u).
'trYe negate the theorem a:rd put all the proposi-
tions in cl-au.se forn. lïe use again the usual-
form of Skol-en fu:rcti-ons, replacing

E r(Àv.hv = x < v) by Y(x,h) a:rd

E(r-r;(lr'((vxv)(x < v = fx ç fv) =l (sz)(fz=z)))
by I , where T ald F a:.e new constants of types
respectively ( u, (t: o) - u) a:rd ( r,*r. ).

Itris gives us the following set of clauses :

I xçx
2 -1x <y,-ly(xr x-y
3 1x<y,-l y<z,x<z
4 lhx,nh<x
5 hT(x,h),x<n h
6 lxçy(:;,h),x(Ob
? -1x(y, trk(Fy
B lIk=x

tr'irst we resol-re 2 (on its last literal) and B.
As the constraint i" = y, trkt - xt| lossesses a
most general- unifier {*. trkrr V r,xt} we just
substitute vrithout generating a:ry constrai-nt, to

R(2,8) 9 lFx ç x, 1x ç rk
Simil-arl-y, resolving 4 on its second literal
with 9 on its second 1itera1, lve get 2

R(4,9) 10 1r'1 h<n h, JhFn h
[ftre last ]-j-tera1 is a shorthand for-l(n((n(tr))))]
Next, we resolve the second literal of 7 with
the second of 10. Here we do not know a roost
general way of unifying the two 1itera1s, and a
constraint is added to the resolvent :

R(7,10)11 Tr rl h < n h,1x ç v/1rrp n h, rrc ( Fy]
(friis constraint idl obviously unifi-ab1e, for
instance bv {h r- Àu.trk ç Fv}).

'lûe shall now resolve both l-iterals of 11 with
the second l-j-teral of 6. We have to unify :

. firstly {F1 h, x,xr}

. secondly {n h, y, flht} and again we knovr
a most general unifier :

{x r- FO hrxt . Ffl h, ht * h, y. n hl
and therefore vre get :

1 u=
2 ru/
3 wr/
4hïh=
5 x = y, Gx / Gy G is one-one A * B

lVe get the following refutatlon :

R(3,2) 6 h/tl/lhz(h,E),tr\r'] = cu

R(4,2) Thtft=vfti/c6
R(7, 1) B u = v/cl+ {hlQ1, tr'u} + {hyh,IV}
R(8,5) 9 x = y/cu+ {bTh,FGx}+ {hyh,rGv}
R(9,6) 10 Q/lhz(h,E),tu'], {rixrr,tr'G)}rr},

{hYh, FGlhr }, {h'z(h"E),tr\r"}
u( 10) 1 1 tr by substitution :

{h + Àx.FGx, utr- GZ(Àx'FGx,E),
hl sanne as h , urt salre as ut|.

llllien the theorem prover gets a refutatlon, it
is trivial to give th.e user a more natural-
proof in Àndrew$r. system, chaining back the
substitutions.
lÏe sha1l demonstrate this technique here ; now
S(n) neans substitution in clause n and C(nrro)
means cut of cl-a.use n and clause n. H is an
abbroviation for Àx.FGx.

s(2) 6t FGZ(H,E) / E

s(3) It xH / YH, Fcz(H,E) = n
c(6',7') B' lcH / YH

s(4) g, FGXH = FGYH, r,Gz(H,r) = E

c(6r,9) 1o' FGXH = trGYH

s(1) 11' GXH = GYH, lGxH / r'ern
c(10"11,12' GXH = GYH

s(5) 13' XH = YH, GrH / GrH

c(2,, tr3) 14t xH = YH

c(B',1 4')l 5' E

$eerlg 3-

\Ye sha1l now gj-ve a conpietely detailed'refuta-
tion of a less trivial proposition. We are
going to prove Knaster-larskirs theorem :
ItAny function monotone over a complete lattice
possesses a fixpointr'. let (1,<) le the cornple-
te lattice considered.

We use the types : o for truth values
; for the elements of A.

ïfe represent a subset of A by its characterls-
tic fr.rnction, of type ( u * o). We use the fol-l-o-
wing axioms :

(Vrvr)l* <* a((x < y & y (x) : x = y) &

((x<y&y(z)=x<z)]
[ < i" a partial orctering]

v, tr\r / * lF is one-one B * A

E I not onto
Yh, hz(h,x) = x;every one-one h

I l*,q'
hYh, hz(h,x)- xlis onto



R(7,13)

R(4, I 4)

R( 6, 1 1 ) 1 2tr nir < y( Fn h,h) /lhFn h, rrfha F nh] .

Notice that the substitution has been effected
in the constraint fron 1 I as v;el-l as in the l-i-
terals. VIe shal1 denote this new constralnt by

Ihe rest of the refutation is pretty straight-
forward, no new constraints being generated. :

R(3,12) lllFn h<Ïrty< y(F î'V,vL)/c

14 ln h ( vr Jr':v < Y(F ah'b')/c
15 I hv, lFy < Y(F n h,h)/c

R(5, 11) ro hY(rnl.,h)/c
Tfr.ls last CC is the analogue of 12, 5 and 6

having one liter:al in common due to the initial
red.uction to cl-ause foru.

Next we resolve both literals of 15 with 15' ob-
taini-ng therefore a terminal CC :

R(16,15) 17 @/c' where cr consists of the
foll-owi-ng constraints :

{nrnh, Fnh<Fnh} ,

{h'I'n hr, Ftr 0 h' < Fn hr},
{hy, Fy'< Y(F n h,h), h'Y(F O h"h')} .

lTe then apply our u:rification process to Cr,
which termi-nates vrith artsvier rryesrr, corespon-
ding to the rinifier :

o={h6Àu.tr\rçu,
ht+ l'u'I\r ç u,
y +. Y(F fl Àu'I\r 4 u, Àu'Fu * u)}.

