OCaml + XDuce

Alain Frisch
INRIA Rocquencourt
Alain.Frisch@inria.fr

January 2006

Abstract need to deal with XML but which are not necessarily focused
on XML.

This paper presents the core type system and type inferenc& he challenge was to combine two type checkers of very dif-
algorithm of OCamlDuce, a merger between OCaml and ferent natures while preserving as much as possible the best
XDuce. The challenge was to combine two type checkers properties of both (principality and automatic type recon-
of very different natures while preserving the best proper- struction on one side; very precise types and implicit sub-
ties of both (principality and automatic type reconstruction typing on the other side).
on one side; very precise types and implicit subtyping on the
other side). Type inference can be described by two succe-Our main guideline was to design a type system which can be
sive passes: the first one is an ML-like unification-based al- implemented by reusing existing implementations of OCaml
gorithm which also extracts data flow constraints about XML and CDuce [BCF03, Fri04]. (CDuce can be seen as a di-
values; the second one is an XDuce-like algorithm which alect of XDuce with first-class and overloaded functions —
computes XML types in a direct way. An optional prepro- for the merger with OCaml, we don’t consider these extra
cessing pass, called strenghtening, can be added to alloweatures). Because of the complexity of OCaml's type sys-
more implicit use of XML subtyping. This pass is also very tem, it was out of question to reimplement it. The typing
similar to an ML type checker. algorithm we describe in this paper has been successfully im-
plemented simply by combining a slightly modified OCaml
type checker with the CDuce type checker, and by adding
some glue code. As a result, OCamlIDuce is a strict exten-
i sion of OCaml: programs which don't use the new features
1 Introduction will be treated exactly the same by OCaml and OCamiIDuce.
It is thus possible to compile any existing OCaml library

This paper presents the core type system of OCamiDuce, awith OCamliDuce. Also, we believe our modifications to the
merger between OCaml {t01] and XDuce [Hos00, HPoo, OCaml compiler are small enough to make it easy to main-
HP03, HVP00]. OCamliDuce source code, documentation tain OCamlDuce in sync with future evolutions of OCaml.

and sample applications are available htp://www. Our experience so far confirms that.

cduce.org/ocaml e .
g Another guideline in the design of OCamlDuce was that

OCaml is a widely-used general-purpose multi-paradigm XDuce programs should be easily translatable to OCaml-
programming language with automatic type reconstruction Duce in a mechanical way. In XDuce, all the functions are
based on unification techniques. XDuce is a domain specificdefined at the toplevel and comes with an explicit signa-
and type-safe functional language adapted to writing trans- ture. We can obtain an OCamlIDuce program by some mi-
formations of XML documents. It comes with a very precise Nor syntactical modifications (the new constructions in the
and flexible type system based on regular expression typeda@nguage are delimited to avoid grammatical overloading of
and a natural notion of subtyping. The basic type-checking notations). Explicit function signatures are simply translated
primitives for XDuce constructions are rather involved, but 0 type annotations.

the structure of the type checker is simple: types are com-
puted in a bottom-up way along the abstract syntax tree; the
input and output types of functions are explicitly provided by
the programmer. The high-level objective of the OCamlDuce
project is to enrich OCaml with XDuce features in order to
provide a robust development platform for applications that

The design goals pushed us into the direction of simplicity.
We choosed to segregate XDuce values from regular ML val-
ues. Of course, a constructed ML value can contain nested
XDuce values, but from the point of view of ML, XDuce
values are black boxes, and similarly for types. Also, we de-

cided not to have parametric polymorphism on XDuce types.
A type variable can of course be instantiated to an XDuce
type (or to a type which contains a nested XDuce type), but
it is not possible to force a generalized variable to be instan-
tiated only to XDuce types or to use a type variable within an

XDuce type. The technical presentation introduces a notion Double curly-brace§...}}

of foreign type variables, but they are nothing more than a
technical device for inferring ground XDuce types.

Overview In Section 2, we give some intuitions about the
behavior of OCamlIDuce’s type-checker.

The formalization of the type system will be developped
by abstracting away from details about XDuce. In Sec-
tion 3, we introduce an abstract notion ettension(for-

eign types and foreign operators) and show of XDuce can

be seen as an extension. In Section 4, we present the type-
system and type inference algorithm for a calculus made of

ML [Mil78, Dam85] plus an arbitrary extension. The basic
idea is to rely on standard techniques for ML type inference.
Indeed, we start from a type system which is an instance
of ML where foreign types are considered as atomic types
and foreign operators are explicitly annotated with their in-
put and output types. Then we present an algorithinfr

The exemple is intended to illustrate the use of the OCaml
type checker to perform a data-flow analysis of XML values,
and also how OCaml features (here, higher-order functions
and data-structures) interact with XDuce features.

are used in OCamlDuce only

to avoid ambiguities in the grammar; they carry no typing
information. For instance, the symb@used for list con-
catenation in OCaml is re-used for denote XML sequence
concatenation. Similarly, the square bracket$ are
used both to denote OCaml list literals (whose elements are
separated by semi-colons) and XML sequences literals when
used within double curly braces (their elements are separated
by whitespace). XML element literals are written in the form
<tag>content

The first line of the program above declares a function
f which consists of an XML pattern matching on its ar-
gument, with a single branch. The XML pattem =

[(yu<a>_ | O* 1] extracts from an XML sequence
all the elements with a taga> and put them (in order) in the
capture variable/. The function is then used twice, includ-
ing once indirectly through a call to the functibist. map

(from the OCaml standard library) of typey, 5.(a —) —
alist — [1list. For the purpose of explaining type-
checking, we will rewrite the body of the functidnas:

these annotations. This algorithm is described as two suc-
cessive passes: the first one is a slightly modified version of
an ML type-checker, and the second one is a simple forwardlet f x =
computation on foreign types. let y = match[y;p](x) in

{yoeyh

In Section 5, we present a preprocessing pass, called

strengthening, whose purpose is to make more programs ac-
cepted by the type system by allowing implicit use of sub- They andp parameters of thmatch operator represent the

typing.

capture variable under consideration and the pattern itself.

