
Design of the next 7OO Proof Assistants

Gérard H uet

Pro_let Coq

INRIA Rocquencourt

ffirN*I.a E6
[FLoc - Rutgers - July 28th 1ee6 - 1]

PLAN

. General Design Issues

o Zippers

o Bôhm Trees

o Mathematics modelling

ffitN.*"I.a E6 [FLoc - Rutgers - Juty 28th tss6 - 2l

General Design Issues

o Why yet another proof assistant?

o Overa ll arch itectu re

ffitN.xI.a U
I FLoc - Rutgers - Jury 28th 19e6 - 3]

A few popular proof assistants

o ACL2
I

o LCF-HOL

O NUPRL

o PVS

o rMPS / ff iz &R

o Isa belle

o Coq-Atf-Lego

i oB

o Elf

o LP, etc etc

ffirN*"I.a E6 [FLoc - Rutgers - Juty 28th 1ee6 - 4l

YAPA?

o Who will use it?

For what concrete Purpose?

What is the comPetition?

o How could we share the efFort?

ffirN.xI.a E6 [FLoc - Rutgers - Jury 28th 1ee6 - 5]

Example 1 : proof trees

o Should one keep proof trees around?

+ Program extraction

+ Self-certified mobile code

+ Auditing proofs in natural language

Size vs Speed

Decision procedures, rewriting

ffitN.&I.a E6 [FLoc - Rutgers - July 28th 1ee6 - 6]

Example 2: libraries

o What should the library structure be?

o Modularity, Naming

o Search for relevant lemmas

o Phase distinction

o Dependency analysis

o Sharing with other sites

o Version ma nagement

o Sharing with other provers (qf D!)

ffitN.*"I.a Eô I FLoC - Rutgers - July 28th 1996 - 7]

Overa I I arch itectu re

o Logical Framework

o Algorith ms

o Programmability

o User interface

o User-defined notation?

o Shared data base of proven facts

o User assistance

o Software eng ineering , tools

o Will it scale up?

W/N RIA E6
[FLoc - Rutgers - Jury 28th 1ee6 - 8]

I got this in the mail today

The following articles are submitted to the Mizar Mathemat-
ical Library:

1. Piotr Rudnicki and Andrzej Trybulec submitted an article
entitled: "on the compositions of macro instructions"

2. Yatsu ka N a ka m u ra a nd And rzej Trybu lec su bm itted arti-
cles entitled: "Some Topological Properties of Cells in p2
and "The First Part of Jordan's Theorem for Special poly-
gons"

3. Noriko Asamoto, Yatsuka Nakamura, piotr Rudnicki
and And rzej Trybulec submitted articles entitled: " On the
compositions of macro instructions, Part II" and " on the
compositions of macro instructions, Part III"

The preprints of the above articles are available at:

http : / /mat}r-. uw. bialystok .pL/ -Form. Math/Preprints

Czeslaw Bylinski
Library committee of the Association of Mizar Users

ft(r N.xI"a 'Ëô
[FLoC - Rutgers - Juty 28th 1ee6 - e]

Abstract Syntax

Any implementer of a proof assistant, a programming envi-
ronment, or a formal computation system, is faced early on
with the problem of designing an abstract syntax framework.
Typical concerns are:

o well-formedness wrt arities of operators

o list structures

o bind ing operators, loca I defin itions

o recu rsion

Usual solutions are:

o LISP

o free algebras + lists

o pure À-calculus

.. À-n lAutomath lElf
ffitN.xI"a E6 [FLoC - Rutgers - Jury 28th 1ee6 - 10]

Managing the state

o Version ma nagement

o Dumps, Saves, Updates

o Global context

o Undo

o Pragmas and flags

o Clicking, structure editing

o Notation

o Applicative structu res vs Destructive ed iting

ft{ r N.*"1.a E6 [FLoc - Rutgers - July 28th leeo - 11]

