
OCaml + XDuce

Alain Frisch
INRIA Rocquencourt

Alain.Frisch@inria.fr

January 2006

Abstract

This paper presents the core type system and type inference
algorithm of OCamlDuce, a merger between OCaml and
XDuce. The challenge was to combine two type checkers
of very different natures while preserving the best proper-
ties of both (principality and automatic type reconstruction
on one side; very precise types and implicit subtyping on the
other side). Type inference can be described by two succe-
sive passes: the first one is an ML-like unification-based al-
gorithm which also extracts data flow constraints about XML
values; the second one is an XDuce-like algorithm which
computes XML types in a direct way. An optional prepro-
cessing pass, called strenghtening, can be added to allow
more implicit use of XML subtyping. This pass is also very
similar to an ML type checker.

1 Introduction

This paper presents the core type system of OCamlDuce, a
merger between OCaml [L+01] and XDuce [Hos00, HP00,
HP03, HVP00]. OCamlDuce source code, documentation
and sample applications are available athttp://www.
cduce.org/ocaml .

OCaml is a widely-used general-purpose multi-paradigm
programming language with automatic type reconstruction
based on unification techniques. XDuce is a domain specific
and type-safe functional language adapted to writing trans-
formations of XML documents. It comes with a very precise
and flexible type system based on regular expression types
and a natural notion of subtyping. The basic type-checking
primitives for XDuce constructions are rather involved, but
the structure of the type checker is simple: types are com-
puted in a bottom-up way along the abstract syntax tree; the
input and output types of functions are explicitly provided by
the programmer. The high-level objective of the OCamlDuce
project is to enrich OCaml with XDuce features in order to
provide a robust development platform for applications that

need to deal with XML but which are not necessarily focused
on XML.

The challenge was to combine two type checkers of very dif-
ferent natures while preserving as much as possible the best
properties of both (principality and automatic type recon-
struction on one side; very precise types and implicit sub-
typing on the other side).

Our main guideline was to design a type system which can be
implemented by reusing existing implementations of OCaml
and CDuce [BCF03, Fri04]. (CDuce can be seen as a di-
alect of XDuce with first-class and overloaded functions –
for the merger with OCaml, we don’t consider these extra
features). Because of the complexity of OCaml’s type sys-
tem, it was out of question to reimplement it. The typing
algorithm we describe in this paper has been successfully im-
plemented simply by combining a slightly modified OCaml
type checker with the CDuce type checker, and by adding
some glue code. As a result, OCamlDuce is a strict exten-
sion of OCaml: programs which don’t use the new features
will be treated exactly the same by OCaml and OCamlDuce.
It is thus possible to compile any existing OCaml library
with OCamlDuce. Also, we believe our modifications to the
OCaml compiler are small enough to make it easy to main-
tain OCamlDuce in sync with future evolutions of OCaml.
Our experience so far confirms that.

Another guideline in the design of OCamlDuce was that
XDuce programs should be easily translatable to OCaml-
Duce in a mechanical way. In XDuce, all the functions are
defined at the toplevel and comes with an explicit signa-
ture. We can obtain an OCamlDuce program by some mi-
nor syntactical modifications (the new constructions in the
language are delimited to avoid grammatical overloading of
notations). Explicit function signatures are simply translated
to type annotations.

The design goals pushed us into the direction of simplicity.
We choosed to segregate XDuce values from regular ML val-
ues. Of course, a constructed ML value can contain nested
XDuce values, but from the point of view of ML, XDuce
values are black boxes, and similarly for types. Also, we de-

1

cided not to have parametric polymorphism on XDuce types.
A type variable can of course be instantiated to an XDuce
type (or to a type which contains a nested XDuce type), but
it is not possible to force a generalized variable to be instan-
tiated only to XDuce types or to use a type variable within an
XDuce type. The technical presentation introduces a notion
of foreign type variables, but they are nothing more than a
technical device for inferring ground XDuce types.

Overview In Section 2, we give some intuitions about the
behavior of OCamlDuce’s type-checker.

The formalization of the type system will be developped
by abstracting away from details about XDuce. In Sec-
tion 3, we introduce an abstract notion ofextension(for-
eign types and foreign operators) and show of XDuce can
be seen as an extension. In Section 4, we present the type-
system and type inference algorithm for a calculus made of
ML [Mil78, Dam85] plus an arbitrary extension. The basic
idea is to rely on standard techniques for ML type inference.
Indeed, we start from a type system which is an instance
of ML where foreign types are considered as atomic types
and foreign operators are explicitly annotated with their in-
put and output types. Then we present an algorithm toinfer
these annotations. This algorithm is described as two suc-
cessive passes: the first one is a slightly modified version of
an ML type-checker, and the second one is a simple forward
computation on foreign types.

In Section 5, we present a preprocessing pass, called
strengthening, whose purpose is to make more programs ac-
cepted by the type system by allowing implicit use of sub-
typing.

In Section 6, we present other details of the concrete integra-
tion in OCaml. In Section 7, we compare our approach to
related works.

2 An example

In this section, we illustrate the behavior of OCamlDuce’s
type-checker on the following code snippet:

let f x = match x with
{{ [(y::<a>_ | _)*] }} -> {{ y @ y }}

let z1 =
f {{ [<a>[] [] <a>[[]]] }}

let z2 =
List.map f

[{{ [<a>[<a>[]]] }};
{{ [<a>[<c>[]]] }}]

The exemple is intended to illustrate the use of the OCaml
type checker to perform a data-flow analysis of XML values,
and also how OCaml features (here, higher-order functions
and data-structures) interact with XDuce features.

Double curly-braces{{...}} are used in OCamlDuce only
to avoid ambiguities in the grammar; they carry no typing
information. For instance, the symbol@used for list con-
catenation in OCaml is re-used for denote XML sequence
concatenation. Similarly, the square brackets[...] are
used both to denote OCaml list literals (whose elements are
separated by semi-colons) and XML sequences literals when
used within double curly braces (their elements are separated
by whitespace). XML element literals are written in the form
<tag>content .

The first line of the program above declares a function
f which consists of an XML pattern matching on its ar-
gument, with a single branch. The XML patternp =
[(y::<a>_ | _)*] extracts from an XML sequence
all the elements with a tag<a> and put them (in order) in the
capture variabley . The function is then used twice, includ-
ing once indirectly through a call to the functionList.map
(from the OCaml standard library) of type∀α, β.(α → β) →
α list → β list. For the purpose of explaining type-
checking, we will rewrite the body of the functionf as:

let f x =
let y = match[y;p](x) in
{{ y @ y }}

They andp parameters of thematch operator represent the
capture variable under consideration and the pattern itself.

