Formal Verification of a Concurrent Bounded Queue in a Weak Memory Model

Glen Mével, Jacques-Henri Jourdan ICFP 2021, online

LMF & Inria Paris

spec and proof for a fine-grained concurrent queue in the weak memory model of Multicore OCaml

spec and proof for a fine-grained concurrent queue in the weak memory model of Multicore OCaml

this talk:

specifying a concurrent data structure under weak memory

spec and proof for a fine-grained concurrent queue in the weak memory model of Multicore OCaml

this talk:

specifying a concurrent data structure under weak memory

specification challenges:

1. shared ownership \Longrightarrow logical atomicity

spec and proof for a fine-grained concurrent queue in the weak memory model of Multicore OCaml

this talk:

specifying a concurrent data structure under weak memory

specification challenges:

- 1. shared ownership \Longrightarrow logical atomicity
- 2. weak memory \Longrightarrow thread synchronization

spec and proof for a fine-grained concurrent queue in the weak memory model of Multicore OCaml

this talk:

specifying a concurrent data structure under weak memory

specification challenges:

- 1. shared ownership \Longrightarrow logical atomicity
- 2. weak memory \implies thread synchronization
 - fine-grained concurrency \implies weaker than lock-based

spec and proof for a fine-grained concurrent queue in the weak memory model of Multicore OCaml

this talk:

specifying a concurrent data structure under weak memory

specification challenges:

- 1. shared ownership \Longrightarrow logical atomicity
- 2. weak memory \implies thread synchronization
 - fine-grained concurrency \implies weaker than lock-based

tool:

Cosmo, our program logic for Multicore OCaml

Sequential queues

$$\begin{cases} \text{True} \\ \text{make ()} \\ \{\lambda q. \text{ lsQueue } q \text{ [}\} \end{cases} \\ \begin{cases} \text{lsQueue } q \text{ [} v_0, \dots, v_{n-1} \text{]} \\ \text{enqueue } q \text{ v} \\ \{\lambda (). \text{ lsQueue } q \text{ [} v_0, \dots, v_{n-1}, v \text{]} \end{cases}$$

$$\begin{cases} \text{IsQueue } q \ [v_0, ..., v_{n-1}] \\ \text{dequeue } q \end{cases}$$

$$\left\{ \lambda v. \ 1 \leq n \ * \ v = v_0 \ * \ \mathsf{lsQueue} \ q \ [v_1, ..., v_{n-1}]
ight\}$$

$$\begin{cases} \text{True} \\ \text{make ()} \\ \{\lambda q. \text{ lsQueue } q \text{ []} \} \end{cases} \begin{cases} \text{lsQueue } q \text{ [} v_0, \dots, v_{n-1} \text{]} \\ \text{enqueue } q \text{ v} \\ \{\lambda(). \text{ lsQueue } q \text{ [} v_0, \dots, v_{n-1}, v \text{]} \} \end{cases}$$

$$\begin{cases} \text{IsQueue } q \ [v_0, ..., v_{n-1}] \\ \text{dequeue } q \end{cases}$$

$$ig\{\lambda v. \ 1 \leq n \ * \ v = v_0 \ * \ \mathsf{IsQueue} \ q \ [v_1, ..., v_{n-1}]ig\}$$

$$\begin{cases} \text{True} \\ \text{make ()} \\ \\ \left\{ \lambda q. \text{ lsQueue } q \text{ [} \right\} \end{cases} \\ \begin{cases} \text{lsQueue } q \text{ [} v_0, \dots, v_{n-1} \text{]} \\ \text{enqueue } q \text{ v} \\ \\ \left\{ \lambda (). \text{ lsQueue } q \text{ [} v_0, \dots, v_{n-1}, v \text{]} \right\} \end{cases}$$

$$\left\{ \text{IsQueue } q \; [v_0, ..., v_{n-1}] \right\}$$

dequeue q

$$\left\{ \lambda v. \ 1 \leq n \ * \ v = v_0 \ * \ \mathsf{lsQueue} \ q \ [v_1, ..., v_{n-1}]
ight\}$$

$$\begin{cases} \text{True} \\ \text{make ()} \\ \{\lambda q. \text{ lsQueue } q \text{ [}\} \end{cases} \\ \begin{cases} \text{lsQueue } q \text{ [} v_0, \dots, v_{n-1} \text{]} \\ \text{enqueue } q \text{ v} \\ \{\lambda (). \text{ lsQueue } q \text{ [} v_0, \dots, v_{n-1}, v \text{]} \end{cases}$$

$$\left\{ \text{IsQueue } q \left[v_0, ..., v_{n-1} \right] \right\}$$

dequeue q

$$\left\{ \lambda v. \ 1 \leq n \ * \ v = v_0 \ * \ \mathsf{lsQueue} \ q \ [v_1, ..., v_{n-1}]
ight\}$$