In Section 6, we present other details of the concrete integra-I" ©CamiDuce, XML values (elements, sequences, ...) and

tion in OCaml. In Section 7, we compare our approach to
related works.

2 Anexample

In this section, we illustrate the behavior of OCamlDuce’s
type-checker on the following code snippet:

let f x match x with

fly<a>_ | IR >{y@y}
let z1 =

f{{ [<a>[] [] <a>[[]] | }}
let z2 =

List.map f

[{ [<a>[<a>[l]] I
{ [<a>[<c>l] T}]

regular OCaml values are kept appart. An XML value can of
course appear as part of an OCaml value (e.g. the XML ele-
ments which are put into an OCaml list), but an OCaml value
cannot appear within an XML value. The same applies to
types: an XML type can appear as part of a complex OCaml
type expression, but the converse is impossible. XML op-
erators can be applied to XML values and return new XML
values. In the example, we can see three kind of XML oper-
ators: XML literals (no argument), XML concatenation (two
arguments), and XML pattern matching (one argument).

The basic idea of the OCamlDuce type system is to infer
XML types for the inputs and outputs of XML operators.
This is done by introducing internally a new kind of type
variables, called XML type variables. Before proper type-
checking starts, each XML operator used in the program is
annotated with fresh XML type variables (in subscript po-
sition for the inputs, and in superscript position for the out-
puts):

let f x = The set of constraints generates dependencies between vari-

let y = match[y;p] 2(x) in ables. We say that a variable on a left-hand side of a con-
{fy@z,vyh straint depends on variables of the right-hand side. In our
let z1 = example, the graph of dependencies between variables is
f{{ [<a>[] []] <a>[[]]] 6 1} acyclic. In this case, we can topologically order the vari-
let z2 = ables and find the least possible ground XML type for each
Listmap f of them: we assign to a variable the union of all its lower
[{ [<e>[<a>[]]] Y bounds. In the example, we will thus compute the following
{ [<a>[<c>[]]] s 1}] instantiation:

The regular OCaml type-checker is then applied. It gives to
each XML operator an arrow type following the annotations

and then proceeds as usual (generalizes typks ofbound u = [R1]

identifiers, instantiates ML type-schemes when an identifier tz = matchly;p]([R1]) =[R2]

is used, and performs unifications to make type compatible). 15 = 1@ =[R2 R2]

For instance, the concatenation operator in our example iswhere — R1 is the regular epxression
given the typas — 14 — 5, and the type-checker performs ~ (<@>[I[]<a>[[]])|<a>[<a>[]|<c>[]]]

the following unifications:.; = 13 = 14 (the type fory), and R2 is the regular expression
11 = 16 = 17 = Lz (the type for the argument df). Italso (<@>[l<a>[[]])|<a>[<a>[]|<c>[]]

roduces the following types for the top-level identifiers:
P abp P Type-checking is over: we have found an instantiation for

val f 1 — L XML type variables which satisfies all the constraints. In
val z1 : 5 essence, the type-checker has collected all the XML types
val z2 : 5 list that can flow to the input of the function, and then type-

checked the body of the function with the union of all these
Of course, we must still instantiate the XML type variables types. In general, the OCaml type-checker is used to infer the
with ground XML types. Each occurence of an XML op- data flow of XML values in the programs. The way to solve
erator in the program gives one constraint on the instantia-the resulting set of constraints by forward computation cor-

tion. Indeed, we can interpret eagkary operator as as- responds roughly to the structure of the XDuce type-checker.
ary function from XML types to XML types. If we choose

11 andis as representatives for their classes of equivalence

modulo unification, the program is: Implicit subtyping Let's see what happens if we add an
let f x = explicit type constraint forl:
let y = matchly;p] 2(X) in let z1 : {{[<a> * I} =
Iet{{z 1y @3, Yyh f { [<a>[] [] <a>[[]] 1 }
f { [<a>[] [] <a>[[]]] “u The algorithm described above will infer a much less precise
let z2 = type forz2 as well, which is unfortunate. The reason is that
Listmap f the OCaml type-checker unifies with [<a>_*] . Ba-
[{ [<a>[<a>[]]] “ayy, sically, the unification-based type system forgets about the
{ [<a>[<c>[]]] “a 3] direction of the data flow. There is some dose of implicit
subtyping in the algorithm, but only for the result of XML
from which we read the following constraints: operators (because of the way we interpet them as subtyping
12 > matchly;p] (1) - not equality - constraints).
25 i E2<@a2>[] [<a>[[]] In order to address this lack of implicit subtyping, we use
Li > [<a>[<a>[]] a preprocessing pass whose purpose is to detect which sub-
’ > [<a>[<c>[]] expressions are of kind XML and to introduce around them a

_ _ _ special unary XML operatdd which behaves semantically
In this system, we considematchly;p] as a function asthe identity, but allows subtyping. This preprocessing pass

from XML types to XML types, given by XDuce's type in- would rewrite the definition forl as:
ference algorithm for pattern matching. Similarly, the oper-

ator @is now intrepreted as a function from pair of typesto let z1 : {{[<a>_* [}} =
types. id j2o(f {{[<a>[] [] <a>[[]]] “1)

The variable.y will then be unified withes and ¢;g with
[<a> *] The additional constraint corresponding to
theid operator is thus simply:

[<a>*] =

which is satisfied by the same instantiation fgras in the
original example. As a consequence, the typezidris not
changed.

The preprocessing pass is quite simple. It consists of an-

other run of the OCaml type-checker, where all the XML
types are considered equal. This allows to identify which
sub-expressions are of kind XML. Section 5 describes for-
mally this pass.

Breaking cycles The key condition which allowed us to
compute an instantiation for XML type variables in the ex-
ample was the acyclicity of the constraints. This property

does not always hold. For instance, let's extend the original

example with the following definition:

let z3 = f z1

3 Abstract extension of ML

The previous section explained the behavior of OCaml-
Duce’s type checker on a example. It should be clear from
this example that the type system is largely independent of
the actual definitions of values, types, patterns and opera-
tors from XDuce and could be applied to other extensions
of OCaml as well. In this section, we will thus introduce an
abstract notion of extension and show how XDuce fits into
this notion. This more abstract presentation should help the
reader to understand the structure of the type checker, with-
out having to care about the details of XDuce type system.