In OCamlDuce, XML values (elements, sequences, . . .) and
regular OCaml values are kept appart. An XML value can of
course appear as part of an OCaml value (e.g. the XML ele-
ments which are put into an OCaml list), but an OCaml value
cannot appear within an XML value. The same applies to
types: an XML type can appear as part of a complex OCaml
type expression, but the converse is impossible. XML op-
erators can be applied to XML values and return new XML
values. In the example, we can see three kind of XML oper-
ators: XML literals (no argument), XML concatenation (two
arguments), and XML pattern matching (one argument).

The basic idea of the OCamlDuce type system is to infer
XML types for the inputs and outputs of XML operators.
This is done by introducing internally a new kind of type
variables, called XML type variables. Before proper type-
checking starts, each XML operator used in the program is
annotated with fresh XML type variables (in subscript po-
sition for the inputs, and in superscript position for the out-
puts):

2

let f x =
let y = match[y;p] ι2

ι1(x) in
{{ y @ ι5

ι3,ι4 y }}
let z1 =

f {{ [<a>[] [] <a>[[]]] ι6 }}
let z2 =

List.map f
[{{ [<a>[<a>[]]] ι7 }};

{{ [<a>[<c>[]]] ι8 }}]

The regular OCaml type-checker is then applied. It gives to
each XML operator an arrow type following the annotations
and then proceeds as usual (generalizes types oflet -bound
identifiers, instantiates ML type-schemes when an identifier
is used, and performs unifications to make type compatible).

For instance, the concatenation operator in our example is
given the typeι3 → ι4 → ι5, and the type-checker performs
the following unifications:ι2 = ι3 = ι4 (the type fory),
ι1 = ι6 = ι7 = ι8 (the type for the argument off). It also
produces the following types for the top-level identifiers:

val f : ι1 → ι5
val z1 : ι5
val z2 : ι5 list

Of course, we must still instantiate the XML type variables
with ground XML types. Each occurence of an XML op-
erator in the program gives one constraint on the instantia-
tion. Indeed, we can interpret eachn-ary operator as asn-
ary function from XML types to XML types. If we choose
ι1 andι2 as representatives for their classes of equivalence
modulo unification, the program is:

let f x =
let y = match[y;p] ι2

ι1(x) in
{{ y @ ι5

ι2,ι2 y }}
let z1 =

f {{ [<a>[] [] <a>[[]]] ι1 }}
let z2 =

List.map f
[{{ [<a>[<a>[]]] ι1 }};

{{ [<a>[<c>[]]] ι1 }}]

from which we read the following constraints:

ι2 ≥ match[y;p] (ι1)
ι5 ≥ ι2@ι2
ι1 ≥ [<a>[] [] <a>[[]]]
ι1 ≥ [<a>[<a>[]]]
ι1 ≥ [<a>[<c>[]]]

In this system, we considermatch[y;p] as a function
from XML types to XML types, given by XDuce’s type in-
ference algorithm for pattern matching. Similarly, the oper-
ator@is now intrepreted as a function from pair of types to
types.

The set of constraints generates dependencies between vari-
ables. We say that a variable on a left-hand side of a con-
straint depends on variables of the right-hand side. In our
example, the graph of dependencies between variables is
acyclic. In this case, we can topologically order the vari-
ables and find the least possible ground XML type for each
of them: we assign to a variable the union of all its lower
bounds. In the example, we will thus compute the following
instantiation:

ι1 = [R1]
ι2 = match[y;p]([R1]) = [R2]
ι5 = ι2@ι2 = [R2 R2]

where R1 is the regular epxression
(<a>[][]<a>[[]])|<a>[<a>[]|<c>[]]]
and R2 is the regular expression
(<a>[]<a>[[]])|<a>[<a>[]|<c>[]] .

Type-checking is over: we have found an instantiation for
XML type variables which satisfies all the constraints. In
essence, the type-checker has collected all the XML types
that can flow to the input of the function, and then type-
checked the body of the function with the union of all these
types. In general, the OCaml type-checker is used to infer the
data flow of XML values in the programs. The way to solve
the resulting set of constraints by forward computation cor-
responds roughly to the structure of the XDuce type-checker.

Implicit subtyping Let’s see what happens if we add an
explicit type constraint forz1 :

let z1 : {{[<a>_*]}} =
f {{ [<a>[] [] <a>[[]]] }}

The algorithm described above will infer a much less precise
type forz2 as well, which is unfortunate. The reason is that
the OCaml type-checker unifiesι5 with [<a>_*] . Ba-
sically, the unification-based type system forgets about the
direction of the data flow. There is some dose of implicit
subtyping in the algorithm, but only for the result of XML
operators (because of the way we interpet them as subtyping
- not equality - constraints).

In order to address this lack of implicit subtyping, we use
a preprocessing pass whose purpose is to detect which sub-
expressions are of kind XML and to introduce around them a
special unary XML operatorid which behaves semantically
as the identity, but allows subtyping. This preprocessing pass
would rewrite the definition forz1 as:

let z1 : {{[<a>_*]}} =
id ι10

ι9 (f {{[<a>[] [] <a>[[]]] ι1}})

3

The variableι9 will then be unified withι5 and ι10 with
[<a>_*] . The additional constraint corresponding to
the id operator is thus simply:

[<a>_*] ≥ ι5

which is satisfied by the same instantiation forι5 as in the
original example. As a consequence, the type forz2 is not
changed.

The preprocessing pass is quite simple. It consists of an-
other run of the OCaml type-checker, where all the XML
types are considered equal. This allows to identify which
sub-expressions are of kind XML. Section 5 describes for-
mally this pass.

Breaking cycles The key condition which allowed us to
compute an instantiation for XML type variables in the ex-
ample was the acyclicity of the constraints. This property
does not always hold. For instance, let’s extend the original
example with the following definition:

let z3 = f z1

Without the preprocessing pass mentionned above, this line
would force the OCaml type-checker to unifyι1 andι5. The
preprocessing pass actually replaces this definition by:

let z3 = f id ι12
ι11(z1)

The type-checker then unifiesι11 with ι5 andι12 with ι1; the
resulting constraint forid is thus:

ι1 ≥ ι5

which corresponds to the fact that the output off can flow
back to its input. We observe that the set of constraints has
now a cycle between variablsι1, ι5 andι2.