Concurrent queues

for now we assume **sequential consistency**:

behaviors of the program are interleavings of its threads

can we keep the sequential spec?

for now we assume **sequential consistency**: behaviors of the program are interleavings of its threads

can we keep the sequential spec? valid, but...

IsQueue q [$v_0, ..., v_{n-1}$] is exclusive \implies effectively no concurrent usage

[in a concurrent separation logic such as Iris]

```
an invariant holds at all times
```

idea: the user shares q in an invariant:

$$I \triangleq \exists n, v_0, ..., v_{n-1}$$
. IsQueue $q [v_0, ..., v_{n-1}]$

the invariant owns q

[in a concurrent separation logic such as Iris]

```
an invariant holds at all times
```

idea: the user shares q in an invariant:

$$I \triangleq \exists n, v_0, ..., v_{n-1}$$
. IsQueue $q [v_0, ..., v_{n-1}]$

the invariant owns q

[in a concurrent separation logic such as Iris]

an invariant holds at all times

idea: the user shares q in an invariant:

 $I \triangleq \exists n, v_0, ..., v_{n-1}$. IsQueue $q [v_0, ..., v_{n-1}] * R [v_0, ..., v_{n-1}]$

the invariant owns q

[in a concurrent separation logic such as Iris]

an invariant holds at all times

idea: the user shares q in an invariant:

$$I \triangleq \exists n, v_0, ..., v_{n-1}$$
. IsQueue $q [v_0, ..., v_{n-1}] * R [v_0, ..., v_{n-1}]$

the invariant owns q

anyone can access q by "opening" 1: $\{P \neq I\} \in \{I \neq O\}$ I is an invariant of completes in one step

$$\frac{P * I e \{I * Q\}}{\{P\} e \{Q\}}$$
 I is an invariant *e* completes in one step

[in a concurrent separation logic such as Iris]

an invariant holds at all times

idea: the user shares q in an invariant:

$$I \triangleq \exists n, v_0, ..., v_{n-1}$$
. IsQueue $q [v_0, ..., v_{n-1}] * R [v_0, ..., v_{n-1}]$

the invariant owns q

anyone can access q by "opening" I:

 $\frac{\{P * I\} e \{I * Q\}}{\{P\} e \{Q\}}$ *I* is an invariant *e* completes in one step $\{P\} e \{Q\}$

[in a concurrent separation logic such as Iris]

an invariant holds at all times

idea: the user shares q in an invariant:

$$I \triangleq \exists n, v_0, ..., v_{n-1}$$
. IsQueue $q [v_0, ..., v_{n-1}] * R [v_0, ..., v_{n-1}]$

the invariant owns q

anyone can access q by "opening" I: $\{P * I\} e \{I * Q\}$ I is an invariant e completes in one step

$$\frac{\{r \in Q\}}{\{P\} \in \{Q\}}$$

logically atomic triples are triples $\langle \cdot \rangle \cdot \langle \cdot \rangle$ such that:

$$\frac{\langle P \rangle e \langle Q \rangle}{\{P\} e \{Q\}} \qquad \qquad \frac{\langle P * I \rangle e \langle I * Q \rangle \quad I \text{ is an invariant}}{\langle P \rangle e \langle Q \rangle}$$

logically atomic triples are triples $\langle \cdot \rangle \cdot \langle \cdot \rangle$ such that:

$$\frac{\langle P \rangle e \langle Q \rangle}{\{P\} e \{Q\}} \qquad \qquad \frac{\langle P * I \rangle e \langle I * Q \rangle \quad I \text{ is an invariant}}{\langle P \rangle e \langle Q \rangle}$$

tells that e behaves "atomically"

logically atomic triples are triples $\langle \cdot \rangle \cdot \langle \cdot \rangle$ such that:

$$\frac{\langle P \rangle e \langle Q \rangle}{\{P\} e \{Q\}} \qquad \qquad \frac{\langle P * I \rangle e \langle I * Q \rangle \quad I \text{ is an invariant}}{\langle P \rangle e \langle Q \rangle}$$