Definition 1. AnextensionX is defined by:

e a set of ground foreign types;

e a subtyping relation< on 7', which is a partial order
with a finite least-upper bound operator

e a set of foreign operator®;

o for each operatob € O: an arityn > 0 and an ab-
stract semanticé : 7™ — 7 which is monotone with
respect to< on each of its argument.

We use the meta-variable to range over ground foreign
types. The foreign operators are used to model both foreign

Without the preprocessing pass mentionned above, this linevalue constructors and operations on these foreign values.

would force the OCaml type-checker to unifyand:s. The
preprocessing pass actually replaces this definition by:

let z3 = fid !'2(z1)

L11

The type-checker then unifieg, with .5 andiq5 with ¢1; the
resulting constraint foid is thus:

L1 2 L5

which corresponds to the fact that the outpuf ofan flow

back to its input. We observe that the set of constraints has

now a cycle between variablg, 15 andes.

Our type-system cannot deal with such a situation. It would
issue an error explaining that the inferred data flow on XML

values has a cycle. The programmer is then required to break

explicitly this cycle by providing more type annotations. For

instance, the programmer could use the same annotation a

above orel:

let z1 : {{[<a>_* [}} =
f{ [<a>] [] <a>[[]]] }}

or maybe he will prefer to annotate the input or output type
of f.

Since we are not going to formalize dynamic semantics, we
don’t need to distinguish between these two kinds of opera-
tors.

The monotonicity requirement on the abstract semantics en-
sures that our resolution strategy (taking the union of lower
bounds for each variables) for constraints is complete.

We don’t formalize in this paper the operational semantics of
operators. Instead, we assume informally that it is given and
compatible with the abstract semantics.

XDuce as an extension We now show how XDuce fea-
tures can be seen as an extension. We consider here a simple
version of XDuce, with the following kind of expressions:
element constructag[e] (seen as a unary operator), empty
sequence)) , concatenatiore;, e, and pattern matching

matchewithp —e| ... | p — e. OCamlDuce is actually
%uild on CDuce, which considers for instance XML element

constructors as ternary operators (the tag and a specification
for XML attributes are also considered as arguments).

The meta-variable ranges over XDuce patterns. We don't
need to recall here what they are. We just need to know
that for any patterp we can define an accepted type,

a finite set of capture variabléar(p), and for any typer built-in ML constantdispatch|ry,. .., 7,] of type scheme:

and any variable: in Var(p), a typematch(x; p](7) (Which Va.(mU...Um,) ma—=(a—p0)—...— (a— () —
represents the set of values possibly bouna tohen the B, which we assume to be present in the initial typing envi-
input value is inr and the pattern succeed) ronment. Its intuitive semantics is to drop the first argument

(it is used only to force the type-checker to verify thatas
Here is the formal definition of an extension X for XDuce. typer, U...U,, which corresponds to the XDuce’s pattern
We take for foreign types the XDuce types quotiented by matching exhaustivity condition), and to call thE func-
the equivalence induced by the subtyping relation (that is: jong argument{ < k < n) on the second argument when
types with the same set-theoretic interpretation are consid-;. is the smallest integer such that this argument hastype
ered equal). The least-upper bound operat@orresponds
to XDuce’s union type constructor (usually writt¢n We In principle, the technique described in this paper could
use the following families of foreign operators: be used to integrate many of the existing extensions to
the original XDuce design (such as attribute-element con-
« a unary operator for each XML label a unary opera- ;traints [HMO.3] or XML fiIFers [HpsO4]) without any addi-
tor: tional theoretical complexity. In its current form, however,
OCamlDuce integrates all the CDuce extensions except over-
¢ a binary operator corresponding to the concatenation; loaded functions: XML attributes as extensible records, se-
quence and tree pattern-based iterators, strings as sequences
of characters (hence string regular expression types and pat-
terns), etc.

e a constant operator corresponding to the empty se-
quence;

e for any patterrp and variablex in Var(p), a unary op-
erator writtemmatch[x; p| (its semantics is to return the
value bound tax when matching its argument against

the patterrp). 4 Type system

The abstract semantics for all these operators follows directly In this section, we present a type system and a type inference

from XDuce’s theory. algorithm for a fixed extensio’. Our language will be the
kernel of an ML-like type system, enriched with types and

Element constructor, concatenation and the empty sequenceperators from the extensict.

expressions can directly be seen as foreign operators. This

is not the case for a pattern matchingtch e with p; —

e | ... | pn — e, Weare going to present an encoding 1ynes and expressions The syntax of types and expres-
of pattern-matching in terms of operators and normal ML gjqnq s given in Figure 1. We use a vector notation to repre-
expressions. This encoding is rather heavy; in practice, theggpt tuples. E.gE stands for an n-tupléc, . . ., t,.).
implementation deals with pattern matching directly.

We assume a set of ML type constructors, ranged over by
the meta-variabl®. Each ML type constructor comes with

a fixed arity and we assume all the types to be well-formed
with respect to these arities. The arrewis considered as

a distinguished binary type constructor for which we use an
infix and right-associative syntax.

First, we define the translatiop— e of a single branch
whereVar(p) = {x1,...,x,} as the expression:

AX.

let x; = match[xy;p|x in

let x, = match[x,;p|x in
e

We assume given two infinite families of type variables and
foreign type variables, respectively ranged over by the meta-
variablesa and.. In an expressioda.e, the type variable

Then, the translation afatch e withp; — ey | ... |pn — o is bound ine. Expressions are considered module
e, is defined as: conversion of pound type variables. Thg construcﬂong
thus serves to introduce a fresh type variabl® be used in
letx =ein a type annotation somewheredn
dispatch[ry,..., 7] xx (p] —e1) ... (P}, — en)