Our type-system cannot deal with such a situation. It would
issue an error explaining that the inferred data flow on XML
values has a cycle. The programmer is then required to break
explicitly this cycle by providing more type annotations. For
instance, the programmer could use the same annotation as
above onz1 :

let z1 : {{[<a>_*]}} =
f {{ [<a>[] [] <a>[[]]] }}

or maybe he will prefer to annotate the input or output type
of f .

3 Abstract extension of ML

The previous section explained the behavior of OCaml-
Duce’s type checker on a example. It should be clear from
this example that the type system is largely independent of
the actual definitions of values, types, patterns and opera-
tors from XDuce and could be applied to other extensions
of OCaml as well. In this section, we will thus introduce an
abstract notion of extension and show how XDuce fits into
this notion. This more abstract presentation should help the
reader to understand the structure of the type checker, with-
out having to care about the details of XDuce type system.

Definition 1. AnextensionX is defined by:

• a set of ground foreign typesT ;

• a subtyping relation≤ on T , which is a partial order
with a finite least-upper bound operatort;

• a set of foreign operatorsO;

• for each operatoro ∈ O: an arity n ≥ 0 and an ab-
stract semanticŝo : T n → T which is monotone with
respect to≤ on each of its argument.

We use the meta-variableτ to range over ground foreign
types. The foreign operators are used to model both foreign
value constructors and operations on these foreign values.
Since we are not going to formalize dynamic semantics, we
don’t need to distinguish between these two kinds of opera-
tors.

The monotonicity requirement on the abstract semantics en-
sures that our resolution strategy (taking the union of lower
bounds for each variables) for constraints is complete.

We don’t formalize in this paper the operational semantics of
operators. Instead, we assume informally that it is given and
compatible with the abstract semantics.

XDuce as an extension We now show how XDuce fea-
tures can be seen as an extension. We consider here a simple
version of XDuce, with the following kind of expressions:
element constructora[e] (seen as a unary operator), empty
sequence() , concatenatione1, e2, and pattern matching
match e with p→ e | . . . | p→ e. OCamlDuce is actually
build on CDuce, which considers for instance XML element
constructors as ternary operators (the tag and a specification
for XML attributes are also considered as arguments).

The meta-variablep ranges over XDuce patterns. We don’t
need to recall here what they are. We just need to know
that for any patternp we can define an accepted type*p+,

4

a finite set of capture variableVar(p), and for any typeτ
and any variablex in Var(p), a typematch[x; p](τ) (which
represents the set of values possibly bound tox when the
input value is inτ and the pattern succeed)

Here is the formal definition of an extension X for XDuce.
We take for foreign types the XDuce types quotiented by
the equivalence induced by the subtyping relation (that is:
types with the same set-theoretic interpretation are consid-
ered equal). The least-upper bound operatort corresponds
to XDuce’s union type constructor (usually written|). We
use the following families of foreign operators:

• a unary operator for each XML labela, a unary opera-
tor;

• a binary operator corresponding to the concatenation;

• a constant operator corresponding to the empty se-
quence;

• for any patternp and variablex in Var(p), a unary op-
erator writtenmatch[x; p] (its semantics is to return the
value bound tox when matching its argument against
the patternp).

The abstract semantics for all these operators follows directly
from XDuce’s theory.

Element constructor, concatenation and the empty sequence
expressions can directly be seen as foreign operators. This
is not the case for a pattern matchingmatch e with p1 →
e1 | . . . | pn → en. We are going to present an encoding
of pattern-matching in terms of operators and normal ML
expressions. This encoding is rather heavy; in practice, the
implementation deals with pattern matching directly.

First, we define the translationp→ e of a single branch
whereVar(p) = {x1, . . . , xn} as the expression:

λx.
let x1 = match[x1; p]x in
. . .
let xn = match[xn; p]x in
e

Then, the translation ofmatch e with p1 → e1 | . . . | pn →
en is defined as:

let x = e in
dispatch[τ1, . . . , τn] x x (p′1 → e1) . . . (p′n → en)

whereτi = *pi+ andp′i = pi\(τ1 t . . . t τi−1) (the restric-
tion of pi to values which do not match any pattern form an
preceding branch). We have used in this translation a new

built-in ML constantdispatch[τ1, . . . , τn] of type scheme:
∀α.(τ1 t . . . t τn) → α → (α → β) → . . . → (α → β) →
β, which we assume to be present in the initial typing envi-
ronment. Its intuitive semantics is to drop the first argument
(it is used only to force the type-checker to verify thatx has
typeτ1t . . .t τn, which corresponds to the XDuce’s pattern
matching exhaustivity condition), and to call thekth func-
tional argument (1 ≤ k ≤ n) on the second argument when
k is the smallest integer such that this argument has typeτk.

In principle, the technique described in this paper could
be used to integrate many of the existing extensions to
the original XDuce design (such as attribute-element con-
straints [HM03] or XML filters [Hos04]) without any addi-
tional theoretical complexity. In its current form, however,
OCamlDuce integrates all the CDuce extensions except over-
loaded functions: XML attributes as extensible records, se-
quence and tree pattern-based iterators, strings as sequences
of characters (hence string regular expression types and pat-
terns), etc.

4 Type system

In this section, we present a type system and a type inference
algorithm for a fixed extensionX. Our language will be the
kernel of an ML-like type system, enriched with types and
operators from the extensionX.

Types and expressions The syntax of types and expres-
sions is given in Figure 1. We use a vector notation to repre-
sent tuples. E.g.~t stands for an n-tuple(t1, . . . , tn).

We assume a set of ML type constructors, ranged over by
the meta-variableP. Each ML type constructor comes with
a fixed arity and we assume all the types to be well-formed
with respect to these arities. The arrow→ is considered as
a distinguished binary type constructor for which we use an
infix and right-associative syntax.

We assume given two infinite families of type variables and
foreign type variables, respectively ranged over by the meta-
variablesα andι. In an expression∃α.e, the type variable
α is bound ine. Expressions are considered moduloα-
conversion of bound type variables. The construction∃α.e
thus serves to introduce a fresh type variableα to be used in
a type annotation somewhere ine.

