
appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
??

??
--

F
R

+
E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Towards Practical Typechecking for Macro Tree
Transducers

Alain Frisch — Haruo Hosoya

N° ????

Janvier 2007

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Towards Pratial Typeheking for Maro Tree TransduersAlain Frish∗ , Haruo Hosoya†Thème SYM � Systèmes symboliquesProjet GalliumRapport de reherhe n° ???? � Janvier 2007 � 28 pages
Abstrat: Maro tree transduers (mtt) are an important model that both overs many useful XMLtransformations and allows deidable exat typeheking. This paper reports our �rst step towardan implementation of mtt typeheker that has a pratial e�ieny. Our approah is to represent aninput type obtained from a bakward inferene as an alternating tree automaton, in a style similarto Tozawa's XSLT0 typeheking. In this approah, typeheking redues to heking emptinessof an alternating tree automaton. We propose several optimizations (Cartesian fatorization, statepartitioning) on the bakward inferene proess in order to produe muh smaller alternating treeautomata than the naive algorithm, and we present our e�ient algorithm for heking emptinessof alternating tree automata, where we exploit the expliit representation of alternation for loaloptimizations. Our preliminary experiments on�rm that our algorithm has a pratial performanethat an typehek simple transformations with respet to the full XHTML in a reasonable time.Key-words: tree automata, tree transduers, exat typeheking, alternating automata

∗ INRIA, projet Gallium
† University of Tokyo

Vers un typage pratiable pour les maro transduteurs d'arbreRésumé : Les maro transduteurs d'arbre (mtt) onstituent un modèle important, dans la mesureoù ils permettent de réaliser de nombreuses transformations XML et où ils admettent un typageexat déidable. Cet artile rend ompte d'une première étape en diretion de l'implémentationd'un typeur pour les mtt e�ae en pratique. Notre approhe onsiste à représenter le type d'entréeobtenu par inférene inverse sous la forme d'un automate d'arbre alternant, dans un style similaireà elui introduit par Tozawa pour le typage de XSLT0. Le problème de la véri�ation du bontypage du transduteur se réduit alors à elui du test de vide pour un automate d'arbre alternant.Nous proposons plusieurs optimisations (fatorisation artésienne, partionnement des états) pour leproessus d'inférene inverse, ave l'objetif de produire des automates alternants signi�ativementplus petits qu'ave l'algorithme naïf. Nous dérivons également un algorithme e�ae pour le test devide pour un automate d'arbre alternant, dans lequel nous exploitons la représentation expliite del'alternation pour permettre des optimisations loales. Nos expérienes préliminaires on�rment quenotre algorithme atteint des performanes su�santes pour typer des transformations par rapport àla DTD XHTML omplète, en un temps raisonnable.Mots-lés : automates d'arbre, transduteurs d'arbre, typage exat, automates alternants

Towards Pratial Typeheking for Maro Tree Transduers 31 IntrodutionStati typeheking for XML transformations is an important problem that has expetedly a sig-ni�ant impat on real-world XML developments. To this end, several researh groups have madee�orts in building typed XML programming languages [8, 3℄ with muh in�uene from the tradi-tion of typed funtional languages [2, 10℄. While this line of work has suessfully treated general,Turing-omplete languages, its approximative nature has resulted in an even trivial transforma-tion like the identity funtion to fail to typehek unless a large amount of ode dupliates andtype annotations are introdued [7℄. Suh situation has led us to pay attention to ompletely dif-ferent approahes that have no suh de�ieny, among whih exat typeheking has emerginglybeome promising. The exat typeheking approah has extensively been investigated for years[12, 20, 16, 23, 26, 24, 11, 15, 1, 13, 18, 14℄, in whih maro tree transduers (mtt) have been one ofthe most important models sine they allow deidable exat typeheking [5℄, yet over many usefulXML transformations [5, 11, 4, 19℄. Unfortunately, these studies are mainly theoretial and theirpratiality has never been lear exept for some small ases [23, 26℄.This paper reports our �rst step toward a pratial implementation of typeheker for mtts. Asa basi part, we follow an already-established sheme alled bakward inferene, whih omputesthe preimage of the output type for the subjet transformation and then heks it against the giveninput type. This is beause, as known well, the more obvious, forward inferene does not work sinethe image of the input type is not always a regular tree language in general. Our proposal is, ontop of this sheme, to use a representation of the preimage by an alternating tree automaton [21℄,extending the idea used in Tozawa's typeheking for XSLT0 [23℄. In this approah, typehekingredues to heking emptiness of an alternating tree automaton.Whereas normal tree automata use only disjuntions in the transition relation, alternating treeautomata an use both disjuntions and onjuntions. This extra freedom permits a more ompatrepresentation (they an be exponentially more suint than normal tree automata) and make thema good intermediate language to study optimizations. Having expliit representation of transitionsas Boolean formulas allowed us to derive optimized versions of the rules for bakward inferene,suh as Cartesian deomposition or state partitioning (Setion 4.1). These optimizations allow ouralgorithm to sale to large types. We also use Boolean reasoning to derive an e�ient emptinessalgorithm for alternating tree automata (Setion 4.2). For instane, this algorithm uses the followingfat as an e�ient shortut: when onsidering a formula φ = φ1 ∧ φ2, if φ1 turns out to denote anempty set, then so is φ, and thus the algorithm doesn't even need to look at φ2. Note that theexploited fat is immediately available in alternating tree automata, while it is not in normal treeautomata.We have made extensive experiments on our implementation. We have written several sizesof transformations and veri�ed against the full XHTML automatially generated from its DTD(in reality, transformations are often small, but types that they work on are quite big in manyases; exellent statistial evidenes are provided in [17℄.) The results show that, for this sale oftransformations, our implementation has suessfully ompleted typeheking in a reasonable timeeven with XHTML, whih is onsidered to be quite large. We have also ompared the performaneof our implementation with Tozawa and Hagiya's [26℄ and on�rmed that ours has omparable speedfor their small examples that are used in their own experiments.On the theoretial side, we have established an exat relationship with two major existingalgorithms for mtt typeheking, a lassial algorithm based on �funtion enumeration� [4℄ and
RR n° 0123456789

4 Alain Frish , Haruo Hosoyaan algorithm proposed by Maneth, Perst, and Seidl (MPS algorithm) [12℄. Conretely, we haveproved that (1) the lassial algorithm is idential to our algorithm followed by determinization ofan alternating tree automaton, and that (2) MPS algorithm is idential to our algorithm followedby emptiness test of an alternating tree automaton. A partiular impliation is that our algorithminherits one of useful properties of MPS algorithm: polynomial-time omplexity under the restritionof a bounded number of opying [12℄ (mtt typeheking is in general exponential-time omplete).The proofs appear in the appendix, however, sine this paper is foused rather on the pratial side.Related work Numerous tehniques for exat typeheking for XML transformations have beenproposed. Many of these take their target languages from the tree transduer family. Those inludetehniques for maro tree transduers [12, 4℄, for maro forest transduers [20℄, for k-pebble treetransduers [16, 4℄, for subsets of XSLT [23, 26℄, for high-level tree transduers [24℄, and a tree trans-formation language TL [11℄. Other tehniques treat XML query languages in the selet-onstrutstyle [15, 1, 13℄ or even simpler transformations [18, 14℄. Most of the above mentioned work providesonly theoretial results; the only exeptions are [23, 26℄, where some experimental results are shownthough we have examined muh bigger examples (in partiular in the size of types).Several algorithms in pragmati approahes have been proposed to address high omplexityproblems related to XML typeheking. A top-down algorithm for inlusion test on tree automatahas been developed and used in XDue typeheker [9℄; an improved version is proposed in [22℄.A similar idea has been exploited in the work on CDue on the emptiness hek for alternatingtree automata [6℄; the emptiness hek algorithm in our present work is strongly in�uened by this.Tozawa and Hagiya have developed BDD-based algorithms for inlusion test on tree automata [25℄and for satis�ability test on a ertain logi related to XML typeheking [26℄.Overview This paper is organized as follows. In Setion 2, we reall the lassial de�nitionsof maro tree transduers (mtt), bottom-up tree automata (bta), and alternating tree automata(ata). In Setion 3, we present the two omponents of our typeheking algorithm: bakward typeinferene (whih produes an ata from an mtt and a deterministi bta) and emptiness hek foralternating tree automata. In Setion 4, we revisit these two omponents from a pratial pointof view and we desribe important optimizations and implementation tehniques. In Setion 5, wereport the results of our experiments with our implementation of the typeheker for several XMLtransformations. In Setion 6, we onlude this paper with our future diretion. Appendix A isdevoted to a preise omparison between our algorithm and the lassial algorithm or the Maneth-Perst-Seidl algorithm for typeheking mtt. We show that eah of these algorithms an be retrievedfrom ours by omposing with a know algorithm. In Appendix B, we propose the notion of bounded-traversing alternating tree automata, whih is a natural ounterpart of syntatial bounded-opyingmtts as proposed in [12℄. We show in partiular that this notion ensures that the emptiness hekruns in polynomial time.2 Preliminaries2.1 Maro Tree TransduersWe assume an alphabet Σ where eah symbol a ∈ Σ is assoiated with its arity; often we write
a(n) to denote a symbol a with arity n. We assume that there is a symbol ǫ with zero-arity. Trees,INRIA

Towards Pratial Typeheking for Maro Tree Transduers 5ranged over by v,w, . . ., are de�ned as follows:
v ::= a(n)(v1, . . . , vn)We write ǫ for ǫ() and ~v = (v1, . . . , vn) to represent a tuple of trees. Assume a set of variables,ranged over by x, y, A maro tree transduer (mtt) T is a tuple (P,P0,Π) where P is a �niteset of proedures, P0 ⊆ P is a set of initial proedures, and Π is a set of (transformation) rules eahof the form

p(k)(a(n)(x1, . . . , xn), y1, . . . , yk)→ ewhere eah yi is alled (aumulating) parameter and e is a (n, k)-expression. We will abbreviatethe tuples (x1, . . . , xn) and (y1, . . . , yk) to ~x and ~y. Note that eah proedure is assoiated withits arity, i.e., the number of parameters; we write p(k) to denote a proedure p with arity k. An
(n, k)-expression e is de�ned by the following grammar

e ::= a(m)(e1, . . . , em) | p(l)(xh, e1, . . . , el) | yjwhere only yj with 1 ≤ j ≤ k and xh with 1 ≤ h ≤ n an appear as variables. We assume that eahinitial proedure has arity zero.We desribe the semantis of an mtt (P,P0,Π) by a denotation funtion [[·]]. First, the semantisof a proedure p(k) takes a tree a(n)(v1, . . . , vn) and parameters ~w = (w1, . . . , wk) and returns theset of trees resulted from evaluating any of p's body expressions.
[[p(k)]](a(n)(~v), ~w) =