Foreign operators are annotated with the type of their argu-
wherer; = |p;§ andp] = p;\(m1 U ... U 7_1) (the restric- ments (in subscript position) and of their result (in super-
tion of p; to values which do not match any pattern form an script); the number of type arguments is assumed to be co-
preceding branch). We have used in this translation a newherent with the arity of the foreign operator. However, in

practice, the source language does not include the annotaA typing problem is a tuple(T', e, t). (Usually,t is a fresh
tions: they are automatically filled with fresh foreign type type variable.) Asolution to this problem is a substitutiap
variables by the compiler (we also use this convention in this such thafC¢ - e¢ : t¢ is a valid judgment in MLX). We
paper for some examples). Putting the annotations in the syn-will now rephrase this definition in terms of a typing judg-
tax is just a way of simplifying the presentation. The main ment on the full calculus. This judgmehttx e : t is
technical contribution of the paper is an algorithm to infer defined by the same rules as in Figure 2, except for foreign
ground foreign types for the foreign type variables. operators, for which we take:

Pkxoiieg — ... > e, — ¢

The ML (X) fragment We call ML(X) the fragment of

our calculus where all the foreign types are restricted to be Typing environment and type schemes that are used in the
ground. Figure 2 defines a typing judgmdnt- e : t judgmentt-x are allowed to contain foreign type variables.
for ML (X). It is exactly an instance of the ML type sys- We say that¢ is a pre-solution to the typing problem
tem [Mil78, Dam85] if we see ground foreign types as (I'.e,t) if the assertiol'¢ Fx e¢ : t¢ holds. Of course,
atomic ML types and ground-annotated foreign type oper- the new rule for foreign operators forgets the constraints that
atorso” as built-in ML constants or constructors (we also relates the input and output types of foreign operators. In
introduce explicit type annotation and type variable intro- Order to ensure type soundness, we must also enforce these
duction). We recall classical notions of type scheme, typing constraints.

environment and generalization. tjpe schemds a pair of

a finite setx of type variables and of a type writtenVa.t.
The variables i are considered bound in this scheme. We
write o < t if the typet is an instance of the type scheme
o. A typing environment is a finite mapping from program
variables to type schemes. Theneralization of a typet
with respect to a typing environment written Genr(t) is
the type schem&a.t wherea is the set of variables which
are free int, but not inT".

Type-soundness of the MILX) fragment Weassumehat
a soundoperational semantics is given for the X)) cal-
culus. This amounts to definingreduction rules for the’.

Formally, we define aonstraint C as a finite set of annotated
foreign operators:. We writel- C if all the elements of
are of the formoZ with 6(7) < 7. For an expressioa,
we collect in a constraint(e) all the instances of foreign
operatorss that appear ire. Note that for any substitution

¢, we haveC(e)p = C(ed).
We are ready to rephrase the notion of solution.

Lemma 1. A substitutiony is a solution to the typing prob-
lem (T, e, t) if and only if the following three assertions
hold:

e I'¢, e andt¢ do not contain foreign type variables;

operators which are coherent with the abstract semantics for

the foreign operators. Well-typed expressions in(ML) (in

an empty typing environment, or an environment which con-
tains built-in ML operators) cannot go wrong. We also as-
sume that the operational semantics forodnoperator de-
pends only orp, not on the annotationd 7. This allows us

to lift the semantics of MILX) to the full calculus.

Typing problems A substitution ¢ is an idempotent func-
tion from types to types that maps type variables to types,
foreign type variables to foreign types, ground foreign types
to themselves, and that commutes with ML type construc-
tors. We use a post-fix notation to denote a capture-avoiding
application of this substitution to typing environments, ex-
pressions, types or constraints.

A substitutiong; is more generalthan a substitutior, if
d2 = @2 o ¢1. (Or equivalently, because substitutions are
idempotent: there exists a substitutiorsuch thatps = ¢ o

$1.)

e ¢ is a pre-solution to the typing problem;

o IF Cled).

Type soundness Type soundness for our calculus is a triv-
ial consequence of the type soundness assumption for the
ML (X) fragment. Indeed, we can see a solutjpto a typ-

ing problem(T", e, t) as arelaborationinto a well-typed pro-
gram in this fragment.

Type inference Let us consider a fixed typing problem
(T, e, t). We want to find solutions to this problem. Thanks
to Lemma 1, we will split this task into two different steps:

¢ find a most-general pre-solutiahn;

e instantiate the remaining foreign type variables so as to
satisfy the resulting constraint.

€= Foreign types: | e := Expressions:
T ground foreign type X program variable
L foreign type variable Ax.e abstraction
ee application

t = Types: letx=eine local definition
Pt constructed (e:t) annotation
@ type variable Ja.e existential variable
€ foreign type o% foreign operator

Figure 1: Types and expressions

P(X)<<t I''x:tiFe:to I'kFei:ty — to I'kes:ty I'kei:t F,XIGenF(tl)Fegltg
'kx:t I'kAxe:t; — to I'kejes:to I'Fletx=ejiney: ty
l'kFe:t Pkefto/a]:t o(f) <7
Fk(e:t):t '-3Jae:t F'kFol:m —...>7, —T

Figure 2: Type system for the MIX') fragment

It is almost straightforward to adapt unification-based exist-
ing algorithms for ML type inference (and their implementa-

so we prefer to stick to our design guideline that type infer-
ence shouldn't be significantly more complicated than both

tions) to compute a most general pre-solution if there exists ML type inference and XDuce-like type inference. XDuce

a pre-solution, or to report a type error otherwise. Indeed,

the typing judgment x is very close to a normal ML type
system. In particular, it satisfies a substitution lemma: if
I'kx e: t,thenl'g Fx ed : to for any substitutionp.

Of course, if the typing problem has no pre-solution, it has
no solution as well. For the remaining of the discussion,
we assume given a most general pre-solutign Let us
write V for the set of foreign type variables that appear in
(T'¢o, edo, téo) andCy for the constrain€(egy).

A solution to the typing problem is in particular a pre-
solution. As a consequence, a substitutibis a solution

if and only if ¢ = ¢ o ¢¢ and if it maps foreign type vari-
ables inV to ground foreign types in such a way thtat,¢.
The “minimal” modification we need to bring 6, to get a
solution is to instantiate variables In so as to validat€,.
Formally, we define aaluation as a functiorp : V. — 7T
such that- Cyp. To any valuatiorp, we can associate a solu-
tion ¢ defined byt = t¢op and any solution is less general
than the solution obtained this way from some valuation. In
particular, a solution exists if and only if a valuation exists.
So we are now looking for a valuation.