tells that e behaves "atomically"

intuition: e takes a step which satisfies $\{P\} \cdot \{Q\}$ (\implies related to linearizability)

logically atomic triples are triples $\langle \cdot \rangle \cdot \langle \cdot \rangle$ such that:

$$\frac{\langle x.P \rangle e \langle Q \rangle}{\forall x. \{P\} e \{Q\}} \qquad \qquad \frac{\langle x.P * I \rangle e \langle I * Q \rangle \quad I \text{ is an invariant}}{\langle x.P \rangle e \langle Q \rangle}$$

tells that *e* behaves "atomically"

intuition: e takes a step which satisfies $\forall x. \{P\} \cdot \{Q\}$ (\implies related to linearizability)

x binds things which are known only during that step

$$\begin{cases} \text{True} \\ \text{make ()} \\ \{\lambda q. \text{ lsQueue } q \text{ []} \} \end{cases} \\ \begin{pmatrix} n, v_0, ..., v_{n-1}. \text{ lsQueue } q \text{ [}v_0, ..., v_{n-1}\text{]} \\ \text{enqueue } q \text{ v} \\ \{\lambda (). \text{ lsQueue } q \text{ [}v_0, ..., v_{n-1}, v\text{]} \end{pmatrix}$$

$$\langle n, v_0, ..., v_{n-1}$$
. IsQueue q $[v_0, ..., v_{n-1}]$
dequeue q
 $\langle \lambda v. 1 \leq n \ * \ v = v_0 \ *$ IsQueue q $[v_1, ..., v_{n-1}] \rangle$

$$\begin{cases} \text{True} \\ \text{make ()} \\ \{\lambda q. \text{ lsQueue } q \text{ []} \end{cases} \\ \end{cases} \\ \begin{pmatrix} n, v_0, \dots, v_{n-1}. \text{ lsQueue } q \text{ [}v_0, \dots, v_{n-1} \text{]} \\ \text{enqueue } q \text{ v} \\ \{\lambda (). \text{ lsQueue } q \text{ [}v_0, \dots, v_{n-1}, v \text{]} \end{cases}$$

$$\langle n, v_0, ..., v_{n-1}$$
. IsQueue q $[v_0, ..., v_{n-1}]$
dequeue q
 $\langle \lambda v. 1 \leq n \ * \ v = v_0 \ *$ IsQueue q $[v_1, ..., v_{n-1}] \rangle$

$$\begin{cases} \text{True} \\ \text{make ()} \\ \left\{ \lambda q. \text{ lsQueue } q \text{ []} \right\} \end{cases} \begin{pmatrix} n, v_0, \dots, v_{n-1}. \text{ lsQueue } q \text{ [} v_0, \dots, v_{n-1} \text{]} \\ \text{enqueue } q \text{ v} \\ \left\{ \lambda (). \text{ lsQueue } q \text{ [} v_0, \dots, v_{n-1}, v \text{]} \\ \end{pmatrix} \end{cases}$$

$$\begin{cases} \text{True} \\ \text{make ()} \\ \left\{ \lambda q. \text{ IsQueue } q \text{ []} \right\} \end{cases} \begin{pmatrix} n, v_0, ..., v_{n-1}. \text{ IsQueue } q \text{ [}v_0, ..., v_{n-1}\text{]} \\ \text{enqueue } q \text{ v} \\ \left\{ \lambda Q. \text{ IsQueue } q \text{ []} \right\} \end{pmatrix}$$

$$\frac{\langle n, v_0, ..., v_{n-1}. \text{ IsQueue } q \ [v_0, ..., v_{n-1}] \rangle}{\text{dequeue } q}$$
(simplified)
$$\langle \lambda v. 1 < n * v = v_0 * \text{ IsQueue } q \ [v_1, ..., v_{n-1}] \rangle$$

