
Towards Practical Typechecking for Macro Tree
Transducers

Alain Frisch1 and Haruo Hosoya2

1 INRIA Rocquencourt alain@frisch.fr
2 The University of Tokyo hahosoya@is.s.u-tokyo.ac.jp

Abstract. Macro tree transducers (mtt) are an important model that
both covers many useful XML transformations and allows decidable ex-
act typechecking. This paper reports our first step toward an implemen-
tation of mtt typechecker that has a practical efficiency. Our approach
is to represent an input type obtained from a backward inference as
an alternating tree automaton, in a style similar to Tozawa’s XSLT0
typechecking. In this approach, typechecking reduces to checking empti-
ness of an alternating tree automaton. We propose several optimizations
(Cartesian factorization, state partitioning) on the backward inference
process in order to produce much smaller alternating tree automata than
the naive algorithm, and we present our efficient algorithm for checking
emptiness of alternating tree automata, where we exploit the explicit
representation of alternation for local optimizations. Our preliminary ex-
periments confirm that our algorithm has a practical performance that
can typecheck simple transformations with respect to the full XHTML
in a reasonable time.

1 Introduction

Static typechecking for XML transformations is an important problem that ex-
pectedly has a significant impact on real-world XML developments. To this end,
several research groups have made efforts in building typed XML program-
ming languages [8, 3] with much influence from the tradition of typed func-
tional languages [2, 10]. While this line of work has successfully treated general,
Turing-complete languages, its approximative nature has resulted in an even
trivial transformation like the identity function to fail to typecheck unless a
large amount of code duplicates and type annotations are introduced [7]. Such
situation has led us to pay attention to completely different approaches that
have no such deficiency, among which exact typechecking has emergingly become
promising. The exact typechecking approach has extensively been investigated
for years [12, 20, 16, 23, 26, 24, 11, 15, 1, 13, 18, 14], in which macro tree transduc-
ers (mtt) have been one of the most important computation models since they
allow decidable exact typechecking [5], yet cover many useful XML transforma-
tions [5, 11, 4, 19]. Unfortunately, these studies are mainly theoretical and their
practicality has never been clear except for some small cases [23, 26].

This paper reports our first step toward a practical implementation of type-
checker for mtts. As a basic part, we follow an already-established scheme called
backward inference, which computes the preimage of the output type for the
subject transformation and then checks it against the given input type. (This
is because, as is well known, the more obvious, forward inference does not work
since the image of the input type is not always a regular tree language and can
even go beyond context-free tree languages.3) However, our proposal is, on top
of this scheme, to use a representation of the preimage by an alternating tree
automaton [21], extending the idea used in Tozawa’s typechecking algorithm for
XSLT0 [23]. In this approach, typechecking reduces to checking emptiness of an
alternating tree automaton.

Whereas normal tree automata use only disjunctions in the transition re-
lation, alternating tree automata can use both disjunctions and conjunctions.
This extra freedom permits a more compact representation (they can be ex-
ponentially more succinct than normal tree automata) and make them a good
intermediate language to study optimizations. Having explicit representation of
transitions as Boolean formulas (with disjunctions and conjunctions) allows us
to derive optimized versions of the rules for backward inference, such as Carte-
sian decomposition and state partitioning (Section 4), from which we obtain a
typechecking algorithm that scales to large types. Also, in our emptiness algo-
rithm for alternating tree automata, we exploit various simple facts on Boolean
formulas (e.g., a formula φ1 ∧ φ2 denotes an empty set if φ1 does so) to perform
efficient shortcuts—these exploited facts are not immediately available in normal
tree automata (our emptiness algorithm is omitted from this abstract for lack of
space; see our technical report [?]).

For preliminary experiments on our implementation, we have written several
sizes of transformations and verified against the full XHTML type automatically
generated from its DTD. (In reality, transformations are often small, but types
that they work on are quite big in many cases; excellent statistical evidences are
provided in [17].) The results show that, for this scale of transformations, our
implementation has successfully completed typechecking in a reasonable time
(about 1 second or less on a stock PC) even with XHTML, which is considered
to be quite large. We have also compared the performance of our implementation
with Tozawa and Hagiya’s [26] and confirmed that ours has comparable speed
for their small examples that are used in their own experiments.

Related work Numerous techniques for exact typechecking for XML transfor-
mations have been proposed. Many of these take their target languages from
the tree transducer family. Those include techniques for macro tree transduc-
ers [12, 4], for macro forest transducers [20], for k-pebble tree transducers [16,

3 Special thanks to Sebastian Maneth providing a simple proof for this: a macro (or
even a top-down) tree transducer can produce the tree language over {a, b, c} that
consists of trees a(t, t′) where t′ is identical to t except that every symbol b in t is
replaced with c in t′, but this language is not in context-free tree languages according
to [?].

4], for subsets of XSLT [23, 26], for high-level tree transducers [24], and a tree
transformation language TL [11]. Other techniques treat XML query languages
in the select-construct style [15, 1, 13] or even simpler transformations [18, 14].
Most of the above mentioned work provides only theoretical results; the only
exceptions are [23, 26], where some experimental results are shown though we
have examined much bigger examples (in particular in the size of types).