The zipper data structure

o Mentor

,o Applicative arrays

. Emacs

o hierarchical local Turing machine

ffitN.*"I"a E6
[FLoc - Rutgers - Jury 28th 1ee6 - 12]

The zipper type

type tree =
Item of int

I Section of tree list; ;

type path =
ToP

I Node of path * tree list * tree list; ;

type location = Loc of tree * path;;

Node(p,I,r) contains the father path p, its left I and right r
brother trees- Note: a path has brother trees, uncle trees,
great-uncle trees, etc But its father is a path, not a tree like
in Mentor's tree processor.

ffitN.*I"a E6
[FLoC - Rutsers - July 28th 1ee6 - 13]

Updating and Inserting in a zipper

let change (Loc(-,p)) t = Loc(t,p);;

l-et insert-left (Loc(t,p)) t' = match p with
ToP >

I lrlode(up,left,right) -> Loc(t',Node(up,left,t : :right)) ; ;

ffitN.*"I"a E6 [FLoc - Rutgers - July 28th 1ee6 - 14]

,d

j
t\
l

I

I
,

aa'

Navigating in a zipper

let left (Loc(t,p)) = match p with
ToP >

I Node(up,I: :left,right) >

I_ >

let down (Loc(t,p)) = match t with
Item(_) >

I Section(t1 : : trees) >

|_ >

let up (Loc (t , p)) = match p with
ToP >

I Noae (up, left , right) ->
Loc(Section(concat (t: :right) tett) ,up) ; ;

ft(r N.*,1"a E6
[FLoc - Rutgers - Jury 28th rsso - rs]

Scoping and para meterization

(À-ca lcu lus issues)

o naming of variables

o non-locality of B-rule

. def in itions

. recu rsion

. a pproximations

o proof search

ffitN.*"I"a E6 [FLoC - Rutgers - July 28th leeo - 16]

Bi nd i n g / Scopi ng/ N a mi ng

A perplexing state of afFairs.

. a-conversion

o de BruUn indexes

o com binators

o M iller patterns

o Pfenning HOAS

o Ta lcott bind ing structu res

. Pollack's meta-theory of LEGO

o Explicit su bstitutions

W/N RIA E6 [FLoc - Rutgers - July 28th 1ee6 - 17]

Explicit su bstitutions

o Abadi Cardelli Curien Lévy

o Hardin Lévy

o Lescanne; Rios; Kamareddine

. Mufroz

o Dowek Hardin Kirchner

o etc

ffitN.*"I.a E6 [FLoc - Rurgers - Jury 28th 1e96 - 18]

Sharing

. Dags (UNIX links, TRS, etc)

o À-ca lcu lus

+ Wadsworth

+ LévY

+ Lamping

+ Gonthier l
o Sharing modulo computing

+ symbolic link

+ U RL book .ps.gz

+ BDDs

+ Sharing substitutions

ffitN.*"I"a E6 [FLoc - Rutgers - July 28th].ee6 - 1e l

An notations

Annotations are essential. They represent points of view. It
should be possible to add new annotations without changing
the type of the core structu re, a nd without d istu rba nce for
processes unconcerned by this point of view.

OO solution? Methods for copying, moving, etc. Chet's
OO-engine f9r adding judgements to Coq's engine.

There are''à 'num ber of featu res to be added to ou r theory
in order to meet long term goals. These include:

(1) annotations;

(2) generic tools for structure walking, matching and unifi-
cation; a nd

(3) representation of binding structures in terms of mutable
structu res.

(C. Talcott)

ffirN.xI"a EÉ [FLoc - Rutgers - July 28th 1ee6 - 20]

Constraints, unification

Constraints are essential for delaying the search for existen-
cia ls.

o Constr{in}O resolution
\)

o Prolog

o Type reconstruction

o Floating universes

o Linear arithfnetic

ffitN.*"IA E6
[FLoC - Rutgers - July 28th 1ee6 - 21]

À-terms vs Bôhm trees

.\ \ut'\uz'(("r uz) \ug'us)
I

\ ut u2 ' ut(uz, \ u3 ' ue)

Èêad normal forms vs unsolvables

À,r u2...'t-Ln' u;(Ttr ...rTp)

Separability: Bôhm's theorem.