Foreign operators are annotated with the type of their argu-
ments (in subscript position) and of their result (in super-
script); the number of type arguments is assumed to be co-
herent with the arity of the foreign operator. However, in

5

practice, the source language does not include the annota-
tions: they are automatically filled with fresh foreign type
variables by the compiler (we also use this convention in this
paper for some examples). Putting the annotations in the syn-
tax is just a way of simplifying the presentation. The main
technical contribution of the paper is an algorithm to infer
ground foreign types for the foreign type variables.

The ML (X) fragment We call ML(X) the fragment of
our calculus where all the foreign types are restricted to be
ground. Figure 2 defines a typing judgmentΓ ` e : t
for ML(X). It is exactly an instance of the ML type sys-
tem [Mil78, Dam85] if we see ground foreign types as
atomic ML types and ground-annotated foreign type oper-
atorsoτ

~τ as built-in ML constants or constructors (we also
introduce explicit type annotation and type variable intro-
duction). We recall classical notions of type scheme, typing
environment and generalization. Atype schemeis a pair of
a finite setᾱ of type variables and of a typet, written∀ᾱ.t.
The variables in̄α are considered bound in this scheme. We
write σ � t if the typet is an instance of the type scheme
σ. A typing environment is a finite mapping from program
variables to type schemes. Thegeneralization of a typet
with respect to a typing environmentΓ, written GenΓ(t) is
the type scheme∀ᾱ.t whereᾱ is the set of variables which
are free int, but not inΓ.

Type-soundness of the ML(X) fragment Weassumethat
a soundoperational semantics is given for the ML(X) cal-
culus. This amounts to definingδ-reduction rules for theoτ

~τ

operators which are coherent with the abstract semantics for
the foreign operators. Well-typed expressions in ML(X) (in
an empty typing environment, or an environment which con-
tains built-in ML operators) cannot go wrong. We also as-
sume that the operational semantics for anoτ

~τ operator de-
pends only ono, not on the annotations~τ , τ . This allows us
to lift the semantics of ML(X) to the full calculus.

Typing problems A substitution φ is an idempotent func-
tion from types to types that maps type variables to types,
foreign type variables to foreign types, ground foreign types
to themselves, and that commutes with ML type construc-
tors. We use a post-fix notation to denote a capture-avoiding
application of this substitution to typing environments, ex-
pressions, types or constraints.

A substitutionφ1 is more general than a substitutionφ2 if
φ2 = φ2 ◦ φ1. (Or equivalently, because substitutions are
idempotent: there exists a substitutionφ such thatφ2 = φ ◦
φ1.)

A typing problem is a tuple(Γ, e, t). (Usually,t is a fresh
type variable.) Asolution to this problem is a substitutionφ
such thatΓφ ` eφ : tφ is a valid judgment in ML(X). We
will now rephrase this definition in terms of a typing judg-
ment on the full calculus. This judgmentΓ `X e : t is
defined by the same rules as in Figure 2, except for foreign
operators, for which we take:

Γ `X oε
~ε : ε1 → . . . → εn → ε

Typing environment and type schemes that are used in the
judgment`X are allowed to contain foreign type variables.
We say thatφ is a pre-solution to the typing problem
(Γ, e, t) if the assertionΓφ `X eφ : tφ holds. Of course,
the new rule for foreign operators forgets the constraints that
relates the input and output types of foreign operators. In
order to ensure type soundness, we must also enforce these
constraints.

Formally, we define aconstraint C as a finite set of annotated
foreign operatorsoε

~ε. We write C if all the elements ofC
are of the formoτ

~τ with ô(~τ) ≤ τ . For an expressione,
we collect in a constraintC(e) all the instances of foreign
operatorsoε

~ε that appear ine. Note that for any substitution
φ, we haveC(e)φ = C(eφ).

We are ready to rephrase the notion of solution.

Lemma 1. A substitutionφ is a solution to the typing prob-
lem (Γ, e, t) if and only if the following three assertions
hold:

• Γφ, eφ andtφ do not contain foreign type variables;

• φ is a pre-solution to the typing problem;

• C(eφ).

Type soundness Type soundness for our calculus is a triv-
ial consequence of the type soundness assumption for the
ML(X) fragment. Indeed, we can see a solutionφ to a typ-
ing problem(Γ, e, t) as anelaborationinto a well-typed pro-
gram in this fragment.

Type inference Let us consider a fixed typing problem
(Γ, e, t). We want to find solutions to this problem. Thanks
to Lemma 1, we will split this task into two different steps:

• find a most-general pre-solutionφ0;

• instantiate the remaining foreign type variables so as to
satisfy the resulting constraint.

6

ε ::= Foreign types:
τ ground foreign type
ι foreign type variable

t ::= Types:
P ~t constructed
α type variable
ε foreign type

e ::= Expressions:
x program variable
λx.e abstraction
e e application
let x = e in e local definition
(e : t) annotation
∃α.e existential variable
oε

~ε foreign operator

Figure 1: Types and expressions

Γ(x) � t

Γ ` x : t
Γ, x : t1 ` e : t2

Γ ` λx.e : t1 → t2

Γ ` e1 : t1 → t2 Γ ` e2 : t1

Γ ` e1e2 : t2

Γ ` e1 : t1 Γ, x : GenΓ(t1) ` e2 : t2

Γ ` let x = e1 in e2 : t2

Γ ` e : t
Γ ` (e : t) : t

Γ ` e[t0/α] : t
Γ ` ∃α.e : t

ô(~τ) ≤ τ

Γ ` oτ
~τ : τ1 → . . . → τn → τ

Figure 2: Type system for the ML(X) fragment

It is almost straightforward to adapt unification-based exist-
ing algorithms for ML type inference (and their implementa-
tions) to compute a most general pre-solution if there exists
a pre-solution, or to report a type error otherwise. Indeed,
the typing judgment̀ X is very close to a normal ML type
system. In particular, it satisfies a substitution lemma: if
Γ `X e : t, thenΓφ `X eφ : tφ for any substitutionφ.

Of course, if the typing problem has no pre-solution, it has
no solution as well. For the remaining of the discussion,
we assume given a most general pre-solutionφ0. Let us
write V for the set of foreign type variables that appear in
(Γφ0, eφ0, tφ0) andC0 for the constraintC(eφ0).