Several algorithms in pragmatic approaches have been proposed to address
high complexity problems related to XML typechecking. A top-down algorithm
for inclusion test on tree automata has been developed and used in XDuce type-
checker [9]; an improved version is proposed in [22]. A similar idea has been
exploited in the work on CDuce on the emptiness check for alternating tree
automata [6]; the emptiness check algorithm in our present work is strongly in-
fluenced by this. Tozawa and Hagiya have developed BDD-based algorithms for
inclusion test on tree automata [25] and for satisfiability test on a certain logic
related to XML typechecking [26].

Lastly, another relevant piece of work is on static typechecking for XSLT
programs by Møller, Olesen, and Schwartzbach [17]. They employ a context-
sensitive flow analysis and have experimentally proved its high precision by using
a number of style sheets taken from real applications. However, their technique
is, in a sense, based on a forward inference and, in theory, cannot be exact (even
if we exclude obscure features such as complex conditionals and external function
calls). Whether or not the lack of exactness can be problematic in practice is yet
to be seen. (A remark worthwhile here is that their analysis is precise enough to
typecheck a trivial identity function with respect to a given type.)

Overview This paper is organized as follows. In Section 2, we recall the classical
definitions of macro tree transducers (mtt), bottom-up tree automata (bta), and
alternating tree automata (ata). In Section 3, we present a basic construction
of our backward type inference that produces an ata from an mtt and a deter-
ministic bta. In Section 4, we revisit this construction from a practical point of
view and describe important optimizations and implementation techniques. In
Section 5, we report the results of our experiments with our implementation of
the typechecker for several XML transformations. In Section 6, we conclude this
paper with future research directions.

Our accompanied technical report [?] describes, in addition to proofs of the-
orems and our emptiness check for atas, our theoretical contributions omitted
from this abstract for lack space. Namely, we establish an exact relationship with
two major existing algorithms for mtt typechecking, a classical algorithm based
on “function enumeration” [4] and an algorithm proposed by Maneth, Perst, and
Seidl [12]. In this, we show that each of these algorithms can be retrieved from
ours by composing it with a known algorithm.

2 Preliminaries

2.1 Macro Tree Transducers

We assume an alphabet Σ where each symbol a ∈ Σ is associated with its arity;
often we write a(n) to denote a symbol a with arity n. We assume that there is
a symbol ε with zero-arity. Trees, ranged over by v, w, . . ., are defined as follows:
v ::= a(n)(v1, . . . , vn). We write ε for ε() and ~v = (v1, . . . , vn) to represent a
tuple of trees. Assume a set of variables, ranged over by x, y, A macro tree
transducer (mtt) T is a tuple (P, P0,Π) where P is a finite set of procedures,
P0 ⊆ P is a set of initial procedures, and Π is a set of (transformation) rules
each of the form p(k)(a(n)(x1, . . . , xn), y1, . . . , yk) → e where each yi is called
(accumulating) parameter and e is a (n, k)-expression, defined below. We will
abbreviate the tuples (x1, . . . , xn) and (y1, . . . , yk) to ~x and ~y. Note that each
procedure is associated with its arity, i.e., the number of parameters; we write
p(k) to denote a procedure p with arity k. An (n, k)-expression e is defined by
the following grammar

e ::= a(m)(e1, . . . , em) | p(l)(xh, e1, . . . , el) | yj

where only yj with 1 ≤ j ≤ k and xh with 1 ≤ h ≤ n can appear as variables.
We assume that each initial procedure has arity zero.

We describe the call-by-value semantics of an mtt (P, P0,Π) by a denotation
function [[·]]. First, the semantics of a procedure p(k) takes a tree a(n)(v1, . . . , vn)
and parameters ~w = (w1, . . . , wk) and returns the set of trees resulting from the
evaluation of p’s body expressions.

[[p(k)]](a(n)(~v), ~w) =
⋃

(p(k)(a(n)(~x),~y)→e)∈Π

[[e]](~v, ~w)

Then, the semantics of an (n, k)-expression e takes a current n-tuple ~v =
(v1, . . . , vn) of trees and a k-tuple of parameters ~w = (w1, . . . , wk), and returns
a set of trees. It is defined as follows.

[[a(m)(e1, . . . , em)]](~v, ~w) = {a(m)(v′1, . . . , v
′
m) | v′i ∈ [[ei]](~v, ~w), for i = 1, . . . ,m}

[[p(l)(xh, e1, . . . , el)]](~v, ~w) = {[[p(l)]](vh, (w′1, . . . , w
′
l)) | w′j ∈ [[ej]](~v, ~w),

for j = 1, . . . , l}
[[yj]](~v, ~w) = {wj}

Note that an mtt is allowed to inspect only the input tree and never a part of
the output tree being constructed. Also, parameters only accumulate subtrees
that will potentially become part of the output and never point to parts of the
input.

The whole semantics of the mtt with respect to a given input tree v is defined
by T (v) =

⋃
p0∈P0

[[p0]](v). An mtt T is deterministic when T (v) has at most
one element for any v; also, T is total when T (v) has at least one element
for any v. We will also use the classical definition of images and preimages:
T (V) =

⋃
v∈V T (v) and T −1(V ′) = {v | ∃v′ ∈ V ′.v′ ∈ T (v)}.