We won't give acompletealgorithm to check for the exis-
tence of a valuation. This would lead to difficult constraint
solving problems which might be undecidable (this of course
depends on the extension). Even if they are decidable for
a given extension, they might be intractable in practice an

computes in a bottom-up way, for each sub-expression, a
type which over approximates all the possible outcomes of
this sub-expression. The basic operations and their typing
discipline corresponds respectively to our foreign operators
and their static semantics. XDuce's type system uses sub-
sumption only when necessary (e.g. to join the types of
the branches of a pattern matching, or when calling a func-
tion). So we can say that XDuce tries to compute a min-
imal type for each sub-expression, by applying basic type-
checking primitives. We will do the same, and to make it
work, we need some acyclicity property, which corresponds
to the bottom-up structure of XDuce’s type checker.

Definition 2. LetC be a constraint. We write, NS 19 if C
contains an element. such that, = ¢ and.; appears ire.
We say that is acyclic if the directed graph defined by this
relation is acyclic.

Our type inference algorithm only deals with the case of an
acyclic constraint (this condition does not depend on the
particular choice of the most general pre-solution). If the
condition is not met, we issue an error message. It is not
a type error with respect to the type system, but a situation
where the algorithm is incomplete.

Remark. The acyclicity criterion is of course syntactical (it
does not depend on the semantics of constraints but on their
syntax), but it is not defined in terms of a specific inference

d @lgorithm. Instead, it is defined in terms of the most-general

pre-solution of an ML-like type system. In particular, it does

not depend on implementation details such as the order in We can simulate partial operators by adding a new top ele-

which sub-expression are type-checked. mentT to the set of ground foreign typés and by requiring

the abstract semantics of operators to be such that whenever

an argument ig, the result is alsd . Since the typing algo-

rithm infers the smallest valuation for foreign type variables,
. P . we can simply look at it and check that no foreign type vari-

Vi€ Votpo = |—|{O(€p0) | 0z € Co} able is mapped td .

The acyclicity condition ensures that this definition is well-

founded and yields a unique functign Furthermore, this

funcnon is a valuation |f_and only if the typing prqblem has 5 Strengthening

a solution. To check this property, only constraints whose

right-hand side is a ground foreign type need to be consid-

Below we furthermore assume th@t is acyclic. We define
the functionp, : V' — 7 by the following equation:

ered: As we mentioned above, we can see the type system for the
(1) VoZ € Co.06(epo) <7 calculus as an elaboration into its NIK) fragment, which
Also, any other valuatiop is such that: immediatly gives type soundness.
Yiee Vi < ip In this section, we consider another elaboration from the cal-

o » culus into itself. Namely, this elaboration is intended to be
!n other wqrds, under the acycllcny cond|t_|on, we can check |,sed as a preprocessing pass (rewriting expressions into ex-
in a very simple way whether a given typing problem has & yressions) in order to make the type system accept more pro-
solution, and if this is the case, we can compute the smallesty ams. We call this elaboration procedure strengthening.
valuation (for the point-wise extension of the subtyping rela-
tion). This computation only involves one call to the abstract The issue addressed by strengthening is a lack of implicit
semantics for each application of a foreign operator in the subsumption in our calculus. We already hinted at this issue
expression to be type-checked. in Section 2. We will now give more examples.

Remark. In some cases, it is possible to find manifest type
errors even when the constraint is not acyclic. In practice,
the computation ofy, the verification of 1), and the check
for acyclicity can be done in parallel, e.g. with a deep-firs
graph traversal algorithm. It can detect some violatiorf Df
before a cycle. In this case, we know that the typing problem
has no solution, and thus a proper type error can be issued.

Subsumption missing in action We consider the typing
¢ problem(T'y, ey,) wherel'y = {x: 71,y : 72, £ : Va. @ —

— a} ande; = f x y. It admits a solution if and only
if 71 = 7. In a system with implicit subtyping, we might
expect to give type- = 71 L 75 to bothx andy, so that the
application succeeds and the result type.is

Similarly, the expressiof\x.x : 71 — 7) is not well-typed

Manually working around the incompleteness When the even ifr; < 7 (unlessr = 7).

algorithm described above infers a cyclic constraint, it can-
not detect whether the typing probl€in, e, t) has a solution
or not. However, we have the following property. If a solu-

;) A naive solution Let us see how to implement the amount
tion ¢ exists, then we can always produce an expression

- i , of implicit subtyping we need to make these examples type-
by adding annotations tesuch that the algorithm succeeds a0 The following rule could be a reasonable candidate

for the typing probleniT’, ¢, t) and thaip is equivalent (for ¢ a1 addition to the type system (we wiite for the new
the equivalence induced by the more-general ordering) to thetyping judgment): -

solutiongy computed by the algorithm.
F'F<e:7 <7

F'r<e:7

In other words, even if the algorithm is not complete (be-
cause of the acyclicity condition) and makes a choice be-
tween most-general solutions (the smallest one for the sub-A concrete way to see this rule is that any subexpres-
typing relation), for any solution to a typing problem, the sion ¢’ can be magically transformed to the application

programmer can always add annotations so that the algo-id!> ¢, whereid is a distinguished foreign operator such

rithm infers this very solution (or an equivalent one). thatid(r) = 7 and.q, ¢, are fresh foreign type variables.