A solution to the typing problem is in particular a pre-
solution. As a consequence, a substitutionφ is a solution
if and only if φ = φ ◦ φ0 and if it maps foreign type vari-
ables inV to ground foreign types in such a way that C0φ.
The “minimal” modification we need to bring toφ0 to get a
solution is to instantiate variables inV so as to validateC0.
Formally, we define avaluation as a functionρ : V → T
such that C0ρ. To any valuationρ, we can associate a solu-
tion φ defined bytφ = tφ0ρ and any solution is less general
than the solution obtained this way from some valuation. In
particular, a solution exists if and only if a valuation exists.
So we are now looking for a valuation.

We won’t give acompletealgorithm to check for the exis-
tence of a valuation. This would lead to difficult constraint
solving problems which might be undecidable (this of course
depends on the extensionX). Even if they are decidable for
a given extension, they might be intractable in practice and

so we prefer to stick to our design guideline that type infer-
ence shouldn’t be significantly more complicated than both
ML type inference and XDuce-like type inference. XDuce
computes in a bottom-up way, for each sub-expression, a
type which over approximates all the possible outcomes of
this sub-expression. The basic operations and their typing
discipline corresponds respectively to our foreign operators
and their static semantics. XDuce’s type system uses sub-
sumption only when necessary (e.g. to join the types of
the branches of a pattern matching, or when calling a func-
tion). So we can say that XDuce tries to compute a min-
imal type for each sub-expression, by applying basic type-
checking primitives. We will do the same, and to make it
work, we need some acyclicity property, which corresponds
to the bottom-up structure of XDuce’s type checker.

Definition 2. Let C be a constraint. We writeι1
C
 ι2 if C

contains an elementoε
~ε such thatι2 = ε andι1 appears in~ε.

We say thatC is acyclic if the directed graph defined by this
relation is acyclic.

Our type inference algorithm only deals with the case of an
acyclic constraintC0 (this condition does not depend on the
particular choice of the most general pre-solution). If the
condition is not met, we issue an error message. It is not
a type error with respect to the type system, but a situation
where the algorithm is incomplete.

Remark. The acyclicity criterion is of course syntactical (it
does not depend on the semantics of constraints but on their
syntax), but it is not defined in terms of a specific inference
algorithm. Instead, it is defined in terms of the most-general
pre-solution of an ML-like type system. In particular, it does

7

not depend on implementation details such as the order in
which sub-expression are type-checked.

Below we furthermore assume thatC0 is acyclic. We define
the functionρ0 : V → T by the following equation:

∀ι ∈ V. ιρ0 =
⊔
{ô(~ερ0) | oι

~ε ∈ C0}

The acyclicity condition ensures that this definition is well-
founded and yields a unique functionρ. Furthermore, this
function is a valuation if and only if the typing problem has
a solution. To check this property, only constraints whose
right-hand side is a ground foreign type need to be consid-
ered:

(1) ∀oτ
~ε ∈ C0. ô(~ερ0) ≤ τ

Also, any other valuationρ is such that:

∀ι ∈ V. ιρ0 ≤ ιρ

In other words, under the acyclicity condition, we can check
in a very simple way whether a given typing problem has a
solution, and if this is the case, we can compute the smallest
valuation (for the point-wise extension of the subtyping rela-
tion). This computation only involves one call to the abstract
semantics for each application of a foreign operator in the
expression to be type-checked.

Remark. In some cases, it is possible to find manifest type
errors even when the constraint is not acyclic. In practice,
the computation ofρ0, the verification of(1), and the check
for acyclicity can be done in parallel, e.g. with a deep-first
graph traversal algorithm. It can detect some violation of(1)
before a cycle. In this case, we know that the typing problem
has no solution, and thus a proper type error can be issued.

Manually working around the incompleteness When the
algorithm described above infers a cyclic constraint, it can-
not detect whether the typing problem(Γ, e, t) has a solution
or not. However, we have the following property. If a solu-
tion φ exists, then we can always produce an expressione′

by adding annotations toe such that the algorithm succeeds
for the typing problem(Γ, e′, t) and thatφ is equivalent (for
the equivalence induced by the more-general ordering) to the
solutionφ0 computed by the algorithm.

In other words, even if the algorithm is not complete (be-
cause of the acyclicity condition) and makes a choice be-
tween most-general solutions (the smallest one for the sub-
typing relation), for any solution to a typing problem, the
programmer can always add annotations so that the algo-
rithm infers this very solution (or an equivalent one).

Partial operators The foreign operators were assumed to
be total. This means they should apply to any foreign value.

We can simulate partial operators by adding a new top ele-
ment> to the set of ground foreign typesT , and by requiring
the abstract semantics of operators to be such that whenever
an argument is>, the result is also>. Since the typing algo-
rithm infers the smallest valuation for foreign type variables,
we can simply look at it and check that no foreign type vari-
able is mapped to>.

5 Strengthening

As we mentioned above, we can see the type system for the
calculus as an elaboration into its ML(X) fragment, which
immediatly gives type soundness.

In this section, we consider another elaboration from the cal-
culus into itself. Namely, this elaboration is intended to be
used as a preprocessing pass (rewriting expressions into ex-
pressions) in order to make the type system accept more pro-
grams. We call this elaboration procedure strengthening.

The issue addressed by strengthening is a lack of implicit
subsumption in our calculus. We already hinted at this issue
in Section 2. We will now give more examples.

Subsumption missing in action We consider the typing
problem(Γ1, e1, β) whereΓ1 = {x : τ1, y : τ2, f : ∀α. α →
α → α} ande1 = f x y. It admits a solution if and only
if τ1 = τ2. In a system with implicit subtyping, we might
expect to give typeτ = τ1 t τ2 to bothx andy, so that the
application succeeds and the result type isτ .

Similarly, the expression(λx.x : τ1 → τ2) is not well-typed
even ifτ1 ≤ τ2 (unlessτ1 = τ2).

A naive solution Let us see how to implement the amount
of implicit subtyping we need to make these examples type-
check. The following rule could be a reasonable candidate
as an addition to the type system (we write`≤ for the new
typing judgment):

Γ `≤ e : τ τ ≤ τ ′

Γ `≤ e : τ ′

A concrete way to see this rule is that any subexpres-
sion e′ can be magically transformed to the application
idι2

ι1 e′, whereid is a distinguished foreign operator such
that îd(τ) = τ andι1, ι2 are fresh foreign type variables.