2.2 Tree Automata and Alternation

A (bottom-up) tree automaton (bta)M is a tuple (Q,QF ,∆) where Q is a finite
set of states, QF ⊆ Q is a set of final states, and ∆ is a set of (transition) rules
each of the form q ← a(n)(q1, . . . , qn) where each qi is from Q. We will write ~q
for the tuple (q1, . . . , qn). Given a btaM = (Q,QF ,∆), acceptance of a tree by
a state is defined inductively as follows: M accepts a tree a(n)(~v) by a state q
when there is a rule q ← a(n)(~q) in ∆ such that each subtree vi is accepted by
the corresponding state qi.M accepts a tree v whenM accepts v by a final state
q ∈ QF . We write [[q]]M for the set of trees that the automaton M accepts by
the state q (we drop the subscriptM when it is clear), and L(M) =

⋃
q∈QF

[[q]]
for the set of trees accepted by the automatonM. Also, we sometimes say that
a value v has type q when v is accepted by the state q. A bta (Q,QF ,∆) is
complete and deterministic when, for any symbol a(n) and n-tuple of states ~q,
there is exactly one transition rule of the form q ← a(n)(~q) in ∆. Such a bta is
called deterministic bottom-up tree automaton (dbta). For any value v, there is
exactly one state q such that v ∈ [[q]]. In other words, the collection {[[q]] | q ∈ Q}
is a partition of the set of trees.

An alternating tree automaton (ata) A is a tuple (Ξ,Ξ0, Φ) where Ξ is a
finite set of states, Ξ0 ⊆ Ξ is a set of initial states, and Φ is a function that
maps each pair (X, a(n)) of a state and an n-ary symbol to an n-formula, where
n-formulas are defined by the following grammar.

φ ::= ↓i X | φ1 ∨ φ2 | φ1 ∧ φ2 | > | ⊥

(with 1 ≤ i ≤ n). In particular, note that a 0-ary formula evaluates naturally
to a Boolean. Given an ata A = (Ξ,Ξ0, Φ), we define acceptance of a tree by a
state. A accepts a tree a(n)(~v) by a state X when ~v ` Φ(X, a(n)) holds, where
the judgment ~v ` φ is defined inductively as follows: ~v ` φ1 ∧ φ2 if ~v ` φ1 and
~v ` φ2; ~v ` φ1 ∨ φ2 if ~v ` φ1 or ~v ` φ2; ~v ` >; ~v `↓i X if A accepts vi by
X. That is, ~v ` φ intuitively means that φ holds by interpreting each ↓i X as
“vi has type X.” We write [[X]] for the set of trees accepted by a state X and
[[φ]] = {~v | ~v ` φ} for the set of n-tuples accepted by an n-formula φ. We write
L(A) =

⋃
X0∈Ξ0

[[X0]] for the language accepted by the ata A. Note that a bta
M = (Q,QF ,∆) can be seen as an ata with the same set of states and final
states by defining the function Φ as Φ(q, a(n)) =

∨
(q←a(n)(~q))∈∆

∧
i=1,...,n ↓i qi,

and the definitions for the semantics of states and the language accepted by the
automaton seen as a bta or an ata then coincide. We will use the notation ' to
represent semantical equivalence of pairs of states or pairs of formulas.

3 Typechecking

Given a dbta Mout (“output type”), a bta Min (“input type”), and an mtt
T , the goal of typechecking is to verify that T (L(Min)) ⊆ L(Mout). It is well
known that T (L(Min)) is in general beyond regular tree languages and hence
the forward inference approach (i.e., first calculate an automaton representing

T (L(Min)) and check it to be included in L(Mout)) does not work. Therefore
an approach usually taken is the backward inference, which is based on the
observation that T (L(Min)) ⊆ L(Mout) ⇐⇒ L(Min) ∩ T −1(L(M)) = ∅,
where M is the complement automaton of Mout. Intuitively, if the intersection
L(Min)∩T −1(L(M)) is not empty, then it is possible to exhibit a tree v in this
intersection; since this tree satisfies that v ∈ L(Min) and T (v) 6⊆ L(Mout), it
means that there is a counter-example of the well-typedness of the mtt with re-
spect to the given input and output types. Algorithmically, the approach consists
of computing an automaton A representing T −1(L(M)) and then checking that
L(Min) ∩ L(A) = ∅. Since the language T −1(L(M)) is regular and indeed such
automata A can effectively be computed, the above disjointness is decidable.

The originality of our approach is to compute A as an alternating tree au-
tomaton. Let a dbtaM = (Q,QF ,∆) and an mtt T = (P, P0,Π) be given. Here,
note that the automatonM, which denotes the complement of the output type
Mout, can be obtained from Mout in a linear time since Mout is deterministic.
From M and T , we build an ata A = (Ξ, Ξ0, Φ) where

Ξ = {〈p(k), q, ~q〉 | p(k) ∈ P, q ∈ Q, ~q ∈ Qk}
Ξ0 = {〈p0, q〉 | p0 ∈ P0, q ∈ QF }
Φ(〈p(k), q, ~q〉, a(n)) =

∨
(p(k)(a(n)(~x),~y)→e)∈Π

Inf(e, q, ~q).

Here, the function Inf is defined inductively as follows.