⋃

(p(k)(a(n)(~x),~y)→e)∈Π

[[e]](~v, ~w)Then, the semantis of an (n, k)-expression e takes a urrent n-tuple ~v = (v1, . . . , vn) of trees anda k-tuple of parameters ~w = (w1, . . . , wk), and returns the set of trees resulted from the evaluation.It is de�ned as follows.
[[a(m)(e1, . . . , em)]](~v, ~w) = {a(m)(v′1, . . . , v

′
m) | v′i ∈ [[ei]](~v, ~w) for i = 1, . . . ,m}

[[p(l)(xh, e1, . . . , el)]](~v, ~w) = {[[p(l)]](vh, (w′1, . . . , w
′
l)) | w

′
j ∈ [[ej]](~v, ~w) for j = 1, . . . , l}

[[yj]](~v, ~w) = {wj}A onstrutor expression a(m)(e1, . . . , em) evaluates eah subexpression ei and reonstruts a treenode with a and the results of these subexpressions. A proedure all p(xh, e1, . . . , el) evaluates theproedure p under the h-th subtree vh, passing the results of e1, . . . , el as parameters. A variableexpression yj simply results in the orresponding parameter's value wj. Note that an mtt is allowedto inspet only the input tree and never a part of the output tree being onstruted. Also, parametersonly aumulate subtrees that will potentially beome part of the output and never point to partsof the input.The whole semantis of the mtt with respet to a given input tree v is de�ned by T (v) =
⋃

p0∈P0
[[p0]](v). An mtt T is deterministi when T (v) has at most one element for any v; also, Tis total when T (v) has at least one element for any v. We will also use the lassial de�nition ofimages and preimages: T (V) =

⋃

v∈V T (v), T −1(V ′) = {v | ∃v′ ∈ V ′.v′ ∈ T (v)}.
RR n° 0123456789

6 Alain Frish , Haruo Hosoya2.2 Tree Automata and AlternationA (bottom-up) tree automaton (bta)M is a tuple (Q,QF ,∆) where Q is a �nite set of states, QF ⊆ Qis a set of �nal states, and ∆ is a set of (transition) rules eah of the form q ← a(n)(q1, . . . , qn) whereeah qi is from Q. We will write ~q for the tuple (q1, . . . , qn). Given a btaM = (Q,QF ,∆), aeptaneof a tree by a state is de�ned indutively as follows: M aepts a tree a(n)(~v) by a state q whenthere is a rule q ← a(n)(~q) in ∆ suh that eah subtree vi is aepted by the orresponding state
qi. M aepts a tree v when M aepts v by a �nal state q ∈ QF . We write [[q]]M for the set oftrees that the automaton M aepts by the state q (we drop the subsript M when it is lear),and L(M) =

⋃

q∈QF
[[q]] for the set of trees aepted by the automaton M. Also, we sometimessay that a value v has type q when v is aepted by the state q. A bta (Q,QF ,∆) is omplete anddeterministi when, for any onstrutor a(n) and n-tuple of states ~q, there is exatly one transitionrule of the form q ← a(n)(~q) in ∆. Suh a bta is alled deterministi bottom-up tree automaton(dbta). For any value v, there is exatly one state q suh that v ∈ [[q]]. In other words, the olletion

{[[q]] | q ∈ Q} is a partition of the set of trees.An alternating tree automaton (ata) A is a tuple (Ξ,Ξ0,Φ) where Ξ is a �nite set of states,
Ξ0 ⊆ Ξ is a set of initial state, and Φ is a funtion that maps eah pair (X,a(n)) of a state and an
n-ary onstrutor to an n-formula, where n-formulas are de�ned by the following grammar.

φ ::= ↓i X | φ1 ∨ φ2 | φ1 ∧ φ2 | ⊤ | ⊥(with 1 ≤ i ≤ n). In partiular, note that a 0-ary formula evaluates naturally to a Boolean. Givenan ata A = (Ξ,Ξ0,Φ), we de�ne aeptane of a tree by a state. A aepts a tree a(n)(~v) by a state
X when ~v ⊢ Φ(X,a(n)) holds, where the judgment ~v ⊢ φ is de�ned indutively as follows:� ~v ⊢ φ1 ∧ φ2 if ~v ⊢ φ1 and ~v ⊢ φ2.� ~v ⊢ φ1 ∨ φ2 if ~v ⊢ φ1 or ~v ⊢ φ2.� ~v ⊢ ⊤.� ~v ⊢↓i X if A aepts vi by X.That is, ~v ⊢ φ intuitively means that φ holds by interpreting eah ↓i X as �vi has type X.� Wewrite [[X]] for the set of trees aepted by a state X and [[φ]] = {~v | ~v ⊢ φ} for the set of n-tuplesaepted by an n-formula φ. We write L(A) =

⋃

X0∈Ξ0
[[X0]] for the language aepted by the ata

A. Note that a bta M = (Q,QF ,∆) an be seen as an ata with the same set of states and �nalstates by de�ning the funtion Φ as Φ(q, a(n)) =
∨

(q←a(n)(~q))∈∆

∧

i=1,..,n ↓i qi, and the de�nitionsfor the semantis of states and the language aepted by the automaton seen as a bta or an atathen oinide. We will use the notation ≃ to represent semantial equivalene of pairs of states orpairs of formulas.3 Typeheking3.1 Bakward infereneGiven a dbta Mout (�output type�), a bta Min (�input type�), and an mtt T , the goal of type-heking is to verify that T (L(Min)) ⊆ L(Mout). It is well known that T (L(Min)) is in generalINRIA

Towards Pratial Typeheking for Maro Tree Transduers 7beyond regular tree languages and hene the forward inferene approah (i.e., �rst alulate anautomaton representing T (L(Min)) and hek it to be inluded in L(Mout)) does not work. There-fore an approah usually taken is the bakward inferene, whih is based on the observation that
T (L(Min)) ⊆ L(Mout) ⇐⇒ L(Min)∩T −1(L(M)) = ∅, whereM is the omplement automaton of
Mout. Intuitively, if the intersetion L(Min)∩T −1(L(M)) is not empty, then it is possible to exhibita tree v in this intersetion. Sine this tree satis�es that v ∈ L(Min) and T (v) 6⊆ L(Mout), it meansthat there is a ounter-example of the well-typedness of the mtt with respet to the given input andoutput types. Algorithmially, the approah onsists of omputing an automaton A representing
T −1(L(M)) and then heking that L(Min)∩L(A) = ∅. Sine the language T −1(L(M)) is regularand indeed suh automata A an e�etively be omputed, the above disjointness is deidable.The originality of our approah is to ompute A as an alternating tree automaton. Let a dbta
M = (Q,QF ,∆) and an mtt T = (P,P0,Π) be given. Here, note that the automaton M, whihdenotes the omplement of the output typeMout, an be obtained fromMout in a linear time sine
Mout is deterministi. FromM and T , we build an ata A = (Ξ,Ξ0,Φ) where

Ξ = {〈p(k), q, ~q〉 | p(k) ∈ P, q ∈ Q, ~q ∈ Qk}
Ξ0 = {〈p0, q〉 | p0 ∈ P0, q ∈ QF}

Φ(〈p(k), q, ~q〉, a(n)) =
∨

(p(k)(a(n)(~x),~y)→e)∈Π

Inf(e, q, ~q).Here, the funtion Inf is de�ned indutively as follows.
Inf(b(m)(e1, . . . , em), q, ~q) =

∨

(q←b(m)(~q′))∈∆

∧

j=1,..m

Inf(ej , q
′
j, ~q)

Inf(p(l)(xh, e1, . . . , el), q, ~q) =
∨

~q′∈Ql

↓h 〈p
(l), q, ~q′〉 ∧

∧

j=1,..,l

Inf(ej , q
′
j, ~q)

Inf(yj, q, ~q) =

{

⊤ (q = qj)
⊥ (q 6= qj)Let us explain why this algorithm works. Sine a preise disussion is ritial for understandingsubsequent setions, we summarize our justi�ation here as a formal proof.Theorem 1 L(A) = T −1(L(M)).Proof: Intuitively, eah state 〈p, q, ~q〉 represents the set of trees v suh that the proedure p maytransform v to some tree u of type q, assuming that the parameters yi are bound to trees wi eahof type qi. Formally, we prove the following invariant

∀v. ∀~w ∈ [[~q]]. v ∈ [[〈p(k), q, ~q〉]] ⇐⇒ [[p(k)]](v, ~w) ∩ [[q]] 6= ∅ (1)where ~w ∈ [[~q]] means w1 ∈ [[q1]], . . . , wk ∈ [[qk]]. Note that this invariant implies that the right-handside does not depend on the spei� hoie of the values wi from the sets [[qi]]; this point will beruial later. From this invariant, the initial states Ξ0 represent the set of trees that we want andhene the result follows:
L(A) =

⋃

{[[〈p0, q〉]] | p0 ∈ P0, q ∈ QF }
= {v | [[p0]](v) ∩ [[q]] 6= ∅, p0 ∈ P0, q ∈ QF}
= {v | T (v) ∩ L(M) 6= ∅}
= T −1(L(M))RR n° 0123456789

8 Alain Frish , Haruo HosoyaThe proof of the invariant (1) proeeds by indution on the struture of v. For the proof, we �rstneed to onsider an invariant that holds for the funtion Inf. Informally, Inf(e, q, ~q) infers an n-formula representing the set of n-tuples ~v suh that the expression e may transform ~v to some treeof type q, assuming that the parameters yi are bound to trees wi eah of type qi. Formally, we provethe following:
∀~v. ∀~w ∈ [[~q]]. ~v ∈ [[Inf(e, q, ~q)]] ⇐⇒ [[e]](~v, ~w) ∩ [[q]] 6= ∅ (2)Indeed, this implies the invariant (1). Let v = a(n)(~v); for all ~w ∈ [[~q]]:

v ∈ [[〈p(k), q, ~q〉]] ⇐⇒ ~v ∈ [[Φ(〈p(k), q, ~q〉, a(n))]]

⇐⇒ ∃(p(k)(a(n)(~x), ~y)→ e) ∈ Π. ~v ∈ [[Inf(e, q, ~q)]]

by(2)
⇐⇒ ∃(p(k)(a(n)(~x), ~y)→ e) ∈ Π. [[e]](~v, ~w) ∩ [[q]] 6= ∅

⇐⇒ [[p]](v, ~w) ∩ [[q]] 6= ∅The invariant (2) is in turn proved by indution on the struture of e.Case e = b(m)(e1, . . . , em). In order for a tree u of type q to be produed from the onstrutorexpression, �rst, there must be a transition q ← b(m)(~q′) ∈ ∆. In addition, u's eah subtreemust have type q′i and must be produed from the orresponding subexpression ei. For thelatter ondition, we an use the indution hypothesis for (2). Formally, for all ~w ∈ [[~q]]:
~v ∈ [[Inf(e, q, ~q)]] ⇐⇒ ~v ∈ [[