The type system extended with this rule would accept the
examples given above to illustrate the lack of implicit sub-
sumption. However, this rule as it stands would add a lot

8

of complexity to the type inference algorithm. As a matter
of fact, the type system would not admit most-general pre-
solutions anymore. We can see this on a very simple exam-
ple with the typing problem({x : τ}, x, α). We could argue
that a more liberal definition of being more-general should
allow some dose of subtyping. So let us consider the more
complex exampleΓ3 = {f : ∀α. α → α → α} ande3 =
λx.λy.λz.λg.g (f x y) (f x z). In ML, the inferred type
scheme would be∀α, β.α → α → α → (α → α → β) →
β which forces the first three arguments to have the same
type. But if the arguments turn out to be of a foreign-type,
another family of types for the function is possible, namely
∀β.τ1 → τ2 → τ3 → ((τ1 t τ2) → (τ1 t τ3) → β) → β,
and these types cannot be obtained as instances of the ML
type scheme above (we can obtain∀β.τ1 → τ2 → τ3 →
((τ1 t τ2 t τ3) → (τ1 t τ2 t τ3) → β) → β but this is less
precise).

A practical solution We will now describe a practical so-
lution. Instead of modifying the type system by adding a
new subsumption rule, we will formulate the extension as a
rewriting preprocessing pass. The rewriting consists in in-
serting applications of the identity foreign operatorid. The
challenge is then to choose which sub-expressionse′ should
be rewritten toid e′. If we had an oracle to tell us so, the
composition of the rewriting pass and the type system of Sec-
tion 4 would be equivalent to the type system̀≤. Unfortu-
nately, we don’t have such an oracle. We could try all the
possible choices of sub-expressions, and this would give a
complete type-checking algorithm for the type system`≤.

We prefer to use a computationally simpler solution. We
also expect it to be simpler to understand by the program-
mer. The idea is to use an incomplete oracle. The oracle
first runs a special version of an ML type-checker on the ex-
pression to be type-checked. This type-checker identifies all
the foreign types together. The effect is to find out which
sub-expressions have a foreign type in a principal derivation,
that is, which sub-expression have necessarily a foreign type
in all the possible derivations. The preprocessing pass con-
sists in adding an application of the identity operator above
all these sub-expressions and only those.

The important point here is that the oracle may be overly
conservative. Let us consider a type variable which has been
generalized in the principal derivation. In a non-principal
derivation, it could have been instead instantiated to a for-
eign type. If this derivation had been considered instead of
the principal one, the preprocessing pass would have added
more applications of the identity operator. Maybe this would
have been necessary in order to make the resulting expres-
sion type-check. An example is given by the expression
let h = e3 in (h : τ1 → τ2 → τ3 → ((τ1 t τ2) →

(τ1 t τ3) → t) → t) wheree3 is from the example above.
Here, the preprocessing pass succeeds but does not change
the expression because no sub-expression has a foreign type
in the principal type derivation. The type-scheme inferred for
h is a pure ML type-schema, which makes the type-system
subsequently fail on the expression.

We believe that this restriction of thè≤ system is rea-
sonnable. It can be implemented very simply by reusing
the same type-checker as in Section 4 in a different mode
(where all the foreign types can be unified). The simple ex-
amples at the beginning of this section are now accepted.
Indeed, the preprocessing pass transforms the expressions to
f (id x) (id y) and((λx.id x) : τ1 → τ2) respectively. This
allows the type system̀ to use subtyping where needed.

Properties The strenghtening pass cannot transform a
well-typed program into an ill-typed one. Note, however,
that it might break the acyclicity condition if it was already
met. See below for a way to relax the acyclicity condition.

Also, if strenghtening fails, the typing problem has no pre-
solution (for the typing judgment̀), and thus no solution.
However, it is not true that if it succeeds, a pre-solution nec-
essarily exists (for the new program where applications of
the id operators have been added). As an example, let us
consider the situation whereΓ = {x : τ1 → τ1, y : τ2 →
τ2, f : ∀α. α → α → α} ande = f x y. The preprocessing
succeeds, because all the foreign types are considered equal
but does not touch the expression (because no sub-expression
has a foreign type in a principal typing derivation). Still, the
next pass of the type inference algorithm attempts to unifiy
the typesτ1 andτ2 and thus fails.

Relaxing the acyclicity condition Inserting applications
of the id operator can break the acyclicity condition. We
can actually relax this condition to deal with theid oper-
ator more carefully. Let us consider a constraintC with a

cycle ι1
C
 . . .

C
 ι1, such that all the edges in this cycle

come from elements of the formidι′

ι . Clearly, any valu-
ation ρ such that Cρ will map all the ιi in the cycle to
the same ground foreign type. So instead of considering the
most-general pre-solution and then face a cyclic constraint,
we may as well unify all theseιi first: all the solutions can
still be obtained from this less-general pre-solution.

The relaxed condition is: There must be no cycle in the con-
straint except maybe cycles whose edges are all produced by
theid operator.

To illustrate the usefulness of the relaxed condition, let us
consider the expressione = fix(λg.λx.f c (g x)) with Γ =

9

{fix : ∀α.(α → α) → α, f : ∀α.α → α → α, c : τ}. The
strengthening pass builds a principal typing derivation fore
in a type algebra where all the foreign types are identified.
Here is such a derivation, where we write? for foreign types
andt = α → ?, Γ′ = Γ, g : t, x : α (we collapse rules for
multiple abstraction and application):

Γ ` fix : (t→ t) → t

Γ′ ` f : ? → ? → ?

Γ′ ` c : ?

Γ′ ` g : t Γ′ ` x : α

Γ′ ` g x : ?

Γ′ ` f c (g x) : ?

Γ ` λg.λx.f c (g x)) : t→ t

Γ ` e : α → ?

On this principal derivation, we observe three sub-
expressions of a foreign type. Accordingly, strengthening in-
troduces three instances of theid operator and thus rewrites
the expression to:

e′ = fix(λg.λx.idι2
ι1 (f (idι4

ι3 c) (idι6
ι5 (g x))))

The type-checker which is then applied performs some uni-
fications:ι1 = ι4 = ι6, ι2 = ι5, ι3 = τ . We can for instance
assume that the computed most-general pre-solution mapsι4
andι6 to ι1 andι5 to ι2. The first and third instances of the
id operator ine′ thus generate the dependenciesι1

C0 ι2 and

ι2
C0 ι1. Strictly speaking, the constraint is cyclic, but we

can break the cycle simply by unifyingι1 andι2. The small-
est valuation is then given byι1ρ = τ . We would have ob-
tained the same solution if we had applied the type-checker
directly one without the strengthening pass. In this exam-
ple, strengthening is useless and the relaxed acyclicity condi-
tion is just a way to break a cycle introduced by strenghten-
ing. We can easily imagine more complex examples where
strenghtening is really necessary but introduces cycles that
can be broken by the relaxed condition.