Inf(b(m)(e1, . . . , em), q, ~q) =
∨

(q←b(m)(~q′))∈∆

∧
j=1,...,m

Inf(ej , q
′
j , ~q)

Inf(p(l)(xh, e1, . . . , el), q, ~q) =
∨

~q′∈Ql

↓h 〈p(l), q, ~q′〉 ∧
∧

j=1,...,l

Inf(ej , q
′
j , ~q)

Inf(yj , q, ~q) =

{
> (q = qj)
⊥ (q 6= qj)

Intuitively, each state 〈p, q, ~q〉 represents the set of trees v such that the pro-
cedure p may transform v to some tree u of type q, assuming that the parameters
yi are bound to trees wi each of type qi. Formally, we can prove the following
invariant

∀~w ∈ [[~q]]. v ∈ [[〈p(k), q, ~q〉]] ⇐⇒ [[p(k)]](v, ~w) ∩ [[q]] 6= ∅ (1)

where ~w ∈ [[~q]] means w1 ∈ [[q1]], . . . , wk ∈ [[qk]]. Note that this invariant implies
that whether the right-hand side holds or not does not depend on the specific
choice of the values wi from the sets [[qi]]. From this invariant, the initial states
Ξ0 represent the set of trees that we want. Then, the function Inf(e, q, ~q) infers
an n-formula representing the set of n-tuples ~v such that the expression e may
transform ~v to some tree of type q, assuming that the parameters yi are bound
to trees wi each of type qi. Each case can be understood as follows.

– In order for a tree u of type q to be produced from the constructor expression
b(m)(e1, . . . , em), first, there must be a transition q ← b(m)(~q′) ∈ ∆. In
addition, u’s each subtree must have type q′i and must be produced from the
corresponding subexpression ei.

– In order for a tree u of type q to be produced from the procedure call
p(xh, e1, . . . , el), first, a tree w′j of some type q′j must be yielded from each
parameter expression ej . In addition, the h-th input tree must have type
〈p, q, (q′1, . . . , q

′
l)〉 since the result tree u must be produced by the procedure

p from the h-th tree with parameters w′1, . . . , w
′
l of types q′1, . . . , q

′
l.

– In order for a tree of type q to be produced from the variable expression yj ,
this variable must have type q.

Theorem 1. L(A) = T −1(L(M)).

Finally, it remains to check L(Min) ∩ L(A) = ∅, for which we first calculate
an ata A′ representing L(Min)∩L(A) (this can easily be done since an ata can
freely use intersections) and then check the emptiness of A′. For lack of space,
we give our emptiness checking algorithm in [?].

Note that the size of the ata A is polynomial in the sizes ofMout and of T .
The size of A′ is thus polynomial in the sizes ofMin,Mout, and T .

4 Optimization techniques

In this section, we describe some optimization techniques for speeding up the
backward inference presented in Section 3.

A simple algorithm to compute the input type as an alternating tree au-
tomaton is to follow naively the formal construction given in Section 3. A first
observation is that it is possible to build the automaton lazily, starting from the
initial states, producing new states and computing Φ() only on demand. This
is sometimes useful since our emptiness check algorithm [?] works in a top-down
way and will not always materialize the whole automaton.

The defining equations for the function Inf as given in Section 3 produce
huge formulas. We will now describe new equations that produce much smaller
formulas in practice. Before describing them, it is convenient to generalize the
notation Inf(e, q, ~q) by allowing a set of states q ⊆ Q instead of a single state
q ∈ Q for the output type. Intuitively, we want Inf(e, q, ~q) to be semantically
equivalent to

∨
q∈q Inf(e, q, ~q). We obtain a direct definition of Inf(e, q, ~q) by

adapting the rules for Inf(e, q, ~q):

Inf(b(m)(e1, . . . , em), q, ~q) =
∨

(q←b(m)(~q′))∈∆,q∈q

∧
j=1...,m

Inf(ej , {q′j}, ~q)

Inf(p(l)(xh, e1, . . . , el), q, ~q) =
∨

~q′∈Ql

↓h 〈p(l), q, ~q′〉 ∧
∧

j=1,...,l

Inf(ej , {q′j}, ~q)

Inf(yj , q, ~q) =

{
> (qj ∈ q)
⊥ (qj 6∈ q)

We have used the notation ↓h 〈p(l), q, ~q′〉. Intuitively, this should be semantically
equivalent to the union

∨
q∈q ↓h 〈p(l), q, ~q′〉. Instead of using this as a definition,

we prefer to change the set of states of the automaton:

Ξ = {〈p(k), q, q1, . . . , qk〉 | p(k) ∈ P, q ⊆ Q, ~q ∈ Qk}
Ξ0 = {〈p0, QF 〉 | p0 ∈ P0}
Φ(〈p(k), q, ~q〉, a(n)) =

∨
(p(k)(a(n)(~x),~y)→e)∈Π Inf(e, q, ~q).

In theory, this new alternating tree automaton could have exponentially many
more states. However, in practice, and because of the optimizations we will
describe now, this actually reduces significantly the number of states that need
to be computed.

The sections below will use the semantical equivalence
∨

q∈q Inf(e, {q}, ~q) '
Inf(e, q, ~q) mentioned above in order to simplify formulas.