∨

q→b(m)(~q′)∈∆

∧

j=1,...,m

Inf(ej , q
′
j , ~q)]]

⇐⇒ ∃(q ← b(m)(~q′)) ∈ ∆. ∀j = 1, . . . ,m. ~v ∈ [[Inf(ej , q
′
j , ~q)]]

byI.H.for(2)
⇐⇒ ∃(q ← b(m)(~q′)) ∈ ∆. ∀j = 1, . . . ,m. [[ej]](~v, ~w) ∩ [[q′j]] 6= ∅

⇐⇒ [[e]](~v, ~w) ∩ [[q]] 6= ∅Case e = p(l)(xh, e1, . . . , el). In order for a tree u of type q to be produed from the proedureall, �rst, a tree w′j of some type q′j must be yielded from eah parameter expression ej . Inaddition, the h-th input tree must have type 〈p(l), q, (q′1, . . . , q
′
l)〉 sine the result tree u mustbe produed by the proedure p(l) from the h-th input tree with parameters w′1, . . . , w

′
l oftypes q′1, . . . , q

′
l. We an use the indution hypothesis for (2) for the former ondition and thatfor (1) for the latter ondition. Formally, for all ~w ∈ [[~q]]:

~v ∈ [[Inf(e, q, ~q)]] ⇐⇒ ~v ∈ [[
∨

~q′∈Ql

↓h 〈p, q, ~q′〉 ∧
∧

j=1,...,l

Inf(ej , q
′
j , ~q)]]

⇐⇒ ∃~q′ ∈ Ql. vh ∈ [[〈p, q, ~q′〉]] ∧ ∀j = 1, . . . , l. ~v ∈ [[Inf(ej , q
′
j, ~q)]]

byI.H.for(2)
⇐⇒ ∃~q′ ∈ Ql. vh ∈ [[〈p, q, ~q′〉]] ∧ ∀j = 1, . . . , l. [[ej]](~v, ~w) ∩ [[q′j]] 6= ∅

⇐⇒ ∃~q′ ∈ Ql. vh ∈ [[〈p, q, ~q′〉]]

∧ ∃ ~w′. ∀j = 1, . . . , l. w′j ∈ [[ej]](~v, ~w) ∧ w′j ∈ [[q′j]]

(3)We an show that the last ondition holds i�
∃ ~w′. [[p(l)]](vh, ~w′) ∩ [[q]] 6= ∅ ∧ ∀j = 1, . . . , l. w′j ∈ [[ej]](~v, ~w) (4)INRIA

Towards Pratial Typeheking for Maro Tree Transduers 9whih is equivalent to [[p(xh, e1, . . . , em)]] ∩ [[q]] 6= ∅. Indeed, for the �only if� diretion, weapply the indution hypothesis for (1) where we instantiate ~w with the spei� ~w′ in (3)�thisis exatly the plae that uses the fat that the quanti�ation on ~w appears outside the � ⇐⇒ �in (1)�and obtain the following:
∃~q′ ∈ Ql. ∃ ~w′. [[p(l)]](vh, ~w′) ∩ [[q]] 6= ∅

∧ ∀j = 1, . . . , l. w′j ∈ [[ej]](~v, ~w) ∧ w′j ∈ [[q′j]]
(5)By dropping the ondition w′j ∈ [[q′j]] (and the unused quanti�ation on ~q′), we obtain (4).For the �if� diretion, sine that the automatonM is omplete, i.e., there is in general a state

q for any value w suh that w ∈ [[q]], we obtain (5) from (4). Then, the indution hypothesisfor (1) yields (3).Case e = yj. In order for a tree of type q to be produed from the variable expression, yj musthave type q. Formally, �rst note that ~v ∈ [[Inf(e, q, ~q)]] ⇐⇒ q = qj, for any ~v. Note alsothat, sineM is deterministi bottom-up, all the states are pair-wise disjoint: [[q]] ∩ [[q′]] = ∅whenever q 6= q′. Therefore, for all ~w ∈ [[~q]]:
~v ∈ [[Inf(e, q, ~q)]] ⇐⇒ q = qj

⇐⇒ wj ∈ [[q]]

⇐⇒ [[e]](~v, ~w) ∩ [[q]] 6= ∅

�In the proof above, the ase for variable expressions ritially uses the determinism onstraint.Indeed, the statement of the theorem does not neessarily hold if M is nondeterministi. Forexample, onsider the nondeterministi btaM with the transition rules
q0 ← b(q1, q2) q1 ← ǫ q2 ← ǫ(q0 is the initial state) and typehek the mtt T with the transformation rules

p0(a(x1)) → p(x1, ǫ)
p(ǫ, y1) → b(y1, y1)(p0 is the initial proedure) with respet to the result type q0. With this mtt, the input value a(ǫ)translates to b(ǫ, ǫ), whih is aepted byM. However, our algorithm will infer an input type thatdenotes the empty set, whih is inorret. To see this more losely, onsider inferene on the bodyof p with the result type q = q0 and the parameter type ~q = (q1). The ondition (2) does not holdsine the only hoie of ~w ∈ [[~q]] is ~w = (ǫ) and, in this ase, the right hand side holds whereas theleft hand side does not sine Inf(b(y1, y1), q0, (q1)) = Inf(y1, q1, (q1))∧ Inf(y1, q2, (q1)) = ⊤∧⊥ = ⊥.The same argument an be done with the parameter type ~q = (q2). Now, in inferene on the bodyof p0 with the result type q0, the all to p must have parameter type q1 or q2 sine only these anaept ǫ. From the previous inferene, we onlude that the input type inferred for the all is againthe empty set type; so is the whole input type.However, the variable ase is the only that uses determinism. Therefore, if the mtt usesno parameter, i.e., is a simple, top-down tree transduer, then the same algorithm works forRR n° 0123456789

10 Alain Frish , Haruo Hosoyaa non-deterministi output type.1 Moreover, if the mtt T is deterministi and total, we have
T −1(L(Mout)) = T −1(L(Mout)). It su�es to hek L(Min) ⊆ T −1(L(Mout)) instead of L(Min)∩
T −1(L(Mout)) = ∅. This ould be advantageous sine a diret onversion from an XML shemayields a non-deterministi automaton, and determinizing it has a potential blow-up (though this stepis known to take only a reasonable time in pratie) whereas inlusion an be tested more e�ientlyby using known lever algorithms that avoid a full materialization of a deterministi automaton[9, 22, 25℄. Tozawa presents in his work [23℄ a bakward inferene algorithm based on alternatingtree automata for deterministi forest transduers with no parameters where he exploits the aboveobservation to obtain a simple algorithm.Finally, it remains to hek L(Min)∩L(A) = ∅, for whih we �rst alulate an ata A′ representing
L(Min) ∩ L(A) (this an easily be done sine an ata an freely use intersetions) and then hekthe emptiness of A′. The next setion explains how to do this. The size of the ata A is polynomialin the sizes ofMout and of T . The size of A′ is thus polynomial in the sizes ofMin,Mout, and T .3.2 Emptiness hekLet A = (Ξ,Ξ0,Φ) an alternating tree automaton. We want to deide whether the set L(A) is emptyor not. We �rst de�ne the following system of impliations ρ where we introdue propositionalvariables X onsisting of all subsets of Ξ:

ρ = {X ⇐ X1 ∧ . . . ∧Xn | ∃a
(n). (X1, . . . ,Xn) ∈ DNF(

∧

X∈X Φ(X,a(n)))}}Here, DNF(φ) omputes φ's disjuntive normal form by pushing intersetions under unions andregrouping atoms of the form ↓i X for a �xed i; the result is formatted as a set of n-tuples of statesets. More preisely:
DNF(⊤) = {(∅, . . . , ∅)}
DNF(⊥) = ∅
DNF(φ1 ∧ φ2) = {(X1 ∪ Y 1, . . . ,Xn ∪ Y n) | (X1, . . . ,Xn) ∈ DNF(φ1), (Y 1, . . . , Y n) ∈ DNF(φ2)}
DNF(φ1 ∨ φ2) = DNF(φ1) ∪DNF(φ2)
DNF(↓h X) = {(∅, . . . , ∅, {X}, ∅, . . . , ∅)} (the h-th element is {X})Then, with the system of impliations above, we verify that ρ ⊢ {X} for some X ∈ Ξ0. Thejudgment ρ ⊢ X here is de�ned suh that it holds when it an be derived by the single rule: if ρontains X ⇐ X1 ∧ . . . ∧Xn and ρ ⊢ Xi for any i = 1, . . . , n, then ρ ⊢ X .Eah propositional variable X intuitively denotes that the intersetion of the sets denoted byall the states in X is non-empty: ⋂

X∈X [[X]] 6= ∅. Thus, we an prove the following.Proposition 1 L(A) 6= ∅ i� ρ ⊢ {X} for some X ∈ Ξ0.Proof: The result follows by showing that v ∈
⋂

X∈X [[X]] for some v i� ρ ⊢ X. The �only if�diretion an be proved by indution on the struture of v. The �if� diretion an be proved byindution on the derivation of ρ ⊢ X . �This emptiness hek an be implemented in linear size with respet to the size of ρ, whih itselfis exponential in the size of A.1Completeness of the output type is not needed for our algorithm to work on top-down tree transduers. This isbeause the only plae where we use ompleteness in the proof is the ase for proedure alls, in whih ompletenessis atually not neessary if there is no parameter. INRIA

Towards Pratial Typeheking for Maro Tree Transduers 114 Algorithm and optimizationsAs we explained above, our algorithm splits the type-heking proess in two phases: �rst, we om-pute an alternating tree automaton from the output type and the mtt; seond, we hek emptinessof this tree automaton. In this setion, we are going to desribe some details and optimizationsabout these two phases.4.1 Bakward infereneA simple algorithm to ompute the input type as an alternating tree automaton is to follow naivelythe formal onstrution given in Setion 3. A �rst observation is that it is possible to build theautomaton lazily, starting from the initial states, produing new states and omputing Φ(_) onlyon demand. This is sometimes useful sine the emptiness hek algorithm we are going to desribein the next setion works in a top-down way and will not always materialize the whole automaton.The de�ning equations for the funtion Inf as given in Setion 3 produe huge formulas. Wewill now desribe new equations that produe muh smaller formulas in pratie. Before desribingthem, it is onvenient to generalize the notation Inf(e, q, ~q) by allowing a set of states q ⊆ Q insteadof a single state q ∈ Q for the output type. Intuitively, we want Inf(e, q, ~q) to be semantiallyequivalent to ∨

q∈q Inf(e, q, ~q). We obtain a diret de�nition of Inf(e, q, ~q) by adapting the rules for
Inf(e, q, ~q):