The type system extended with this rule would accept the
Partial operators The foreign operators were assumed to examples given above to illustrate the lack of implicit sub-
be total. This means they should apply to any foreign value. sumption. However, this rule as it stands would add a lot

of complexity to the type inference algorithm. As a matter (r; Ui73) — t) — t) wherees is from the example above.

of fact, the type system would not admit most-general pre- Here, the preprocessing pass succeeds but does not change
solutions anymore. We can see this on a very simple exam-the expression because no sub-expression has a foreign type
ple with the typing problent{x : 7}, %, «). We could argue inthe principal type derivation. The type-scheme inferred for
that a more liberal definition of being more-general should h is a pure ML type-schema, which makes the type-system
allow some dose of subtyping. So let us consider the more subsequently fail on the expression.

complex exampléd's = {f : Va. « — o — a} ande3 =

Ax Ay Az \g.g (£ xy) (f x z). In ML, the inferred type ~ We believe that this restriction of the< system is rea-
scheme would b&o, 8. — o — a — (a —» a — 3) — sonnable. It can be implemented very simply by reusing
3 which forces the first three arguments to have the samethe same type-checker as in Section 4 in a different mode
type. But if the arguments turn out to be of a foreign-type, (Where all the foreign types can be unified). The simple ex-
another family of types for the function is possible, namely amples at the beginning of this section are now accepted.

VB — T — 13— (mMUT) — (nUm) —) — 6, Indeed, the preprocessing pass transforms the expressions to
and these types cannot be obtained as instances of the MLf (1d x) (idy) and((Ax.id x) : 71 — 72) respectively. This

type scheme above (we can obtaifi.r, — 7 — 73 — allows the type system to use subtyping where needed.
(mMUmnUTts) — (mUnUTs) — B) — B butthisis less

precise).

Properties The strenghtening pass cannot transform a
well-typed program into an ill-typed one. Note, however,
that it might break the acyclicity condition if it was already

A practical solution We will now describe a practical so- - "
met. See below for a way to relax the acyclicity condition.

lution. Instead of modifying the type system by adding a
new subsumption rule, we will formulate the extension as a Also, if strenghtening fails, the typing problem has no pre-

rewriting prgprgcessing pass. The re_/vriting consists in in- solution (for the typing judgmerit), and thus no solution.
Sﬁrt;ln 9 appllcr?tlons o:]the 'de?'tz forslgn opeggri.;lThlz However, it is not true that if it succeeds, a pre-solution nec-
challenge Is then to choose which sub-expres ou essarily exists (for the new program where applications of

. A
be rewritten t‘;l‘:] e’. If we had an o(;aﬁle to tell us so, ftge the id operators have been added). As an example, let us
composition of the rewriting pass and the type system of Sec- o1 cider the situation whel — {x « 7y — 1.y : 79

tion 4 would be equivalent to the type system. Unfortu- 7o,f : Va. @ — a — o} ande = £ x y. The preprocessing

nately, we dqn't have such an oracle. we cguld try alllthe succeeds, because all the foreign types are considered equal
possible choices of s_ub-expr_essmns, and this would give 4put does not touch the expression (because no sub-expression
complete type-checking algorithm for the type system has a foreign type in a principal typing derivation). Still, the
next pass of the type inference algorithm attempts to unifiy

We prefer to use a computationally simpler solution. We)
P P y P the typesr; andr, and thus fails.

also expect it to be simpler to understand by the program-
mer. The idea is to use an incomplete oracle. The oracle
first runs a special version of an ML type-checker on the ex-
pression to be type-checked. This type-checker identifies allRelaxing the acyclicity condition Inserting applications
the foreign types together. The effect is to find out which of the id operator can break the acyclicity condition. We
sub-expressions have a foreign type in a principal derivation, can actually relax this condition to deal with the& oper-
that is, which sub-expression have necessarily a foreign typeator more carefully. Let us consider a constrainwith a
in all the possible derivations. The preprocessing pass con-cycle ., g 8 11, such that all the edges in this cycle
sists in adding an application of the identity operator above come from elements of the formdi'_ Clearly, any valu-
all these sub-expressions and only those. ation p such that- Cp will map all the; in the cycle to

))) the same ground foreign type. So instead of considering the
The important point here is that the oracle may be overly gt general pre-solution and then face a cyclic constraint,
conservative. Let us consider a type variable which has been e may as well unify all these first: all the solutions can
generalized in the principal derivation. In a non-principal ;i be obtained from this less-general pre-solution.
derivation, it could have been instead instantiated to a for-
eign type. If this derivation had been considered instead of The relaxed condition is: There must be no cycle in the con-

the principal one, the preprocessing pass would have addedstraint except maybe cycles whose edges are all produced by
more applications of the identity operator. Maybe this would theid operator.

have been necessary in order to make the resulting expres-
sion type-check. An example is given by the expression To illustrate the usefulness of the relaxed condition, let us
leth =einth: 7 - 7 —- 13 — (MUmn) — consider the expressian= fix(Ag.Ax.f c (gx)) withT =

{fix : Va.(a = a) — o, f : Va.ae > a — «a,c : 7}. The from the compilation unit interface (themi file) is in-
strengthening pass builds a principal typing derivationefor tegrated before checking the acyclicity condition. Indeed,
in a type algebra where all the foreign types are identified. this information acts as additional type annotations on the
Here is such a derivation, where we writéor foreign types values exported by the compilation unit and can thus con-
andt = a — %, IV =T,g: t,x: a (we collapse rules for tribute to obtaining this condition. Also, in addition to type
multiple abstraction and application): annotations on expressions, OCaml provides several ways
to introduce explicit type informations (and thus obtain the
acyclicity condition): datatype definitions (explicit types for
constructor and exception arguments, record fields), module
IEfix:(t—t) >t signatures, type annotations on ML pattern variables.

I'F fix—%—x%

I'Fg:t I'Fz:a

OCaml subtyping OCaml comes with a structural subtyp-

I'Fc:x I'Fgaz:x ing relation (generated by object types and polymorphic vari-
'k fe(go):* ants subtyping and extended structurally by considering the
FHAgixfc(gx)):t—t variance of ML type constructors). The use of this subtyping

relation in programs is explicit. The syntax(is: t1 :> to)
(sometimes, the type, can be inferred) and it simply checks
thatt; is a subtype ot,. Of course, the OCaml subtyping
On this principal derivation, we observe three sub- relation has been extended in OCamlIDuce to take XDuce
expressions of a foreign type. Accordingly, strengthening in- subtyping into account. For instanceifis a XDuce sub-
troduces three instances of theé operator and thus rewrites type ofr, ande has typer; 1ist, then itis possible to coerce
the expression to: itto typers list: (e :> 7o list).