W INRIA EÉ [FLoc - Rutgers - July 28th 1,ss6 - 22]

Curry-Howard for Sequent Calculus

Proof checking is usually explained on natural deduction for-
mulations, for which (typed) À-calculus is relevant, by the
Curry-Howard isomorphism. However, proof search usually
corresponds to a sequent calculus structure. This introduces
cumbersome translations between the proof trees associated
to tactics computations, and the proof terms stored as À-
terms j ustif ications.

However, it is possible to constra in seq uent ca lcu lus deriva-
tions as Bôhm trees. This is actually implicit from Howard,
and was exactly identified in H. Herbetin's À-calculus in his
thesis "Séquents qu'on calcule" (Paris 7, jan. 95). It uses
a "stoup-ed" notion of sequent, like in Girard's LU.

ffitN.*I"a I FLoC - Rutgers - July 28th 1996 - 23]

Cut-free LJT

+ right , =':oi.'"= À
f-; F A+ B

. r,A;Al BContr , ffi Headf

--+ left :

l-;FA f;BlC
f;A+BlC

Axiom : r.,A"A nil

Thus the term U Mt... Mn) is coded as (. (U Mr) M27... M*)
in À-calculus, and f lMti M2,... Mnl in À-calculus, the type-
free structure underlying LJT. Note that the stoup contains
the head variable.

Intros; Apply f .

ffitN.xI.a Et I FLoc - Rutgers - July 28th Lss6 - 241

Typing Bôhm trees

When we use Bôhm trees to represent proofs in some logical
framework, these trees have types corresponding to formulas
(or more generally judgements) of this framework. But we
want not to be forced at construction of the abstract syntax
trees representing partial proof attempts to be obliged to
enforce the possibly complex type maintenance.

On the other side of the spectrum, w€ may consider a Bôhm
tree as just an untyped À-term, i.e. an element of some
domain D verifying some isomorphism D t!' ID -> D]. Con-
sistency in the sense of equational logic is just requiring that
D be non-trivial.

ft(r N.xl"a E6
[FLoc - Rutsers - July 28th 1ee6 - 2s]

More on typing Bôhm trees

Somewhere in between we may type solvable Bôhm trees,
of the form:

\ ut u2...'tLn' u(Tt, ...rTp)

by their shape (-,n - p), consisting of the pair head (-)
and difFerential arity (n - p). For a closed tree, rn :'u,ftt and
then the head indicates the index of sequentiality k, whereas
the difFerential arity is a kind of coercion specification. The
shape may be read as a type Dn + D klpl, specifying: this
term is a functional value in Dn + D, whenever its main
argument æp is coerced to a functional value in Dp + D.
Note that this type is invariant by th€ 4 rule, and thus makes
sense as a partition of the extensional model Dca.

ft(t N.*"1"a '86
[FLoC - Rutgers - Jury 28th rss6 - 26]

Systems of g uarded com binators

Definitions. We assume given two disjoint.denumerable al-
phabets of symbols: X: {Xr,X2,...} is the set of combina'
forsymbols,l,{ -- {ut,u2,...} is the set of parameter symbols.
Intuitively, combinators name Bôhm trees, whereas parame-
ters name bound À-variables.

We call Bôhm tree presentation with respect to these two al-
phabets any denumerable system of equations: t : {Et,82, ...},
with

E6 . X6 u1 u2...r1ni '- 11,ki(Mt,..., Mpt)

where 1 < k6 1n;, O 4 p;, X; e X, and
for Yj 1 p; Mj : Xq'(rt, ...,ut6,i)

with L < kt,j S nt and {rt,...,uli,j} Ç {"r,,...,uni} çU.