Concurrent queues in weak memory

weak memory models:

each thread has its own view of the state of the shared memory

- example: C11
- example: Multicore OCaml

[Dolan et al, PLDI 2018, Bounding data races in space and time]

operational semantics with thread-local views

weak memory models:

each thread has its own view of the state of the shared memory

- example: C11
- example: Multicore OCaml

[Dolan et al, PLDI 2018, Bounding data races in space and time]

operational semantics with thread-local views

weak memory models:

each thread has its own view of the state of the shared memory

- example: C11
- example: Multicore OCaml

[Dolan et al, PLDI 2018, Bounding data races in space and time]

operational semantics with thread-local views

Cosmo: a program logic for M-OCaml based on this semantics [ICFP 2020]

based on Iris (hence: separation logic, ghost state, invariants)

assertions can be subjective: depend on current (thread's) view

• example: $x \rightsquigarrow 42$

based on Iris (hence: separation logic, ghost state, invariants)

assertions can be subjective: depend on current (thread's) view

• example: $x \rightsquigarrow 42$

 $\begin{array}{l} \mbox{restriction: invariants are available to all threads} \\ \implies \mbox{objective assertions only} \end{array}$

based on Iris (hence: separation logic, ghost state, invariants)

assertions can be subjective: depend on current (thread's) view

• example: $x \rightsquigarrow 42$

 $\begin{array}{l} \mbox{restriction: invariants are available to all threads} \\ \implies \mbox{objective assertions only} \end{array}$

to be specified: IsQueue $q [v_0, ..., v_{n-1}]$ is objective

Synchronizing through the queue?

can we keep the SC spec?

can we keep the SC spec? valid, usable in limited cases, but...

```
let enqueuer q = let dequeuer q =
x[1] \leftarrow 3;
\{x[1] \rightsquigarrow 3\}
enqueue q \times
```

can we keep the SC spec? valid, usable in limited cases, but...

let enqueuer q = let dequeuer q = | let x = array[2] in $x[1] \leftarrow 3;$ $\{x[1] \rightsquigarrow 3\}$ enqueue q x

 $x[1] \rightsquigarrow 3$ is subjective

 \implies cannot be transferred solely with an invariant

can we keep the SC spec? valid, usable in limited cases, but...

let enqueuer q = let dequeuer q = | let x = array[2] in $x[1] \leftarrow 3;$ $\{x[1] \rightsquigarrow 3\}$ enqueue q x

 $x[1] \rightsquigarrow 3$ is subjective

 \Longrightarrow cannot be transferred solely with an invariant

to be specified: dequeuer observes all writes done by enqueuer (\implies "release-acquire" pattern)

a lattice of views (larger = more up-to-date)

a lattice of views (larger = more up-to-date)

new assertions:

- $\uparrow \mathcal{V} \;\; ``the ambient view contains <math display="inline">\mathcal{V} \, `` \Longrightarrow$ subjective
- $P @ \mathcal{V} "P$ where the ambient view has been fixed to $\mathcal{V}" \Longrightarrow$ objective

a lattice of views (larger = more up-to-date)

new assertions:

- $\uparrow \mathcal{V} \;\; ``the ambient view contains <math display="inline">\mathcal{V} \; " \Longrightarrow$ subjective
- $P @ \mathcal{V} "P$ where the ambient view has been fixed to $\mathcal{V}" \Longrightarrow$ objective

splitting rule:

 $P \dashv \exists \mathcal{V}. (\uparrow \mathcal{V} * P @ \mathcal{V})$

a lattice of views (larger = more up-to-date)

new assertions:

- $\uparrow \mathcal{V} \;\; ``the ambient view contains <math display="inline">\mathcal{V} \; " \Longrightarrow$ subjective
- $P @ \mathcal{V} "P$ where the ambient view has been fixed to $\mathcal{V}" \Longrightarrow$ objective shareable via an invariant

splitting rule:

 $P \dashv \vdash \exists \mathcal{V}. (\uparrow \mathcal{V} * P @ \mathcal{V})$

a lattice of views (larger = more up-to-date)

new assertions:

- $\uparrow \mathcal{V} \quad \text{``the ambient view contains } \mathcal{V} `` \Longrightarrow \text{ subjective } \\ \\ \text{transferred via thread synchronization}$
- $P @ \mathcal{V} \quad ``P \text{ where the ambient view has been fixed to } \mathcal{V}'' \Longrightarrow \text{objective shareable via an invariant}$

splitting rule:

 $P \dashv \exists \mathcal{V}. (\uparrow \mathcal{V} * P @ \mathcal{V})$

IsQueue
$$q [v_0, ..., v_{n-1}]$$

the enqueuer pushes its view alongside the enqueued value:

$$\begin{bmatrix} n, v_0 & ,..., v_{n-1} & . \\ & \text{IsQueue } q \begin{bmatrix} v_0 & ,..., v_{n-1} \end{bmatrix} \end{bmatrix}$$
enqueue $q v$

$$\overline{\lambda(). \text{IsQueue } q \begin{bmatrix} v_0 & ,..., v_{n-1} & , v \end{bmatrix}}$$