I'Fe:a— %

e = fix(\g.Ax.id?? (f (id}* c) (id}® (gx))))

The type-checker which is then applied performs some uni- Crossing the boundary In our system, XDuce values
fications:t; = 14 = 16, L2 = 5, 13 = 7. We can forinstance ~ are opaque from the point of view of ML and XDuce

assume that the computed most-general pre-solution maps types cannot be identified with other ML type construc-
andg to 11 andes to to. The first and third instances of the tors. Sometimes, we need to convert values between the
two worlds. For instance, we have a foreign ty@teing

which is different from OCamistring . This foreign
type conceptually represents immutable sequences of arbi-
trary Unicode characters, whereas the OCaml type should
be thought as representing mutable buffers of bytes. As
a consequence, we don't even try to collapse these two
types into a single one. Instead, OCamlIDuce comes with
a runtime library which exports conversion functions such

id operator ire’ thus generate the dependenaiﬁgg L and

L2 % 1. Strictly speaking, the constraint is cyclic, but we
can break the cycle simply by unifying and.,. The small-
est valuation is then given hyp = 7. We would have ob-
tained the same solution if we had applied the type-checker
directly one without the strengthening pass. In this exam-
ple, strengthening is useless and the relaxed acyclicity condi-
FIOI’] is just a way_to _breal_< a cycle introduced by strenghten- asUtf8.make: _string -> String Utf8.get:
ing. We can easily imagine more complex examples where _. . . :) .
strenghtening is really necessary but introduces cycles thatStrlng - string , Latinl.make: string ->

Latinl , Utf8.get: Latinl -> string The

can be broken by the relaxed condition. type Latinl is a subtype ofString : it represents all
the strings which are only made of latin-1 characters (latin-
1 is a subset of the Unicode character set). The function

6 Integration in OCaml Utf8.make checks at runtime that the OCaml string is a
valid representation of a Unicode string encoded in utf-8.

We have described a type system for basic ML expressions.Similarly, we often need to translate between XDuce's se-
Of course, OCaml is much more than an ML kernel. We quences and OCaml’s lists. For any XDuce typave can
found no problem to extend it to deal with the whole OCaml easily write two functions of typegr«] — 7 list and
type system, including recursive types, modules, classes, and- 1ist — [7#] (the star between square brackets denotes
other fancy features. The two ML-like typing passes (the Kleene-star). Similarly, we can imagine a natural XDuce
one used during strengthening and the one using for the reakounterpart of an OCaml product type x 72, namely
type-checking) are done on whole compilation units (in the [r; 3], and coercion functions. However, writing this kind
toplevel, they are done on each phrase). The informationof coercions by hand is tedious. OCamlIDuce comes with

10

built-in support to generate them automatically. This au- specification of a type system and do not study the interac-
tomatic system relies on a structural translationsofne tion between XDuce type-checking and ML type inference
OCaml types into XDuce types: lists and array are translated (XDuce code can call ML functions but their type must be
to Kleene-star types, tuples are translated to finite-length fully known). These last points are precisely the issues tack-
XDuce sequences, variant types are translated to union typesled by our contribution. For instance, our system makes
etc. Some OCaml types such as polymorphic or functional it possible to avoid some type annotation on non-recursive
types cannot be translated. OCamlDuce comes with two XDuce functions. Another difference is that in our approach,
magic unary operatot®_ml , from_ml (both written{: the XDuce/CDuce type checker and back-end (compilation
...} inthe concrete syntax). The first one takes an XDuce of pattern matching) can be re-used without any modifica-
value and applies a structural coercion to it in order to obtain tion whereas their approach requires a complete reengineer-
an OCaml value; this coercion is thus driven by the output ing of the XDuce part (because subtyping and pattern match-
type of the operator. The type-checker requires this type toing relations must be enriched to produce ML code) and it is
be fully known (polymorphism is not allowed). Similarly, not clear how some XDuce features such asAhg type
the operatofrom_ml takes an OCaml value and apply a can be supported in a scenario of modular compilation. We
structural coercion in order to obtain an XDuce value. Since believe our approach is more robust with respect to exten-
the type of its input drives its behavior, the type-checker re- sions of XDuce and that the XDuce-to-ML translation can be
quires this type to be fully known. seen as an alternative implementation technique for XDuce
which allows some interaction between XDuce and ML (the
This system can be used to obtain coercions from complexsame kind of interaction as what can be achieved with the

OCaml types (e.g. obtained from big mutually recursive def- cbuce/OCaml interface described above).
initions of concrete types) to XDuce types, whose values can

be seen as XML documents. This gives parsing from XML The Xtatic project [GP03] is another example of the inte-
and pretty-printing to XML for free. gration of XDuce types into a general purpose language,
namely C#. Since both C#'s and XDuce’s type checkers op-
erate with bottom-up propagation (explicit types for func-
tions/methods, no type inference), the structure of Xtatic
7 Related work type-checker is quite simple. The real theoretical contribu-
tion is in the definition of a subtyping relation which com-
))) ~ bines C# named subtyping (inheritance) and XDuce set-
The CDuce Ia_lnguage itself comes with a_typed interface with e oretic subtyping. Since the resulting type algebra does
OCaml. The interface was designed to: (i) let the CDuce pro- ot have least-upper bounds, the nice locally-complete type
grammers use existing OCaml libraries; (ii) develop hybrid jnference algorithm for XDuce patterns [HP02] cannot be
projects where some modules are implemented in OCamlyansferred to Xtatic. In Xtatic, XDuce types and C# types
and other in CDuce. The interface is actually quite simple: 4e giratified, but the two algebras are mutually recursive:
each monomorphic OCaml typeis mapped in a structural xpce types can appear in class definitions and C# classes
way to a CDuce type. A value defined in an OCaml mod- ¢4 pe used as basic items in XDuce regular expression
ule can be used from CDuce (the compiler introduces a nat-yynes. This does not really introduce any difficulty because
ural translationt — t). Similarly, it is possible to provide cx types are not structural. The equivalent in OCamiDuce
an ML interface for a CDuce module: the CDuce compiler \youid be to allow OCaml abstract types as part of XDuce
checks that the values exported by the module are compati-typesy which would not be difficult, except for scoping rea-
ble with the ML-to-CDuce translation of the~se types and pro- ¢ (abstract types are scoped by the module system).
duces stub code to apply a natural translation t to these
values. This CDuce/OCaml interface is used by many CDuce |n the last ten years, a lot of research effort has been put into
users and served as a basis totheml andfrom_ml oper- developping type inference techniques for extensions of ML
ators described in Section 6. with subtyping and other kinds of constraints. For instance,
. the HM(X) framework [MOW99] could serve as a basis to
Sulzmann and Zhuo Ming Lu [SLOS] pursue the same 0b- gynress the type system presented here. The main modifi-
Jectllve pf combining XDuce and ML. However, their contri- _ cation to bring to HMX) would be to make foreign-type
bution is orthogonal to ours. Indeed, they propose a compi-yariaples global. Another way to express it is to disallow
lation scheme from XDuce into ML such that the ML rep- qnstraints in type-schemes (which is what we do in the cur-
resentation of XDuce values is driven by their static XDuce ont presentation). We have chosen to present our system
type (implicit use of subtyping are translated to explicit coer- j, 5 setting closer to ML so as to make our message more
cions). Their type system supports in addition used-defined explicit: our system can be easily implemented on top of ex-
coercions from XDuce types to ML types. However, they isting ML implementations.
do not describe a type inference algorithm for their abstract