6 Integration in OCaml

We have described a type system for basic ML expressions.
Of course, OCaml is much more than an ML kernel. We
found no problem to extend it to deal with the whole OCaml
type system, including recursive types, modules, classes, and
other fancy features. The two ML-like typing passes (the
one used during strengthening and the one using for the real
type-checking) are done on whole compilation units (in the
toplevel, they are done on each phrase). The information

from the compilation unit interface (the.cmi file) is in-
tegrated before checking the acyclicity condition. Indeed,
this information acts as additional type annotations on the
values exported by the compilation unit and can thus con-
tribute to obtaining this condition. Also, in addition to type
annotations on expressions, OCaml provides several ways
to introduce explicit type informations (and thus obtain the
acyclicity condition): datatype definitions (explicit types for
constructor and exception arguments, record fields), module
signatures, type annotations on ML pattern variables.

OCaml subtyping OCaml comes with a structural subtyp-
ing relation (generated by object types and polymorphic vari-
ants subtyping and extended structurally by considering the
variance of ML type constructors). The use of this subtyping
relation in programs is explicit. The syntax is(e : t1 :> t2)
(sometimes, the typet1 can be inferred) and it simply checks
thatt1 is a subtype oft2. Of course, the OCaml subtyping
relation has been extended in OCamlDuce to take XDuce
subtyping into account. For instance, ifτ1 is a XDuce sub-
type ofτ2 ande has typeτ1list, then it is possible to coerce
it to typeτ2 list: (e :> τ2 list).

Crossing the boundary In our system, XDuce values
are opaque from the point of view of ML and XDuce
types cannot be identified with other ML type construc-
tors. Sometimes, we need to convert values between the
two worlds. For instance, we have a foreign typeString
which is different from OCamlstring . This foreign
type conceptually represents immutable sequences of arbi-
trary Unicode characters, whereas the OCaml type should
be thought as representing mutable buffers of bytes. As
a consequence, we don’t even try to collapse these two
types into a single one. Instead, OCamlDuce comes with
a runtime library which exports conversion functions such
as Utf8.make: string -> String , Utf8.get:
String -> string , Latin1.make: string ->
Latin1 , Utf8.get: Latin1 -> string . The
type Latin1 is a subtype ofString : it represents all
the strings which are only made of latin-1 characters (latin-
1 is a subset of the Unicode character set). The function
Utf8.make checks at runtime that the OCaml string is a
valid representation of a Unicode string encoded in utf-8.

Similarly, we often need to translate between XDuce’s se-
quences and OCaml’s lists. For any XDuce typeτ , we can
easily write two functions of types[τ∗] → τ list and
τ list → [τ∗] (the star between square brackets denotes
Kleene-star). Similarly, we can imagine a natural XDuce
counterpart of an OCaml product typeτ1 × τ2, namely
[τ1 τ2], and coercion functions. However, writing this kind
of coercions by hand is tedious. OCamlDuce comes with

10

built-in support to generate them automatically. This au-
tomatic system relies on a structural translation ofsome
OCaml types into XDuce types: lists and array are translated
to Kleene-star types, tuples are translated to finite-length
XDuce sequences, variant types are translated to union types,
etc. Some OCaml types such as polymorphic or functional
types cannot be translated. OCamlDuce comes with two
magic unary operatorsto_ml , from_ml (both written{:
...:} in the concrete syntax). The first one takes an XDuce
value and applies a structural coercion to it in order to obtain
an OCaml value; this coercion is thus driven by the output
type of the operator. The type-checker requires this type to
be fully known (polymorphism is not allowed). Similarly,
the operatorfrom_ml takes an OCaml value and apply a
structural coercion in order to obtain an XDuce value. Since
the type of its input drives its behavior, the type-checker re-
quires this type to be fully known.

This system can be used to obtain coercions from complex
OCaml types (e.g. obtained from big mutually recursive def-
initions of concrete types) to XDuce types, whose values can
be seen as XML documents. This gives parsing from XML
and pretty-printing to XML for free.

7 Related work

The CDuce language itself comes with a typed interface with
OCaml. The interface was designed to: (i) let the CDuce pro-
grammers use existing OCaml libraries; (ii) develop hybrid
projects where some modules are implemented in OCaml
and other in CDuce. The interface is actually quite simple:
each monomorphic OCaml typet is mapped in a structural
way to a CDuce typêt. A value defined in an OCaml mod-
ule can be used from CDuce (the compiler introduces a nat-
ural translationt → t̂). Similarly, it is possible to provide
an ML interface for a CDuce module: the CDuce compiler
checks that the values exported by the module are compati-
ble with the ML-to-CDuce translation of these types and pro-
duces stub code to apply a natural translationt̂→ t to these
values. This CDuce/OCaml interface is used by many CDuce
users and served as a basis to theto_ml andfrom_ml oper-
ators described in Section 6.

Sulzmann and Zhuo Ming Lu [SL05] pursue the same ob-
jective of combining XDuce and ML. However, their contri-
bution is orthogonal to ours. Indeed, they propose a compi-
lation scheme from XDuce into ML such that the ML rep-
resentation of XDuce values is driven by their static XDuce
type (implicit use of subtyping are translated to explicit coer-
cions). Their type system supports in addition used-defined
coercions from XDuce types to ML types. However, they
do not describe a type inference algorithm for their abstract

specification of a type system and do not study the interac-
tion between XDuce type-checking and ML type inference
(XDuce code can call ML functions but their type must be
fully known). These last points are precisely the issues tack-
led by our contribution. For instance, our system makes
it possible to avoid some type annotation on non-recursive
XDuce functions. Another difference is that in our approach,
the XDuce/CDuce type checker and back-end (compilation
of pattern matching) can be re-used without any modifica-
tion whereas their approach requires a complete reengineer-
ing of the XDuce part (because subtyping and pattern match-
ing relations must be enriched to produce ML code) and it is
not clear how some XDuce features such as theAny type
can be supported in a scenario of modular compilation. We
believe our approach is more robust with respect to exten-
sions of XDuce and that the XDuce-to-ML translation can be
seen as an alternative implementation technique for XDuce
which allows some interaction between XDuce and ML (the
same kind of interaction as what can be achieved with the
CDuce/OCaml interface described above).