Cartesian factorization The rule for the constructor expression b(m)(e1, . . . , em)
can be rewritten:

Inf(b(m)(e1, . . . , em), q, ~q) =
∨

~q′∈∆(q,b(m))

∧
j=1...,m

Inf(ej , {q′j}, ~q)

where ∆(q, b(m)) = {~q′ | q ← b(m)(~q′) ∈ ∆, q ∈ q} ⊆ Qm. Now assume that we
have a decomposition of this set ∆(q, b(m)) as a union of l Cartesian products:

∆(q, b(m)) = (q1
1 × . . .× q1

m) ∪ . . . ∪ (ql
1 × . . .× ql

m)

where the qi
j are sets of states. It is always possible to find such a decomposition:

at worst, using only singletons for the qi
j , we will have as many terms in the union

as m-tuples in ∆(q, b(m)). But often, we can produce a decomposition with fewer
terms in the union. Let us write Cart(∆(q, b(m)) for such a decomposition (seen
as a subset of (2Q)m). One can then use the following rule:

Inf(b(m)(e1, . . . , em), q, ~q) =
∨

(q1,...,qm)∈Cart(∆(q,b(m)))

∧
j=1,...,m

Inf(ej , qj , ~q)

State partitioning

Intuition The rule for procedure call enumerates all the possible states for the
values of parameters of the called procedure. In its current form, this rule always
produces a big union with |Q|l terms. However, it may be the case that we don’t
need fully precise information about the value of a parameter to do the backward
type inference.

Let us illustrate that with a simple example. Assume that the called proce-
dure p(1) has a single parameter y1 and that it never does anything else with
y1 than copying it (that is, any rule for p whose right-hand side mentions y1

is of the form p(1)(a(n)(x1, . . . , xn), y1) → y1). Clearly, all the states 〈p, q, q′1〉
with q′1 ∈ q are equivalent, and similarly for all the states 〈p, q, q′′1 〉 with q′′1 6∈ q.
This is because whether the result of the procedure call will be or not in q only
depends on the input tree (because there might be other rules whose right-hand
side doesn’t involve y1 at all) and on whether the value for the parameter is
itself in q or not. In particular, we don’t need to know exactly in which state the
accumulator is. So the rule for calling this procedure could just be:

Inf(p(xh, e1), q, ~q)
=
∨

q′
1∈Q

↓h 〈p, q, q′1〉 ∧ Inf(e1, {q′1}, ~q)

=

∨
q′
1∈q

↓h 〈p, q, q′1〉 ∧ Inf(e1, {q′1}, ~q)

∨

 ∨
q′′
1 ∈Q\q

↓h 〈p, q, q′′1 〉 ∧ Inf(e1, {q′′1}, ~q)

= (↓h 〈p, q, q′1〉 ∧ Inf(e1, q, ~q)) ∨ (↓h 〈p, q, q′′1 〉 ∧ Inf(e1, Q\q, ~q))

where in the last line q′1 (resp. q′′1) is chosen arbitrarily from q (resp. Q\q).

A new rule More generally, in the rule for a call to a procedure p(l), we don’t
need to consider all the l-tuples ~q′, but only a subset of them that capture all the
possible situations. First, we assume that for given procedure p(l) and output
type q, one can compute for each j = 1, . . . , l an equivalence relation E〈p(l), q, j〉
such that:

(∀j = 1, . . . , l. (q′j , q
′′
j) ∈ E〈p(l), q, j〉)⇒ 〈p(l), q, ~q′〉 ' 〈p(l), q, ~q′′〉 (∗)

Let us see again the right-hand side of the definition for Inf(p(l)(xh, e1, . . . , el), q, ~q):

Inf(p(l)(xh, e1, . . . , el), q, ~q) =
∨

~q′∈Ql

↓h 〈p(l), q, ~q′〉 ∧
∧

j=1,...,l

Inf(ej , {q′j}, ~q)

Let us split this union according to the equivalence class of the q′j modulo the
relations E〈p(l), q, j〉. If for each j, we choose an equivalence class qj for the
relation E〈p(l), q, j〉 (we write qj / E〈p(l), q, j〉), then all the states 〈p(l), q, ~q′〉
with ~q′ ∈ q1 × . . . × ql are equivalent to 〈p(l), q, C(q1 × . . .× ql)〉, where C is a
choice function (it picks an arbitrary element from its argument). We can thus
rewrite the right hand-side to:∨

q1/E〈p(l),q,1〉,...,ql/E〈p(l),q,l〉

(
↓h 〈p(l), q, C(q1 × . . .× ql)〉

∧
∨

~q′∈q1×...×ql

∧
j=1,...,l

Inf(ej , {q′j}, ~q)

)

The union of all the formulas
∧

j=1,...,l Inf(ej , {q′j}, ~q) for ~q′ ∈ q1 × . . . × ql is
equivalent to

∧
j=1,...,l Inf(ej , qj , ~q). Consequently, we obtain the following new

rule:

Inf(p(l)(xh, e1, . . . , el), q, ~q) =∨
q1/E〈p(l),q,1〉,...,ql/E〈p(l),q,l〉

↓h 〈p(l), q, C(q1 × . . .× ql)〉 ∧
∧

j=1,...,l

Inf(ej , qj , ~q)

In the worst case, all the equivalence relations E〈p(l), q, j〉 are the identity, and
the right-hand side is the same as for the old rule. But if we can identify larger
equivalence classes, we can significantly reduce the number of terms in the union
on the right-hand side.