Inf(b(m)(e1, . . . , em), q, ~q) =
∨

(q←b(m)(~q′))∈∆,q∈q

∧

j=1...,m

Inf(ej , {q
′
j}, ~q)

Inf(p(l)(xh, e1, . . . , el), q, ~q) =
∨

~q′∈Ql

↓h 〈p
(l), q, ~q′〉 ∧

∧

j=1,...,l

Inf(ej , {q
′
j}, ~q)

Inf(yj , q, ~q) =

{

⊤ (qj ∈ q)
⊥ (qj 6∈ q)We have used the notation ↓h 〈p(l), q, ~q′〉. Intuitively, this should be semantially equivalent to theunion ∨

q∈q ↓h 〈p
(l), q, ~q′〉. Instead of using this as a de�nition, we prefer to hange the set of statesof the automaton:

Ξ = {〈p(k), q, q1, . . . , qk〉 | p
(k) ∈ P, q ⊆ Q, ~q ∈ Qk}

Ξ0 = {〈p0, QF 〉 | p0 ∈ P0}

Φ(〈p(k), q, ~q〉, a(n)) =
∨

(p(k)(a(n)(~x),~y)=e)∈R Inf(e, q, ~q).In theory, this new alternating tree automaton ould have exponentially many more states. However,in pratie, and beause of the optimizations we will desribe now, this atually redues signi�antlythe number of states that need to be omputed.The setions below will use the semantial equivalene ∨

q∈q Inf(e, {q}, ~q) ≃ Inf(e, q, ~q) mentionedabove in order to simplify formulas.4.1.1 Cartesian fatorizationThe rule for the onstrutor expression b(m)(e1, . . . , em) an be written:
RR n° 0123456789

12 Alain Frish , Haruo Hosoya
Inf(b(m)(e1, . . . , em), q, ~q) =

∨

~q′∈∆(q,b(m))

∧

j=1...,m

Inf(ej , {q
′
j}, ~q)where ∆(q, b(m)) = {~q′ | q ← b(m)(~q′) ∈ ∆, q ∈ q} ⊆ Qm. Now assume that we have a deompositionof this set ∆(q, b(m)) as a union of l Cartesian produts:

∆(q, b(m)) = (q1
1 × . . .× q1

m) ∪ . . . ∪ (ql
1 × . . .× ql

m)where the qi
j are sets of states. It is always possible to �nd suh a deomposition: at worst, usingonly singletons for the qi

j , we will have as many terms in the union as m-tuples in ∆(q, b(m)). Butoften, we an produe a deomposition with fewer terms in the union. Let us write Cart(∆(q, b(m))for suh a deomposition (seen as a subset of (2Q)m). One an then use the following rule:
Inf(b(m)(e1, . . . , em), q, ~q) =

∨

(q1,...,qm)∈Cart(∆(q,b(m)))

∧

j=1,..,m

Inf(ej , qj, ~q)4.1.2 State partitioningIntuition The rule for proedure all enumerates all the possible states for the value of parametersof the alled proedure. In its urrent form, this rule always produes a big union with |Q|l terms.However, it may be the ase that we don't need fully preise information about the value of aparameter to do the bakward type inferene.Let us illustrate that with a simple example. Assume that the alled proedure p(1) has a singleparameter y1 and that it never does anything else with y1 than opying it (that is, any rule for pwhose right-hand side mentions y1 is of the form p(1)(a(n)(x1, . . . , xn), y1) = y1). Clearly, all thestates 〈p, q, q′1〉 with q′1 ∈ q are equivalent, and similarly for all the states 〈p, q, q′′1 〉 with q′′1 6∈ q. Thisis beause whether the result of the proedure all will be or not in q only depends on the input tree(beause there might be other rules whose right-hand side don't involve y1 at all) and on whetherthe value for the parameter is itself in q or not. In partiular, we don't know to know exatly inwhih state the aumulator is. So the rule for alling this proedure ould just be:
Inf(p(xh, e1), q, ~q)

=
∨

q′1∈Q

↓h 〈p, q, q′1〉 ∧ Inf(e1, {q
′
1}, ~q)

=

∨

q′1∈q

↓h 〈p, q, q′1〉 ∧ Inf(e1, {q
′
1}, ~q)

 ∪

∨

q′′1∈Q\q

↓h 〈p, q, q′′1 〉 ∧ Inf(e1, {q
′′
1}, ~q)

=
(

↓h 〈p, q, q′1〉 ∧ Inf(e1, q, ~q)
)

∨
(

↓h 〈p, q, q′′1 〉 ∧ Inf(e1, Q\q, ~q)
)where in the last line q′1 (resp. q′′1) is hosen arbitrarily in q (resp. Q\q).A new rule More generally, in the rule for a all to a proedure p(l), we don't need to onsider allthe l-tuples ~q′, but only a subset of them that apture all the possible situations. First, we assume

INRIA

Towards Pratial Typeheking for Maro Tree Transduers 13that for given proedure p(l) and output type q, one an ompute for eah j = 1, .., l an equivalenerelation E〈p(l), q, j〉 suh that:
(∀j = 1, .., l. (q′j , q

′′
j) ∈ E〈p(l), q, j〉)⇒ 〈p(l), q, ~q′〉 ≃ 〈p(l), q, ~q′′〉 (∗)Let us look again at the right-hand side of the de�nition for Inf(p(l)(xh, e1, . . . , el), q, ~q):

Inf(p(l)(xh, e1, . . . , el), q, ~q) =
∨

~q′∈Ql

↓h 〈p
(l), q, ~q′〉 ∧

∧

j=1,...,l

Inf(ej , {q
′
j}, ~q)

Let us split this union aording to the equivalene lass of the q′j modulo the relations E〈p(l), q, j〉.If for eah j, we hoose an equivalene lass qj for the relation E〈p(l), q, j〉 (we write qj ⊳E〈p(l), q, j〉),then all the states 〈p(l), q, ~q′〉 with ~q′ ∈ q1× . . .× ql are equivalent to 〈p(l), q,C(q1 × . . .× ql)〉, where
C is a hoie funtion (it piks an arbitrary element from its argument). We an thus rewrite theright hand-side to:

∨

q1⊳E〈p(l),q,1〉,...,ql⊳E〈p(l),q,l〉

↓h 〈p
(l), q,C(q1 × . . . × ql)〉 ∧

∨

~q′∈q1×...×ql

∧

j=1,...,l

Inf(ej , {q
′
j}, ~q)

The union of all the formulas ∧

j=1,..,l Inf(ej , {q
′
j}, ~q) for ~q′ ∈ q1 × . . . × ql is equivalent to

∧

j=1,..,l Inf(ej , qj , ~q). Consequently, we obtain the following new rule:
Inf(p(l)(xh, e1, . . . , el), q, ~q) =

∨

q1⊳E〈p(l),q,1〉,...,ql⊳E〈p(l),q,l〉

↓h 〈p
(l), q,C(q1 × . . .× ql)〉 ∧

∧

j=1,...,l

Inf(ej , qj, ~q)

In the worst ase, all the equivalene relations E〈p(l), q, j〉 are the identity, and the right-hand sideis the same as for the old rule. But if we an identify larger equivalene lasses, we an signi�antlyredue the number of terms in the union on the right-hand side.Computing the equivalene relations Now we will give an algorithm to ompute the relations
E〈p(k), q, j〉 satisfying the ondition (∗). We will also de�ne equivalene relations E[e, q, j] for any
(n, k)-expression e (with j = 1, .., k), suh that:

(∀j = 1, .., k.(q′j , q
′′
j) ∈ E[e, q, j])⇒ Inf(e, q, ~q′) ≃ Inf(e, q, ~q′′)We an use the rules used to de�ne the formulas Inf(e, q, ~q) in order to obtain su�ient onditionsto be satis�ed so that these properties hold. We will express these onditions by a system ofequations. Before giving this system, we need to introdue some notations. If E1 and E2 are twoequivalene relations on Q, we write E1 ⊑ E2 if E2 ⊆ E1 (when equivalene relations are seen assubsets of Q2). The smallest equivalene relation for this ordering is the equivalene relation with asingle equivalene lass. The largest equivalene relation is the identity on Q. For two equivalenerelations E1, E2, we an de�ne their least upper bound E1 ⊔ E2 as the set-theoreti intersetion.For an equivalene relation E and a set of states q, we write q ⊳ E if q is one of the equivaleneRR n° 0123456789

14 Alain Frish , Haruo Hosoyalass modulo E. Abusing the notation by identifying an equivalene relation with the partition itindues on Q, we will write {Q} for the smallest relation and {q,Q\q} for the relation with the twoequivalene lasses q and its omplement. The system of equations is derived from the rules usedto de�ne the funtion Inf:
E[b(m)(e1, . . . , em), q, i] ⊒

⊔

{E[ej , qj, i] | (q1, . . . , qm) ∈ Cart(∆(q, b(m))), j = 1..m}

E[p(l)(xh, e1, . . . , el), q, i] ⊒
⊔

{E[ej , qj, i] | qj ⊳ E〈p(l), q, j〉, j = 1..l}

E[yj , q, i] ⊒

{

{q,Q\q} (i = j)
{Q} (i 6= j)

E〈p(k), q, j〉 ⊒
⊔

{E[e, q, j] | p(k)(a(n)(~x), ~y) = e) ∈ R}Let us explain why these onditions imply the required properties for the equivalene relation andhow they are derived from the rules de�ning Inf. We will use an intuitive indution argument(on expressions), even though a formal proof atually requires an indution on trees. Consider therule for the proedure all. The new rule we have obtained above implies that in order to have
Inf(p(l)(xh, e1, . . . , el), q, ~q′) ≃ Inf(p(l)(xh, e1, . . . , el), q, ~q′′), it is su�ient to have Inf(ej , qj ,

~q′) ≃

Inf(ej , qj,
~q′′) for all j = 1, .., l and for all qj ⊳E〈p(l), q, j〉, and thus, by indution, it is also su�ientto have (q′i, q
′′
i) ∈ E[ej , qj , i] for all i, for all j = 1, .., l and for all qj ⊳ E〈p(l), q, j〉. In other words,a su�ient ondition is (q′i, q