The Xtatic project [GP03] is another example of the inte-
gration of XDuce types into a general purpose language,
namely C#. Since both C#’s and XDuce’s type checkers op-
erate with bottom-up propagation (explicit types for func-
tions/methods, no type inference), the structure of Xtatic
type-checker is quite simple. The real theoretical contribu-
tion is in the definition of a subtyping relation which com-
bines C# named subtyping (inheritance) and XDuce set-
theoretic subtyping. Since the resulting type algebra does
not have least-upper bounds, the nice locally-complete type
inference algorithm for XDuce patterns [HP02] cannot be
transferred to Xtatic. In Xtatic, XDuce types and C# types
are stratified, but the two algebras are mutually recursive:
XDuce types can appear in class definitions and C# classes
can be used as basic items in XDuce regular expression
types. This does not really introduce any difficulty because
C# types are not structural. The equivalent in OCamlDuce
would be to allow OCaml abstract types as part of XDuce
types, which would not be difficult, except for scoping rea-
sons (abstract types are scoped by the module system).

In the last ten years, a lot of research effort has been put into
developping type inference techniques for extensions of ML
with subtyping and other kinds of constraints. For instance,
the HM(X) framework [MOW99] could serve as a basis to
express the type system presented here. The main modifi-
cation to bring to HM(X) would be to make foreign-type
variables global. Another way to express it is to disallow
constraints in type-schemes (which is what we do in the cur-
rent presentation). We have chosen to present our system
in a setting closer to ML so as to make our message more
explicit: our system can be easily implemented on top of ex-
isting ML implementations.

11

8 Conclusion and future work

We have presented a simple way to integrate XDuce into
OCaml. The modification to the ML type-system is small
enough so as to make it possible to easily extend existing
ML type-checkers.

Realistic-sized examples of code have been written in
OCamlDuce, such as an application that parses XML
Schema documents into an internal OCaml form and pro-
duces an XHTML summary of its content. Compared to
a pure OCaml solution, this OCamlDuce application was
easier to write and to get right: XDuce’s type system en-
sures that all possible cases in XML Schema are treated by
pattern-matching and that no invalid XHTML output can be
produced). We refer the reader to OCamlDuce’s website for
the source code of this application.

The main limitation of our approach is that it doesn’t allow
parametric polymorphism on XDuce types. Adding poly-
morphism to XDuce is an active research area. In a previous
work with Hosoya and Castagna [HFC05], we presented a
solution where polymorphic functions must be explictly in-
stantiated. Integrating this kind of polymorphism into the
same mechanism as ML polymorphism is challenging and
left for future work. The theory recently developped by
Vouillon [Vou06] could be a relevant starting point for such
a task.

Another direction for improvement is to further relax the
acyclicity conditions, that is, to accept more programs with-
out requiring extra type annotations. Once the set of con-
straints representing XML data flow and operations have
been extracted by the ML type-checker, we could use tech-
niques which are more involved than simple forward com-
putation over types. The static analysis algorithm used in
Xact [KMS04] could serve as a starting point in this direc-
tion.

Acknowledgments The author would like to thank Didier
Rémy and François Pottier for fruitful discussion about the
design and formalization of type systems.

References

[BCF03] V. Benzaken, G. Castagna, and A. Frisch.
CDuce: an XML-friendly general purpose lan-
guage. InICFP ’03, 8th ACM International Con-
ference on Functional Pr ogramming, pages 51–
63, Uppsala, Sweden, 2003. ACM Press.

[Dam85] Luis Manuel Martins Damas.Type assignment in
programming languages. PhD thesis, University
of Edinburgh, Scotland, April 1985.

[Fri04] Alain Frisch. Théorie, conception et réalisa-
tion d’un langage de programmatio n fonction-
nel adapté à XML. PhD thesis, Université Paris
7, December 2004.

[GP03] Vladimir Gapeyev and Benjamin C. Pierce. Reg-
ular object types. InEuropean Conference
on Object-Oriented Programming (ECOOP),
Darms tadt, Germany, 2003.

[HFC05] Haruo Hosoya, Alain Frisch, and Giuseppe
Castagna. Parametric polymorphism for XML.
In POPL, 2005.

[HM03] Haruo Hosoya and Makoto Murata. Boolean op-
erations and inclusion test for attribute-element
constraint s. InEighth International Conference
on Implementation and Application of Automata,
2003.

[Hos00] Haruo Hosoya. Regular Expression Types for
XML. PhD thesis, The University of Tokyo,
Japan, December 2000.

[Hos04] Haruo Hosoya. Regular expression filters for
XML. In Programming Languages Technologies
for XML (PLAN-X), 2004.

[HP00] Haruo Hosoya and Benjamin C. Pierce. XDuce:
A typed XML processing language. InProceed-
ings of Third International Workshop on the Web
and Data bases (WebDB2000), 2000.

[HP02] Haruo Hosoya and Benjamin C. Pierce. Regular
expression pattern matching for XML.Journal
of Functional Programming, 13(4), 2002.

[HP03] Haruo Hosoya and Benjamin C. Pierce. A typed
XML processing language.ACM Transactions
on Internet Technology, 3(2):117–148, 2003.

[HVP00] Haruo Hosoya, Jérôme Vouillon, and Ben-
jamin C. Pierce. Regular expression types for
XML. In ICFP ’00, volume 35(9) ofSIGPLAN
Notices, 2000.

[KMS04] Christian Kirkegaard, Anders Møller, and
Michael I. Schwartzbach. Static analysis of
XML transformations in Java.IEEE Transac-
tions on Software Engineering, 30(3):181–192,
March 2004.

[L+01] Xavier Leroy et al. The Objective Caml system
release 3.08; Documentation and user’s manual,
2001.

12

[Mil78] Robin Milner. A theory of type polymorphism in
programming.Journal of Computer and System
Sciences, 1978.

[MOW99] Martin Sulzmann Martin Odersky and Martin
Wehr. Type inference with constrained types.
TAPOS, 5(1), 1999.

[SL05] Martin Sulzmann and Kenny Zhuo Ming Lu. A
type-safe embedding of XDuce into ML. InThe
2005 ACM SIGPLAN Workshop on ML, 2005.

[Vou06] Jérôme Vouillon. Polymorphic regular tree types
and patterns. InPOPL, 2006. To appear.

13