Computing the equivalence relations Now we will give an algorithm to compute
the relations E〈p(k), q, j〉 satisfying the condition (∗). We will also define equiv-
alence relations E[e, q, j] for any (n, k)-expression e (with j = 1, . . . , k), such
that:

(∀j = 1, . . . , k.(q′j , q
′′
j) ∈ E[e, q, j])⇒ Inf(e, q, ~q′) ' Inf(e, q, ~q′′)

We can use the rules used to define the formulas Inf(e, q, ~q) in order to obtain
sufficient conditions to be satisfied so that these properties hold. We will express
these conditions by a system of equations. Before giving this system, we need
to introduce some notations. If E1 and E2 are two equivalence relations on Q,
we write E1 v E2 if E2 ⊆ E1 (when equivalence relations are seen as subsets of
Q2). The smallest equivalence relation for this ordering is the equivalence relation
with a single equivalence class. The largest equivalence relation is the identity on
Q. For two equivalence relations E1, E2, we can define their least upper bound
E1tE2 as the set-theoretic intersection. For an equivalence relation E and a set
of states q, we write q /E if q is one of the equivalence class modulo E. Abusing
the notation by identifying an equivalence relation with the partition it induces
on Q, we will write {Q} for the smallest relation and {q, Q\q} for the relation
with the two equivalence classes q and its complement. The system of equations
is derived from the rules used to define the function Inf:

E[b(m)(e1, . . . , em), q, i] w
⊔
{E[ej , qj , i] | (q1, . . . , qm) ∈ Cart(∆(q, b(m))),

for j = 1, . . . ,m}
E[p(l)(xh, e1, . . . , el), q, i] w

⊔
{E[ej , qj , i] | qj / E〈p(l), q, j〉, for j = 1, . . . , l}

E[yj , q, i] w
{
{q, Q\q} (i = j)
{Q} (i 6= j)

E〈p(k), q, j〉 w
⊔
{E[e, q, j] | p(k)(a(n)(~x), ~y)→ e) ∈ Π}

Let us explain why these conditions imply the required properties for the equiv-
alence relation and how they are derived from the rules defining Inf. We will

use an intuitive induction argument (on expressions), even though a formal
proof actually requires an induction on trees. Consider the rule for the pro-
cedure call. The new rule we have obtained above implies that in order to
have Inf(p(l)(xh, e1, . . . , el), q, ~q′) ' Inf(p(l)(xh, e1, . . . , el), q, ~q′′), it is sufficient
to have Inf(ej , qj , ~q

′) ' Inf(ej , qj , ~q′′) for all j = 1, . . . , l and for all qj/E〈p(l), q, j〉,
and thus, by induction, it is also sufficient to have (q′i, q

′′
i) ∈ E[ej , qj , i] for all

i, for all j = 1, . . . , l and for all qj / E〈p(l), q, j〉. In other words, a sufficient
condition is (q′i, q

′′
i) ∈

⋂
{E[ej , qj , i] | qj / E〈p(l), q, j〉, j = 1, . . . , l}, from which

we obtain the equation above (we recall that t corresponds to set-theoretic in-
tersection of relations). The reasoning is similar for the constructor expression.
Indeed, the rule we have obtained in the previous section tells us that in order
to have Inf(b(m)(e1, . . . , em), q, ~q′) ' Inf(b(m)(e1, . . . , em), q, ~q′′), it is sufficient
to have Inf(ej , qj , ~q

′) ' Inf(ej , qj , ~q′′) for all (q1, . . . , qm) ∈ Cart(∆(q, b(m))) and
j = 1, . . . ,m.

As we explained before, it is desirable to compute equivalence relations with
large equivalence classes (that is, small for the v ordering). Here is how we
can compute a family of equivalence relations satisfying the system of equations
above. First, we consider the CPO of functions mapping a triple (e, q, i) to an
equivalence relation on Q and we reformulate the system of equation as finding
an element x of this CPO such that f(x) v x, where f is obtained from the
right-hand sides of the equations. To compute such an element, we start from
x0 the smallest element of the CPO, and we consider the sequence defined by
xn+1 = xn t f(xn). Since this sequence is monotonic and the CPO is finite, the
sequence reaches a constant value after a finite number of iterations. This value
x satisfies f(x) v x as expected. We conjecture that this element is actually a
smallest fixpoint for f , but we have no proof of this fact (note that the function
f is not monotonic).

Sharing the computation Given the rules defining the formulas Inf(e, q, ~q),
we might end up computing the same formula several times. A very classical
optimization consists in memoizing the results of such computations. This is
made even more effective by hash-consing the expressions. Indeed, in practice,
for a given mtt procedure, many constructors have identical expressions.