IsQueue
$$q[(v_0, V_0), ..., (v_{n-1}, V_{n-1})]$$

the enqueuer pushes its view alongside the enqueued value:

$$\begin{bmatrix} n, v_0 & ,..., v_{n-1} & . \\ & \text{IsQueue } q [v_0 & ,..., v_{n-1}] \\ & \text{enqueue } q v \\ \hline \lambda(). \text{ IsQueue } q [v_0 & ,..., v_{n-1} , v] \end{bmatrix}$$

IsQueue
$$q[(v_0, V_0), ..., (v_{n-1}, V_{n-1})]$$

the enqueuer pushes its view alongside the enqueued value:

$$\begin{array}{c} (v_0, \mathcal{V}_0), ..., (v_{n-1}, \mathcal{V}_{n-1}). \\ \\ \text{IsQueue } q \ [(v_0, \mathcal{V}_0), ..., (v_{n-1}, \mathcal{V}_{n-1})] \\ \end{array} \\ * \uparrow \mathcal{V}$$

enqueue q v

 $\overline{\lambda(). \text{ IsQueue } q [(v_0, \mathcal{V}_0), ..., (v_{n-1}, \mathcal{V}_{n-1}), (v, \mathcal{V})]}$

IsQueue $q [(v_0, V_0), ..., (v_{n-1}, V_{n-1})]$

the dequeuer pulls that view:

$$\begin{pmatrix} n, v_0 & ,..., v_{n-1} & .\\ \text{IsQueue } q & [v_0 & , v_1 & ,..., v_{n-1} &] \\ \text{dequeue } q \\ \hline \langle \lambda v. \text{ IsQueue } q & [v_1 & ,..., v_{n-1} &] & * 1 \le n * v = v_0 \rangle$$

IsQueue
$$q [(v_0, V_0), ..., (v_{n-1}, V_{n-1})]$$

the dequeuer pulls that view:

 $\begin{bmatrix} n, (v_0, \mathcal{V}_0), ..., (v_{n-1}, \mathcal{V}_{n-1}). \\ \text{IsQueue } q \ [(v_0, \mathcal{V}_0), (v_1, \mathcal{V}_1), ..., (v_{n-1}, \mathcal{V}_{n-1})] \end{bmatrix}$

dequeue q

 $\left\langle \lambda v. ext{ IsQueue } q \; [(v_1,\mathcal{V}_1),...,(v_{n-1},\mathcal{V}_{n-1})] \; * \; iggat \mathcal{V}_0 \; * \; 1 \leq n \; * \; v = v_0
ight
angle$

refinement spec: "this queue can replace a naïve queue + a lock"

refinement spec: "this queue can replace a naïve queue + a lock"

issue: induces synchronization between all operations

many lock-free queues do not (we try to avoid synchronizations!) \implies they do not satisfy the refinement spec

refinement spec: "this queue can replace a naïve queue + a lock"

issue: induces synchronization between all operations

many lock-free queues do not (we try to avoid synchronizations!) \implies they do not satisfy the refinement spec

our spec is weaker (no guaranteed sync. from dequeuer to enqueuer) \implies covers more lock-free queues

concurrent program verification:

- invariants share resources among threads
- (logical) atomicity is part of specs

concurrent program verification in weak memory:

- invariants share resources among threads
- (logical) atomicity is part of specs
- view transfers express synchronizations, also part of specs

concurrent program verification in weak memory:

- invariants share resources among threads
- (logical) atomicity is part of specs
- view transfers express synchronizations, also part of specs

also in this work:

 proof of a non-trivial lock-free queue (does not refine a lock-based queue w.r.t. sync.)

- proof of a simple client
- machine-checked (Coq, Iris) 🦆

concurrent program verification in weak memory:

- invariants share resources among threads
- (logical) atomicity is part of specs
- view transfers express synchronizations, also part of specs

also in this work:

 proof of a non-trivial lock-free queue (does not refine a lock-based queue w.r.t. sync.)

[a refinement proof in SC: Vindum & Birkedal, 2021, Mechanized Verification of

a Fine-Grained Concurrent Queue from Facebook's Folly Library]

- proof of a simple client
- machine-checked (Coq, Iris) 🦆