11

8 Conclusion and future work [Dam85]

We have presented a simple way to integrate XDuce into
OCaml. The modification to the ML type-system is small [Fri04]
enough so as to make it possible to easily extend existing

ML type-checkers.

Realistic-sized examples of code have been written in
OCamlDuce, such as an application that parses XML [GPO3]
Schema documents into an internal OCaml form and pro-

duces an XHTML summary of its content. Compared to

a pure OCaml solution, this OCamlDuce application was

easier to write and to get right: XDuce’s type system en- [HFCO5]
sures that all possible cases in XML Schema are treated by
pattern-matching and that no invalid XHTML output can be
produced). We refer the reader to OCamlIDuce’s website for

the source code of this application. [HMO3]

The main limitation of our approach is that it doesn’t allow
parametric polymorphism on XDuce types. Adding poly-
morphism to XDuce is an active research area. In a previous
work with Hosoya and Castagna [HFCO05], we presented a
solution where polymorphic functions must be explictly in-
stantiated. Integrating this kind of polymorphism into the
same mechanism as ML polymorphism is challenging and
left for future work. The theory recently developped by [Hos04]
Vouillon [Mou06] could be a relevant starting point for such

a task.

[Hos00]

Another direction for improvement is to further relax the [HPOOQ]
acyclicity conditions, that is, to accept more programs with-
out requiring extra type annotations. Once the set of con-
straints representing XML data flow and operations have
been extracted by the ML type-checker, we could use tech-
nigues which are more involved than simple forward com-
putation over types. The static analysis algorithm used in
Xact [KMS04] could serve as a starting point in this direc-

tion.

[HPO2]

[HPO3]

Acknowledgments The author would like to thank Didier
Rémy and Francois Pottier for fruitful discussion about the
design and formalization of type systems.

[HVPOO]

[KMS04]
References
[BCFO3] V. Benzaken, G. Castagna, and A. Frisch.
CDuce: an XML-friendly general purpose lan-
guage. INCFP '03, 8th ACM International Con- [LT01]

ference on Functional Pr ogrammingages 51—
63, Uppsala, Sweden, 2003. ACM Press.

12

Luis Manuel Martins Dama3ype assignmentin
programming language$PhD thesis, University
of Edinburgh, Scotland, April 1985.

Alain Frisch. Théorie, conception et réalisa-
tion d'un langage de programmatio n fonction-
nel adapté & XML PhD thesis, Université Paris
7, December 2004.

Vladimir Gapeyev and Benjamin C. Pierce. Reg-
ular object types. InEuropean Conference
on Object-Oriented Programming (ECOOP),
Darms tadt, Germany2003.

Haruo Hosoya, Alain Frisch, and Giuseppe
Castagna. Parametric polymorphism for XML.
In POPL, 2005.

Haruo Hosoya and Makoto Murata. Boolean op-
erations and inclusion test for attribute-element
constraint s. IrEighth International Conference
on Implementation and Application of Automata
2003.

Haruo Hosoya. Regular Expression Types for
XML. PhD thesis, The University of Tokyo,
Japan, December 2000.

Haruo Hosoya. Regular expression filters for
XML. In Programming Languages Technologies
for XML (PLAN-X) 2004,

Haruo Hosoya and Benjamin C. Pierce. XDuce:
A typed XML processing language. Rroceed-
ings of Third International Workshop on the Web
and Data bases (WebDB200@000.

Haruo Hosoya and Benjamin C. Pierce. Regular
expression pattern matching for XMLJournal
of Functional Programmingl3(4), 2002.

Haruo Hosoya and Benjamin C. Pierce. A typed
XML processing language ACM Transactions
on Internet Technologyd(2):117-148, 2003.

Haruo Hosoya, Jérdbme \ouillon, and Ben-
jamin C. Pierce. Regular expression types for
XML. In ICFP '00, volume 35(9) ofSIGPLAN
Notices 2000.

Christian Kirkegaard, Anders Mgller, and
Michael I. Schwartzbach. Static analysis of
XML transformations in Java.lEEE Transac-
tions on Software Engineering0(3):181-192,
March 2004.

Xavier Leroy et al. The Objective Caml system
release 3.08; Documentation and user’s manual,
2001.

[Mil78] Robin Milner. A theory of type polymorphism in
programming.Journal of Computer and System
Sciences1978.

[MOW99] Martin Sulzmann Martin Odersky and Martin
Wehr. Type inference with constrained types.
TAPOS 5(1), 1999.

[SLO5] Martin Sulzmann and Kenny Zhuo Ming Lu. A
type-safe embedding of XDuce into ML. Trhe
2005 ACM SIGPLAN Workshop on M2005.

[Vou06] Jérdme Vouillon. Polymorphic regular tree types
and patterns. IPOPL, 2006. To appear.

13