Itre refutation is nour completed, a:rd it is tri-
vial to go back in the proof, substituting 6
and the substitutions derived from it by compo-
sj-tion with the unifiers already detected, to
get a ground- refutation.
In particula.r, we sha1l substitute O Àu'Fu <u
for x in S,which gives us explicitly a fixpoint
of F , namely n(["lI\r < ul ), which is precise-
1y its least fixpoint.
Notice that splittlng lvas not necessary here
either, and that the refutation is pretty short
arid d.oes not involve huge constraints.

CONCIUSION

It is difficul-t to rna.ke any efficiency
assertion from searchl-ess exanples. Holvever,
one of the most important heuristic rules to
use in this s-vstem lvoul-d be to throw out clauses
with constraints which are obviously not unifia-
ble. ln practice of course most clauses wil-l be
recognized. as such, thereby reoucing shar!1y the
nr.mber of possible derivatj-ons.

Bæes in this logi c play a multiple rol-e .
tr'irst, they pcrmit us to have À normal- forns
for all terms. Second., they can be used to sort
objects of different nature, and so we get res-
tricted quantification rvithout acding cuobersome
additional literals. Flna11y, as a consequence
they restrict the search for unifiers.

This system uses the constraj_nts mech:rnism to
delay as much as possible the process of urtifi-
cation. Oris has tlvo advantages. First, the d.ee-
per 'ilre go in a lefutation, the more lnfcrmation
tve gather about the structure of the terr|s tve
need to substitute. This reduces our search
space for unifiers (intuitively, the more argu-
ment-value palrs v;e knov'r, the l-ess functions
exist n'hose graphs contain these pairs)

Second, vre just need to check for the exis-
tence of sorce unifier, y/e do not need. nost gene-
ra1 ones" Tnis permits us never to consider the
unificatlon of two terms whose head.s are varla-
b1es, such as :

f(Àl, A2'...'Arr) arrd

or
f (Àr, À2r . . .,4rr) and

^l o Dé\r1r o2r...r

f(Çr, c2,..., c

tn)

n).
lLrese cases are the nost difficu]t ones to

onsider for most general u:r.ification, but they
a:.e triviatr il'hen we need. onl_y check fcr exis-
tence of ullfj-ers (take any constant function).
Actual-1y we need to compose only tr,vo elenentary
unification processes (ca1l-ed imitation a:rd
projection), wheréas to get most general uni-
fiers Pietrzykovrski and Jensent3 need four, the
other two being the most prol_ific ones indeed.
lkris is because when we consioer a pair such as
f(A1, A2,...,A.) and l(l. , 8",...,B_), '"ve know
sonéthihg defi'riite about'the'structùre of the
coîrmon insta:tce (it must begin wfth an I') and
so we have a rrhandlet' on the unification pro-

Â di-sadvantage of the deraying of u:rifica-
tion is that we may generate clauses whose cons -
.traints cannot be satlsfieo and this is *hl- '

some processi-ng of these constrainis is neces-
sary. In marry cases r,ve vrilf know a most general
unifier of some constraint and this uni-fier
should be applied to the clause. In other cases
we may know that no substitution wi-l1 unify the
constraints, and. then lve should. delete the
clause. &rere is a trade-off here in the a_nount
of unifying vrhile searchi-ng vrhich shoufd be ctone.

Autonatic theorem provi_ng is r-rndoubted.l:r
more d.ifficult here tha::. in first-oroer logic.
However our higher-orc.er language permits us
to state na^z'ry theorems in a more concj_se u'sy,
and refutations tend to be a lot shorter. For
instarrce, in ou:' sxarnples, we used set varia-
bles in a very natural y/ay (using their charac-
teristic predicates). We could get a|.l the
properties of 6 vrith applica.ti_on, of comple-

mentation wi-th -l arrd of rrnion lvi-th V . Àlso the
abstraction mechanism of À-calculus replaces j_n
a nice way cumbersome comprehension axioms.

However we night stil_l- need. use some axioms
of descriptions, to assert the existence of
certain functions :

sr vpl (s !x p(x) ) = p(i(p) ) ] .

\'/hen we need. to substitute non-atomic propo-
si-tions for predicate varj_ables (vj_a splitting)
refutations tend to become messy and unnatural,
Trre sys tem should be improved on this point,
maybe by replacing splitting by rules closer to
natural deduction. Tris vrould al_so al1ow us to
get rid of the initial reduction tc clause form,
vrhich is not always desirable, and to use well-
knouryr. techniques to decrease the coroplexity of
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refutations (hnstt ). Only then can we hope to'
deal viith proofs by induction in a satisfactory
WaY. i

fn concluslon, we have presented in this
paper a system of loglc lvhlch is a generaliza-
tion to Clirurchrs tlæe thecry of Robinsonrs reso-
J-ution. tLrls system seems wel-l- suited to mecha-
njz:-ng proofs which require complex substituti-
ticns for function variables, as shotm 1n a felv
hand-simul-atecl examples. Substitutj-ons on non-
atomic propositions for predicate variabfes are
not dealt vrith in a very satlsfactory way yet,
arid. some improvemen'b is needed. there. Our sys-
tem lrdthout extensional-i-ty is equivalent to
Andrelvst s;ystem. iior,vever it is amenable to auto-
mati-c treatment because the substitution rule
has d-isappeared. Ou.r system with extensionallty
ought to be equivalent to Pietrzykowskits sys-
tem, and it j-s conjectured that it 1s more effi-
cient. À partial- implementation is i-n progress
at IRIA, mechanizing constrained resolutlon ;

without splitting. Tne emphasis will be put on
the heuristic rules for processing constraints
ciuring the refutation.

;
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