′′
i) ∈

⋂

{E[ej , qj, i] | qj ⊳ E〈p(l), q, j〉, j = 1..l}, from whih we obtainthe equation above (we reall that ⊔ orresponds to set-theoreti intersetion of relations). Thereasoning is similar for the onstrutor expression. Indeed, the rule we have obtained in the previoussetion tells us that in order to have Inf(b(m)(e1, . . . , em), q, ~q′) ≃ Inf(b(m)(e1, . . . , em), q, ~q′′), it issu�ient to have Inf(ej , qj,
~q′) ≃ Inf(ej , qj,

~q′′) for all (q1, . . . , qm) ∈ Cart(∆(q, b(m))) and j =
1, ..,m.As we explained before, it is desirable to ompute equivalene relations with large equivalenelasses (that is, small for the ⊑ ordering). Here is how we an ompute a family of equivalenerelations satisfying the system of equations above. First, we onsider the CPO of funtions mappinga triple (e, q, i) to an equivalene relation on Q and we reformulate the system of equation as �ndingan element x of this CPO suh that f(x) ⊑ x, where f is obtained from the right-hand sides of theequations. To ompute suh an element, we start from x0 the smallest element of the CPO, andwe onsider the sequene de�ned by xn+1 = xn ⊔ f(xn). Sine this sequene is monotoni and theCPO is �nite, the sequene reahes a onstant value after a �nite number of iterations. This value
x satis�es f(x) ⊑ x as expeted. We onjeture that this element is atually a smallest �xpoint for
f , but we have no proof of this fat (note that the funtion f is not monotoni).4.1.3 Sharing the omputationGiven the rules de�ning the formulas Inf(e, q, ~q), we might end up omputing the same formulaseveral times. A very lassial optimization onsists in memoizing the results of suh omputations.This is made even more e�etive by hash-onsing the expressions. Indeed, in pratie, for a givenmtt proedure, many onstrutors have idential expressions.

INRIA

Towards Pratial Typeheking for Maro Tree Transduers 154.1.4 Complementing the outputIn the example at the beginning of the previous subsetion, we have displayed a formula whereboth Inf(e, q, ~q) and Inf(e,Q\q, ~q) appear. One may wonder what is the relation between these twosub-formulas. Let us reall the required properties for these two formulas:
[[Inf(e, q, ~q)]] = {v | [[p]](~v, ~w) ∩ [[q]] 6= ∅}

[[Inf(e,Q\q, ~q)]] = {v | [[p]](~v, ~w) ∩ [[Q\q]] 6= ∅}(for ~w ∈ [[~q]]). Note that [[Q\q]] is the omplement of [[q]]. As a onsequene, if [[p]] is a total determin-isti funtion (that is, if [[p]](~v, ~w) is always a singleton), then [[Inf(e,Q\q, ~q)]] is the omplement of
[[Inf(e, q, ~q)]]. If we extend the syntax of formula in alternating tree automata with negation (whosesemantis is trivial to de�ne), we an thus introdue the following rule:

Inf(e, q, ~q) = ¬Inf(e,Q\q, ~q)to be applied e.g. when the ardinal of q is stritly larger than half the ardinal of Q. In pratie,we observed a huge impat of this optimization: the number of onstruted states is divided by twoin all our experienes, and the emptiness algorithm runs muh more e�iently. Also, beause of thememoization tehnique mentioned above, this optimization allows us to share more omputation.That said, we don't have a lear explanation for the very important impat of this optimization.The rule above an only be applied when the expression e denotes a total and deterministifuntion. We use a very simple syntati riterion to ensure that: we require all the reahableproedures p(k) to have exatly one rule p(k)(a(n)(x1, . . . , xn), y1, . . . , yk)→ e for eah symbol a(n).4.2 Emptiness algorithmIn this setion, we desribe an e�ient algorithm to hek emptiness of an alternating tree automa-ton. Instead of giving diretly the �nal version of the algorithm whih would look quite obsure,we prefer to start desribing formally a simple algorithm and then explain various optimizations.Let A = (Ξ,Ξ0,Φ) be an ata as de�ned in Setion 2.2. Negation (as introdued in Setion 4.1.4)will be onsidered later when desribing optimizations. The basi algorithm relies on a powersetonstrution to translate A into a bottom-up tree automaton M = (Q,QF ,∆). We de�ne Q asthe powerset 2Ξ. Intuitively, a state X = {X1, . . . ,Xm} in Q represents the intersetion of theata states Xi. For suh a state and a tag a(n), one must thus onsider the formula ϕ(X,a(n)) =
∧

i=1,..,m Φ(Xi, a
(n)), and put in ∆ transitions of the form X ← a(n)(X1, . . . ,Xn) to mimi theformula ϕ(X,a(n)). First, we put ϕ(X,a(n)) in disjuntive normal form, using the DNF funtionintrodued in Setion 2:

ϕ(X,a(n)) ≃
∨

(X1,...,Xn)∈DNF(ϕ(X,a(n)))

∧

i=1,..,n

∧

X∈Xi

↓i XThe transition relation ∆ onsists of all the transitions X ← a(n)(X1, . . . ,Xn) suh that
(X1, . . . ,Xn) ∈ DNF(ϕ(X,a(n))). One de�nes QF = {{X} | X ∈ Ξ0}. One an easily estab-lish that [[X]]M =

⋂

X∈X [[X]]A and thus that L(M) = L(A).It is well-known that deiding emptiness of a bottom-up tree automaton an be done in lineartime. The lassial algorithm to do so works in a bottom up way and thus requires to fully materializeRR n° 0123456789

16 Alain Frish , Haruo Hosoyathe automaton (whih is of exponential size ompared to the original ata). However, the onstrutionabove produes the automaton in a top-down way: for a given state X, the onstrution gives allthe transitions of the form X ← We an exploit this fat to derive an algorithm that doesn'tneessarily require the whole automaton M to be built. The algorithm is given below in pseudo-ode. The funtion empty takes a state X and returns true if it is empty or false otherwise. Thetest is done under a number of assertions represented by two global variables P,N whih stores sets of
M-states. The set stored in P (resp. N) represents positive (resp. negative) emptiness assumptions:states whih are assumed to be empty (resp. non-empty). When the state X under onsiderationis neither in P or N, it is �rst assumed to be empty (added to P). This assumption is then hekedreursively by exploring all the inoming transitions (for all possible tags and all omponents ofthe disjuntive normal form orresponding to this tag) and if a ontradition is found, the setof positive assumptions is baktraked and X is added to the set of negative assumptions. Thismemoization-based sheme is standard for oindutive algorithms.funtion empty (X)if X ∈ P then return trueif X ∈ N then return falselet P_saved = P inP ← P ∪ {X};foreah a(n) ∈ Σif not (empty_formula (ϕ(X,a(n)))) thenP ← P_savedN := N ∪ {X}return falsereturn truefuntion empty_formula (φ)foreah (X1, . . . ,Xn) ∈ DNF(φ)if not (empty_sub (X1, . . . ,Xn)) thenreturn falsereturn truefuntion empty_sub (X1, . . . ,Xn)foreah 1 ≤ i ≤ nif (empty Xi) thenreturn truereturn falseThis algorithm is not linear in the size of the automaton M beause of the baktraking on P.This baktraking an be avoided (as desribed in [6℄, Chapter 7 or in [22℄), but the tehnique israther involved and would make the presentation of the optimizations quite obsure. Moreover, wehave indeed implemented the non-baktraking version (with all the optimizations) but we did notobserve any notieable speedup in our tests.A �rst optimization improves the e�etiveness of the memoization sets P and N. It is based onthe fat that if X1 ⊆ X2 then [[X2]] ⊆ [[X1]]. As a onsequene, if X

′
⊆ X for some X

′
∈ P, then

INRIA

Towards Pratial Typeheking for Maro Tree Transduers 17
empty(X) an immediately return true. Similarly, if X ⊆ X

′ for some X
′
∈ N, then empty(X) animmediately return false.Enumeration and pruning of the disjuntive normal form The disjuntive normal formof a formula an be exponentially larger than the formula itself. Our �rst improvement onsists innot materializing it but enumerating it lazily with a pruning tehnique that avoids the exponentialbehavior in many ases.funtion empty_formula (φ)return (empty_dnf ([φ℄,(∅, . . . , ∅)))funtion empty_dnf (l,((X1, . . . ,Xn) as a)) =math l with| [℄ -> return false| ⊤ :: rest -> return (empty_dnf (rest,a))| ⊥ :: rest -> return true| φ1 ∨ φ2 :: rest ->if not (empty_dnf (φ1 :: rest,a)) then return falsereturn (empty_dnf (φ2 :: rest,a))| φ1 ∧ φ2 :: rest ->return (empty_dnf (φ1::φ2::rest,a))| ↓h X :: rest ->if empty (Xh ∪ {X})) then return truereturn (empty_dnf (rest,(X1, . . . ,Xh ∪ {X}, . . . ,Xn)))The �rst argument of empty_dnf is a list of formula whose onjuntion must be put in disjuntivenormal form. The seond argument is an n-tuple (where n is the arity of the urrent symbol) whihaumulates a �pre�x� of the urrent term of the disjuntive normal form being built. When anatomi formula ↓h X is found, the state X is added to the h-th omponent of the aumulator.Here we have inluded an important optimization: if the new state Xh ∪ {X} denotes an emptyset, then one an prune the enumeration. For instane, for a formula of the form ↓1 X ∧ φ where

X turns out to be empty, the enumeration will not even look at φ. This optimization enfores theinvariant that no omponent of the aumulator denotes an empty set. As a onsequene, when thefuntion empty_dnf reahes an empty list of formulas, the aumulator represents an element of thedisjuntive normal form for whih empty_sub would return false.The order in whih we onsider the two sub-formulas φ1 and φ2 in the formulas φ1 ∧ φ2 and
φ1 ∨ φ2 might have a big impat on performanes. It might be worthwhile to look for heuristisguiding this hoie.Witness It is not di�ult to see that the algorithm an be further instrumented in order toprodue a witness for non-emptiness (that is, when empty(X) returns false, it also returns a tree vwhih belongs to [[X]]). To do so, we keep for eah state in N a witness, and we also attah a witnessto eah omponent of the aumulator (X1, . . . ,Xn) in the enumeration for the disjuntive normalform. When heking for the emptiness of Xh ∪ {X}, we know that Xh is a non-empty state, andwe have at our disposal a witness v for this state. Before doing the reursive all to empty, we an
RR n° 0123456789