Complementing the output In the example at the beginning of the section
on “state partitioning,” we have displayed a formula where both Inf(e, q, ~q) and
Inf(e,Q\q, ~q) appear. One may wonder what the relation is between these two
sub-formulas. Let us recall the required properties for these two formulas:

[[Inf(e, q, ~q)]] = {v | [[p]](~v, ~w) ∩ [[q]] 6= ∅}

[[Inf(e,Q\q, ~q)]] = {v | [[p]](~v, ~w) ∩ [[Q\q]] 6= ∅}

(for ~w ∈ [[~q]]). Note that [[Q\q]] is the complement of [[q]]. As a consequence, if
[[p]] is a total deterministic function (that is, if [[p]](~v, ~w) is always a singleton),

then [[Inf(e,Q\q, ~q)]] is the complement of [[Inf(e, q, ~q)]]. If we extend the syntax
of formula in alternating tree automata with negation (whose semantics is trivial
to define), we can thus introduce the following rule:

Inf(e, q, ~q) = ¬Inf(e,Q\q, ~q)

to be applied e.g. when the cardinal of q is strictly larger than half the cardinal
of Q. In practice, we observed a huge impact of this optimization: the number
of constructed states is divided by two in all our experiences, and the emptiness
algorithm runs much more efficiently. Also, because of the memoization technique
mentioned above, this optimization allows us to share more computation. That
said, we don’t yet have a deeper understanding of the very important impact of
this optimization.

The rule above can only be applied when the expression e denotes a to-
tal and deterministic function. We use a very simple syntactic criterion to en-
sure that: we require all the reachable procedures p(k) to have exactly one rule
p(k)(a(n)(x1, . . . , xn), y1, . . . , yk)→ e for each symbol a(n).

5 Experiments

We have experimented on our typechecker with various XML transformations
implemented as mtts. Although we did not try very big transformations, we did
work with large input and output tree automata automatically generated from
the XHTML DTD (without taking XML attributes into account). Note that
because this DTD has many tags, the mtts actually have many transitions since
they typically copy tags, which requires all constructors corresponding to these
tags to be enumerated. They do not have too many procedures, though. The
bottom-up deterministic automaton that we generated from the XHTML DTD
has 35 states.

Table 1 gives the elapsed times spent in typechecking several transformations
and the number of states of the inferred alternating tree automaton that have
been materialized. The experiment was conducted on an Intel Pentium 4 proces-
sor 2.80Ghz, running Linux kernel 2.4.27, and the typechecking time includes the
whole process (determinization of the output type, backward inference, intersec-
tion with the input type, and emptiness check). The typechecker is implemented
in and compiled by Objective Caml 3.09.3.

We also indicate the number of procedures in each mtt, the maximum number
of parameters, and the minimum integer b, if any, such that the mtt is syntacti-
cally b-bounded copying. Intuitively, the integer b captures the maximum number
of times the mtt traverses any node of the input tree. This notion has been in-
troduced in [12] where the existence of b is shown to imply the polynomiality
of the algorithm described in that paper (see [?]). Here, we observe that even
unbounded-copying mtts can be typechecked efficiently.

Unless otherwise stated, transformations are checked to have type XHTML→XHTML
(i.e., both input and output types are XHTML). Transformation (1) removes all
the tags, keeping their contents. Transformation (2) is a variant that drops

Transformation: (1) (2) (3) (4) (5) (6) (7)

of procedures: 2 2 3 5 4 6 6

Max # of parameters: 1 1 1 1 2 2 2

Bounded copying: 1 1 2 ∞ ∞ 2 1

Type-checking time (ms): 1057 1042 0373 0377 0337 0409 0410

of states in the ata: 147 147 43 74 37 49 49
Table 1. Results of the experiments

the <div> tags instead. The typechecker detects that the latter doesn’t have
type XHTML→XHTML by producing a counter-example:

<html><head><title/></head><body><div/></body>

Indeed, removing the <div> element may produce a <body> element with an
empty content, which is not valid in XHTML. This kind of error is quite com-
mon in XML transformations but it is difficult to find with testing or with a
simple type system. Transformation (3) copies all the <a> elements (and their
corresponding subtrees) into a new <div> element and prepends the <div> to
the <body> element. Transformation (4) groups together adjacent elements,
concatenating their contents. Transformation (5) extracts from an XHTML doc-
ument a tree of depth 2 which represents the conceptual nesting structure of
<h1> and <h2> heading elements (note that, in XHTML, the structure among
headings is flat). Transformation (6) builds a tree representing a table of contents
for the top two levels of itemizations, giving section and subsection numbers to
them (where the numbers are constructed as Peano numerals), and prepends the
resulting tree to the <body> element. Transformation (7) is a variant that only
returns the table of contents.

We have also translated some transformations (that can be expressed as mtts)
used by Tozawa and Hagiya in [26] (namely htmlcopy, inventory, pref2app,
pref2html, prefcopy). Our implementation takes between 2ms and 6ms to type-
check these mtts, except for inventory for which it takes 22 ms. Tozawa and
Hagiya report performance between 5ms and 1000ms on a Pentium M 1.8 Ghz for
the satisfiability check (which corresponds to our emptiness check and excludes
the time taken by backward inference). Although these results indicate our ad-
vantages over them to some extent, since the numbers are too small and they
have not undertaken experiments as big as ours, it is hard to draw a meaningful
conclusion.

6 Conclusion and Future Work

We have presented an efficient typechecking algorithm for mtts based on the idea
of using alternating tree automata for representing the preimage of the given mtt
obtained from the backward type inference. This representation was useful for
deriving optimization techniques on the backward inference phase such as state

partitioning and Cartesian factorization, and was also effective for speeding up
the subsequent emptiness check phase by exploiting Boolean equivalences among
formulas. Our experimental results confirmed that our techniques allow us to
typecheck small sizes of transformations with respect to the full XHTML type.