We assume furthermore the system to be deterministic, in
the sense that every X € N possesses at most one defining
equation in t. We say that it is total when every X € X
possesses exactly one defining equation in t.

ffitN.x!"a EÉ
[FLoc - Rutgers - July 28th 7ss6 - 27]

Exa m ples

We remark that Bôhm tree presentations are general enough
to represent arbitrary families of finitely generated Bôhm
trees, which is enough for instance to represent the Bôhm
trees of any À-terms. But they permit to do more, in that
we may represent dags and looping structures. For instance,
the À-term in normal form \ut uz.(ut),u.(u u)),u-u) may
be presented as X in the system

X ut u2 l- u1(D, I)
D u '- u(I(u))
I ru :- rt)

with sharing of combinator /.

Whereas the single equation Z u .- u(Z) defines as Z the
infinite tree Àut . u1(),u2 . u2(..))

ffirN.xI.a I FLoC - Rutgers - July 28th 1996 - 28]

Other exa m ples

Another example is the fixpoint combinator Y, with

Y f :: fVU))

Still another example, also denoting an infinite Bôhm tree, is
J presented by the system: J * a:: *(l(A)). It is the Bôhm
tree of À-term (Y

^j
),r,),y (æ (j s))), for Y any fixpoint

combinator such as Curry's.

Remark that recursion is natural and more canonical, and
that computation is more local than B-reduction. Also de-
finedness is atomic.

ft(r N.*"1.a E6 [FLoc - Rutgers - July 28th leeo - 2e]

Regular Bôhm trees

Definition. We call regular any finite Bôhm tree presenta-
tion. S uc.h presentations define Bôh m trees wh ich are reg u-
lar in the sense of admitting only a finite number of distinct
subtrees, up to variable renaming.

Theorem. It is decidable whether t I M - l'r for any regular
t and simple expressions M and

^f
.

(For a ppropriate notions F a nd sim ple) .

ffirN.xI"a I FLoC - Rutgers - July 28th 1996 - 30]

Other issues

From À-calculus to Bôhm trees to Automath to Coq...

Constants. Let or A-T pairs or A-T couples. Other judge-
ments. Structu re of the context. Sections, Parag ra phs,
Mlodules. Meta-variables. Unification. Constraints.

Control of totality.

Control of u nfold ing , opacity, a bstraction.

Tactics'

W/NRIA E6 [FLoc - Rutgers - Juty 2eth 1ee6 - 31]

Ind uction

Should induction be primitive (Martin-Lôf) or axiomatised
(Isa b el le) ?

Four properties of inductive types.

o Closed: no junk

o Free: no confusion

o Ind uction : f in itely generated .

. Dependance: elimination by pattern-matching.

Guarded general recursion vs primitive recursion.

ffitN.xI.a E6 [FLoc - Rutgers - July 28th leeo - 32]

How powerful should the framework be?

In other words, how much mathematical knowledge should
be internalized in the proof assistant? E.g. equality, induc-
tion, SUbstitution, sharing, decision procedures.

The more we add, the less we may share developments.

Extreme view: PRA as the framework.

Ref lexion.

Bootstra pping .

E6 [FLoc - Rutgers - Juty 28th leeo - 33]WlNRIA

Mathematics modelling

Mathematics is rigorous knowledge representation. It com-
bines com putation in concrete structu res with a bstract rea-
son ing in log ica I systems.

There are historically 4 generations of computerized math-
ematics:

1 com puters

2 programming languages

3 symbolic computation systems

4 proof-checked forma I mathematics

Proof assistants potentially open the way to the 4tn gen-
eration of computerized mathematics modelling. BUT they
will not replace well understood more eflicient paradigms
of the lower levels: floating point computation, imperative
prog ra m m ing , verif ication of f in ite-state systems by B D D
techniques. The smooth integration of the full range of

puterized mathematics tools is the g reat cha llenge ofcom putenzeo ma

Wi"^iËl'Àears ËÉ
[FLoC - Rutgers - July 28th]ee6 - 34l