18 Alain Frish , Haruo Hosoya�rst hek whether this witness v is in [[X]] (this an be done very e�iently). If this is the ase, weknow that Xh ∪ {X} is also non-empty. In pratie, this optimization avoids many alls to empty.Negation and re�exivity We have mentioned in Setion 4.1.4 an optimization whih introduesalternating formulas with negation. Using De Morgan's laws, we an push the negation down andthus assume that it an only appear immediately above an atomi formula ↓i X. Of ourse, it ispossible to get rid of the negation by introduing for eah state X a dual state ¬X whose transitionformula (for eah tag) is the negation of the one for X; this only doubles the number of states.However, we prefer to support diretly in the algorithm negated atomi formulas ¬ ↓i X, beausewe an use the very simple fat that it denotes a set whih does not interset ↓i X. The algorithm isthus modi�ed to work with pairs of sets of A-states, written (X,Y), whih intuitively represents theset ⋂

X∈X [[X]]A\
⋃

Y ∈Y [[Y]]A. We de�ne ϕ((X,Y), a(n)) as ∧

X∈X Φ(X,a(n)) ∧
∧

Y ∈Y ¬Φ(Y, a(n)).The fat mentioned above translates itself into a shortut ase in the empty funtion: if the inputis (X,Y) with X ∩ Y 6= ∅, then the result is true (meaning that (X,Y) trivially denotes an emptyset of trees).The interesting ases for enumeration of the normal form are:| ↓h X :: rest ->if empty (Xh ∪ {X})) then return truereturn (empty_dnf (rest,((X1, Y 1), . . . , (Xh ∪ {X}, Y h), . . . , (Xn, Y n))))| ¬ ↓h Y :: rest ->if empty (Y h ∪ {Y })) then return truereturn (empty_dnf (rest,((X1, Y 1), . . . , (Xh, Y h ∪ {Y }), . . . , (Xn, Y n))))Preproessing Note the following trivial fats: For a formula φ1 ∧φ2 to be empty, it is su�ientto have φ1 or φ2 empty; for a formula φ1 ∨ φ2 to be empty, it is su�ient to have φ1 and φ2 empty;for a formula ↓i X to be empty, it is su�ient to have all the formulas Φ(X,a(n)) empty; for aformula ¬ ↓i X to be empty, it is su�ient to have all the formulas ¬Φ(X,a(n)) empty.Using these su�ient onditions and a largest �xpoint omputation, we get a sound and e�ientapproximation of emptiness for formulas (it returns true only if the formula is indeed empty, butit may also return false is this ase). We use this approximate riterion to replae any subformula
φ whih is trivially empty with ⊥ and any subformula φ suh that ¬φ is trivially empty with ⊤(and then apply Boolean tautologies to eliminate ⊥ and ⊤ as arguments of ∨ or ∧). In pratie,this optimization is very e�etive in reduing the size and omplexity of formulas involved in thereal (exat) emptiness hek.5 ExperimentsWe have experimented on our typeheker with various XML transformations implemented as mtts.Although we did not try very big transformations, we did work with large input and output treeautomata automatially generated from the XHTML DTD (without taking XML attributes intoaount). Note that beause this DTD has many tags, the mtts atually have many transitionssine they typially opy tags, whih requires all onstrutors orresponding to these tags to be enu-merated. They do not have too many proedures, though. The bottom-up deterministi automatonthat we generated from the XHTML DTD has 35 states. INRIA

Towards Pratial Typeheking for Maro Tree Transduers 19Table 1 gives the elapsed times spent in typeheking several transformations and the numberof states of the inferred alternating tree automaton that have been materialized. The experimentwas onduted on an Intel Pentium 4 proessor 2.80Ghz, running Linux kernel 2.4.27, and the type-heking time inludes the whole proess (determinization of the output type, bakward inferene,intersetion with the input type, emptiness hek). The typeheker is implemented in and ompiledby Objetive Caml 3.09.3.We also indiate the number of proedures in eah mtt, the maximum number of parameters, andthe minimum integer b, if any, suh that the mtt is syntatially b-bounded opying. Intuitively, theinteger b aptures the maximum number of times the mtt traverses any node of the input tree. Thisnotion has been introdued in [12℄ where the existene of b is shown to imply the polynomialityof the algorithm desribed in that paper (see also Appendix A.2). Here, we observe that evenunbounded-opying mtts an be typeheked e�iently.Transformation: (1) (2) (3) (4) (5) (6) (7)# of proedures: 2 2 3 5 4 6 6Max # of parameters: 1 1 1 1 2 2 2Bounded opying: 1 1 2 ∞ ∞ 2 1Type-heking time (ms): 1057 1042 0373 0377 0337 0409 0410# of states in the ata: 147 147 43 74 37 49 49Table 1: Results of the experimentsUnless otherwise stated, transformations are heked to have type XHTML→XHTML (i.e., both inputand output types are XHTML). Transformation (1) removes all the tags, keeping their ontents.Transformation (2) is a variant that drops the <div> tags instead. The typeheker detets thatthe latter doesn't have type XHTML→XHTML by produing a ounter-example:<html><head><title/></head><body><div/></body>Indeed, removing the <div> element may produe a <body> element with an empty ontent, whihis not valid in XHTML. Transformation (3) opies all the <a> elements (and their orrespondingsubtrees) into a new <div> element and prepends the <div> to the <body> element. Transfor-mation (4) groups together adjaent elements, onatenating their ontents. Transformation(5) extrats from an XHTML doument a tree of depth 2 whih represents the oneptual nestingstruture of <h1> and <h2> heading elements (note that, in XHTML, the struture among headingsis �at). Transformation (6) builds a tree representing a table of ontents for the top two levels ofitemizations, giving setion and subsetion numbers to them (where the numbers are onstrutedas Peano numerals), and prepends the resulting tree to the <body> element. Transformation (7) isa variant that only returns the table of ontents.We have also translated some transformations (that an be expressed as mtts) used by Tozawaand Hagiya in [26℄ (namely htmlopy, inventory, pref2app, pref2html, prefopy). Our imple-mentation takes between 2ms and 6ms to typehek these mtts, exept for inventory for whih ittakes 22 ms. Tozawa and Hagiya report performane between 5ms and 1000ms on a Pentium M 1.8Ghz for the satis�ability hek (whih orresponds to our emptiness hek and exludes the timetaken by bakward inferene). Although these results indiate our advantages over them to someextent, sine the numbers are too small and they have not undertaken experiments as big as ours,it is hard to draw a meaningful onlusion.RR n° 0123456789

20 Alain Frish , Haruo Hosoya6 Conlusion and Future WorkWe have presented an e�ient typeheking algorithm for mtts based on the idea of using alter-nating tree automata for representing the preimage of the given mtt obtained from the bakwardtype inferene. This representation was useful for deriving optimization tehniques on the bak-ward inferene phase suh as state partitioning and Cartesian fatorization, and was also e�etivefor speeding up the subsequent emptiness hek phase by exploiting Boolean equivalenes amongformulas. Our experimental results on�rmed that our tehniques allow us to typehek small sizesof transformations with respet to the full XHTML type. Finally, we have also made an exatonnetion to two known algorithms, a lassial one and Maneth-Perst-Seidl's, the latter implyingan important polynomial omplexity under a bounded-opying restrition.The present work is only the �rst step toward a truly pratial typeheker for mtts. In thefuture, we will seek for further improvements that allow typeheking larger and more ompliatedtransformations. In partiular, transformations with upward axes an be obtained by ompositionsof mtts as proved in [11℄ and a apability to typehek suh ompositions of mtts in a reasonabletime will be important. We have some preliminary ideas for the improvement and plan to pursuethem as a next step. In the end, we hope to be able to handle (at least a reasonably large subsetof) XSLT.Referenes[1℄ N. Alon, T. Milo, F. Neven, D. Suiu, and V. Vianu. XML with data values: Typehekingrevisited. In Proeedings of Symposium on Priniples of Database Systems (PODS), 2001.[2℄ A. W. Appel and D. B. MaQueen. Standard ML of New Jersey. In Third Int'l Symp. on Prog.Lang. Implementation and Logi Programming, pages 1�13. Springer-Verlag, Aug. 1991.[3℄ V. Benzaken, G. Castagna, and A. Frish. CDue: An XML-entri general-purpose language.In Proeedings of the International Conferene on Funtional Programming (ICFP), pages 51�63, 2003.[4℄ J. Engelfriet and S. Maneth. A omparison of pebble tree transduers with maro tree trans-duers. Ata Informatia, 39(9):613�698, 2003.[5℄ J. Engelfriet and H. Vogler. Maro tree transduers. J. Comput. Syst. Si., 31(1):710�146,1985.[6℄ A. Frish. Théorie, oneption et réalisation d'un langage de programmation adapté à XML.PhD thesis, Universit Paris 7, 2004.[7℄ H. Hosoya. Regular expression �lters for XML. Journal of Funtional Programming, 16(6):711�750, 2006. Short version appeared in Proeedings of Programming Tehnologies for XML(PLAN-X), pp.13�27, 2004.[8℄ H. Hosoya and B. C. Piere. XDue: A typed XML proessing language. ACM Transationson Internet Tehnology, 3(2):117�148, 2003. Short version appeared in Proeedings of ThirdInternational Workshop on the Web and Databases (WebDB2000), volume 1997 of LetureNotes in Computer Siene, pp. 226�244, Springer-Verlag. INRIA

Towards Pratial Typeheking for Maro Tree Transduers 21[9℄ H. Hosoya, J. Vouillon, and B. C. Piere. Regular expression types for XML. ACM Trans-ations on Programming Languages and Systems, 27(1):46�90, 2004. Short version appearedin Proeedings of the International Conferene on Funtional Programming (ICFP), pp.11-22,2000.[10℄ X. Leroy, D. Doligez, J. Garrigue, J. Vouillon, and D. Rémy. The Objetive Caml system.Software and doumentation available on the Web, http://pauilla.inria.fr/oaml/, 1996.[11℄ S. Maneth, T. Perst, A. Berlea, and H. Seidl. XML type heking with maro tree transduers.In Proeedings of Symposium on Priniples of Database Systems (PODS), pages 283�294, 2005.[12℄ S. Maneth, T. Perst, and H. Seidl. Exat XML type heking in polynomial time. In Interna-tional Conferene on Database Theory (ICDT), pages 254�268, 2007.[13℄ W. Martens and F. Neven. Typeheking top-down uniform unranked tree transduers. InProeedings of International Conferene on Database Theory, pages 64�78, 2003.[14℄ W. Martens and F. Neven. Frontiers of tratability for typeheking simple XML transforma-tions. In Proeedings of Symposium on Priniples of Database Systems (PODS), pages 23�34,2004.[15℄ T. Milo and D. Suiu. Type inferene for queries on semistrutured data. In Proeedings ofSymposium on Priniples of Database Systems, pages 215�226, Philadelphia, May 1999.[16℄ T. Milo, D. Suiu, and V. Vianu. Typeheking for XML transformers. In Proeedings of theNineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Priniples of Database Systems,pages 11�22. ACM, May 2000.[17℄ A. Møller, M. Ø. Olesen, and M. I. Shwartzbah. Stati validation of XSL Transformations.Tehnial Report RS-05-32, BRICS, Otober 2005. Draft, aepted for TOPLAS.[18℄ M. Murata. Transformation of douments and shemas by patterns and ontextual onditions.In Priniples of Doument Proessing '96, volume 1293 of Leture Notes in Computer Siene,pages 153�169. Springer-Verlag, 1997.[19℄ K. Nakano and S.-C. Mu. A pushdown mahine for reursive XML proessing. In APLAS,pages 340�356, 2006.[20℄ T. Perst and H. Seidl. Maro forest transduers. Information Proessing Letters, 89(3):141�149,2004.[21℄ G. Slutzki. Alternating tree automata. Theoretial Computer Siene, 41:305�318, 1985.[22℄ T. Suda and H. Hosoya. Non-baktraking top-down algorithm for heking tree automataontainment. In Proeedings of Conferene on Implementation and Appliations of Automata(CIAA), pages 83�92, 2005.[23℄ A. Tozawa. Towards stati type heking for XSLT. In Proeedings of ACM Symposium onDoument Engineering, 2001.
RR n° 0123456789