The present work is only the first step toward a truly practical typechecker for
mtts. In the future, we will seek for further improvements that allow typecheck-
ing larger and more complicated transformations. In particular, transformations
with upward axes can be obtained by compositions of mtts as proved in [11] and
a capability to typecheck such compositions of mtts in a reasonable time will
be important. We have some preliminary ideas for the improvement and plan to
pursue them as a next step. In the end, we hope to be able to handle (at least
a reasonably large subset of) XSLT.

References

1. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data values:
Typechecking revisited. In Proceedings of Symposium on Principles of Database
Systems (PODS), 2001.

2. A. W. Appel and D. B. MacQueen. Standard ML of New Jersey. In Third
Int’l Symp. on Prog. Lang. Implementation and Logic Programming, pages 1–13.
Springer-Verlag, Aug. 1991.

3. V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric general-purpose
language. In Proceedings of the International Conference on Functional Program-
ming (ICFP), pages 51–63, 2003.

4. J. Engelfriet and S. Maneth. A comparison of pebble tree transducers with macro
tree transducers. Acta Informatica, 39(9):613–698, 2003.

5. J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst. Sci.,
31(1):710–146, 1985.

6. A. Frisch. Théorie, conception et réalisation d’un langage de programmation adapté
à XML. PhD thesis, Université Paris 7, 2004.

7. H. Hosoya. Regular expression filters for XML. Journal of Functional Program-
ming, 16(6):711–750, 2006. Short version appeared in Proceedings of Programming
Technologies for XML (PLAN-X), pp.13–27, 2004.

8. H. Hosoya and B. C. Pierce. XDuce: A typed XML processing language. ACM
Transactions on Internet Technology, 3(2):117–148, 2003. Short version appeared
in Proceedings of Third International Workshop on the Web and Databases
(WebDB2000), volume 1997 of Lecture Notes in Computer Science, pp. 226–244,
Springer-Verlag.

9. H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for XML. ACM
Transactions on Programming Languages and Systems, 27(1):46–90, 2004. Short
version appeared in Proceedings of the International Conference on Functional
Programming (ICFP), pp.11-22, 2000.

10. X. Leroy, D. Doligez, J. Garrigue, J. Vouillon, and D. Rémy. The Objec-
tive Caml system. Software and documentation available on the Web, http://
pauillac.inria.fr/ocaml/, 1996.

11. S. Maneth, T. Perst, A. Berlea, and H. Seidl. XML type checking with macro
tree transducers. In Proceedings of Symposium on Principles of Database Systems
(PODS), pages 283–294, 2005.

12. S. Maneth, T. Perst, and H. Seidl. Exact XML type checking in polynomial time.
In International Conference on Database Theory (ICDT), pages 254–268, 2007.

13. W. Martens and F. Neven. Typechecking top-down uniform unranked tree trans-
ducers. In Proceedings of International Conference on Database Theory, pages
64–78, 2003.

14. W. Martens and F. Neven. Frontiers of tractability for typechecking simple XML
transformations. In Proceedings of Symposium on Principles of Database Systems
(PODS), pages 23–34, 2004.

15. T. Milo and D. Suciu. Type inference for queries on semistructured data. In Pro-
ceedings of Symposium on Principles of Database Systems, pages 215–226, Philadel-
phia, May 1999.

16. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. In Proceed-
ings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, pages 11–22. ACM, May 2000.

17. A. Møller, M. Ø. Olesen, and M. I. Schwartzbach. Static validation of XSL Trans-
formations. Technical Report RS-05-32, BRICS, October 2005. Draft, accepted
for TOPLAS.

18. M. Murata. Transformation of documents and schemas by patterns and contextual
conditions. In Principles of Document Processing ’96, volume 1293 of Lecture Notes
in Computer Science, pages 153–169. Springer-Verlag, 1997.

19. K. Nakano and S.-C. Mu. A pushdown machine for recursive XML processing. In
APLAS, pages 340–356, 2006.

20. T. Perst and H. Seidl. Macro forest transducers. Information Processing Letters,
89(3):141–149, 2004.

21. G. Slutzki. Alternating tree automata. Theoretical Computer Science, 41:305–318,
1985.

22. T. Suda and H. Hosoya. Non-backtracking top-down algorithm for checking tree
automata containment. In Proceedings of Conference on Implementation and Ap-
plications of Automata (CIAA), pages 83–92, 2005.

23. A. Tozawa. Towards static type checking for XSLT. In Proceedings of ACM
Symposium on Document Engineering, 2001.

24. A. Tozawa. XML type checking using high-level tree transducer. In Functional
and Logic Programming (FLOPS), pages 81–96, 2006.

25. A. Tozawa and M. Hagiya. XML schema containment checking based on semi-
implicit techniques. In 8th International Conference on Implementation and Ap-
plication of Automata, volume 2759 of Lecture Notes in Computer Science, pages
213–225. Springer-Verlag, 2003.

26. A. Tozawa and M. Hagiya. Efficient decision procedure for a logic for XML. un-
published manuscipt, 2004.

Acknowledgments This work is partly supported by Japan Society for the Pro-
motion of Science and by The Okawa Foundation for Information and Telecom-
munications. We are grateful to Sebastian Maneth for useful discussions.