22 Alain Frish , Haruo Hosoya[24℄ A. Tozawa. XML type heking using high-level tree transduer. In Funtional and LogiProgramming (FLOPS), pages 81�96, 2006.[25℄ A. Tozawa and M. Hagiya. XML shema ontainment heking based on semi-impliit teh-niques. In 8th International Conferene on Implementation and Appliation of Automata,volume 2759 of Leture Notes in Computer Siene, pages 213�225. Springer-Verlag, 2003.[26℄ A. Tozawa and M. Hagiya. E�ient deision proedure for a logi for XML. unpublishedmanusipt, 2004.A ComparisonIn this setion, we ompare our algorithm with two existing algorithms, the lassial one based onfuntion enumeration and the Maneth-Perst-Seidl algorithm.A.1 Classial AlgorithmThe lassial algorithm presented here is known as a folklore. Variants an be found in the literaturefor deterministi mtts [4℄ and for maro forest transduers [20℄. The algorithm takes a dbta M =
(Q,QF ,∆) and an mtt T = (P,P0,Π) and builds a dbta N ′ = (D,DF , δ) where:

D = {〈p(m), ~q〉 | p(m) ∈ P, ~q ∈ Qm} → 2Q

DF = {d ∈ D | p0 ∈ P0, d(〈p0〉) ∩QF 6= ∅}

δ = {d← a(n)(~d) | d(〈p(m), ~q〉) =
⋃

(p(m)(a(n)(~x),~y)→e)∈Π DInf(e, ~d, ~q)}Here, the funtion DInf is de�ned as follows.
DInf(b(m)(e1, . . . , em), ~d, ~q) = {q′ | q′ ← b(m)(~q′) ∈ ∆, q′j ∈ DInf(ej , ~d, ~q) ∀j = 1, . . . ,m }

DInf(p(xh, e1, . . . , el), ~d, ~q) =
⋃

{dh(〈p, ~q′〉) | q′i ∈ DInf(ei, ~d, ~q), i = 1, . . . , l}

DInf(yj, ~d, ~q) = {qj}The onstruted automaton N ′ has, as states, the set of all funtions that map eah pair of aproedure and parameter types to a set of states. Intuitively, eah state d represents the set of trees
v suh that, given a proedure p(m) and states ~q, the set of results of evaluating p with the tree vand parameters ~w of types ~q is exatly desribed by the states d(〈p, ~q〉). Thus, the initial states DFrepresent the set of trees v suh that the set of results from evaluating an initial proedure p0 with
v ontains a tree aepted by the given dbtaM.The funtion DInf omputes, from given expression e, states ~d from D, and states ~q from Q, theset of states that exatly desribes the set of results of evaluating e with a tuple ~v of trees of types
~d and parameters of types ~q. Then we an ollet in δ transitions d ← a(n)(~d) for all a(n) and all
~d suh that d is omputed for all p(m) and all ~q by using DInf with the expression on p(m)'s eahrule for the symbol a(n). By this intuition, eah of the three ases for DInf an be understood asfollows.� The set of results of evaluating the onstrutor expression b(m)(e1, . . . , em) is desribed by theset of states ~q′ that have a transition q′ ← b(m)(~q′) ∈ ∆ suh that eah q′i desribes the resultsof evaluating the orresponding subexpression ei. INRIA

Towards Pratial Typeheking for Maro Tree Transduers 23� The set of results of evaluating the proedure all p(xh, e1, . . . , el) is the set of results ofevaluating p with the h-th input tree vh and parameters resulted from evaluating eah ei.This set an be obtained by olleting the results of applying the funtion dh to p and ~q′where eah q′i is one of the states that desribe the set of results of ei.� The set of results of evaluating the variable expression yj is exatly desribed by its type qj .Thus, the intuition behind is rather di�erent from our approah. Nevertheless, we an prove thatthe resulting automaton from the lassial algorithm is isomorphi to the one obtained from ourapproah followed by determinization.Determinization of an ata an be done as follows. From an ata A = (Ξ,Ξ0,Φ), we build a dbta
N = (R,RF ,Γ) where

R = 2Ξ

RF = {r ∈ Ξ | r ∩ Ξ0 6= ∅}
Γ = {r ← a(n)(~r) | r = {X | ~r ⊢ Φ(X,a(n))}}.Here, the judgment ~r ⊢ φ is de�ned indutively as follows.� ~r ⊢ φ1 ∧ φ2 if ~r ⊢ φ1 and ~r ⊢ φ2.� ~r ⊢ φ1 ∨ φ2 if ~r ⊢ φ1 or ~r ⊢ φ2.� ~r ⊢ ⊤.� ~r ⊢↓i X if X ∈ ri.That is, ~r ⊢ φ intuitively means that φ holds by interpreting eah ↓i X as �X is a member of theset ri�.The intuition behind determinization of an ata is the same as that of a nondeterministi treeautomaton. That is, eah state r in N denotes the set of trees v that have type X for all members

X of r and do not have type Y for all non-members Y of r.
[[r]] =

⋂

X∈r

[[X]] \
⋃

Y 6∈r

[[Y]] (6)This implies that any tree annot have type r and r′ at the same time when r 6= r′. Thus, the statesof the tree automaton N form a partition of all the trees, that is, N is omplete and deterministi.From this, we an understand the equivalene between A and N sine eah �nal state in N ontainsan initial state in the original ata A and therefore the set of suh �nal states forms a partition ofthe sets denoted by the initial states of A. Then, by using the formula (6), the interpretation �Xis ontained in ri� of ↓i X in the judgment ~r ⊢ φ implies that [[ri]] ⊆ [[X]]. Here, we an see aparallelism between the intuition of the judgment ~v ⊢ φ (where ↓i X is interpreted �vi ∈ [[X]]�) andthat of ~r ⊢ φ. Indeed, a key property to the proof below is: ~v ⊢ φ if and only if ~r ⊢ φ for some ~rsuh that ~v ∈ [[~r]].Proposition 2 A and N are equivalent.
RR n° 0123456789

24 Alain Frish , Haruo HosoyaProof: To prove the result, it su�es to show the following.
v ∈ [[r]] ⇐⇒ r = {X | v ∈ [[X]]}. (7)(Note that this is a rewriting of the equation (6).) Indeed, this implies

v ∈ L(N) ⇐⇒ v ∈ [[RF]]

by(7)
⇐⇒ ∃r. (r ∩ Ξ0 6= ∅ ∧ r = {X | v ∈ [[X]]})

⇐⇒ ∃X ∈ Ξ0. v ∈ [[X]]

⇐⇒ v ∈ L(A).The proof proeeds by indution on the struture of v. To show (7), the following is su�ient
(∃~r. ~v ∈ [[~r]] ∧ ~r ⊢ φ) ⇐⇒ ~v ⊢ φ. (8)sine this implies (7):

a(n)(~v) ∈ [[r]] ⇐⇒ ∃(r ← a(n)(~r)) ∈ Γ. ~v ∈ [[~r]]

⇐⇒ ∃~r. r = {X | ~r ⊢ Φ(X,a(n))} ∧ ~v ∈ [[~r]]

by(8)
⇐⇒ r = {X | ~v ⊢ Φ(X,a(n))}

⇐⇒ r = {X | a(n)(~v) ∈ [[X]]}.The proof of (8) itself is done by indution on the struture of φ. The �only if� diretion is straight-forward. For the �if� diretion, let ri = {X | vi ∈ [[X]]} for i = 1, . . . , n. By the indution hypothesis,(7) gives vi ∈ [[ri]]. The rest is ase analysis on φ.� Case φ = ⊥. This never arises.� Case φ = ⊤. This ase trivially holds.� Case φ =↓h X. From ~v ⊢ φ, we have vh ∈ [[X]] and therefore X ∈ rh by the de�nition of rh.This implies the result.� Case φ = φ1∧φ2. By the indution hypothesis, ~v ∈ [[~r′]] and ~r′ ⊢ φ1 with ~v ∈ [[~r′′]] and ~r′′ ⊢ φ2for some ~r′ and ~r′′. Sine N is deterministi, both ~r′ and ~r′′ atually equal to ~r. Hene theresult follows.� Case φ = φ1 ∨ φ2. Similar to the previous ase. �Proposition 3 Let N be obtained by determinizing the ata from the last setion. Then, N and N ′are isomorphi.Proof: De�ne the funtion β from D to R as follows:
β(d) = {〈p(m), q, ~q〉 | p(m) ∈ P, ~q ∈ Qm, q ∈ d(〈p, ~q〉)}Clearly, β is bijetive: β−1(r)(〈p, ~q〉) = {q | 〈p(m), q, ~q〉 ∈ r}. It remains to show that β is anisomorphism between N and N ′, that is, (1) β(DF) = RF and (2) β(δ(d)) = Γ(β(d)) for eah d.The ondition (1) learly holds sine d(p0)∩QF 6= ∅ i� 〈p0, q〉 ∈ β(d) for some q ∈ QF . To prove(2), it su�es to show INRIA

Towards Pratial Typeheking for Maro Tree Transduers 25
q ∈ DInf(e, ~d, ~q) i� β(~d) ⊢ Inf(e, q, ~q).Here, β(d1, . . . , dk) stands for (β(d1), . . . , β(dk)). The proof is by indution on the struture of e.� Case e = b(m)(e1, . . . , em).

q ∈ DInf(e, ~d, ~q) ⇐⇒ ∃(q ← b(m)(~q′)) ∈ ∆. ∀j. q′j ∈ DInf(ej , ~d, ~q)

byI.H.
⇐⇒ ∃(q ← b(m)(~q′)) ∈ ∆. ∀j. β(~d) ⊢ Inf(ej , q

′
j , ~q)

⇐⇒ β(~d) ⊢
∨

(q←b(m)(~q′))∈∆

∧

j=1...,m

Inf(ej , q
′
j , ~q)

⇐⇒ β(~d) ⊢ Inf(e, q, ~q)� Case e = p(xh, e1, . . . , el).
q ∈ DInf(e, ~d, ~q) ⇐⇒

⋃

{dh(p, ~q′) | q′i ∈ DInf(ei, ~d, ~q), i = 1, . . . , l}

⇐⇒ ∃~q′. q ∈ dh(p, ~q′) and ∀i. q′i ∈ DInf(ei, ~d, ~q′)
byI.H.
⇐⇒ ∃~q′. 〈p, q, ~q′〉 ∈ β(dh) and ∀i. β(~d) ⊢ Inf(ei, q, ~q′)

⇐⇒ β(~d) ⊢
∨

~q′∈Ql

∧

i=1,...,l

Inf(ei, q, ~q′)∧ ↓i 〈p, q, ~q′〉

⇐⇒ β(~d) ⊢ Inf(e, q, ~q)� Case e = yj. First, q ∈ DInf(yj, ~d, ~q) i� q = qj. If q = qj, then Inf(e, q, ~q) = ⊤ and thereforethe RHS holds. If q 6= qj, then Inf(e, q, ~q) = ⊥ and therefore the RHS does not hold. �A.2 Maneth-Perst-Seidl AlgorithmFirst, for simpliity in omparing the two algorithms, following [12℄, we onsider an mtt where theinput type is already enoded into proedures. That is, instead of the original mtt T , we take anmtt T ′ and a btaMin suh that
T ′(v) =

{

T (v) (v ∈ L(Min))
∅ (otherwise).That is, T ′ behaves exatly the same as T for the inputs from L(Min) but returns no result for theother inputs. See [12℄ for a onrete onstrution. Having done this, we only need to hek that

{v | T ′(v) ∩ L(M) 6= ∅} = ∅.In Maneth-Perst-Seidl algorithm, we onstrut a new mtt U from T ′ = (P,P0,Π) speialized tothe output-type dbtaM = (Q,QF ,∆) suh that U(v) = T ′(v) ∩L(M) for any tree v. This an bedone by onstruting the mtt U = (S, S0,Ω) where
S = {〈p(m), q, ~q〉

(m)
| p(m) ∈ P, q, ~q ∈ Qm}

S0 = {〈p0, q〉 | p0 ∈ P0, q ∈ QF }
Ω = {〈p(m), q, ~q〉(a(n)(~x), ~y)→ e′ | (p(m)(a(n)(~x), ~y)→ e) ∈ Π, e′ ∈ Spec(e, q, ~q)}.

RR n° 0123456789

26 Alain Frish , Haruo HosoyaHere, we de�ne the funtion Spec as follows.
Spec(a(e1, . . . , en), q, ~q) = {a(e′1, . . . , e

′
n) | q ← a(q′1, . . . , q

′
n) ∈ ∆, ∀i. e′i ∈ Spec(ei, q

′
i, ~q)}

Spec(p(xh, e1, . . . , el), q, ~q) = {〈p, q, ~q′〉(xh, e′1, . . . , e
′
l) |

~q′ ∈ Ql, ∀i. e′i ∈ Spec(ei, q
′
i, ~q)}

Spec(yi, q, ~q) = {yi}Intuitively, eah proedure 〈p, q, ~q〉 in the new mtt U yields, for any input value v and for anyparameters ~w of types ~q, the same results as p but restrited to type q:
[[〈p(m), q, ~q〉]](v, ~w) = [[p(m)]](v, ~w) ∩ [[q]]Similarly, Spec(e, q, ~q) yields, for any input values ~v and for all parameters ~w of types ~q, the sameresults as e but restrited to type q:
[[Spec(e, q, ~q)]](~v, ~w) = [[e]](~v, ~w) ∩ [[q]]After thus onstruting the mtt U , the remaining is to hek that the translation of U is empty,i.e., U(v) = ∅ for any value v. This an be done as follows. De�ne �rst the following system ofimpliations ρ′ where we introdue propositional variables X onsisting of all subsets of S:

ρ′ = {X ⇐ X1 ∧ . . . ∧Xn | ∃a
(n). ∃e1, . . . , ek. ∀s(m) ∈ X. ∃j. (s(m)(a(n)(~x), ~y)→ ej) ∈ Ω,

∀i = 1, . . . , n. Xi = {s′ ∈ S | ∃j = 1, . . . , k. s′(xi, . . .) ours in ej}}and then verify that ρ′ ⊢ {s} for some s ∈ S0. Intuitively, eah propositional variable X denoteswhether there is some input v from whih any proedure in the set X translates to some value withsome parameters:
∃v. ∀s(m) ∈ X. ∃~w. [[s(m)]](v, ~w) 6= ∅Now, we an prove that the system of impliations obtained from the MPS and the one fromour algorithm are exatly the same. From this, we an diretly arry over useful properties foundfor the MPS algorithm to our algorithm. In partiular, our algorithm has the same polynomial timeomplexity under the restrition of a �nitely bounded number of opying [12℄.Proposition 4 Given an input type that aepts all trees and the mtt T ′ de�ned above, let A and

ρ be the ata and the system of impliations obtained by the algorithm in Setion 3. Let Ξ0 be A'sinitial states. Then, (ρ,Ξ0) and (ρ′, S0) are idential.Proof: Note that both ρ and ρ′ onsist of all variables X where X is from the set P ×Q×Qm.The result follows by showing X ⇐ X1 ∧ . . . ∧Xn ∈ ρ i� X ⇐ X1 ∧ . . . ∧Xn ∈ ρ′. It su�es toshow for any X and i,
∃e1, . . . , ek. ∀s ∈ X. ∃j. (s(a(~x), ~y)→ ej) ∈ Ω,X i = {s′ ∈ S | ∃j = 1, . . . , k. s′(xi, . . .) ours in ej}i�

(X1, . . . ,Xn) ∈ DNF(
∧

s∈X

Φ(s, a)).This follows by showing that, for all (X1, . . . ,Xn) ∈ DNF(Inf(e1, q1, ~q1) ∧ . . . ∧ Inf(ek, qk, ~qk)),
∃j = 1, . . . , k. s′(xi) ours in Spec(ej , qj , ~qj) ⇐⇒ s′ ∈ X i.This an be proved by indution on |e1|+ . . . + |ek| where |e| is the size of e. �Corollary 1 For any b-bounded opying mtt, our algorithm runs in polynomial time. INRIA

Towards Pratial Typeheking for Maro Tree Transduers 27B Alternating tree automata with bounded traversingThe orollary in the last setion depends on the proof of polynomiality from [12℄. It gives theinformation that the emptiness hek for alternating automata has polynomial time omplexitywhen the alternating automata is obtained by the basi bakward inferene algorithm from Setion 3when applied to a b-bounded opying mtt. It seems natural to look for a ounterpart of the notion of
b-bounded opying for alternating automata that diretly ensures the polynomiality of the emptinesshek.Let A = (Ξ,Ξ0,Φ) be an ata. For eah state X ∈ Ξ, we de�ne the maximal traversal number
b[X] as the least �xpoint of a onstraint system over N = {1 < 2 < . . . <∞}, the omplete lattieof naturals extended with ∞. The onstraint system onsists of all the onstraints of the form:

b[X] ≥ bi[Φ(X,a(n))]for a(n) ∈ Σ and 1 ≤ i ≤ n, where bi[φ] is de�ned indutively:
bi[⊤] = 0
bi[⊥] = 0
bi[φ1 ∧ φ2] = bi[φ1] + bi[φ2]
bi[φ1 ∨ φ2] = max(bi[φ1], bi[φ2])

bi[↓h X] =

{

b[X] if i = h

0 if i 6= hThe ata A is (syntatially) b-bounded traversing if b[X] ≤ b for all X ∈ X0.We mention without proving it formally that when we apply our bakward inferene algorithmto a b-bounded opying mtt, then the resulting ata is b-bounded traversing. More preisely, we anshow that b[〈p(k), q, ~q〉] ≤ b[p(k)] where b[p(k)] denotes the maximal opy number for the proedure
p(k), as de�ned in [12℄. As a matter of fat, the optimizations given in Setion 4.1 preserve thisproperty (but the ata formally has exponentially many more states, even if in pratie only a frationof them is going to be materialized).Now it remains to establish that the emptiness hek for a b-bounded traversing ata runs inpolynomial time. We de�ne b[X] as ΣX∈Xb[X]. For any b-formula φ and (X1, . . . ,Xn) ∈ DNF(φ)and 1 ≤ i ≤ n, we observe that b[X i] ≤ bi[φ]. The proof is by indution on the struture of φ. As aonsequene, for any (X1, . . . ,Xn) ∈ DNF(

∧

X∈X Φ(X,a(n))), we have b[Xi] ≤ b[X]. So, if the atais b-bounded traversing, then the emptiness hek algorithm will only onsider set of states X suhthat b[X] ≤ b. Sine b[X] is a lower bound for the ardinal of X (beause b[X] ≥ 1 for all X), wesee that the algorithm only looks at a polynomial number of set of states X.To onlude this setion, we observe that the intersetion of a b-bounded traversal ata anda b′-bounded traversal ata is a (b + b′)-bounded traversal ata, and that a non-deterministi treeautomaton is isomorphi to a 1-bounded traversal ata. This is useful to typehek a b-boundedopying mtt, beause we need to ompute the intersetion of the inferred ata, whih is b-boundedtraversal, and of the input type, whih is given by a non-deterministi tree automaton. As a result,we obtain a (b + 1)-bounded ata.
RR n° 0123456789

28 Alain Frish , Haruo HosoyaContents1 Introdution 32 Preliminaries 42.1 Maro Tree Transduers . 42.2 Tree Automata and Alternation . 63 Typeheking 63.1 Bakward inferene . 63.2 Emptiness hek . 104 Algorithm and optimizations 114.1 Bakward inferene . 114.1.1 Cartesian fatorization . 114.1.2 State partitioning . 124.1.3 Sharing the omputation . 144.1.4 Complementing the output . 154.2 Emptiness algorithm . 155 Experiments 186 Conlusion and Future Work 20A Comparison 22A.1 Classial Algorithm . 22A.2 Maneth-Perst-Seidl Algorithm . 25B Alternating tree automata with bounded traversing 27

INRIA

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

